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Vertical Vector Fields on Certain Complex Fibrations

By Julio C. Rebelo

Abstract. The first part of this paper is devoted to construct-
ing a certain special meromorphic vector field over a given complex
fibration. We consider the case of ruled/elliptic fibrations in arbitrary
dimensions and the case of hyperelliptic fibrations in dimension 2. The
second part of the paper uses the existence of these vector fields to clas-
sify the singularities of a hyperelliptic fibration and, in particular, of
a fibration whose generic fiber has genus 2. This classification will be
employed in a continuation of this work to yield models for fibrations
with genus 2. Our construction might also find applications to the
study of elliptic threefolds.

1. Introduction

In this paper we consider certain complex Ordinary Differential Equa-

tions which are naturally associated to singular fibrations in Complex Al-

gebraic Geometry. An introductory and simplified version of these ideas

appeared in [Re3]. Here those methods will begin to be expanded. In

particular, we shall consider higher genus fibrations as well as elliptic fibra-

tions in higher dimensional complex manifold. Throughout the paper the

expressions “Complex ODE” and “meromorphic vector field” are used as

synonymous.

In the first part of the discussion, we shall provide statements regard-

ing the existence of complex ODEs naturally associated to the geometry of

complex manifolds as above and having special properties. These ODEs,

and mainly their singularities, admit an accurate description which convey

significative information on the geometry of the corresponding manifolds.

Several consequences of the classification of these singularities will be ex-

ploited in subsequent papers. Thus the first half of the present paper is

basically intended to set up a method of studying certain geometric ques-

tions whose applications will mostly be detailed in its continuations. The
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model we should bear in mind to understand our strategy is the study de-

veloped in [Re3] which can be summarized as follows: on elliptic (or ruled)

surfaces, there is a natural complex ODE (i.e. a meromorphic vector field)

which has a remarkable dynamical property called semi-completeness. The

classification of the singularities of these vector fields leads to a generaliza-

tion, in terms of differential equations, of the well-known Kodaira’s picture

for elliptic surfaces. This generalization makes sense whether or not the am-

bient manifold is compact and also applies to situations in which the orbits

(i.e. “fibers”) are C or C∗ and hence non-compact. When applied to elliptic

surfaces, our methods quickly give the description of the neighborhoods of

the singular fibers which, as is well-known, has several consequences on the

structure of the surface itself.

Motivated by this principle, in this paper we introduce a higher dimen-

sional version of these vector fields which exist on elliptic (ruled) manifolds

(cf. Section 3 and Theorem (3.3)). These vector fields are gentle enough to

allow for a classification of their singularities when the dimension is 3. This

classification will then find applications to the study of, say, elliptic three-

folds. Along very similar lines, it is also observed that semi-complete vector

fields exist on a certain type of K3-fibrations over Riemann surfaces (this

happens essentially when the typical fiber has itself an elliptic fibration, cf.

Theorem (4.3)).

In the second part of this paper we consider (complex) algebraic surfaces.

Up to birational transformations, we think of these surfaces as carrying

singular fibrations (cf. Definition (3.1)). As to algebraic surfaces, very little

of an explicit nature is known for surfaces of general type. This contrasts

with the case of ruled or elliptic surfaces (i.e. fibrations of genus respectively

equal to 0 and 1) for which a detailed picture is available. In particular,

the structure of surfaces M which are realizable as fibrations of genus 2 is

still unclear as far as I know. Focusing on the point of view of [Re3], we

can still construct vector fields similar to those considered in [Re3] on these

surfaces. The main difference here being the fact that the resulting vector

field (equivalently ODE) is not semi-complete (cf. Theorem (3.3)).

To extend our approach to the surfaces in question, we are then led to

introduce the notion of k-determined vector field which generalizes semi-

complete ones. The integer k ∈ N∗ measures, in a certain sense, the multi-

valence of the integral of the vector field with respect to the time parameter
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(k = 1 means it is semi-complete, cf. Definition (4.5)). Most of the relevant

properties of semi-complete vector fields admits a convenient generalization

to k-determined ones. The idea is then to construct vector fields as above

having k as small as possible. Apart from fibrations of genus 0 and 1, the

simplest case consists of hyperelliptic fibrations which turn out to admit a

remarkable 2-determined vector field (cf. Proposition (4.6)). Some further

examples of 2-determined vector fields are also provided in connection with

some K3-surfaces. The rest of the work, namely Sections 5 and 6, is devoted

to classifying the singularities of 2-determined vector fields appearing in

connection with hyperelliptic fibrations (cf. Theorem (5.1)). At least in

principle our method can be pushed forward to higher values of “k” but, of

course, the number of possibilities increases significatively. The case k = 3

might still be treatable in details.

Let us state the main application of the results in the second part of

this paper. First we consider a hyperelliptic fibration M
P−→ S on a com-

plex surface M , where S is a Riemann surface. Consider a singular fiber

P−1(p) of P which is a singular analytic (algebraic) curve in M . As a con-

sequence, P−1(p) has itself finitely many singularities as an analytic curve

(or, equivalently, singularities of the foliation defined by the level sets of P).

We shall divide these singularities into two classes which will be referred

to as ramified singularities and non-ramified ones. The definitions of these

classes will be made precise at the end of Section 4. Roughly speaking it

goes as follows. On a surface equipped with a hyperelliptic fibration we

have a special meromorphic function whose restriction to the generic fiber

realizes it as a hyperelliptic Riemann surface. As one moves from fiber to

fiber, the ramification points of the restrictions in questions describe a pos-

sibly disconnected analytic curve R on the surface M . A singularity q of

P−1(p) is said to be ramified if it belongs to R, otherwise we say that q is

non-ramified (for more details cf. Section 4).

Given two integers k1, k2 ∈ Z, we denote by g.c.d. (k1, k2) the greatest

common divisor of k1, k2. In the present setting, Theorem (5.1) immediately

implies the following result (for more background see Section 2):

Theorem A. Let M
P−→ S be a hyperelliptic fibration on a complex

surface M , where S is a Riemann surface. Denote by F the singular folia-

tion given by the level curves of P. If p is a non-ramified singularity of F
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then either F has non-vanishing eigenvalues at p or, in appropriate coordi-

nates, F is given as the level curves (equivalently, the orbits) of one of the

following functions (equivalently, vector fields):

1- Family a.

a.1 f = xy(x− y) (or X = x(x− 2y)∂/∂x+ y(y − 2x)∂/∂y).

a.2 f = x6y4(x− y)2 (or X = x(3y − 2x)∂/∂x+ y(4x− 3y)∂/∂y).

a.3 f = y4(y − x2)2 (or X = (3y − 2x2)∂/∂x+ 2xy∂/∂y).

2- Family b. Here we always have f = xk1yk2(x− y)k3 where k = k1 + k2 +

k3 = 2k1 (or X = x[k3y−k2(x−y)]∂/∂x+y[k1(x−y)+k3x]∂/∂y). Besides

b.1 g.c.d. (k2, k) = g.c.d. (k3, k) = 2.

b.2 g.c.d. (k2, k) = 2 and g.c.d. (k2, k) = 1.

b.3 g.c.d. (k2, k) = g.c.d. (k2, k) = 1.

3- Family c. With the same notations of item b, we have:

c.1 P = x4y3(x− y)5 (or X = x(8y − 3x)∂/∂x+ y(9x− 4y)∂/∂y).

c.2 P = x8y3(x− y) (or X = x(4y − 3x)∂/∂x+ y(9x− 8y)∂/∂y).

c.3 P = x10y6(x− y)14 (or X = x(10y − 3x)∂/∂x+ y(12x− 5y)∂/∂y).

c.4 P = x10y12(x− y)8 (or X = x(10y − 6x)∂/∂x+ y(9x− 5y)∂/∂y).

c.5 P = x10y18(x− y)2 (or X = x(10y − 9x)∂/∂x+ y(6x− 5y)∂/∂y).

c.6 P = x20y6(x− y)4 (or X = x(5y − 3x)∂/∂x+ y(12x− 10y)∂/∂y).

c.7 P = x4y3(x2 − y) (or X = x(4y − 3x2)∂/∂x+ y(6x2 − 4y)∂/∂y).

c.8 P = x6y10(x2 − y)2 (or X = x(12y − 10x2)∂/∂x+ y(10x2 − 6y)∂/∂y).

c.9 P = x10y6(x2 − y)4 (or X = x(10y − 6x2)∂/∂x+ y(18x2 − 10y)∂/∂y).

c.10 P = y3(x3 − y) (or X = (3y − 3x3 + yx3)∂/∂x+ 3yx2∂/∂y).

c.11 P = x6(x2 − y3)2 (or X = 6xy2∂/∂x+ (10x2 − 6y3)∂/∂y).

c.12 P = y6(x3 − y)4 (or X = (10y − 6x3)∂/∂x+ 12yx2∂/∂y).

c.13 P = x3 − y4 (or X = 4y3∂/∂x+ 3x2∂/∂y).

c.14 P = (x5 − y3)2 (or X = 3y2∂/∂x+ 5x4∂/∂y).

We also observe that all the models above are realizable by hyperellip-

tic fibrations as it follows from our proof. Indeed, note first that they are

defined on the entire C2 and hence induce a singular foliation on CP(2).
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Modulo multiplying the vector fields associated to these models by an ap-

propriate polynomial (obtained through the proof of Proposition (5.4)), it is

sufficient to perform a sequence of blow-ups in the line at infinity of CP(2)

in order to turn the above mentioned foliation into a fibration on a suitable

surface.

Our method also applies to ramified singularities of hyperelliptic fibra-

tions of arbitrary genus. To avoid duplicate the work carried out to prove

Theorem A, we just give a classification of those for genus less than or

equal to 3 which is almost a by-product of the proof of Theorem A. This

classification is the contents of Theorem B below.

Theorem B. Let M
P−→ S and F be as in Theorem A. If p is a

ramified singularity of F , then either F has non-vanishing eigenvalues at p

or, in appropriate coordinates, F is given as the level curves of one of the

following functions:

- a.1 xy(x− y).

- c.1 x4y3(x− y)5, c.2 x8y3(x− y), c.7 x4y3(x2 − y), c.10 y3(x3 − y) or

c.13 x3 − y4.

- b.1 xk1yk2(x − y)k3 with k1 = k2 + k3, k1 ≤ 8 and g.c.d (k2, 2k1) =

g.c.d (k3, 2k1) = 2.

- b.2 xk1yk2(x − y)k3 with k1 = k2 + k3, k1 ≤ 7, g.c.d (k2, 2k1) = 2 and

g.c.d (k3, 2k1) = 1.

- b.3 xk1yk2(x − y)k3 with k1 = k2 + k3, k1 ≤ 6 and g.c.d (k2, 2k1) =

g.c.d (k3, 2k1) = 1.

- xy(x− y)(x− τy), τ ∈ C, τ �∈ {0, 1}.
- x4y(x− y).

- xk1yk2(x− y)k3 with k1 + k2 + k3 = 5 or 7.

- y2(x2 − y)5, y3(x2 − y), y4(x2 − y), y5(x2 − y), y6(x2 − y).

- x3y(x− y), x5y(x− y), x4y2(x− y).

- x3y(x2 − y), x4y2(x2 − y).

- y(x2 − y3), y(x2 − y3)2, y2(x2 − y3), y3(x2 − y3), y4(x2 − y3).

- x2 − y5, x2 − y7.

- x2(y3 − x2)2(x3 − y2), xy(x3 − y).

- y(x2 − y5), y2(x2 − y5).
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- (x2 − y5)(y2 − x3), (x3 − y2)(x2 − y5)2.

As corollaries of the above theorems we conclude that the singular fiber

of a hyperelliptic fibration M
P−→ S as in the statement can have “at worst”

a non-ramified reducible singularity consisting of a “triple” point (i.e. the

mutually transverse intersection of three smooth curves). As to irreducible

(unramified) singularities, the most degenerate singularities that can be

obtained are the standard cusp {x3−y2 = 0} or the singularities of {x3−y4 =

0} and {x5 − y3 = 0}. Since compact Riemann surfaces of genus 2 are

hyperelliptic, the above results immediately apply to every fibration having

genus 2. Indeed, by considering the genus of the leaves of the foliations

listed in Theorems A and B, we can determine which ones may appear in a

fibration by Riemann surfaces of genus 2. Since one of the applications of

the present work will be to the study of genus 2 fibrations (cf. [R-S]), we

list all the possible singularities of these fibrations in Corollary C.

Corollary C. Let M
P−→ S be fibration on a complex surface M ,

where S is a Riemann surface. Assume that the genus of the typical fiber of

P is 2. Denote by F the singular foliation given by the level curves of P.

