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A New Proof of a Theorem of J. M. Montesinos∗

By Rubén Vigara

Abstract. If M denotes a closed orientable 3-manifold, a Dehn
sphere Σ [Pa] in M will be a 2-sphere immersed in M with only double
curve and triple point singularities. The sphere Σ fills M [M2] if it de-
fines a cell decomposition of M . In [M2] it is proved that every closed
orientable 3-manifold has a nulhomotopic filling Dehn sphere, and Jo-
hansson diagrams [J] of Dehn spheres are proposed as a new method
for representing all closed, orientable 3-manifolds. In the present paper
another proof of this theorem is given and an algorithm for obtaining
Johansson diagrams of closed orientable 3-manifolds from their Hee-
gaard diagrams is developed in detail. Some examples are given.

1. Introduction

Through this paper we will work in the differentiable category.

Let A and B be two sets. For a map f : A → B the singular values

or singularities of f are the points y ∈ B with #
{
f−1(y)

}
> 1, and the

singular points of f are the inverse images by f of the singularities. The

singular set S(f) of f is the set of singular points of f in A, and the

singularity set S̄(f) is the set of singularities of f in B. Of course, f(S(f)) =

S̄(f).

Let M be a closed, orientable 3-manifold.

A surface is a compact orientable 2-manifold which might have non-

empty boundary and more than one connected component.

A subset Σ ⊂ M is a Dehn surface in M [Pa] if there exists a compact

surface S and a transverse immersion f : S → M such that Σ = f (S) and

the singular set of f does not contain points of the boundary ∂S of S. In

this situation we say that f parametrizes Σ. If S is a 2-sphere then Σ is a

Dehn sphere. Moreover, if S if a connected surface of genus g ≥ 0 without

boundary, then Σ is a genus g Dehn surface.

∗This research has been supported by a predoctoral grant from the U.N.E.D. (1999).
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Fig. 1. Double and triple points.

Let Σ be a Dehn surface in M , and let S be a compact surface and

f : S → M a transverse immersion parametrizing Σ. Then, for any y ∈ M

is #
{
f−1(y)

}
≤ 3 [He]. The singularities are divided into double points,

with #
{
f−1(y)

}
= 2, and triple points with #

{
f−1(y)

}
= 3. A small

neighbourhood of a double or a triple point looks like in Figures 1(a) and

1(b) respectively. We say that two different points of S are related by f if

their respective images by f coincide. Then, each point of S is related with

0 points of S if it is a non-singular point of f ; it is related with 1 point of

S if its image by f is a double point of Σ; and it is related with 2 points

of S if its image by f is a triple point of Σ. If f(x) is a triple point of Σ,

then two branches of S(f) cross at x ∈ S and we say that x is a double

point of the singular set of f . The inverse set of a triple point of Σ under

the map f consists of three such double points of S(f). Because S̄(f) only

depends on Σ, it will be denoted sometimes as the singularity set of Σ. A

double curve of Σ is the image of an immersion γ : S1 → M contained in

the singularity set of f [S1], [S2]. Such a γ is not unique, and it is called

a parametrization of the double curve γ
(
S1

)
. The singularity set of f is

the union of the double curves of Σ. Because S is compact Σ has a finite

number of double curves, and since M is orientable, each double curve has

exactly two preimage curves in S (see [J], part I, p. 319, 2 Satz). Therefore,

if we take a parametrization γ̄ : S1 → M of a double curve of Σ, there are

exactly two different immersions γ, γ′ : S1 → S such that f ◦γ = f ◦γ′ = γ̄.

We say that the parametrized curves γ and γ′ are lifted curves of γ̄ under f

and also that they are sister curves under f . The singular set of f together
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with the information about how its points are related by f is the Johansson

diagram of Σ [M2].

A complete parametrization of the singularity set S̄(f) of f is a set

D̄ = {ᾱ1, ᾱ2, ..., ᾱm} of immersions from S1 into M such that: (i) each ᾱi

parametrizes a double curve of Σ; (ii) ᾱi(S
1) 	= ᾱj(S

1) if i 	= j; and (iii)

S̄(f) =
m
∪
i=1

ᾱi(S
1). If D̄ is a complete parametrization of S̄(f) and we denote

by D the set of all lifted curves of the curves of D̄, the map τ : D → D that

assigns to each curve of D its sister curve under f defines a free involution of

D. The Johansson diagram of f can be defined as the pair (D, τ), because it

contains all the information about the singular set S(f) and about how the

points of S(f) are identified by the map f : two different points A,B ∈ S

verify f(A) = f(B) if and only if there is a parametrized curve α ∈ D and

a z ∈ S1 with A = α(z) and B = τα(z) (compare [Pa], p. 6). A different

notation is used in [C].

We will generalize to general surfaces a definition given in [M2] for Dehn

spheres:

Definition 1. Let Σ be a Dehn surface in M . Then Σ fills M if it

defines a cell decomposition of M in which the 0-skeleton is the set of triple

points of Σ; the 1-skeleton is the set of double curves of Σ; and the 2-skeleton

is Σ itself.

In other words, Σ fills M if and only if

1. M − Σ is a disjoint union of open 3-balls,

2. Σ − {double curves of Σ} is a disjoint union of open 2-dimensional

disks, and

3. {double curves of Σ}−{triple points of Σ} is a disjoint union of open

intervals.

In [Ha] it is stated that every homotopy sphere has a filling Dehn sphere.