If p is a singularity of F where the eigenvalues of F vanish, then F admits

on a neighborhood of p one of the following normal forms:

• x(x− 2y)∂/∂x+ y(y − 2x)∂/∂y.

• x(x− 3y)∂/∂x+ y(y − 3x)∂/∂y.

• x(2x− 5y)∂/∂x+ y(y − 4x)∂/∂y.

• (2y − x2)∂/∂x+ 2xy∂/∂y.

• (3y − x2)∂/∂x+ 4xy∂/∂y.

• 2y∂/∂x− 3x2∂/∂y.

• x(5y − 2x)∂/∂x+ y(8x− 5y)∂/∂y.

• x(5y − 4x)∂/∂x+ y(6x− 5y)∂/∂y.

• x(4y − 3x)∂/∂x+ y(5x− 4y)∂/∂y.

• x(k3y−k2(x− y))∂/∂x+ y(k3x+k1(x− y))∂/∂y where k1 +k2 +k3 = 5.

• (2xy − x3)∂/∂x+ (3x2y − y2)∂/∂y.

It is worth noticing that Ogg [O] has listed all the possible singular fibers

of a fibration of genus 2. The main purpose of [R-S] will be to describe in
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details the structure of the neighborhood of these singular fibers so as to

enable the reconstruction of the entire surface by putting together such

neighborhoods with the remaining regular fibration. Corollary C already

shows that the model 34 of [O] cannot be realized hence answering a question

in that paper. Note also that the first six normal forms already exist in the

case of elliptic fibrations.

According to the construction carried out in Section 4, fibrations of

genus 3 necessarily carry a natural 3-determined vector field with appro-

priate additional properties analogous to those of the 2-determined vector

fields considered in Sections 5 and 6 (cf. Section 5). The classification of

the corresponding singularities can still be worked out in details with little

further difficulty. The corresponding results might then be applied to study

fibrations of genus 3 as well.

Acknowledgements. Most of the present work was conceived while the

author was employed by the Clay Mathematics Institute.

2. Singular Foliations and Differential Forms

In this section, we shall recall the basic notions involved in our ap-

proach. We also recall some background material needed in other parts of

the present work. The general principle guiding our investigations is the

possible applications of semi-complete vector fields, as well as more general

classes of vector fields, to the structure of neighborhoods of singular fibers.

A holomorphic (resp. meromorphic) vector field X on an open set U ⊆
Cn is given by

X = f1
∂

∂z1
+ · · ·+ fn

∂

∂zn
,

where the fi’s are holomorphic (resp. meromorphic) functions defined on

U .

Given a complex manifold M , a singular 1-dimensional holomorphic

foliation F defined on M consists of an atlas (Vi, ψi) together with non-

trivial holomorphic vector fields Xi defined on ψ(Vi) ⊆ Cn satisfying the

following: whenever Vi ∩ Vj �= ∅, the vector field (ψj ◦ ψ−1
i )∗Xi defined on

ψj(Vi ∩ Vj) is a multiple of the restriction of Xj to the indicated set. In

other words, in ψ(Vi ∩ Vj) one has (ψj ◦ ψ−1
i )∗Xi = hijXj for a non-trivial

holomorphic function hij defined on ψ(Vi ∩ Vj).
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From the definition above, one easily sees that the singular set of a 1-

dimensional holomorphic foliation F can always be supposed to have codi-

mension at least 2. It also follows that there is no interest in considering

“meromorphic 1-dimensional foliations”. In particular, if X is a meromor-

phic vector field defined on M , then the local orbits of X naturally defines

a singular holomorphic foliation F on M . Such foliation is called the fo-

liation associated to X. A (singular) holomorphic foliation of dimension 1

is also called a (singular) holomorphic foliation by curves (or by Riemann

surfaces). All foliations considered in this work have complex dimension 1.

Consider a meromorphic vector fieldX = f1∂/∂z1+· · ·+fn∂/∂zn defined

on an open set U . The meromorphic functions fi’s may not be defined on the

whole of U even though we consider∞ as a value. Indeed they may also have

indeterminacy points (thus saying that X is defined on U is a traditional

abuse of language which fortunately does not lead to any misunderstood).

Letting fi = gi/hi, i = 1, . . . , n, we denote by DX the union of the sets

{hi = 0}. Of course DX is a divisor consisting of poles and indeterminacy

points of X.

Recall the following definition (see [Re3]).

Definition 2.1. The meromorphic vector field X is said to be semi-

complete on U if and only if there exists a semi-global flow Φsg associated

to X, i.e. a meromorphic map Φsg : Ω ⊆ C × U → U , where Ω is an open

set of C× U , satisfying the conditions below.

1.
dΦsg(T, x)

dT

∣∣∣∣
T=0

= X(x) for all x ∈ U \DX ;

2. Φsg(T1 +T2, x) = Φsg(T1,Φsg(T2, x)) provided that both members are

defined;

3. If (Ti, x) is a sequence of points in Ω converging to a point (T̂ , x) in the

boundary of Ω, then Φsg(Ti, x) converges to the boundary of U \DX

in the sense that the sequence leaves every compact subset of U \DX .

Clearly a vector field semi-complete on U is naturally semi-complete on

any open set V ⊂ U .
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Example 2.2. Consider the one-dimensional vector field X = z3∂/∂z

on C. The orbits of X are {0} and C∗. If φ denotes the local flow of X,

then we have

φ(T ) =
x0√

1− 2Tx2
0

where x0 = φ(0) .

We choose x0 ∈ R+, a “small” disc B(ε) around 0 ∈ C of radius ε > 0 and

a “large” disc B(r) centered at 0 ∈ C and having radius r > 1 + 1/2x2
0.

Let U ⊂ C be the domain of the times T such that 1 − 2Tx2
0 belongs to

B(r) \ B(ε). Observe that φ is not well defined on the whole U since the

square root is not defined on a closed path going around 0 ∈ C.

On the other hand, let V ⊂ U be a (maximal) domain where φ is well de-

fined. By construction φ is uniformly bounded on V since the denominator

of φ remains away from zero. Therefore if we choose a sequence {Ti} ⊂ V

converging to a point T̂ in the boundary of V , φ(Ti) remains in a compact

part of C. Now the maximality of V ensures that X is not semi-complete

on V and, hence, neither on U .

Example 2.3. Note that the situation discussed in Example (2.2) con-

trasts with the case of the vector field X = z2∂/∂z which is semi-complete

on C. In fact, the local flow φ of X is given by

φ(T ) =
x0

1− xoT
where x0 = φ(0) .

Clearly φ(T ) is defined on C \ {1/x0}. Besides when Ti → 1/x0, φ(Ti)

becomes unbounded and therefore leaves any compact set in C.

Every local meromorphic vector field X can be written as X = fY/g

where Y is a holomorphic vector field having only isolated singularities

and f, g are holomorphic functions. Furthermore f, g, Y are unique up to

an invertible factor. The local orbits of Y define a singular holomorphic

foliation F which is nothing but the foliation associated to X. We say that

a holomorphic foliation F has eigenvalues λ1, λ2 at a singularity (0, 0) if

there exists a vector field Y as above having λ1, λ2 as eigenvalues at (0, 0).

Note that the eigenvalues of F are well-defined only up to a multiplicative

constant. More generally we say that the order of F at (0, 0) is k ∈ N if the

order of Y as above at (0, 0) is k (recall that the order of Y is the degree
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of the first non-vanishing jet of Y at (0, 0)). Clearly this notion of order is

well-defined.

Now we consider a meromorphic vector field X defined on a complex

manifold M and denote by F the associated singular foliation. The folia-

tion F is naturally endowed with a “foliated” meromorphic 1-form (i.e. an

Abelian form) dT induced by the vector field X. Precisely, if L is a leaf of F
that is not reduced to a singular point, then the restriction dTL of dT to L

satisfies dTL.X|L = 1 where X|L stands for the restriction of X to L. Such

form dTL is said to be the time-form induced by X on L. The following

simple lemma is of fundamental importance for the theory of semi-complete

vector fields (cf. [Re1], [Re3]).

Lemma 2.4. ([Re1]) Assume that X is a meromorphic semi-complete

vector field defined on an open set U . Denote by F the associated foliation

and by dT the induced time-form. Let L be a regular leaf of F (i.e. a leaf

that is not reduced to a singular point) and consider an (open) embedded

curve c : [0, 1]→ L. Then the integral of dTL on this curve is different from

zero, where dTL stands for the restriction of dT to L.

Example 2.5. We can now revisite the vector fields z3∂/∂z and z2∂/∂z.

The corresponding time-forms induced on C∗ are dz/z3 and dz/z2. Letting

c : [0, 1]→ C∗ be a path contained in C∗, one has

∫
c

dz

z3
=
−1

2

(
1

c(1)2
− 1

c(0)2

)
and

∫
c

dz

z2
= −

(
1

c(1)
− 1

c(0)

)
.

The first integral vanishes on open curves (for example such that c(0) = ε

and c(1) = −ε). Thus the corresponding vector field is not semi-complete.

However, if the second integral vanishes, then one has c(0) = c(1) so that c

is not open what is in line with the fact that z2∂/∂z is semi-complete.

To finish the section we shall state some basic results on (meromorphic)

semi-complete vector fields. Once the notion of k-determined vector field

will have been introduced, we shall see that the propositions below can easily

be generalized to encompass this new class of vector fields. Proofs of the

following facts are mostly elementary and can be found in [G-R] or [Re3].

The first proposition and its consequences will largely be used throughout
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this paper. Fix an open domain U ⊆ Cn and suppose that we are given a

sequence of meromorphic semi-complete vector fields {Xi}i∈N on U .

Proposition 2.6. ([G-R]) Assume that {Xi} and U are as before.

Suppose that the pole divisor Di of Xi converges in the Haussdorff topol-

ogy to some divisor D. Suppose in addition that the order of the poles of

{Xi} is uniformly bounded and that {Xi} converges on compact sets of U \D
towards a vector field X. Then X is a meromorphic semi-complete vector

field on U .

A rather useful consequence of Proposition (2.6) is the following state-

ment.

Corollary 2.7. Semi-complete vector fields are stable under restric-

tions to Zariski-open sets in the following sense: Assume that Z is a Zariski-

closed (analytic) subset of a complex manifold M . A meromorphic vector

field X on M is semi-complete on M \Z if and only if it is semi-complete on

the entire M . In particular the semi-complete character of a vector field is

invariant by birational transformations (i.e. the pull-back of a semi-complete

vector field by a birational map is still semi-complete).

Consider a meromorphic vector field X = gY/h where Y is a holomor-

phic vector field whose singular set has codimension at least 2 and g, h are

holomorphic functions. Denote by Y k (resp. gr, hs) the first non-trivial

homogeneous component of the Taylor series of Y (resp. g, h) centered at

(0, 0) ∈ C2 whose degree is supposed to be k ∈ N (resp. s, r ∈ N). It means

that k (resp. s, r) is the order of Y (resp. g, h) at (0, 0). The vector field

Xho = grY k/hs will be called the first homogeneous component of X.

Corollary 2.8. Assume that X as above is semi-complete on a neigh-

borhood of the origin of Cn. Then Xho is semi-complete on the whole Cn.

Remark 2.9. It is useful to point out the non-existence of a strictly

meromorphic semi-complete singularity in complex dimension 1. For ex-

ample the vector field x−k∂/∂x defined on C∗ is not semi-complete around

0 ∈ C for every k ∈ N∗. The general case of a vector field f∂/∂x where f

has a pole at 0 ∈ C, can easily be derived from this fact (formally we can

also apply Corollary (2.8)).
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3. Fibrations and Vertical Vector Fields

In this section we are going to consider fibrations on complex manifolds

and generalize the set up briefly considered in [Re3]. To begin with, let us

consider two compact complex manifolds Mn, Nn−1 of dimensions respec-

tively equal to n and n − 1 (n ≥ 2). Whenever there is no possibility of

misunderstood, we shall omit the superscripts n, n − 1. In analogy with

the two-dimensional case, we settle the following notation.

Definition 3.1. A fibration of genus g on M is a holomorphic map

P : M → N such that

(ı) P−1(p) is a compact Riemann surface of genus g provided that p belongs

to the complement of a (proper) analytic subvariety S of N .

(ıı) P defines a regular fibration from M \ P−1(S) to N \ S.

Thus, when n − 1 = 1, S is a divisor consisting of a finite number of

points. The subvariety S is said to be the singular locus of P. Given a

point p ∈ S, the preimage P−1(p) is called a singular fiber. Finally, if

Si ⊂ S stands for a connected component of S, then the set P−1(Si) is said

to be a (connected) pencil of singular fibers.