In [F-R] it is proved that every closed orientable 3-manifold has a Dehn

sphere Σ such that M − Σ is a disjoint union of open 3-balls. In [M2] is

proved:

Theorem 2 ([M2]). Every closed orientable 3-manifold has a nulho-

motopic filling Dehn sphere.
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The proof in [M2] of this theorem is constructive and gives an algorithm

for obtaining the Johansson diagram of a filling Dehn sphere of any 3-

manifold M from a Heegaard diagram of M . A Dehn sphere is nulhomotopic

if one (and hence any) of its parametrizations is nulhomotopic. In [M2] no

mention is made of the fact that the filling Dehn sphere there constructed

is nulhomotopic, but we remark that this is the case. This is an important

qualification in view of [V1], [V2], in which a complete set of moves relating

nulhomotopic filling Dehn spheres for closed orientable 3-manifolds is given.

As it is pointed out in [M2] (see also [V1]), for a given diagram in

S2 it is possible to know if it is the Johansson diagram for a filling Dehn

sphere Σ in some 3-manifold M . If this is the case, it is possible also to

reconstruct such M from the given diagram. So, Johansson diagrams are

a suitable way for representing all closed, orientable 3-manifolds and it is

interesting to further study them. A Johansson representation of M [M2]

is the Johansson diagram of a filling Dehn sphere of M .

In this paper we give another constructive proof of Theorem 2. From

the same starting point of [M2], we construct here a simpler filling Dehn

sphere (with less triple points). This construction also gives an algorithm

for obtaining a Johansson representation out from a Heegaard diagram. In

Section 2 we introduce some generic modifications of Dehn surfaces that

we will use later. These modifications are a simple generalization of one

special case of the surgeries of immersed surfaces introduced in [B]. In Sec-

tion 3 we give the proof of Theorem 2 focusing only in the existence part.

The constructive part of the same theorem is studied in detail in Sections 4

and 5. Specifically we construct a filling Dehn sphere Σ of M , obtaining

also its Johansson diagram. These results are resumed in Section 6 in an al-

gorithm that provides automatically a Johansson representation of M from

any Heegaard diagram of M . This algorithm is applied in Section 7 to some

examples.

This paper is part of the Ph. D. Thesis of the author, which has been

done under the supervision of Prof. J. M. Montesinos. I’m very grateful to

him for all his valuable advices, specially for his suggestions and comments

during the writing of this paper and his careful reading of the previous

versions of this manuscript.



A Theorem of Montesinos 329

2. Piping Dehn Surfaces

An essential tool in our construction will be the modifications for Dehn

surfaces by surgery explained in detail in [B], specially the modifications by

surgery of type 1 that we will call simply pipings (see [R-S], p. 67). For

more details, see [B].

An arc in a 2- or 3-manifold N is the image of an embedding from the

unit interval [0, 1] into N .

Let Σ be a Dehn surface in M . Let S be a compact surface and f : S →
M a transverse immersion parametrizing Σ.

Definition 3. An arc δ̄ ⊂ Σ is a type 1 arc in Σ if:

(i) δ̄ has no tangent intersections with the double curves of Σ;

(ii) the endpoints X̄ and Ȳ of δ̄ are double points of Σ; and

(iii) δ̄ contains no triple point of Σ.

Let δ̄ be a type 1 arc in Σ. Because of the property (i) of the previous

definition, δ̄ contains a finite number of double points of Σ. It will be simple

if the unique double points that it contains are its endpoints and non-simple

otherwise. Because δ̄ is an embedded interval in Σ, if it contains k double

points of Σ, k ∈ N, then the inverse image by f of δ̄ is composed by an arc δ

(a)

S1

R0

R’
0 R’

1

R1
δS0

X Y

DX
DY

X Y
DX

DY(b) δ

Fig. 2. Simple and non-simple pipings along δ̄.
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in S such that f (δ) = δ̄ and k isolated points of the singular set of f . These k

isolated points are related (in the precise sense defined before) by f with the

intersecting points of δ with S(f). Let X,Y ∈ S be the endpoints of δ with

f (X) = X̄ and f (Y ) = Ȳ , and X ′, Y ′ ∈ S their related (isolated) points

by f respectively. Consider two small closed disks DX , DY ⊂ S with X ′, Y ′

in their respective interiors and their images D̄X := f (DX) , D̄Y := f (DY )

by f .

We can obtain a new Dehn surface Σ′ taking the image by f of S −
(DX ∪DY ) (which is not the same thing as Σ−

(
D̄X ∪ D̄Y

)
) and attaching

to it a small ”tube” parallel to δ along the two circles ∂D̄X and ∂D̄Y as in

Figure 2. It is clear that it can be done in such a way that the resulting

surface is still smoothly (and transversely) immersed in M .

Definition 4. In this situation, we say that Σ′ is obtained by piping

Σ along δ̄.

A piping in a Dehn surface is simple or non-simple if the corresponding

type 1 arc δ̄ is simple or non-simple respectively. After a non-simple piping,

a new double curve and two new triple points appear close to each inner

double point of δ̄.

Note that the Dehn surface obtained after a piping could be non-ori-

entable. This cannot happen if we connect two different orientable compo-

nents of Σ, and this will be always the case in this paper.

If Σ is a filling Dehn surface of M and the surface Σ′ obtained by piping

Σ along δ̄ is still a filling Dehn surface of M , we will say that δ̄ is filling-

preserving.

After performing a simple piping, two pairs of 3-dimensional regions (de-

noted R0, R1, and R′
0, R

′
1 in Figure 2(a)) of M−Σ; a pair of 2-dimensional re-

gions (denoted S0, S1 in Figure 2(a)) of Σ − {double curves of

Σ}; and two additional pairs, become connected. This is not the case for

non-simple pipings, where the intermediate sheets of Σ hinder these new

connections. In particular we have the following trivial result.

Proposition 5. Let Σ be a filling Dehn surface of M , and δ̄ a type 1

arc in Σ.

Then, if δ̄ is non-simple, then it is filling-preserving.
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A particular case in which we can assure that simple pipings are filling-

preserving is the following.