We say that M is ruled (resp. elliptic) if M carries a fibration of genus

zero (resp. one). As mentioned, we want to construct a natural meromor-

phic vector field on M which is related to the triple (M,N,P).

Let KM (resp. KN ) be the Canonical Line Bundle of M (resp. N). This

means that KM (resp. KN ) is a line bundle whose meromorphic sections

are meromorphic (non-degenerate) n-forms on M (resp. (n − 1)-forms on

N). In other words, if η is a (meromorphic) section of KM and (z1, . . . , zn)

are local coordinates in M , η is locally given as f(z1, . . . , zn)dz1 ∧ . . . ∧ dzn

for a meromorphic function f .

Given a fibration P : M → N on M , we consider meromorphic sections

θ, ϑ of KM ,KN respectively. Let us also choose an atlas (Vi, ψi) for N which

is compatible with ϑ. Let Wi ⊆ Cn−1 be the image of Vi, that is Wi = ψi(Vi)

and denote by S the singular locus of P. Next fix i and ψi : Vi →Wi ⊂ Cn−1.

Let Ui ⊂ M be the open set Ui = P−1(Vi) and consider the composition

map ψi,P = ψi ◦ P : Ui → Wi ⊂ Cn−1. Using the coordinates of Cn−1,
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we write ψi,P as (ψ1
i,P , . . . , ψ

n−1
i,P ). Finally with the preceding notations we

define a vector field Xi on Ui by imposing

ηp(Xi(p), . ) = dpψ
1
i,P ∧ . . . ∧ dpψ

n−1
i,P = ϑ ◦ dpP ,(1)

whenever both sides are defined. In the above equation dpψ
r
i,P (resp. dpP)

stands for the differential of ψr
i,P (resp. P), r = 1, . . . , n−1, at p ∈ Ui ⊂M .

Clearly the vector fields Xi agree on their intersections so that they give

rise to a globally defined vector field X on M since (Vi, ψi) is compatible

with the section ϑ of the Canonical Line Bundle of N . We call X the vertical

vector field of P w.r.t η, ϑ. Nonetheless it is sometimes more confortable to

work with the vector fields Xi so as to automatically have an appropriate

local notion which is convenient for calculations. The following facts are

immediate consequences of the above definition.

Fact 1. Xi is a meromorphic vector field on Ui (and so is X on M).

Fact 2. Xi is tangent to the fibers of P. More precisely the singular holo-

morphic foliation Fi associated to Xi in the sense of Section 2 is noth-

ing but (the restriction to Ui of) the fibration defined by P.

Fact 3. Each of the n− 1 holomorphic functions ψr
i,P is a first integral for

X in the sense that they are constant on the orbits of Xi.

Fact 4. The divisor of zeros of X is contained in the union Dpole(η) ∪
P−1(Vi ∩ S) ∪ P−1(Dzero(ϑ)) where Dpole(η), Dzero(ϑ) stands respec-

tively for the divisor of poles of η and the divisor of poles of ϑ.

Fact 5. The divisor of poles of X is contained in the union Dzero(η) ∪
P−1(Vi ∩ S) ∪ P−1(Dpole(ϑ)) where Dzero(η), Dpole(ϑ) stands respec-

tively for the divisor of poles of η and the divisor of poles of ϑ.

Remark 3.2. In local problems we sometimes do not need the fact

that X is globally defined. Indeed, it is often sufficient to work with the

“local” vector field Xi defined on Ui. One advantage of doing so is that we

may search for a ϑ which is regular on Vi = P(Ui). When such choice can

effectively be made, then the divisor of zeros of Xi is contained in Dpole(η)∪
P−1(Vi ∩ S). Similarly the divisor of poles of Xi is contained in Dzero(η) ∪
P−1(Vi∩S). In particular, the poles of η which are not contained in P−1(S)
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correspond to zeros of Xi while the zeros of η lying in the complement of

P−1(S) correspond to poles of Xi.

It is natural to ask when it is possible to find η, ϑ as before such that

X, defined as in (1), is semi-complete. The answer to this question is the

contents of Theorem (3.3).

Theorem 3.3. Assume that X is semi-complete. Then P : M → N

is a fibration of genus 0 or 1 on M . Conversely if P : M → N defines a

fibration of genus 0 or 1, then there are η, ϑ such that the vector field X

resulting from (1) is semi-complete.

Lemma 3.4. Assume that the vector field X defined by P, η, ϑ as in (1)

is semi-complete. Then P defines a fibration of genus 0 or 1.

Proof. Suppose for a contradiction that P defines a fibration of genus

g ≥ 2. Consider the vector field X in question as well as a (generic) regular

fiber L of P which is invariant by X. The fact that L is generic precisely

means that the restriction of X to L is a non-trivial meromorphic vector field

on L and that ϑ is regular at q = P(L) ∈ N . The set of leaves L satisfying

these condition is clearly open and dense in U (it is “Zariski-open”).

Let dTL denote the time-form induced on L by X. Recall that ze-

ros (resp. poles) of X become poles (resp. zeros) of dTL and vice-versa.

Since dTL is a meromorphic 1-form on L and the genus of L is greater

than 1, it follows from Poincaré-Hopf theorem that dTL has at least one

zero p ∈ L. Equivalently, p is a pole of X in L. However we know that an

one-dimensional meromorphic vector field is never semi-complete (cf. Re-

mark (2.9)). It follows that the restriction of X to L is not semi-complete

so that X itself is not semi-complete. The resulting contradicton proves the

lemma. �

The next lemma is also simple and probably well-known to the experts.

Lemma 3.5. Let P : M → N be a fibration of genus 0 or 1. Then there

is a section η of KM which does not have zeros on the generic fibers of P
(i.e. all the zeros of η are contained in the “singular fibers”).

Proof. We shall just sketch the proof. Let us follow the notations

of [G-H] and argument by induction on the dimension of M . If D is a
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submanifold of M we denote by Ωi
D the sheaf of i-forms on D. Besides

Ωi(M) denotes the sheaf of 1-forms on M and Ωi
M (D) will denote the sheaf

of i-forms with a single pole along D.

Suppose first that the dimension of M is 2. We choose k ∈ N generic

fibers L1, . . . , Lk of P and note that the Poincaré residue map yields the

exact sequence

0→ Ω2
M → Ω2

M (L1 + · · ·Lk)→ ⊕Ω1
Lj
→ 0 .

Passing to the exact sequence in cohomology, we obtain

H0(M,Ω2
M (⊕Lj))→ H0(⊕Lj ,Ω

1
⊕Lj

)→ H1(M,Ω2) .

If the fibers have genus 1, then H0(⊕Lj ,Ω
1
⊕Lj

) � Ck. Since the codimen-

sion of the image of H0(M,Ω2
M (⊕Lj)) in H0(⊕Lj ,Ω

1
⊕Lj

) is bounded by

the dimension of H1(M,Ω2), it results that the dimension of the sections of

the bundle associated to the divisor KM + ⊕Lj increases linearly with k.

Hence, for k sufficiently large, KM +⊕Kj is linearly equivalent to an effec-

tive divisor. Let us fix a section η of this effective divisor. On the other

hand, in this context, the Adjunction Formula states that

−e(L) = KM .L+ L.L ,

where L is a regular fiber of P, e(L) stands for the Euler characteristic of

L and L.L for the self-intersection of L. Since L is a regular fiber the self-

intersection L.L of L necessarily vanishes. The Euler characteristic e(L)

also vanishes since the genus of L is 1. Thus we have KM .L = 0. Because

KM is represented by the effective divisor given by zeros of η, we conclude

that this divisor is contained in fibers and irreducible components of singular

fibers. As an immediate consequence η does not have zeros when restricted

to a generic regular fiber L.

When the genus of P is zero the same argument applies modulo replacing

KM by −KM and Lj by −Lj .

Finally for the induction step, we consider appropriate divisors Dj in

N and replace the fibers Lj by the divisors P−1(Dj). These divisors exist

since they may be chosen to be linearly equivalent to the divisor defined by

the singular locus of P. Note also that all these divisors may be supposed

to be smooth modulo perform a desingularization. Suppose again that the
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genus of P is 1. By the induction assumption, P−1(Dj) admits a non-

trivial vector space consisting of sections whose set of zeros is contained in

set of (possibly singular) fibers of M having codimension at least 2 in M .

Therefore for the Poincaré map the Canonical Line Bundle of these divisors

may be considered as admitting non-trivial sections. Thus it is enough to

repeat the argument above. Again if the genus is 0, we consider the negative

of the Canonical Line Bundle. The proof of the lemma is over. �

Proof of Theorem (3.3). Suppose now that P defines a fibration

on M with (generic) fibers of genus 0 or 1. After Lemma (3.4), we just need

to find meromorphic sections η, ϑ respectively of KM ,KN such that the

corresponding vertical vector field X of (1) is semi-complete. We then fix

a section ϑ of KN and a section η of KM with η satisfying the conclusions

of Lemma (3.5). Using ϑ, η and P we then define a vertical vector field

denoted by X. In the sequel we are going to prove that X is semi-complete.

Thanks to Facts 4 and 5, we know that X has no poles when restricted

to a generic fiber L of P. Recall that “generic” implies that the set of fibers

L satisfying the condition in question is open and dense, in fact, it is Zariski-

open, in M . Therefore the restriction of X to such fiber L naturally defines

a holomorphic vector field X|L on L. Since L is compact, it follows that X|L
is in fact complete i.e. X|L generates a global holomorphic flow on L. We

then conclude that the restriction of X to a generic fiber L is complete (and

therefore semi-complete). To prove that X itself is semi-complete (including

“non-generic” fibers) we have to construct a semi-global flow associated to

X on M . In order to do that, we denote by D the divisor of M consisting

of the union of “non-generic fibers” of P (in the above sense). In particular

D contains the divisor of poles of X. We then consider the mapping

Φsg,X : C× (M \ D) −→M \ D
defined by Φsg,X(T, p) = ΦX|Lp,Lp

(T, p) where Lp stands for the leaf of F
containing p and ΦX|Lp ,Lp is the flow induced on Lp by X|Lp

. It is obvious

that Φsg,X fulfils all the conditions required to be a semi-global (or global)

flow on M \ D. Now Corollary (2.7) ensures that this flow extends to a

semi-global flow on the whole of M . The theorem is proved. �

The primary interest of Theorem (3.3) results from the fact that a clas-

sification of semi-complete singularities, say in dimension 3, can be em-

ployed to study the structure of elliptic threefolds. Whereas the general
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classification of semi-complete singularities in dimension 3 seems to be very

hard, Fact 3 ensures that the vertical vector field has 2 linearly independent

first integrals. In other words, as far as applications to ruled and elliptic

threefolds are concerned, we just need to classify semi-complete singularities

possessing a pair of linearly independent first integrals. The last problem is

very treatable and a detailed answer can effectively be given.

We want to point out that the section ϑ of KN did not play any role

in the proof of Theorem (3.3), other than the auxiliary role of defining

X. The question involving the semi-complete character of X is therefore

totally encoded in the choice of η. As a matter of fact the semi-complete

character of X is all that is going to be used in our work and, in addition,

this property remains valid if X is multiplied by a function constant along

its orbits. All these arbitrary choices which does not affect the fact that

X is semi-complete suggest that it might be useful to have a more intrinsic

version of the above objects so as to dispense with these choices. The

sheaf-theoretic language allows us to define an object which serves to our

purposes and, in particular, dispenses with ϑ. The rest of the section is

devoted to explaining this construction. We point out however that the

material presented in the sequel will not be needed for the continuation of

the paper.

To begin the construction, we drop the section ϑ and consider an atlas

(Vi, ψ) for N which does not have to satisfy any extra condition. Repeating

the procedure above we obtain local vector fields Xi which still satisfy the

facts 1, 2, 3 and 4. However it is now necessary to examine the effect of

a change of coordinates on Xi. Thus let ψi : Vi → Wi and ψj : Vj → Wj ,

Vi ∩ Vj �= ∅, be two charts of N as before. Recall that the section η of the

Canonical Line Bundle of M is fixed. First we observe that the well-known

maximum principle easily yields the following lemma:

Lemma 3.6. Let Xi, Xj be respectively the vector fields constructed by

means of ψi and ψj. On Ui∩Uj, we have Xi = HijXj where Hij : Ui∩Uj →
C is a nowhere vanishing holomorphic function. Moreover Hij is constant

on the fibers of P so that it factors as Hij = hij ◦ P where hij is defined on

Vi ∩ Vj.

As mentioned, the preceding discussion can be interpreted in sheaf-

theoretic terms as follows. Denote by X (M,P) the sheaf of meromorphic



194 Julio C. Rebelo

vector fields on M which are tangent to the fibers of P. Notice that N

is naturally identified with the quotient M/
P∼ of M by the equivalence

relation
P∼ which collapses points of M belonging to the same fiber of P.

Hence the sheaf O∗(N) consisting of (local) nowhere vanishing holomor-

phic functions on N can be identified with O∗(M/
P∼). The space of global

sections of the quotient sheaf X (M,P)/O∗(N) is going to be denoted by

Γ(X (M,P)/O∗(N)).

Given a (meromorphic) section η of the Canonical Line Bundle KM of

M , we have constructed a family of vector fields {Xi} by means of Equa-

tion (1). After Lemma (3.6) this family of vector fields defines a section κ(η)

of X (M,P)/O∗(N). Hence, denoting by Γ(M,KM ) the space of global

meromorphic sections of KM , we have proved the following:

Proposition 3.7. There is a natural homomorphism

κ : Γ(M,KM )) −→ Γ(X (M,P)/O∗(M/
P∼))(2)

= Γ(X (M,P)/O∗(N)) .

Remark 3.8. The reader has certainly noticed that κ(η1) = κ(η2) if

and only if η1, η2 differ by a (nowhere vanishing) holomorphic function on

M . Such function being necessarily constant, we conclude that κ induces

an injection κ from Γ(M,KM ))/C∗ to Γ(X (M,P)/O∗(N)).

Given η ∈ Γ(M,KM )), we say that κ(η) is a fibered field on M (relative

to P). In practice one can work with fibered fields by choosing actual vector

fields tangent to the fibers of P and representing the fibered field in question.

The next lemma clarifies the relations among all the objects involved in

the our discussion. It shows that the choice of a section ϑ for the Canonical

Line Bundle of N allows us to choose a “canonical representative” for a

given fibered field which (up to a non-zero multiplicative constant) is a

global meromorphic vector field X on M .

Lemma 3.9. Assume we are given an element γ of Γ(X (M,P)/

O∗(N)). There exists η ∈ Γ(M,KM )), unique up to multiplication by a

non-zero constant, such that κ(η) is equal to γ. Furthermore, choosing a
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section ϑ of the Canonical Line Bundle of N , Equation (1) provides, by

means of η, ϑ, a meromorphic vector field X on M which is a representative

of γ.

Proof. Notice that the section γ of X (M,P)/O∗(N) can be thought

of as a collection consisting of the following data:

• A covering of N by coordinates charts {(Vi, ψi)}. We let Ui = P−1(Vi).

• To each Ui as before, we have a (non-trivial) meromorphic vector field Xi

tangent to the fibers of P. Two vector fields Xi,1 and Xi,2 are equivalent if

their quotient define a nowhere vanishing holomorphic function on Ui (which

is necessarily constant on the fibers of P).

To construct η such that κ(η) = γ, we fix a collection (Ui, Xi) represent-

ing γ. The nature of the sheaf X (M,P)/O∗(N) = X (M,P)/O∗(M/
P∼)

allows to assume in addition that Xi = Xj on Ui ∩ Uj since they differ by

an element of O∗(Ui ∩Uj) which is constant on the fibers of P. Now we fix

p ∈ Ui ∩ Uj and let TpLp be the tangent line to the fiber Lp of P passing

through p. Next we choose vectors v2, . . . , vn in TpM so that TpLp, v2, . . . , vn

spans TpM . We then define η at p by letting

η(Xi(p), v2, . . . , vn) = η(Xj(p), v2, . . . , vn) = ϑ(dpP(v2), . . . , dpP(vn)) ,

since Xi(p) = Xj(p) (where ϑ is a section of the Canonical Line Bundle

of N arbitrarily chosen). It promptly follows that η is globally defined

and satisfies κ(η) = γ. Since κ is well-defined and one-to-one up to a

multiplicative constant, it follows that η does not depend on ϑ (up to a

multiplicative constant). In other words κ is an isomorphism. Finally, the

meromorphic vector field X arising from Equation (1) combined with η, ϑ

is clearly a representative of γ. �

At this point it seems very natural to say that a fibered field is semi-

complete if it is possible to find a collection (Ui, Vi, Xi), Vi = P(Ui), such

that each Xi is semi-complete on its domain.

Note that the existence of a semi-complete representative (Ui, Vi, Xi) of

γ implies that any other representative is semi-complete as well since two

representatives differ by a holomorphic function which is constant on the

fibers. Also, γ is semi-complete if and only if the choice of a section ϑ for the

Canonical Line Bundle of N allows us to construct a meromorphic vector

field X on M which is semi-complete and represents γ.
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4. Further Extensions and Applications

Here we shall present a simple generalization of the vector fields consid-

ered in the previous section along with some further examples. Throughout

this section all manifolds are assumed to be algebraic. We also want to

pay special attention to the case of (algebraic) K3-surfaces. Recall that

a K3-surface is a simply connected compact complex surface with trivial

Canonical Line Bundle (notation: KM ≡ 0).

Fix a nowhere zero holomorphic section η of KM and consider a non-

constant meromorphic function F on M . We can define a meromorphic

vector field X on M by letting

ηp(X(p), . ) = dpF(3)

whenever both sides are defined. Thinking of F as a potential function, the

vector field X is the Hamitonian associated to F, η. Alternate X can be

viewed as a vertical vector field up to birational transformations. Indeed,

modulo a finite number of appropriate blow-ups, we can assume that F has

no indeterminacy points and therefore defines a fibration of M over CP(1)

(possibly having disconnected fibers). In view of Theorem (3.3), X is semi-

complete if and only if the fibration mentioned above has genus 0 or 1. Since

KM ≡ 0, this can be rephrased as follows.

Lemma 4.1. Assume that M satisfies KM ≡ 0. Then the following is

equivalent:

1. F does not have indeterminacy points.

2. F defines an elliptic fibration on M .

3. X is semi-complete.

Before proving this lemma, we need some further information on the

nature of indeterminacy points of a meromorphic function. Denote by F
the foliation associated to the vector field X of (3) which coincides with the

foliation defined by the level curves of F . Next let p be an indeterminacy

point of F . Then p is a singular point of F and, besides, there are infinitely

many (germs of) analytic curves passing through p and invariant by F . A

germ of an analytic curve invariant by a foliation F and passing through a

singular point of F is called a separatrix. A singular point of a holomorphic
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foliation F admitting infinitely many separatrizes is called dicritical. We

shall use the following easy lemma (for more details cf. Section 5 and

Lemma (5.2)):

Lemma 4.2. Let F be a singular holomorphic foliation defined around

(0, 0) ∈ C2. Assume that the origin is a dicritical singularity of F . Then

there is a sequence of blow-up maps starting at (0, 0) such that the corre-

sponding exceptional divisor possesses an irreducible component Di0 which

is not invariant by the corresponding proper transform of the foliation F .

Besides all the blow-ups considered in the above sequence are centered at

singular points of the corresponding proper transform of F .

Proof of Lemma (4.1). Let M and F be as in the statement. Denote

by DF the divisor of poles of F and consider the vector field X. Since η

is holomorphic, the pole divisor of X coincides with DF . Notice also that

indeterminacy points of F are contained in DF and that they coincide with

the dicritical singularities of F .

Assume that F has no indeterminacy points. Then a generic leaf of F
does not intersect DF and, in fact, does not contain singularities of F on its

closure. In other words, a generic leaf L is a regular leaf of a non-singular

foliation. Thus the self-intersection of L, L.L, vanishes. On the other hand

we have KM .L = 0 since KM is trivial. However the Adjunction formula

says that

−e(L) = KM .L+ L.L .(4)

In the present case, it implies that e(L) = 0 thus showing that F defines an

elliptic fibration.

We have seen that item 1 implies item 2. The fact that item 2 implies

item 3 is a consequence of Proposition (3.3). Thus it remains to check that

item 3 implies item 1.

Thus we assume for a contradiciton that X is semi-complete and that F

has an indeterminacy point. Modulo performing blowing-ups at these inde-

terminacy points we obtain a new surface M̃ equipped with a semi-complete

vector field X̃. Besides X is the hamiltonian vector field associated to a

meromorphic function F̃ , which does not have indeterminacy points, with

respect to a section η̃ of K
M̃

having zeros. Finally, thanks to Lemma (4.2),

there are generic orbits of X intersecting the divisor of poles of η̃ which does
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not contain singularities of X on its closure. The self-intersection of a leaf

L vanishes since L is a leaf of a non-singular foliation. On the other hand

K
M̃
.L is strictly positive. Thus the Adjunction formula ensures that e(L) is

strictly negative. Hence the restriction of X to L must have a pole. This is

impossible in view of Remark (2.9). The resulting contradiction completes

our proof. �

According to the above lemma, a surface with KM ≡ 0 carries a semi-

complete vector field as in (3) if and only if M carries an elliptic fibration. In

particular, if M is K3, then the existence of elliptic fibrations on M can be

read off the Picard lattice after [Be]. Now let us consider a family of elliptic

K3-surfaces. A compact complex manifold M of dimension 3 (a complex

threefold) will be called a K3-fibration (resp. elliptic K3-fibration) if there

is a compact Riemann surface N and a holomorphic map P : M → N

satisfying:

1. Except for a finite set {p1, . . . , pl} ⊂ N , P−1(p) is a K3-surface (resp.

elliptic K3-surface).

2. P defines a regular fibration of M \
⋃l

i−1 P−1(pi) over N \{p1, . . . , pl}.

We emphasize that is not a priori obvious that an elliptic K3-fibration is

an elliptic fibration in the sense of Definition (3.1). Indeed, the point of

Proposition (4.3) below is exactly the fact that the elliptic ruling of the

fibers was not supposed to vary “continuously” on N .

Proposition 4.3. Let M be an algebraic threefold which is a elliptic

K3-fibration. Then there exists a meromorphic semi-complete vector field

X on M with the following properties:

1. The foliation F associated to X leaves the fibers P−1(p) invariant.

2. Restricted to a generic fiber of P, F defines an elliptic fibration on

this fiber.

3. Locally the foliation F possesses two linearly independent holomorphic

first integral.

Proof. We might try to construct an elliptic fibration in the sense of

Section 3 on M . To avoid difficulties with non-generic fibers, we prefer to
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perform a direct construction which relies on the closedness of semi-complete

vector fields (cf. Proposition (2.6)).

As explained in Section 3, the choice of a section ϑ for KN allows us to

reduce the problem to a local question, namely: we can suppose without loss

of generality that P takes values in the unit disc D ⊂ C. On the other hand,

Poincaré’s residue map gives rise to an exact sequence analogous to the

exact sequence of Lemma (3.5). Since the Canonical Line Bundle of a K3-

surface possesses a (nowhere zero) holomorphic section, the exact sequence

in question, together with the Adjuntion formula, enables us to construct

a section η for KM whose divisor of poles/zeros is entirely contained in a

finite number of fibers of P (similarly to the construction of Lemma (3.5)).

Now, if F is a meromorphic function of M , we define a meromorphic

vector field XF on M by letting

ηp(XF (p), . ) = dpF ∧ dpP(5)

(where we assume that P takes values in D ⊂ C). The proof is then reduced

to find F so that the resulting XF is semi-complete. We claim the existence

of F as before such that the restriction of F to a generic fiber P−1(p) does

not have indeterminacy points in P−1(p) . This claim is the content of the

next lemma. For the time being let us show that such F gives rise to a

semi-complete vector field XF hence proving the proposition.

Consider a generic fiber P−1(p) of P. Such fiber does not intersect the

divisor of poles/zeros of η and, besides, dP is regular in the sense that P is a

submersion on a neighborhood of P−1(p). Thus we can define an auxiliary 2-

form ηp on P−1(p) by imposing η(q) = ηp(q) ∧ dqP for q ∈ P−1(p). Clearly

ηp is a nowhere zero holomorphic 2-form on P−1(0). Because P−1(0) is

also a K3-surface, it follows from Lemma (4.1) that the vector field XF,p

defined by ηp(XF,p, . ) = dF is semi-complete since the restriction of F to

P−1(0) does not have indeterminacy points. However the vector field XF,p

is nothing but the restriction to P−1(p) of XF . Thus we conclude that the

restriction of XF to a generic fiber of P is semi-complete. The fact that XF

is semi-complete on the whole of M then follows from Corollary (2.7). �

To complement the proof of Proposition (4.3) we now prove Lemma

(4.4).

Lemma 4.4. Let M,P be as above. Then there is a non-constant mero-

morphic function F on M whose restriction to a generic fiber of P does not
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have indeterminacy points.