Proposition 6. Let Σ,Σ1, ...,Σm be a collection of Dehn surfaces in

M with Σ = Σ1 ∪ ... ∪ Σm and such that Σ fills M . Assume that for some

particular j ∈ {1, ...,m} the Dehn surface Σj is the image of an embedding

fj : Sj → M from a 2-sphere Sj into M and Σj bounds a ball Bj. If δ̄ is a

simple type 1 arc in Σ such that δ̄ ∩Bj is precisely one endpoint of δ̄, then

δ̄ is filling-preserving.

Proof. Assume, as we can because #
{
δ̄ ∩ Σj

}
= 1 (endpoint of δ̄),

that δ̄ is the arc of Figure 2(a) and in this figure the vertical sheet of the

immersed surface Σ containing D̄Y belongs to Σj and the other two sheets

(the vertical one containing D̄X and the horizontal one) belong to the rest of

Σ. The arc δ̄ must be contained in the closure of one of the two components

M1 and M2 of M − Σj . If, for example, δ̄ is contained in the closure of

M1, then in Figure 2(a) the point X̄ is an interior point of M1, and so it is

R0, R
′
0, S0 ⊂ M1. But in this case we have that R1, R

′
1, S1 ⊂ M2 = Bj and

so δ̄ is filling-preserving. �

We end this section by making some remarks.

For filling Dehn surfaces non-simple pipings always preserve fillingness,

but they increase the complexity of the filling Dehn surface because the

filling Dehn surface so obtained have more triple points than the original

one. On the other hand, simple pipings do not always preserve the filling

property, but they always preserve the number of triple points. Another

kind of surgery (type 2 surgery) introduced in [B] that reduces the number

of triple points is used in [M2].

We observe, in passing, that the minimal number of triple points of filling

Dehn surfaces satisfying some particular property can be in some cases a

topological invariant of the manifold. We can define, for example the triple

point number of a closed orientable 3-manifold as the minimal number of

triple points of all its filling Dehn surfaces, the genus g triple point number

as the minimal number of triple points of all its genus g filling Dehn surfaces,

or the nulhomotopic genus g triple point number as the minimal number of

triple points of all its nulhomotopic genus g filling Dehn surfaces. All of them

are topological invariants of the 3-manifold and give a kind of measure of
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the complexity of the manifold in the same way as the Heegaard genus, for

example. If we have a filling Dehn surface Σ in a 3-manifold, using the type

2 surgery mentioned in the previous paragraph perhaps we can reduce the

number of triple points of Σ, but increasing the genus of the filling Dehn

surface. So there is some relation between the different genus g triple point

numbers that would be interesting to clarify.

We can define that a genus g filling Dehn surface Σ of a 3-manifold M

is minimal if there is no other genus g filling Dehn surface of M with less

triple points than Σ. Minimal Dehn surfaces, in particular minimal filling

Dehn spheres, should have interesting properties, and their classification is

another interesting problem. The classification of minimal Dehn spheres

has been solved for S3 in [S2]. In that work, A. Shima gives in a different

context six examples of Dehn spheres in S3 with only 2 triple points, and

three of these six examples fill S3. These three filling examples are minimal

according to the definition given here because, as it is pointed out in [Ha], p.

105, any Dehn sphere in a closed orientable 3-manifold has an even number

of triple points. It can be deduced by the main theorem of [S2] that these

three filling examples given there are the unique possible minimal filling

Dehn spheres in S3.

3. Proof of Theorem 2

Definition 7. A Dehn surface Σ ⊂ M that fills M is called a filling

collection of spheres in M if there exists a surface S which is a disjoint

union of a finite number of 2-spheres and a transverse immersion f : S → M

parametrizing Σ.

Theorem 8. If M has a filling collection of spheres then M has a

filling Dehn sphere.

Proof. Let Σ be a filling collection of spheres in M . Then there exists

an m ∈ N, m > 0 and a disjoint union of m 2-spheres S =
m∐

i=1
S2
i , such that

Σ = f (S) for a transverse immersion f : S → M .

If m = 1 there is nothing to do, so assume that m > 1.

The filling Dehn surface Σ is the union of the m Dehn spheres Σ1, ...,Σm,

where Σi := f
(
S2
i

)
for i = 1, ...,m.
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Fig. 3.

Because M is connected, the 2-skeleton of any cell decomposition of

M is connected, and then Σ is connected. This implies that for a given

i ∈ {1, ...,m} there is at least one j ∈ {1, ...,m} different of i such that

Σi ∩ Σj 	= ∅. Because Σ is a Dehn surface, Σi and Σj share at least one

double curve α of Σ, and since Σ fills M , α must contain at least one triple

point P of Σ.

At the triple point P the two Dehn spheres Σi,Σj intersect with other

Dehn sphere Σk (which could coincide with Σi or Σj) of the collection Σ

as in Figure 3(a). The arc δ̄ of Figure 3(a) is a non-simple type 1 arc of

Σ and so it is filling-preserving by Proposition 5. Then, by piping Σ along

δ̄, we obtain again a filling Dehn surface Σ′ which is still a filling collection

of spheres. The filling Dehn surface Σ′ is the union of m− 1 Dehn spheres

because after the piping along δ̄ the two Dehn spheres Σi and Σj become a

unique Dehn sphere.

We have shown that if M have a filling collection of m spheres, with

m > 1, then it has a filling collection of m − 1 spheres. Applying the

same argument inductively we conclude at last that M has a filling Dehn

sphere. �

A construction similar to that of the previous proof gives the following

theorem:

Theorem 9. If M has a filling Dehn sphere, then M has a genus g

filling Dehn surface for all g ≥ 1.

Proof. Let Σ be a filling Dehn sphere of M . As we have indicated
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in the last paragraph of Section 2, the filling Dehn sphere Σ has at least 2

triple points. Let P be a triple point of Σ.