Proof. First we note that P : M → S is algebraic since M,S are

algebraic. Thus every fiber P−1(p) is itself an algebraic surface. Fixed a

generic fiber P−1(p), there exists an algebraic meromorphic function (i.e. a

rational function) fp defined on P−1(p) which does not have indeterminacy

points. In fact, this follows from the existence of an elliptic fibration on

P−1(p) together with Lemma (4.1). Let Fp be an extension of fp to M

which always exists since all objects are algebraic.

Next observe that the set IF,p(S) consisting of points q ∈ S such that

Fp has an indeterminacy point on P−1(q) is a Zariski-closed set. Indeed,

letting Fp = Pp/Qp where P,Q are polynomials, it follows that IF,p(S)

is the projection by P (algebraic proper) of the closed set consisting of the

intersections of M , {P = 0} and {Q = 0}. On the other hand IF,p is strictly

contained in S, since p does not belong to it. In other words, for a generic

fiber P−1(q) (i.e. a fiber contained in a Zariski-open set), the restriction of

Fp to this fiber does not have indeterminacy points. Thus it is enough to

set F = Fp. The lemma follows. �

So far we have dealt only with fibrations of genus 0 or 1. To go beyond

these cases and to be able to handle, in particular, fibrations of genus 2, we

introduce the following generalization of semi-complete vector fields.

Definition 4.5. Consider a meromorphic vector field X defined on

a complex manifold M . Denote by F the foliation associated to X and,

given a regular leaf L of F , let dTL be the restriction to L of the time-form

corresponding to X. We say that X is k-determined on M if the following

holds: given a regular leaf L of F and a point p of L, there is at most k− 1

points q1, . . . , qk−1 ∈ L for which there is a curve c : [0, 1]→ L joining p to

qi on which the integral of dTL vanishes (for i = 1, . . . , k − 1).

We can now introduce the class of 2-determined vector fields with which

we shall be mainly concerned from Section 5 on. This class of examples nat-

urally arises in the context of hyperelliptic fibrations. To begin with consider

a hyperbolic Riemann surface S together with a non-constant meromorphic

function f . Considering f as a holomorphic function from S to CP(1),

we can pull-back meromorphic forms on CP(1). More precisely, if dTCP(1)
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is a meromorphic 1-form on CP(1) with a single pole which has order 2,

then dTS,f = f∗dTCP(1) is a meromorphic form on S which is dual of a

k-determined vector field, where k stands for the degree of f .

Suppose now that S is hyperelliptic so that we can choose f with de-

gree 2. Denoting by g the genus of S, Hurwitz Formula tell us that f

has 2g + 2 ramification points, each of them with order 2. To give a cer-

tain “normalization” to the choice of a meromorphic form in CP(1), we let

q1, q2, . . . , ql, l = 2g + 2 be the ramification points of f . Next we choose a

meromorphic form dT(1) on CP(1) which has a pole (of order 2) at f(q1)

(in particular its periods are trivial, i.e. the integral of dT(1) over a loop in

CP(1) is always zero). Note that this determines dT(1) up to a multiplicative

constant. Finally we let dTS,f be the pull-back of dT(1) by f , so that dTS,f

is dual to a 2-determined vector field on S. We also notice that dTS,f has

2g + 1 zeros of order 1 (i.e. locally of the form zdz) and 1 pole of order 3

(locally dz/z3).

We want to use the above idea to study singular fibers of hyperelliptic

fibration on complex surfaces. Therefore let us consider the following local

setting: M is a complex (algebraic) surface together with a proper holo-

morphic map P : M → D ⊂ C such that P−1(p) is a hyperelliptic Riemann

surface provided that p �= 0. In addition, P : M \ P−1(0) → D \ {0} is a

fibration. Our main result is:

Proposition 4.6. Assume that P : M → D ⊂ C is as above. Then

there is a vertical vector field X on M which is 2-determined. Furthermore

X satisfies the following conditions:

A. X admits a non-constant holomorphic first integral.

B. X has no periods, i.e. the time-form dTL induced by X on a regular leaf

L = P−1(p) has no periods (equivalently is exact).

C. The singularities of dTL as before on L = P−1(p) are all simple (zdz).

Besides either dTL has one pole (which is cubic i.e. dz/z3) or it has exactly

two poles (which are quadratic i.e. dz/z2).

To prove Proposition (4.6), let L1/2 = P−1(1/2) denote the fiber sitting

over 1/2 ∈ D ⊂ C. Consider also a holomorphic map f : L1/2 → CP(1)

having degree 2. Note that f is, in fact, algebraic and therefore possesses

holomorphic extensions to the whole of M . We choose a holomorphic (and
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hence algebraic) map F : M → CP(1) extending f and having finitely many

indeterminacy points {P1, . . . , Pr} ⊂M . In particular, F is continuous from

M \ {P1, . . . , Pr} to CP(1).

Denote by W ⊂ D the set of points p ∈ D such that the restriction of

F to P−1(p) has precisely 2g+2 ramification points, all of them with order 2.

Lemma 4.7. D \W is a proper Zariski-closed subset of D.

Proof. Obviously W �= ∅ since 1/2 ∈ W . Let us check that W is

open for the ordinary topology. Choose a point p ∈ W and consider a

sequence of points {pi} ⊂ D such that pi → p. Denote by Qp
1, . . . , Q

p
2g+2 the

ramification points of F restricted to P−1(p). For each j ∈ {1, . . . , 2g + 2}
let Cp

j ⊂ P−1(p) be a small circle enclosing the point Qp
j . Without loss

of generality, we can assume that the union of the Cp
j ’s does not contain

any of the indeterminacy points P1, . . . , Pr of F on M . Finally the small

topological ball bound by Cp
j and contained in P−1(p) is going to be denoted

by Bp
j . Note that, by construction, the derivative of F restricted to P−1(p)

does not vanish on P−1(p) \
⋃2g+2

j=1 Bp
j . Moreover, since each Bp

j contains

exactly one ramification point Qp
j , the index of this derivative along Cp

j is 1.

Now consider a point pi ∈ D sufficiently close to p. Let Cpi
j , Bpi

j be

respectively circles and balls analogous to those considered before and, this

time, contained in P−1(pi). Naturally we also assume that Cpi
j (resp. Bpi

j )

converges in the natural sense to Cp
j (resp. Bp

j ) when pi → p. denoting

by fpi the restriction of F to P−1(pi), the obvious argument of continuity

implies that f ′pi does not vanish on P−1(pi)\
⋃2g+2

j=1 Bpi
j . Similarly, the index

of f ′pi with respect to Cpi
j is again 1. It follows from the Index Formula that

f ′pi has exactly one zero in Bpi
j which, furthermore, has order 2. In other

words, pi belongs to W for i large enough so that W is open.

Finally we consider a point p̂ �= 0 lying in the boundary of W . We also

consider a sequence of points {pi} ⊂W converging to p̂. Again let us denote

by fpi the restriction of F to P−1(pi). The fact that p̂ lies in the boundary of

W implies that at least two ramification points of fpi are “approximating”

each other so as to collide over p̂. In other words, p̂ belongs to a set satisfying

an algebraic condition. The algebraic condition in question is not trivial for

W is open for the ordinary topology. It follows that W is Zariski-dense thus

establishing the lemma. �
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Remark 4.8. The preceding argument allows us, in fact, to conclude

that D\W is contained in {0}. To verify this, it is enough to apply Hurwitz

Formula to P−1(p̂) and repeat the argument above to show that P−1(p̂)

cannot be a regular fiber.

Proof of Proposition (4.6). Let us keep the preceding notations.

Clearly we only need to construct X with the desired properties over W ⊂
D. For this, it will be necessary to find an appropriate meromorphic section

η of the Canonical Line Bundle KM of M .

First recall that the restriction of F to P−1(1/2) is simply f which will

also be denoted by f1/2. The ramification points of f1/2 are q1, . . . , q2g+2.

Furthermore, if p ∈ W , the Hurwitz Formula shows that fp = F|P−1(p)

realizes P−1(p) as a ramified cover of degree 2 of CP(1).

To construct the desired meromorphic section η of KM , consider the map

R : P−1(W \{0}) ⊂M −→ CP(1)×(W \{0}) given by R(x) = (F (x),P(x)).

Now we introduce a “connection” on P−1(W \ {0}) by lifting the natural

horizontal connection of CP(1)× (W \{0}). The corresponding monodromy

is such that F is constant along the “horizontal lines”, in particular, after

one-tour around 0 ∈ D, the monodromy induces a permutation on the sets

f−1(x), x ∈ CP(1). It follows that the monodromy fixes the ramification

points.

Let C1 be the horizontal curve passing through q1. This curve is closed

after the above remark concerning the monodromy of our connection. We

begin the construction of η by equipping CP(1) × {1/2} with the dT(1) 1-

form whose single pole of order 2 coincides with F (q1) = f1/2(q1). When

the basis point p = 1/2 moves to a nearby point p∗, we choose dT(1) over

CP(1)×{p∗} by continuity and by declaring that the pole of dT(1) coincides

with F (p̃) where p̃ is a point in C1∩P−1(p∗). This procedure is well-defined

since we return to q1 ∈ P−1(1/2) after going around 0 ∈ D ⊂ C. Finally

we equip CP(1) × (W \ {0}) with the natural 2-form ϑ arising from the

product of dT(1) (constructed fiberwisely as above) with the natural form

dz in W \ {0} ⊂ D. Finally it suffices to pull-back ϑ through R to obtain

the desired meromorphic section η of KM .

To complete the proof we denote by X the vertical vector field relative

to P, η. Observe that the restriction of X to the fiber Lp, p ∈ W \ {0}, is

nothing but the lift by fp of the holomorphic vector field on CP(1) having

a zero of order 2 at F (p̃) where p̃ = C1 ∩ P−1(p). In particular X is 2-
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determined. Also we observe that X possesses a holomorphic first integral

given by P itself (as it happens for every vertical vector field). Besides,

since a holomorphic vector field on CP(1) which has a zero of order 2 has no

periods, it results that X has no periods either. As to Condition C, we just

need to notice that C1 may or may not be constituted by ramification points

of fp. When C1 is constituted by these ramification points, one has the first

case mentioned in Condition C. The second case happens otherwise. �

Now we are able to provide a precise definition of ramified and non-

ramified singularities for fibrations. Recall that these notions were briefly

mentioned in the Introduction. Let us consider a fibration P : M → D ⊂
C and the 2-determined vector field X constructed in Proposition (4.6).

The singular fiber P−1(0) may have singularities which coincide with the

singularities of the foliation F associated to X (equivalently defined by the

level sets of P). A singularity p ∈ P−1(0) of F is said to be non-ramified if,

on a neighborhood of p, the divisor of zeros and poles of X is invariant by

F which means that this divisor is contained in the components of P−1(0)

passing through p. Otherwise we say that p is ramified.

Example 4.9. Consider the vector field X = (2y−x2)∂/∂x+2xy∂/∂y.

Viewed as a meromorphic vector field on CP(2), the foliation F associated to

X possesses 3 singularities (each of them with infinitely many separatrizes)

in the “line at infinity” ∆. After performing an appropriate number of

blow-ups at these singularities, we obtain an surface M equipped with a

elliptic (and therefore hyperelliptic) fibration whose fibers are the leaves of

the proper transform F̃ of F . If X̃ stands for the proper transform of X

on M , the mentioned fibration has exactly two singular fibers which are

respectively given as the zero-divisor and the pole-divisor of X̃. The zero-

divisor consists of two rational curves (of self-intersection −2 each) with a

quadratic tangency (the local model of the fibration is obviously given by

the local orbits of X around (0, 0) ∈ C2). The unique singularity of this

singular fiber is the tangency point between the two rational curves (which

is the proper transform of the origin (0, 0)). Since the vector field X does

not appear in the list of Theorem A, we conclude that such singularity is

always ramified.

Let us finish this section with two other examples of 2-determined vec-

tor fields which arises in slightly different situations. The first example
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concerns certain fibrations of genus 3. Consider a complex surface M along

with a proper holomorphic map P : M → D ⊂ C such that P−1(p) is a Rie-

mann surface of genus 3 provided that p �= 0. Furthermore we assume that

P : M \ P−1(0) → D \ {0} is a fibration. It is well known that a Riemann

surface of genus 3 admits a holomorphic map of degree 3 over CP(1). This

allows us to construct a 3-determined vertical vector field on M having prop-

erties analogous to those of the vector field described in Proposition (4.6).

However there are families of genus 3 curves that are not hyperelliptic but

admit a degree 2 holomorphic map onto an elliptic curve (these curves are

sometimes called bi-elliptic, cf. [H-M]). If P is a fibration consisting of this

type of curves, then it is possible to obtain a 2-determined vertical vector

field on M . Precisely, one has:

Proposition 4.10. Let P : M → D ⊂ C be as above. Then M carries

a vertical vector field X which is 2-determined. Besides the restriction of the

corresponding time-form dTL to a generic fiber L = P−1(p) is a holomorphic

Abelian form with 4 simple singularities (zdz).