A small neighbourhood of P looks like Figure 3(b). The arc δ̄′ of Figure

3(b) is a non-simple type 1 arc in Σ, and so it is filling-preserving by Propo-

sition 5. Because of the choice of the arc δ̄′ the Dehn surface Σ′ obtained by

piping Σ along δ̄′ is orientable. Then, Σ′ is a genus 1 filling Dehn surface of

M . Repeating this operation we can construct filling Dehn surfaces of M

of arbitrary genus. �

Note that, in the previous proof, the arc δ̄′ of Figure 3(b) can be as

small as we want. This implies that if the filling Dehn sphere Σ of M is

nulhomotopic, then the filling Dehn surface Σ′ obtained by piping Σ along

δ̄′ is also nulhomotopic. Furthermore, the filling Dehn surfaces constructed

repeating this operation will be again nulhomotopic, so we have:

Corollary 10. If M has a nulhomotopic filling Dehn sphere, then M

has a nulhomotopic genus g filling Dehn surface for all g ≥ 1.

In [M2] a filling pair of Dehn spheres is constructed for every manifold

using a Heegaard splitting of the 3-manifold, and then a unique filling Dehn

sphere is obtained by piping those two Dehn spheres. We will give here a

different construction.

Proof of Theorem 2.

Let M be a closed orientable 3-manifold.

As in [F-R] and [M2], we start with a Heegaard diagram of M . We use

the Waldhausen notation [W] (see also [M2]).

Let (M,S) be a Heegaard splitting of M of genus greater than 0. Thus S

is a closed orientable surface embedded in M of genus g > 0 that separates

M out into two handlebodies V and W of genus g with V ∩ W = ∂V =

∂W = S. Take v = {v1, ..., vg} and w = {w1, ..., wg} complete systems of

meridian disks for V and W respectively. Thus, (S, ∂v, ∂w) is a Heegaard

diagram of M , where ∂v = {∂v1, ..., ∂vg} and ∂w = {∂w1, ..., ∂wg}. As in

[M2], we can assume that the systems of simple closed curves ∂v and ∂w

cut transversely in S and that ∂v∪∂w fills S, that is, ∂v∪∂w defines a cell

decomposition of S (see [M1], p. 118). If ∂v and ∂w cut transversely in S,

then ∂v ∪ ∂w fills S if and only if S − ∂v ∪ ∂w is a disjoint union of open

disks.
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Step 1. Constructing a Dehn sphere ΣV from the surface S and the

system of disks v.

Let V1, ..., Vg be a set of closed 3-balls embedded in V , and let denote

σi := ∂Vi for i = 1, ..., g. Assume that: (i) the members of V1, ..., Vg are

pairwise disjoint; (ii) (vi, ∂vi) ⊂ (Vi, σi); and (iii) Vi ∩ S = σi ∩ S = ∂vi for

i = 1, ..., g (Figure 4(b)). The union S ∪ σ1 ∪ ... ∪ σg is a non-transversely

immersed 2-sphere in M . After a slight modification of S ∪ σ1 ∪ ... ∪ σg
near the ∂vi’s we obtain a transversely immersed 2-sphere ΣV in M whose

singularity set is precisely ∂v (Figure 4(c)).

ΣV

S

v1 v2

V

S

σ1 σ2

V

(a) (b)

(c)

Fig. 4. Step 1.

Step 2. Inflating the system of disks w.

Let D
2 ⊂ R

2 be the closed disk with center at the origin and radius 1,

and S
1 = ∂D

2. For a small ε > 0 fixed, consider the set

B
ε =

{
x ∈ R

3 : d
(
x,D2 × {0}

)
≤ ε

}
,

S
ε =

{
x ∈ R

3 : d
(
x,D2 × {0}

)
= ε

}
,

where d denotes the euclidean distance in R
3. Let A

ε be the closure of

B
ε −

(
D

2 × [−ε, ε]
)
. Then B

ε is the union of A
ε and D

2 × [−ε, ε] and A
ε ∩(

D
2 × [−ε, ε]

)
= S

1 × [−ε, ε] (see Figure 5). Now, we take a collection

b1, ..., bg : B
ε → M

of embeddings from B
ε into M thickening w. That is:
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�ε

�ε

�2×[-ε,ε]

�2×{0}

Fig. 5. The flattened 3-ball B
ε.

(i) the images B1, ..., Bg of the maps b1, ..., bg are pairwise disjoint;

(ii) bj
(
D

2 × {0}
)

= wj , bj
(
D

2 × [−ε, ε]
)

= Bj ∩W and bj (Aε) = Bj ∩ V ,

for all j ∈ {1, ..., g}

We can imagine each Bj as a car wheel with the rim (bj
(
D

2 × [−ε, ε]
)
)

inside W and the tyre (bj (Aε)) inside V (Figure 6). Put Σj := bj (Sε) = ∂Bj

for j = 1, ..., g. For each j = 1, ..., g, we choose bj in such a way that ΣV and

Σj intersect transversely and Σj is ”as close to wj as necessary” to avoid

extra intersections between Bj and ΣV .

In this way, if ∂wj has n intersection points with the system of curves

∂v, Bj is divided by ΣV into 2n + 1 different 3-balls (Figure 7(c)): one for

Bj ∩W , one for each intersection point of ∂wj with ∂v, corresponding to

the intersection of Bj with the Vi’s, and another one for each segment into

which ∂wj is divided by ∂v, corresponding to the components of (Bj ∩ V )−
(V1 ∪ ... ∪ Vg).

S

w1 w2

W

S

Σ1

W

Σ2

Fig. 6. Inflating w.
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Figure 7 depicts what happens near one of the disks of w during Steps

1 and 2.