Proof. We choose and fix an elliptic curve S and consider a degree 2

holomorphic map f : P−1(1/2) → S whose existence is part of our as-

sumptions. Next we equip S with the (unique up to constant) holomorphic

Abelian form dTS which is everywhere regular. Clearly dTS is also semi-

complete.

The pull-back of dTS by f gives a 2-determined vector field X|L on

L = P−1(1/2). Since dTS is everywhere regular, X|L has no zeros and its

poles correspond to the ramification points of f : L = P−1(1/2) → S. By

Hurwitz Formula this number is 4. Now using the extension F of f to

M resulting from the algebraic nature of our problem, we can repeat the

arguments used in the proof of Proposition (4.6) to globalize X|L into a

vertical vector field X with the required properties. �

For our last example, consider an algebraic K3-surface M embedded

in some projective space. The examples that we have in mind are indeed

(families of) complete intersection K3-surfaces. As is well known (cf. for

example [G-H]), there are three such families, each depending on 19 param-

eters, namely: quartics in CP(3), the complete intersection of a quadric and

a cubic in CP(4) and the complete intersection of three quadrics in CP(5).
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Fixed one such surface, its intersection with a pencil of hyperplanes defines

a pencil on M whose generic element is a canonical curve (cf. [G-H]). This

pencil is going to be referred to as the canonical pencil (defined up to lin-

ear equivalence). For a generic algebraic K3-surface the canonical pencil

represents, in the natural sense, the generator of the Picard group of the

surface. In the sequel we are going to provide examples of situations where

the canonical pencil carries a 2-determined vertical vector field.

First let us consider homogeneous coordinates [x0, x1, . . . , xn] for CP(n),

n ≥ 3. On CP(n), let F be the meromorphic function defined by

F (x0, . . . , xn) = x1/x2. Also denote by σ the involution of CP(n) induced

by σ(x0, x1, x2, x3, . . . , xn) = (x0,−x1,−x2, x3, . . . , xn). Clearly one has

F ◦ σ = F .

Proposition 4.11. Let M be a complete intersection K3-surface on

CP(n), n = 3, 4, 5. If σ preserves M , then the canonical pencil of M carries

a 2-determined vertical vector field.

Remark 4.12. It is not hard to characterize those surfaces M which

are preserved by σ. For example on CP(3), M is given as the zero-set of a

homogeneous polynomial

P =
∑

i+j+k+l=4

cijklx
i
0x

j
1x

k
2x

l
3 .

The set of these polynomials is acted upon by PGL (4,C). Thus M is

invariant by σ if and only if it is possible to find a representative (with

respect to the action of PGL (4,C)) satisfying cijkl = 0 whenever j + k = 1

or 3.

Proof of Proposition (4.11). The restriction of F to M clearly

induces the canonical pencil on M . We then define a vertical vector field X

on M by means of the formula

ηp(X(p), . ) = dpF

whenever both sides are defined and where η stands for a nowhere zero

holomorphic section of KM .

In order to prove that X as above is 2-determined, the first step is to find

out the topology of the generic element of the canonical pencil on M . For



Vector Fields and Fibrations 207

this let us observe that the indeterminacy points of F on M are given by the

intersection of M with the projective set characterized by {x1 = x2 = 0}.
If this intersection is generic, then it consists of 2n− 2, q1, . . . , q2n−2, points

which are dicritical singularities for F (where F is the foliation associated

to X or, equivalently, given by the pencil). It is easy to check that both

eigenvalues of F at any qi are equal to 1. In other words, there are local

coordinates u, v around qi in which F is given by the 1-form

ω = u dv − v du .

In particular each generic leaf L of F passes exactly once through each qi.

Therefore such L is smooth and of self-intersection equal to 2n − 2. The

Adjunction formula then says that the Euler characteristic is 2 − 2n and

hence the genus is n.

Next notice that σ takes L to L since it preserves F . Besides σ also

preserves η since it is an automorphism of M . It results that σ preserves X.

Finally let M be the singular quotient M/σ and denote by M̃ the correspond-

ing desingularization. Clearly M̃ is equipped with a vector field Ỹ induced

by X. To prove the statement, it suffices to check that Ỹ is semi-complete.

Indeed, we shall see that its orbits are elliptic curves.

To prove the last claim, we note that the mentioned orbit is the quotient

of L by σ. Now applying Hurwitz formula to this ramified covering and

taking into account that the ramification points are que qi’s (i = 1, . . . , 2n−
2), we conclude that the quotient is an elliptic curve. It remains to check

that the vector field Y is holomorphic on L/σ. For this we need to consider

the points qi at which X has simple poles. These poles however are cancelled

by the ramification of σ at qi. This shows that Y is holomorphic. The

proposition is proved. �

5. 2-Determined Singularities

The remainder of this paper is concerned with the classification of the

singularities of 2-determined vector fields appearing in connection with hy-

perelliptic surfaces in the sense of Section 4. Recall that a first integral for a

vector field X (foliation F) is a function which is constant along the orbits

of X (resp. leaves of F). Throughout this section only non-constant first

integrals will be considered. Clearly the singularities of the 2-determined
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vector fields in question possess a holomorphic first integral given by the

natural projection.

Consider a (meromorphic) vector field X whose underlying foliation is

F . Recall that X is said to have a period if there is a regular leaf L of F
and closed curve c ⊂ L such that∫

c
dTL �= 0 .

The 2-determined vertical vector field X constructed over hyperelliptic fi-

brations in Section 4 does not have periods. Hence, in the course of this

section, we shall deal with 2-determined meromorphic vector fields X de-

fined on a neighborhood of (0, 0) ∈ C2, satisfying the conditions A, B and C

of Proposition (4.6) and also the two conditions below:

D. If the pole divisor of the (foliated) time-form dT is not empty, then it

consists of either a single connected component with order 3 or of one

or two components with order 2 each.

E. If DX is the divisor of zeros and poles of X, then for a sufficiently small

neighborhood U of every singular point of F the intersection U ∩DX

is invariant by F .

Theorem 5.1. Let X be a 2-determined vector field defined on a neigh-

borhood of (0, 0) ∈ C2 and satisfying Conditions A-E. Denote by F the foli-

ation associated to X and suppose that both eigenvalues of F at (0, 0) ∈ C2

are equal to zero. Then F is given by one of normal forms of the families a,

b or c of Theorem A.

Obviously Theorem (5.1) implies Theorem A in the Introduction. Note

also that, due to condition E, only non-ramified singularities are under

consideration.

We set X = fY/g where f, g are holomorphic functions and Y is a

holomorphic vector field for which the origin is either a regular point or an

isolated singularity. Again we denote by F the local singular holomorphic

foliation associated to X,Y . In what follows, we always assume that F
admits a (non-constant) holomorphic first integral. In particular, the leaves

of F are locally closed. Recall that a leaf L of F is said to be a separatrix

if its closure L defines an analytic curve passing through (0, 0) ∈ C2 (note
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that L may be singular at (0, 0)). Since leaves are locally closed, every leaf

of F accumulating on the origin of C2 must be a separatrix of F .

Next consider a complex surface M a point p ∈ M . Recall that the

blow-up of M at p is a new surface M̃ together with a proper holomorphic

map π : M̃ →M such that

(ı) π−1(p) = Dπ is a rational curve of self-intersection −1.

(ıı) π is a holomorphic diffeomorphism from M̃ \Dπ to M \ {p}.
In particular π defines a birational equivalence between M̃ and M . Also

the process of blowing-up points can be iterated so that we may consider

sequences of surfaces and (proper) maps

M
π=π(1)←− M̃ = M̃(1)

π(2)←− · · ·
π(n)←− M̃(n)

where each M̃(i) is obtained by blowing-up a point of M̃(i−1). Let us denote

by D(i) (resp. E(i)) the exceptional divisor of M̃(i) introduced by π(i) (resp.

the total exceptional divisor of π−1
(i) ◦· · ·◦π

−1
(1)(p)). With this notation we can

state a rather useful lemma which is a well-known version of Seidenberg’s

theorem [Se] adapted to our context.

Lemma 5.2. Suppose that F is a singular holomorphic foliation defined

on a neighborhood U of (0, 0) ∈ C2 and possessing a meromorphic first

integral. There exists a finite sequence of blow-up maps

(F , U) = (F(0), U(0))
π=π(1)←− (F̃(1), Ũ(1))

π(2)←− · · ·
π(n)←− (F̃(n), Ũ(n))

verifying the following conditions:

1. π(i) is a blow-up map centered at a point of E(i−1) ⊂ C̃2
(i−1) and Ũ(i) =

π−1
(i) (Ũ(i−1)).

2. F̃(i) is induced from F̃(i−1) by means of π(i).

3. All the singularities of F̃(n) belong to E(n). Furthermore each singular-

ity has two non-vanishing eigenvalues λ1, λ2 whose quotient is rational and

negative (i.e. λ1/λ2 ∈ Q−).

The reader has certainly observed that the exceptional divisor E(n)

is constituted by rational curves in a tree-like arrangement. The irre-

ducible components of E(n) are precisely these n rational curves denoted
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by D(1), . . . , D(n). Furthermore the components D(i) are invariant by F̃(i).

Otherwise, there would be infinitely many leaves of F̃(i) crossing D(i). The

blow-down of these leaves would therefore produce infinitely many sepa-

ratrizes for F since the blow-down map is proper. Nonetheless, a foliation

having a holomorphic first integral can have only finitely many separatrizes.

We say that a rational function P = Pα/Pβ is homogeneous if both

Pα, Pβ are homogeneous polynomials (possibly with different degrees). We

have:

Lemma 5.3. Consider the linear vector field Z = x∂/∂x + λy∂/∂y

where λ ∈ R−, where λ = −n/m (n,m ∈ N without non-trivial common

factors). Let P = Pα/Pβ be a non-constant homogeneous rational func-

tion. Suppose that PZ is 2-determined and that at least one between m,n

is greater than 1. Then P = xayb with bn− am ∈ {−2,−1, 0, 1, 2} provided

that m + n ≥ 5. Furthermore, for small m,n the following cases can also

occur:

1. xayb(x−y)−1(mx∂/∂x−ny∂/∂y) where m+n = 4 and bn−am−n = −2.

2. xayb(x − y)−1(mx∂/∂x − ny∂/∂y) where m + n = 3 and bn − am − n

equals −1 or −2.

Proof. Observe that the orbit L of Z passing through the point

(x0, y0) possesses a parametrization given by A : T !→ (x0e
T , y0e

−nT/m).

Therefore the restriction to L of the vector field PZ is given in the co-

ordinate T by P (x0e
T , y0e

−n/mT )∂/∂T . Note that the parametrization A

is one-to-one when restricted to the cylinder C/2πiZ which is identified

to CP(1) minus two points by means of the map T !→ exp(T/m) = z.

In the coordinate z = exp(T/m), the restriction of PZ to L becomes

zP (x0z
m, y0z

−n)∂/∂z, up to a multiplicative constant. Since {x = 0} and

{y = 0} are all the separatrizes of Z, we set P = xaybQα/Qβ with a, b ∈ Z

and Qα, Qβ homogeneous polynomials. The time-form dTL in the coordi-

nate z ∈ C∗ is given by zbn−am−1Qβ(x0z
m, y0z

−n)/Qα(x0z
m, y0z

−n). Next

we decompose Qα (resp. Qβ) into a product Qα = (a1x−b1y) · · · (asx−bsy)

(resp. Qβ = (c1x−d1y) · · · (crx−dry)). Up to a multiplicative constant the

time-form dTL becomes

dTL = zbn−am−1 (c1x0z
m − d1y0z

−n) · · · (crx0z
m − dry0z

−n)

(a1x0zm − b1y0z−n) · · · (asx0zm − bsy0z−n)
dz



Vector Fields and Fibrations 211

= zbn−am−1z(s−r)n (c1x0z
m+n − d1y0) · · · (crx0z

m+n − dry0)

(a1x0zm+n − b1y0) · · · (asx0zm+n − bsy0)
dz .

Since m + n ≥ 3, it follows that Qα is constant, otherwise dTL would have

more than two poles. Hence we have dTL = z(bn−am−1−rn)(c1x0z
m+n −

d1y0) . . . (crx0z
m+n − dry0). Whereas dTL is not defined at z = 0, since

exp(T/m) is never zero, the fact that dTL is induced by a 2-determined

vector field implies that dTL has a meromorphic extension to z = 0. Besides,

if z = 0 is a pole of dTL, then it must have order smaller than or equal to

3 since a differential form with a pole of order greater than 3 cannot be

induced by a 2-determined vector field. Similarly z = 0 cannot be a zero of

dT of order greater than 1. Summarizing we have −3 ≤ bn−am−1−rn ≤ 1.