Now, ΣV ∪Σ1∪ ...∪Σg is a filling collection of spheres in M because, by

construction, the complementary set of ΣV ∪ Σ1 ∪ ... ∪ Σg in M is a union

of disjoint open 3-balls; the set

(ΣV ∪ Σ1 ∪ ... ∪ Σg) − {double curves of ΣV ∪ Σ1 ∪ ... ∪ Σg}

is a union of disjoint open disks because ∂v ∪ ∂w fills S; and the set

{double curves of ΣV ∪ Σ1 ∪ ... ∪ Σg}
− {triple points of ΣV ∪ Σ1 ∪ ... ∪ Σg}

is a union of disjoint open intervals.

Then, in view of Theorem 8 we can construct a filling Dehn sphere Σ of

M piping ΣV with Σ1, ...,Σg.

For all j ∈ {1, ..., g} we can shrink the 2-sphere Σj to a point inside the

3-ball Bj . Using these deformations of Σ1, ...,Σg the filling Dehn sphere Σ

constructed can be continuously deformed into ΣV . Finally, ΣV itself can be

(continuously) deformed inside V into a 2-sphere Σ0 standardly embedded

in V (Σ0 bounds a 3-ball in V ). Therefore, Σ is nulhomotopic.

This ends the proof of Theorem 2. �

2

1ΣV

Σj
5

6

4

3

Pj1
S

Pj3Pj2

wj

∂vj2

ΣV

wj
Step 1

Step 2

(a) (b)

(c)

∂vj3

∂vj1

Fig. 7. Steps 1 & 2 near ∂wj .
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In fact, the 2-spheres Σ1, ...,Σg of the previous proof satisfy the hypoth-

esis of Proposition 6. Then we can construct Σ using only simple pipings,

as will be done in Section 5. In Section 5 a concrete detailed procedure for

constructing Σ will provide us with an algorithm to obtaining the Johansson

diagram of Σ from the Heegaard diagram (S, ∂v, ∂w).

4. Singular and Singularity Sets

To create the algorithm referred to above (giving Σ and a Johansson

diagram from a Heegaard diagram of M in an automatic way) we will make

a more detailed study of the construction made in the Proof of Theorem 2.

We keep notation.

Let S2
2g be a compact 2g-holed 2-sphere, and let π : S2

2g → S be a

surjective immersion such that (i) the image by π of the boundary ∂S2
2g of

S2
2g is the system of curves ∂v and (ii) the restriction of π to the interior of

S2
2g is an homeomorphism onto S−∂v. We can always obtain such π. With

these assumptions, the restriction of π to ∂S2
2g must be a non-connected 2:1

covering onto ∂v, and we say that S2
2g is obtained cutting S along ∂v. Two

points or two connected components of ∂S2
2g are related if they have the same

image by π. One standard method of representing the Heegaard diagram

(S, ∂v, ∂w) is taking S2
2g with information about how its boundary points are

related, and drawing over it π−1 (∂w) . We will always represent Heegaard

diagrams in this way in the examples of Section 7. Because (S, ∂v, ∂w) is

a filling Heegaard diagram, each curve of ∂w intersects a curve of ∂v, and

so ∂v divides ∂w into a collection of arcs with endpoints in ∂v. Two such

arcs are consecutive if they share an endpoint. The inverse image by π of

∂w is then a collection of disjoint arcs with their endpoints in ∂S2
2g (see

Figures 14(a), 16(a), and 18(a)). We also say that two arcs of π−1 (∂w) are

consecutive if their images by π are consecutive. For two consecutive arcs

λ, λ′ of π−1 (∂w) there is an endpoint of λ which is related with an endpoint

of λ′. Therefore, the set of endpoints of π−1 (∂w) is composed by a union of

pairs of related points of ∂S2
2g. If # {∂wj ∩ ∂v} = 1 then π−1 (∂wj) is one

single arc which is consecutive to itself (see Figure 14(a)).

Attaching a closed disk to each boundary component of S2
2g, we obtain

a 2-sphere S2. In this way, the 2g-holed 2-sphere S2
2g is now a subset of

the 2-sphere S2, and the closure of S2 − S2
2g is a disjoint union of 2g closed

disks.
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The 2g simple closed curves which compose ∂S2
2g in S2 (with the in-

formation about how their points are related by π) can be interpreted as

the Johansson diagram of a transverse immersion fV : S2 → M such that

fV
(
S2

)
= ΣV and that coincides with π when restricted to ∂S2

2g. The col-

lection of arcs in S2
2g which corresponds to π−1 (∂w) can be seen now as

f−1
V (∂w).

Take j ∈ {1, ..., g} fixed.

Assume that # {∂wj ∩ ∂v} = n, with n ≥ 1. Then, after Steps 1 and

2 of the Proof of Theorem 2, ΣV ∩ Σj is composed by n double curves and

2n triple points (see Figure 7). Take the embedding bj : B
ε → M that

inflates wj , and the image set Bj of bj . Let fj be the restriction of bj to S
ε,

and let fV + fj : S2
∐

S
ε → M be the immersion from the disjoint union

of S2 and S
ε that coincides with fV and fj when restricted to S2 and S

ε

respectively. It is clear that fV +fj parametrizes the Dehn surface ΣV ∪Σj .

The singularity set of ΣV ∪ Σj is

∂v ∪ (ΣV ∩ Σj) ,

The inverse image by fV of Bj is a collection of n disjoint closed disks,

each one with an arc of f−1
V (∂wj) in its interior (see Figure 8). The bound-

ary of the union of these closed disks is the inverse image by fV of the

double curves of ΣV ∩ Σj , it coincides with f−1
V (Σj), and it is a collection

of n disjoint simple closed curves surrounding the arcs of f−1
V (∂wj). We

will call surrounding curves to the curves of f−1
V (Σj), and we define that

surrounding curves that surround consecutive arcs of f−1
V (∂wj) are also

consecutive.

The inverse image by fj of the double curves of ΣV ∩Σj (coincides with

f−1
j (ΣV ) and) is a collection of n closed curves (which are simple if n > 1)

arranged in a necklace in S
ε as in Figure 8 (see also Figure 7). Each of these

curves will be called a necklace curve and it is the sister curve under fV +fj
of one of the surrounding curves of f−1

V (∂wj) in S2. Two necklace curves

in S
ε are consecutive if their sister curves in S2 are consecutive surrounding

curves, and this occurs if and only if they intersect transversely in two (or

four if n = 2) points (Figure 8).

The singular set of fV + fj is the union of the inverse images by fV and
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Fig. 8. Inverse image of Figure 7(c).

fj of the singularity set of ΣV ∪ Σj , that is

∂S2
2g ∪ {surrounding curves of ∂wj} ⊂ S2 and

{necklace curves} ⊂ S
ε.

Each triple point of ΣV ∪Σj has one preimage point in S
ε by fj which is

an intersecting point of two necklace curves, and two preimage points in S2

by fV lying in consecutive surrounding curves (Figures 7(c) and 8). So, each

double point of the singular set of fV + fj that belongs to a surrounding

curve β has a related double point in a surrounding curve β′ consecutive

with β and another related double point in S
ε which is an intersection point

of the necklace curves τβ, τβ′ sisters of β, β′ under fV + fj respectively

(Figure 8).

5. Piping

Finally, we select an arc along which we perform the piping between ΣV

and Σj . We refer to Figures 9 and 10.

Choose in S2 as piping point an intersecting point K of ∂S2
2g with one of

the surrounding curves α (Figure 9), and take K̄ := fV (K) (Figure 10(a)).
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Fig. 10. Piping ΣV with Σj along δ̄.

A small circle around K is divided by ∂S2
2g and α into four arcs, and exactly

one of them, say δ, is not contained in S2
2g ∪ f−1

V (Bj) (Figure 9).

Let ΣV #Σj be the Dehn sphere obtained after piping ΣV ∪Σj along the

type 1 arc δ̄ := f (δ) (Figure 10).

The singularity set of ΣV #Σj will coincide with the singularity set of

ΣV ∪ Σj except in a small neighbourhood of the arc δ̄. We will study now

what happens in this small neighbourhood of δ̄. First, we need to give

names to some of the elements involved in our present situation.

Notation 11.

• τα ⊂ S
ε of Figure 11(e) is the necklace curve which is sister under

fV + fj of the surrounding curve α of Figure 9, and ᾱ := fV (α) =

fj (τα) of Figure 10(a) is their common image curve in M .
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• K̄ belongs to ∂vi (Figure 10(a)) for some i ∈ {1, ..., g}. Let d, d′ be

the two closed disks attached to S2
2g along π−1 (∂vi) and assume that

K belongs to ∂d (Figures 9, 11(b) and 11(c)). Let d̄, d̄′ ⊂ ΣV be the

images by fV of d, d′ respectively (Figure 10(a)).

• X ∈ ∂d, Y ∈ α are the endpoints of δ (Figure 9 and 11(b)), and

X ′ ∈ ∂d′ (Figure 11(c)) and Y ′ ∈ τα (Figure 11(e)) are the two

related points by fV + fj of X,Y respectively.

• The necklace curves divide the 2-sphere S
ε into two n-gons, n 4-gons

and n 2-gons (see Figure 8). Let L be the 2-gon having K and Y ′ on

its boundary (Figure 11(e)) and let L̄ = fj (L) (Figure 10(a)).

To construct ΣV #Σj we take in S2
∐

S
ε two small closed disks DX , DY

with X ′ and Y ′ in their respective interiors and attach to fV (S2 −
int(DX))∪fj (Sε − int (DY )) a ”tube” T parallel to δ̄ along ∂D̄X and ∂D̄Y ,

where D̄X = fV (DX) , D̄Y = fj (DY ), as in Figure 10. The intersection

of T with ΣV ∪ Σj is the union of ∂D̄X , ∂D̄Y and two arcs δ̄−1, δ̄1 parallel

to δ̄ (Figure 10(b)). The disks D̄X and D̄Y intersect the singularity set of

ΣV ∪ Σj in two small arcs āX ⊂ ∂v and āY ⊂ ᾱ respectively. The singular-
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K
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2
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(b) X aX

Y
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d

δ-1

δ1

K
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�
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Fig. 11. Inverse image for Figure 10(b).



A Theorem of Montesinos 343

ity set of ΣV #Σj is the result of substituting δ̄−1 ∪ δ̄1 for āX ∪ āY in the

singularity set of ΣV ∪ Σj .

Let S2#S
ε be the abstract 2-sphere obtained from the disjoint union

of S2 − int (DX) and the necklace disk S
ε − int (DY ) with an annulus

S1 × I, where I = [0, 1], identifying the ”top edge” S1 × {1} with ∂DX

and the ”bottom edge” S1 × {0} with ∂DY (Figure 11). If the identifi-

cations are coherent with the piping, we can see ΣV #Σj as the image of

an immersion F : S2#S
ε → M which coincides with fV + fj when re-

stricted to
(
S2 − int (DX)

)∐
(Sε − int (DY )) respectively, and such that

T = F
(
S1 × I

)
. Taking S1 as the complex numbers of norm equal to 1, we

can assume that F ({−1} × I) = δ̄−1 and F ({1} × I) = δ̄1. If A+ ⊂ S1 is

the half-circle with Re z ≥ 0 we can see in Figure 11 that if, for example,

A+ ×{0} is identified with ∂DY ∩L, then A+ ×{1} must be identified with

∂DX ∩ d′. So assume that this is the case.