On the other hand, the factors (aix0z
m+n − biy0) are pairwise distinct

since the zeros of dTL on L have order 1 by assumption (note that each

factor aix0z
m+n − biy0 corresponds to m + n zeros in the coordinate T ).

If Qβ is constant, the preceding shows that −3 ≤ bn − am − 1 ≤ 1 i.e.

bn− am ∈ {−2,−1, 0, 1, 2}.
Next we suppose that Qβ is not constant. Fixed a point z0, there

may exist at most another point z1 such that the integral of dTL over a

path joining z0, z1 vanishes. In particular, the degree of the polynomial

z(bn−am−1−rn)(c1x0z
m+n−d1y0) · · · (crx0z

m+n−dry0) is not greater than 1.

Since m+n ≥ 3 and bn− am− 1− rn ≥ −3, we have r ≥ 1 and m+n ≤ 4.

We consider each possibility:

• If m + n = 4, then r = 1 and bn − am − 1 − n = −3 thus producing the

form 1.

• If m+ n = 3, then r = 1 and bn− am− 1− n = −3 or −2. This gives us

form 2 and completes the proof of the lemma. �

We do not need to deal with the special case m = n = 1 since it will

not appear in our discussion. Now we consider a meromorphic 2-determined

vector field X defined on a neighborhood of (0, 0) ∈ C2. We let X = fY/g as

in the beginning of the section and denote by X̃ the blow-up of X. Similarly

F will stand for the foliation associated to X and F̃ will be its blow-up.

Before continuing let us introduce two basic definitions. Assume that F
is a singular holomorphic foliation defined on a neighborhood of a singular

point p. Let S be a smooth separatrix of F at p. We want to define the

order F with respect to S at p, ordS(F , p), and the index of S w.r.t.
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F , p, Indp(F ,S) (cf. [C-S]). To introduce these definitions, let us consider

coordinates (x, y) where S is given by {y = 0} and a holomorphic 1-form

ω = F (x, y) dy−G(x, y) dx defining F and having an isolated singularity at

p. Then, we let

ordS(F , p) = ord (F (x, 0)) at 0 ∈ C and(6)

Indp(F ,S) = Res
∂

∂y

(
G

F

)
(x, 0) dx .(7)

In the above formulas ord (F (x, 0)) stands for the order of the function

x !→ F (x, 0) at 0 ∈ C and Res for the residue of the 1-form in question.

Let p1, . . . , pr denote the singularities of F̃ belonging to π−1(0). Since

the exceptional divisor π−1(0) constitutes a separatrix for every pi, we can

consider both ordπ1 (0)(F̃ , pi) and Indpi(F̃ , π−1(0)). With these notations,

one has

ord(0,0)(F) + 1 =
r∑

i=1

ordπ−1(0)(F̃ , pi) ,(8)

r∑
i=1

Indpi(F̃ , π−1(0)) = −1 .(9)

In fact, Formulas (8) and (9) can be found respectively in [M-M] and [C-S].

Their proofs depend on reasonably straightforward calculations and on the

Residue Theorem.

On the other hand, the order of π−1(0) as a divisor of zeros or poles of

X̃ is

ordπ−1(0)X̃ = ord(0,0)(F) + ord(0,0)(f)− ord(0,0)(g)− 1 .(10)

In particular, when this order is zero, X̃ is regular on π−1(0). The next

propostion is the core of the proof of Theorem (5.1) (the notation (ε1, ε2, ε3)

will be explained later on).

Proposition 5.4. Let X = fY/g and F be as in the beginning of the

section and assume that both eigenvalues of F at (0, 0) are zero. Denote by

F̃ the blow-up of F which has singularities p1, . . . , pr in π−1(0). Suppose

that F̃ has non-vanishing eigenvalues at each pi, i = 1, . . . , r. Then Y (and
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therefore X up to a multiplicative factor) has one of the following normal

forms:

a.

a.1 x(x− 2y)∂/∂x+ y(y − 2x)∂/∂y, (ε1, ε2, ε3) = (−1, 2, 2).

a.2 x(3y− 2x)∂/∂x+ y(4x− 3y)∂/∂y (with first integral x6y4(x− y)2) and

(ε1, ε2, ε3) = (1, 2,−1).

b. Here the first integral P of F is given by P = xk1yk2(x − y)k3 with

k = k1 + k2 + k3 = 2k1 (k1, k2, k3 �= 0) and

b.1 g.c.d. (k2, k) = g.c.d. (k3, k) = 2, (ε1, ε2, ε3) = (2, 1,−1).

b.2 g.c.d. (k2, k) = 2, g.c.d. (k3, k) = 1, (ε1, ε2, ε3) = (2, 1,−2).

b.3 g.c.d. (k2, k) = g.c.d. (k3, k) = 1, (ε1, ε2, ε3) = (2, 2,−2).

In the cases b, Y = x[k3y − k2(x− y)]∂/∂x+ y[k1(x− y) + k3x]∂/∂y.

c. With the same notations of item b, we have:

c.1 P = x4y3(x − y)5, (ε1, ε2, ε3) = (2, 2,−2) and Y = x(8y − 3x)∂/∂x +

y(9x− 4y)∂/∂y.

c.2 P = x8y3(x − y), (ε1, ε2, ε3) = (2, 2,−2) and Y = x(4y − 3x)∂/∂x +

y(9x− 8y)∂/∂y.

c.3 P = x10y6(x− y)14, (ε1, ε2, ε3) = (2, 2,−1) and Y = x(10y− 3x)∂/∂x+

y(12x− 5y)∂/∂y.

c.4 P = x10y12(x− y)8, (ε1, ε2, ε3) = (2, 2,−1) and Y = x(10y− 6x)∂/∂x+

y(9x− 5y)∂/∂y.

c.5 P = x10y18(x− y)2, (ε1, ε2, ε3) = (2, 2,−1) and Y = x(10y− 9x)∂/∂x+

y(6x− 5y)∂/∂y.

c.6 P = x20y6(x − y)4, (ε1, ε2, ε3) = (2, 2,−1) and Y = x(5y − 3x)∂/∂x +

y(12x− 10y)∂/∂y.

Remark 5.5. Modulo a linear change of coordinates, the vector field

a.2 becomes x(2x−5y)∂/∂x+ y(y−4x)∂/∂y which is a form more familiar

to our previous works, cf. for example [Re3].

Fix a singularity pi (i = 1, . . . , r) of F̃ . Recall that π−1(0) is invariant by

F̃ and denote by mi,−ni the eigenvalues of F̃ at pi. There exist coordinates
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(xi, ti) ({xi = 0} ⊂ π−1(0)) around pi in which X̃ has the form

X̃ = x
(ordπ−1(0) (X̃))

i tdi
i

Fα,i(xi, ti)

Fβ,i(xi, ti)
(11)

× [mixi(1 + h.o.t.)∂/∂xi − niti(1 + h.o.t.)∂/∂ti] ,

where di ∈ Z and Fα,i, Fβ,i are holomorphic functions which are not divisible

by xi or ti. However, Condition E ensures that both Fα,i, Fβ,i are different

from zero at pi. In the present case, Formulas (8) and (9) provide

r = ord(0,0)(F) + 1 and
r∑

i=1

mi/ni = 1 .(12)

Since mi/ni is strictly positive, we see that ni is strictly greater than 1.

On the other hand, let Xho be the first homogeneous component of

X = fY/g at (0, 0) ∈ C2 (cf. Section 2). Since X is 2-determined, it follows

that Xho is at most 2-determined (this is the analogue of Corollary (2.8)).

Denote by Fho the singular foliation associated to Xho and notice that Fho

can naturally be considered as a foliation in CP(2) which, in turn, is viewed

as the natural compactification of C2. From this point of view, Fho leaves

the “line at infinity” ∆ of CP(2) invariant.

Lemma 5.6. Fho has exactly r singularities p′1, . . . , p
′
r in ∆. Further-

more the eigenvalues of p′i are mi, ni.

Proof. Let F̃ho be the blow-up of Fho at (0, 0) ∈ C2. Clearly the

singularities of F̃ho on π−1(0) coincide with the singularities p1, . . . , pr of F̃
on π−1(0). The corresponding eigenvalues are the same as well.

Now notice that Fho is invariant by homotheties so that the singularities

of F̃ho on π−1(0) correspond to the radial lines of C2 which are invariant

by Fho. Clearly the intersection of these invariant lines with the line at

infinity ∆ produces singularities for Fho in ∆. The converse also holds and

this implies that the singularities of Fho in ∆ are in one-to-one correspon-

dence with those of F̃ho in π−1(0). A direct inspection also shows that the

eigenvalues are the same up to the sign so that the statement follows. �

Lemma 5.7. The foliation Fho admits a non-constant polynomial first

integral P.
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Proof. Let F be a non-constant holomorphic first integral for F whose

existence is guaranteed by Condition A. Consider also a holomorphic vector

field Y (with isolated singularities to simplify) whose associated foliation is

F . Denote by Fd (resp. Y k) the first non-trivial homogeneous component of

the Taylor series of F (resp. Y ) centered at the origin. Clearly the foliation

associated to Y k is nothing but Fho. On the other hand, the condition that

F is constant along the orbits of Y can be written as 〈∇F , Y 〉 = 0 where ∇F

stands for the gradient of F and 〈 , 〉 for the usual inner product. Replacing

F and Y be their respective Taylor series and comparing degrees, it follows

that 〈∇Fd , Y k〉 = 0. Therefore Fd is a polynomial first integral for Fho.

The lemma is proved. �

Lemma 5.8. The foliations F , Fho are holomorphically conjugate on

a neighborhood of (0, 0) ∈ C2. Furthermore the vector field Xho does not

have periods.

Proof. We first observe that F and Fho are holomorphically con-

jugate on a neighborhood of (0, 0) ∈ C2. The argument that follows is

standard and essentially a special case of the argument developed in [M-

M]. In order to construct the desired conjugacy between F and Fho, let us

consider the respective blow-ups F̃ , F̃ho. We fix a local transverse section

Σ at a point q ∈ π−1(0) \ {p1, . . . , pr}. By using Σ, we can identify the

holonomy of π−1(0) \ {p1, . . . , pr} w.r.t. F̃ (resp. F̃ho) with a pseudogroup

Γ (resp. Γho) of holomorphic transformations of Σ fixing 0 � Σ ∩ π−1(0).

Since Fho is associated to a homogeneous vector field, it follows that Γho is

a finite (cyclic) group of rotations whose order is the least common multiple

of the ni’s. We claim that Γ is holomorphically conjugate to Γho. Indeed, Γ

must have finite order since F possesses a holomorphic first integral. Thus

every element f ∈ Γ such that f ′(0) = 1 must coincide with the identity

and thus Γ is conjugate to its linear part. However this linear part is clearly

cyclic with order equal to the least common multiple of the ni’s. Next let

h : Σ → Σ be a local conjugacy between Γ, Γho. We note that F̃ho is

transverse to the natural Hopf fibration of C̃2, namely the fibration of C̃2

over π−1(0) whose fibers are the proper transforms of the radial lines of C2.

On the other hand F̃ also possesses a transverse fibration obtained through

its first integral. By using the classical method of “lifting paths” we can

extend the conjugacy h to a compact part of π−1(0) \ {p1, . . . , pr}. Finally
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the fact that both foliations are linearizable at each pi immediately implies

that h can, indeed, be extended to a neighborhood of each pi completing

the proof of the first part of the statement.

Now suppose for a contradiction the existence of a closed path c : [0, 1]→
Lho on which the integral of the time-form dTLho induced by Xho does

not vanish. Let Xn be a sequence of vector fields converging to Xho and

obtained from renormalizations of X. Precisely this means the following.

Let Λ : C2 → C2 be the homothety (x, y) !→ (λx, λy) for some λ ∈ C∗. We

choose a sequence λn converging to 0 ∈ C and set Xn = λ1−d
n .(Λ∗X), where

Λ∗X stands for the pull-back of X by Λ and d is the degree of the first

non-trivial homogeneous component of the Taylor series of X at the origin.

For n large enough, the path c can be lifted into a path cLn contained in

a leaf Ln of Fn (the foliation associated to Xn). Clearly the integral of

the time-form induced by Xn on Ln, dTLn , over cLn is different from zero

provided that n is large enough. On the other hand, since all Fn have the

same first integral up to renormalization, it follows that Ln covers Lho with

constant degree on a neighborhood of c. In other words, a multiple l.cn of cn

lifts into a closed curve on Ln. The integral of dTLn over l.cn is necessarily

different from zero which contradicts the assumption that X does not have

periods. The lemma is proved. �

Next let us fix a regular leaf Lho of Fho and consider the time-form

dTLho induced by Xho. Recall that Lemma (5.7) provides a polynomial first

integral P for Fho. Therefore the closure L
ho

of Lho in CP(2) is algebraic.