If δ−1, δ1 ⊂ d, aX ⊂ ∂d, aY ⊂ α are the arcs such that

fV (δ−1) = δ̄−1, fV (δ1) = δ̄1, fV (aX) = āX , fV (aY ) = āY

(Figure 11(b)), then the singular set S(F ) is composed by (i) the part of the

singular set of fV +fj lying in
(
S2 − int (DX)

)∐
(Sε − int (DY )), removing

aX ∪ aY and attaching δ−1 ∪ δ1; and (ii) {−1, 1} × I ⊂ S1 × I (see Figure

11).

In general, for an arc δ connecting two curves α, β on a surface as in

Figure 12(a), to pipe α and β along δ is to replace two small arcs of α

and β respectively containing the endpoints of δ with two arcs parallel to δ

(Figure 12(b)).

Remark 12.

1. The configuration of the necklace curves in the necklace disk only

depends on the number n = # {∂wj ∩ ∂v}. If the arc δ is chosen as

δα β

(a) (b)

Fig. 12. Piping two curves along an arc.
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it has been indicated, then the necklace disk S
ε − int (DY ) does not

depend on the piping point neither on other elements of the Heegaard

diagram. (In Figure 13 we can see how looks like the necklace disk

S
ε − int (DY ) for different values of n.)

2. We obtain an equivalent singular set for F by shrinking S1 × I to a

circle projecting onto the first factor.

Then, the singular set of F can be obtained identifying in the union

of S2 − int (DX) and S
ε − int (DY ) the boundaries ∂DX and ∂DY in such

a way that ∂DX ∩ d′ is identified with ∂DY ∩ L. Due to the symmetry

of the necklace disks (Figure 13), this condition is sufficient for doing the

identification without any ambiguity. We will denote by Cn the necklace

disk for each n ∈ N (see Figure 13).

As we have defined in Section 1, the Johansson diagram of ΣV #Σ is

given by S(F ) plus the information about how their points are related by

F . The points of ∂S2
2g which have not been affected by the piping (that is,

outside DX and aX) are related by F in the same way as they were related

by fV , so we only need to know how to get the identification information for

the surrounding curves and the curves of the necklace disk. This remaining

DY

L
�ε

necklace disk

L

n = 1

L

n = 2 n = 3

L

n > 3

L

n-2

Fig. 13. The necklace disk Cn for different values of n.
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identification information can be deduced inductively following the obvious

rule that sister curves of a Johansson diagram must pass through related

double points of the diagram. The necklace disk Cn contains an arc (necklace

arc, which corresponds to τα−DY and has self-intersections if n = 1), and

n− 1 necklace curves (Figure 13). The curve γ of the diagram obtained by

piping ∂d and α along δ must be sister under F of the curve composed by

the union of ∂d′−DX and the necklace arc. This allows us to determine the

related points by F of the double points of the necklace arc. Remember that

intersecting necklace curves are sisters of consecutive surrounding curves,

so looking for the consecutive surrounding curves of α, we can determine

the related points by F of the double points of the necklace curves that

intersect with the necklace arc. Continuing in this way we can obtain all

the identification information for the Johansson diagram of F . This will be

clarified in the examples at the end of the paper.

Piping in the same way ΣV with Σj for all j ∈ {1, ..., g}, a filling Dehn

sphere Σ of M is constructed. The modifications made in the Heegaard

diagram (S, ∂v, ∂w) by which we obtained the Johansson diagram of ΣV #Σj

took place in a neighbourhood of ∂wj which can be as small as we want. So

we can perform the same modifications for all j ∈ {1, ..., g} independently.

The diagram so obtained is the Johansson diagram of the filling Dehn sphere

Σ.

6. The Algorithm

Essentially, the modifications that we make in Section 5 in the Heegaard

diagram (S, ∂v, ∂w) of M to obtain a Johansson representation of M can

be resumed in three steps. Remember that we assume that the Heegaard

diagram (S, ∂v, ∂w) fills S as it has been defined in Section 3. If we are

given a non-filling Heegaard diagram, first of all we must modify it as in

steps 3 and 4 of [M1], p. 119, to obtain a filling one.

F1. Pass from S to S2: cut S along ∂v to obtain S2
2g and fill the holes

(attach disks to ∂S2
2g) to obtain S2.

We keep the identification information of ∂S2
2g, that is, the informa-

tion about how the curves of ∂S2
2g are identified in pairs for recon-

structing S (how their points are related). The system (of g simple

closed curves in S) ∂w becomes a system of disjoint arcs in S2
2g ⊂ S2
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whose set of boundary points is composed by pairs of related points

of ∂S2
2g.

F2. Surround the arcs of ∂w in S2. Take a collection of disjoint simple

closed curves in S2 satisfying: (i) each one bounds a disk with exactly

one arc of ∂w in its interior; (ii) each one has 4 intersecting points

with ∂S2
2g; and (iii) the set of intersecting points of the surrounding

curves with ∂S2
2g must be also composed by pairs of related points of

the Heegaard diagram.

F3. Piping. For each ∂wj ∈ ∂w, choose as piping point a point K of

intersection of one of the surrounding curves α of ∂wj with ∂S2
2g. Take

a piping arc δ near K as indicated in Figure 9. If X is the endpoint

of δ which lies in ∂S2
2g and X ′ ∈ ∂S2

2g is the related point of X in the

Heegaard diagram (S, ∂v, ∂w), take a small piping disk DX ⊂ S2 with

X ′ in its interior as in Figure 11(c). Let d′ be the ”attached disk” to

S2
2g of step F1 such that X ′ ∈ ∂d′. Pipe ∂S2

2g with α along δ (Figure

12) and replace the piping disk with the necklace disk Cnj of Figure

13 for nj = # {∂wj ∩ ∂v} in such a way that ∂Cnj ∩L coincides with

∂DX ∩ d′.

The diagram in S2 so constructed is the singular set of an immersion

f : S2 → M whose image is a filling Dehn sphere of M . The related points

of the Heegaard diagram which have not been modified in step F3 are also

related by f . From this information we can deduce how are related by f the

rest of the points of the diagram and so we obtain the Johansson diagram

of a filling Dehn sphere of M .

7. Examples

We will apply the algorithm to some examples.

7.1. M = S3

Let start with the standard genus 1 Heegaard diagram (S, ∂v, ∂w) of the

3-sphere S3. This diagram is a filling Heegaard diagram, so we can apply

the algorithm to it.

Steps F1&F2. From S to S2. Surround ∂w.
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Cutting S along ∂v the 2-holed sphere of Figure 14(a) is obtained. For

reconstructing S, the two connected components of ∂S2
2 must be identified

in such a way that the points labeled with the same name coincide and the

orientations of the two components agree. After filling the two holes of S2
2

with the disks d, d′ and surrounding the arc corresponding to ∂w1 by the

curve α, we obtain the picture of Figure 14(b).

Step F3. Piping: we choose the piping point as indicated in Figure

14(b). The corresponding piping arc δ, the endpoints X,Y of δ, the related

point X ′ of X and the piping disk DX around X ′ appear also in Figure

14(b). Now, we must pipe ∂S2
2 with α along δ and replace the piping disk

with the necklace disk Cn of Figure 13 for n = # {∂w1 ∩ ∂v} = 1 in such a

way that ∂C1 ∩ L coincides with ∂DX ∩ d′.

We obtain the diagram of Figure 15(a), where there are only two curves

γ, τγ which must be sisters. Following the rule that sister curves must pass

through related double points of the diagram, it is easily checked that the

unique coherent way of labeling the double points inside the necklace disk

is as it is indicated on this figure.

X

Y
δ

X’

2 2
d’

∂v1

1 1
d

∂v1

α

S2

piping pointDX

R Rv1 v1∂w1

S2
2

(b)(a)

Fig. 14.

2

2

2

1
1

1

τγγ

2 2

1 1

1 2

γ τγ

(b)(a)

Fig. 15. Johansson representation of S3.
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The Johansson representation of S3 we have found (Figure 15(a)) has

only two triple points. It coincides with A. Shima’s Example 1.5 of [S2]

and turns out to be equivalent to a diagram (Figure 15(b)) given as an

example in [J]. (So, this historically important Johansson diagram is one of

the simplest!)

7.2. M = RP 3

The genus one Heegaard diagram (S, ∂v, ∂w) of the real projective space

RP 3 depicted in Figure 16(a) is also a filling Heegaard diagram, so we can

apply our construction to it.

Steps F1&F2. From S to S2. Surround ∂w.

Cutting S along ∂v the 2-holed sphere of Figure 16(a) is obtained. After

filling the two holes of S2
2 with the disks d, d′ and surrounding the two arcs

of ∂w1 by the curves α1, α2, we obtain the picture of Figure 16(b), where

related points of the surrounding curves are equally labeled.

Step F3. Piping: we choose the piping point as indicated in Figure

16(b). The corresponding piping arc δ, the endpoints X,Y of δ, the related

point X ′ of X and the piping disk DX around X ′ appear also in Figure

16(b). Now, we pipe ∂S2
2 with α2 along δ and we replace the piping disk

with the necklace disk Cn of Figure 13 for n = # {∂w1 ∩ ∂v} = 2 in such a

way that ∂C2 ∩ L coincides with ∂DX ∩ d′.
We obtain the diagram of Figure 17. Following the rule that sister

curves must pass thorough related double points of the diagram, it is easily

checked that the unique coherent way of labeling the double points inside

the necklace disk is as it is indicated on the figure.

(b)(a)
DX
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∂v1

d
1 1
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∂w1
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R1 R2

Fig. 16.
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Fig. 17. Johansson representation of RP 3.

7.3. Poincaré Homology 3-sphere

The classical genus two Heegaard diagram (S, ∂v, ∂w) of the Poincaré

homology sphere appeared in [Po] is depicted in Figure 18(a). This is again

a filling Heegaard diagram, so we can apply our algorithm to it.

Steps F1&F2. From S to S2. Surround ∂w.

Cutting S along ∂v the 4-holed sphere of Figure 18(a) is obtained. Here,

for reconstructing S, the connected components +A and −A of ∂S2
4 must be

identified in such a way that points equally labeled coincide and the same

must be done with +B and −B. The dashed and non-dashed arcs represents

the two different curves of ∂w respectively. Assume that the non-dashed arcs

correspond to ∂w1 and the dashed arcs correspond to ∂w2. After filling the

four holes of S2
4 with the disks dA, d

′
A, dB, d

′
B and surrounding the arcs of

∂w, we obtain the picture of Figure 18(b), where we have labeled the points

of the surrounding curves in such a way that related points are equally

labeled.

Step F3. Piping: we choose the two piping points for ∂w1 and ∂w2

as indicated in Figure 18(b). The respective piping arcs δ1 and δ2, and

piping disks D1 and D2 appear in the same figure. Now, we have to pipe

the corresponding curves of the diagram along δ1 and δ2, and replace the

piping disks with their corresponding necklace disks as indicated in F3 of

Section 6.

Using that n1 = # {∂w1 ∩ ∂v} = 7 and n2 = # {∂w1 ∩ ∂v} = 5, we

obtain the Johansson diagram of Figure 19, where the unique coherent way

of labeling the double points inside the necklace disks is as it has been
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Fig. 19. Poincaré Homology 3-sphere.

indicated on the figure. The filling Dehn sphere that it represents has 24

triple points and 12 double curves.
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