In the sequel, we identify L
ho

with its normalization. Since dTLho does

not have periods, it results that dTLho is the differential of a meromorphic

function FdT defined on L
ho

. Naturally FdT is nothing but a holomorphic

function from L
ho

to CP(1). Thus we can consider its topological degree.

We claim that this degree is 2. The claim does not follow a priori from the

construction of X in Section 4. Indeed, whereas the time-form induced by X

is the lift by a degree 2 map of the exact (semi-complete) form on CP(1), Xho

is obtained as the limit of a sequence of vector fields conjugate to X. Thus

is not obvious that the degree of FdT is necessarily 2. To verify the claim,

we first assume that this degree is 3 or greater. Then there are pairwise

distinct points p0, p1, p2 in L
ho

such that FdT (p0) = FdT (p1) = FdT (p2).
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Since dTLho is the differential of FdT , we conclude that

0 =

∫
c1

dTLho =

∫
c2

dTLho .

The last equation contradicts the fact that Xho is 2-determined. However

if the degree of FdT is 1, then L
ho

is a rational curve and the corresponding

vector field is semi-complete. From the classification of meromorphic semi-

complete vector fields in [Re3], we conclude that Fho has non-vanishing

eigenvalues at (0, 0). This is obviously impossible in the present case. Sum-

marizing one has:

Lemma 5.9. FdT realizes L
ho

as a degree 2 ramified covering over

CP(1). The poles of dTLho are contained in the ramification points of FdT .

Furthermore, if dTLho has a single zero, then it has order 3 and coincides

with a ramification point of FdT as well. Otherwise FdT has exactly 2 zeros

of order 2 each.

In view of Lemmas (5.8) and (5.9), we can work with the vector field

Xho rather than with the original vector field X. In particular, the divisor

of zeros (resp. poles) of Xho is given as the zero-set of a homogeneous

polynomial and therefore consists of a finite number of lines through (0, 0) ∈
C2. Let us denote by X̃ho the blow-up of Xho and fix a singularity pi of

F̃ho. Using Formula (11) and the fact that Fα,i, Fβ,i are different from zero

at pi, we immediately obtain

X̃ho = x
(ordπ−1(0) (X̃))

i tdi
i(13)

× [mixi(1 + h.o.t.)∂/∂xi − niti(1 + h.o.t.)∂/∂ti] ,

up to a constant multiplicative factor.

For each i = 1, . . . , r, let us set εi = (ordπ−1(0) (X̃))mi − nidi (note

that ordπ−1(0) (X̃) = ordπ−1(0) (X̃ho)). Lemma (5.3) then says that εi ∈
{−2,−1, 0, 1, 2}. By considering the proper transforms of f, g, we see that∑r

i=1 di = ord(0,0)(f) − ord(0,0)(g) since Fα,i(0)/Fβ,i(0) �= 0. However, by

definition of εi, we have di = (ordπ−1(0) (X̃))mi/ni − εi/ni. Using Formu-

las (10) and (12), it follows that
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ord(0,0)(f)− ord(0,0)(g)

=

r∑
i=1

di =

r∑
i=1

(ordπ−1(0) (X̃))

r∑
i=1

mi/ni −
r∑

i=1

εi/ni

= −
r∑

i=1

εi/ni + ord(0,0)(F)− 1 + ord(0,0)(f)− ord(0,0)(g) .

However we know from (12) that ord(0,0)(F) = r − 1 so that
∑r

i=1 εi/ni =

r − 2. Equivalently

r∑
i=1

(1− εi/ni) = 2 .(14)

Lemma 5.10. F̃ has exactly 3 singularities on π−1(0) (i.e. r = 3).

Proof. Recall that Fho has a polynomial first integral P (cf. Lemma

(5.7)). Let P = (x−c1y)k1 · · · (x−cly)
kl , k = k1+· · ·+kl, ci ∈ C. Recall also

that F̃ho has r singularities p1, . . . , pr in π−1(0). Clearly the singularities

p1, . . . , pr correspond to r straight lines passing through (0, 0) ∈ C2 and

invariant by Fho.

A generic leaf Lho of Fho is a covering of CP(1) \ {p1, . . . , pr} whose

degree is k. This allows us to find the Euler characteristic e(Lho) of the

normalization L
ho

of the closure of Lho by means of the formula

e(Lho) = (2− r)k +

r∑
i=1

g.c.d. (ki, k) ,(15)

where g.c.d. (ki, k) stands for the greatest common divisor between ki, k. On

the other hand, note that all the ramification points of FdT have ramification

index equal to 2 since the degree of FdT is precisely 2. Denoting by s this

number of ramification points, Hurwitz Formula yields

e(Lho) = 2(2− s) + s = 4− s .(16)

Since Fα,i(0)/Fβ,i(0) �= 0, a ramification point of FdT is necessarily con-

tained in the intersections of (a branch of) L
ho

with the line at infinity ∆.

In particular s ≤ k.
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Now we notice that Formula (8) guarantees that r ≥ 3. Suppose for

a contradiction that r ≥ 4. Note that
∑r

i=1 g.c.d. (ki, k) ≤
∑r

i=1 ki = k,

so that e(Lho) ≤ (3 − r)k (cf. (15)). However Formula (16) shows that

e(Lho) ≥ 4− k. Hence 4− k ≤ (3− r)k which is impossible since r ≥ 4. �

Proof of Proposition (5.4). Let us keep the preceding notations.

After Lemma (5.10), we know that the polynomial first integral of Fho, P,

can be written as P = xk1yk2(x−y)k3 . We also point out that the possibility

of having k1, k2, k3 with a non-trivial common factor is not excluded and

might be thought of as representing a “multiple leaf”. Such degeneracies

does not really have a geometric meaning in terms of foliations since F
and Fho are conjugate (cf. Lemma (5.8)). However they correspond to the

correct order of the vector fields X, Xho tangent to these foliations. Next

set k = k1 + k2 + k3 and fix a singularity p′i of Fho in ∆ (i = 1, 2, 3) whose

eigenvalues are mi, ni. The singularity p′i corresponds to the intersection

of ∆ with the same line involved with pi ∈ π−1(0) (i.e. pi, p
′
i are “dual”

in this sense). Let us introduce coordinates ui, vi around p′i ∈ ∆ such that

{ui = 0} ⊂ ∆ and {vi = 0} is contained in the line mentioned above.

Finally notice that the order of the vector field Xho on ∆ is the negative

of the order of its blow-up, X̃ho, on π−1(0) which, in turn, coincides with

ordπ−1(0) (X̃). Summarizing, in the coordinates ui, vi above, one has

Xho = u
−ordπ−1(0) (X̃)

i vdi
i (miui∂/∂ui + nivi∂/∂vi) .

Therefore a branch of L
ho

passing through p′i admits the parametrization

t !→ (tmi , const tni) for an appropriate constant const. The restriction

to L
ho

of the vector field Xho is therefore given in the coordinate t by

t
(−miordπ−1(0) (X̃)+nidi)t∂/∂t = t1−εi∂/∂t. Equivalently, the time-form dT

induced by Xho on L
ho

is given by

dT = tεi−1dt .(17)

In particular, we see that εi �= 0, otherwise the form dT would not be

exact. If εi = 1, then {t = 0} is a regular point of FdT . However FdT has

a ramification point at t = 0 provided that εi = ±2. More precisely, if

εi = −2, then Xho has a divisor of zeros consisting of a single component

which has order 3. If εi = −1 then the divisor of zeros of Xho must consist
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of one or two components each of them having order 2, these points are

regular for FdT .

Denote by s1 (resp. s2, s3) the number of ramification points of FdT

associated to the branches of L
ho

passing through p1 (resp. p2, p3). Clearly

s1 + s2 + s3 = s. Furthermore εi = ±1 implies that si = 0 and εi = ±2

implies that si = g.c.d. (ki, k) (recall that k = k1 + k2 + k3).

First let us discuss the case in which some ni (i = 1, 2, 3) is equal to 2.

There may exist at most one such ni (cf. Formula (12)) and the correspond-

ing mi must be 1. Without loss of generality, we let n1 = 2, m1 = 1 (more

generally we shall always assume that n1 = min{n1, n2, n3}).
• Suppose that ε1 = 2. In this case, Equation (14) becomes

ε2
n2

+
ε3
n3

= 0 .

Moreover s1 = g.c.d. (k1, k) = k/2 since 2 = n1 = k/g.c.d. (k1, k) (similarly

one also has m1 = k1/g.c.d. (k1, k)). Thus we conclude that

4− s2 − s3 = g.c.d. (k2, k) + g.c.d. (k3, k) .

1. ε2 = 1, ε3 = −1. In this case n2 = n3 and therefore k/g.c.d. (k2, k) =

k/g.c.d. (k3, k). On the other hand s2 = s3 = 0, thus g.c.d. (k2, k) =

g.c.d. (k3, k) = 2. Thus we obtain form b.1.

2. ε2 = 1, ε3 = −2. Here n3 = 2n2 or equivalently g.c.d. (k2, k) =

2g.c.d. (k3, k). Since s2 = 0 and s3 = g.c.d. (k3, k), we have case b.2.

3. ε2 = 2, ε3 = −2. Again n2 = n3 so that g.c.d. (k2, k) = g.c.d. (k3, k).

Since s2 = g.c.d. (k2, k) (resp. s3 = g.c.d. (k3, k)), we must have case b.3.

It is very easy to check that the possibilities ε1 = −1 and ε1 = −2 do not

lead to any solution of the above equations. Thus we just need to consider

the case ε1 = 1.

• ε1 = 1. Note that s1 = 0 so that 4 − s2 − s3 = −k/2 + g.c.d. (k2, k) +

g.c.d. (k3, k). On the other hand, one has ε2/n2+ε3/n3 = 1/2. If both ε2, ε3
are positive, then we immediately obtain a contradiction (4 = 0). So let us

assume that ε2 < 0. In this case ε3/n3 > 1/2 so that n3 < 4 and therefore

n3 = 3 and ε3 = 2. Hence ε2/n2 = −1/6.

Suppose first ε2 = −1 so that n2 = 6. This leads to k/6+g.c.d (k2, k) = 4

and, on the other hand, k = 6g.c.d (k2, k). Thus g.c.d (k2, k) = 2 and k = 12.
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The resulting P would be x6y2(x − y)4. Note that this vector field is not

included in the family b.1 since ε1 = 1 (and the family b.1 has ε1 = 2).

Nonetheless, up to permutation of the lines {y = 0} and {x = y} it is the

member a.2 of family a. Finally the case ε2 = −2 implies that n2 = 12. In

turn, this leads to 3g.c.d. (k2, k) = 4 which is impossible.

To finish the discussion of the case n1 = 2, we just need to check that

ε1 cannot be −1 or −2. Indeed, Formula (14) gives us

1− ε2
n2

+
1− ε3
n3

= 1 +
ε1
2
.

We know that n2 and n3 are at least 3 so that the left hand side is greater

than or equal to 2/3. However the right hand side is not larger than 1/2

provided that ε1 = −1 or −2. This shows that the mentioned cases cannot

occur.

The next step is to assume that n1 = 3. Clearly we must have ε1 �= −2

since ε2/n2 + ε3/n3 ≤ 4/3. Besides ε1 = −1 implies that ε2 = ε3 = 2 and

n2 = n3 = 3. On the other hand

4− s2 − s3 = −k + g.c.d.(k1, k) + g.c.d.(k2, k) + g.c.d.(k3, k) = 0

since g.c.d.(ki, k) = k/3. Thus 4 = 2k/3, i.e. k = 6. Hence g.c.d.(ki, k) = 2

which is form a.1.

It remains to analyse the cases ε1 = 1, 2. Let us start with the easy case

ε1 = 1 so that ε2/n2 + ε3/n3 = 2/3. We also have

4− s2 − s3 = −2k/3 + g.c.d.(k2, k) + g.c.d.(k3, k) .

It is clear that one between ε2, ε3 has to be negative so that we can assume

that ε2 > 0 and ε3 < 0. In particular, ε2/n2 > 2/3 which implies that

n2 < 3. The resulting contradiction shows that the case ε1 = 1 cannot be

produced.

Now we fix ε1 = 2. Then we have ε2/n2 + ε3/n3 = 1/3 and

4− s2 − s3 = −k/3 + g.c.d.(k2, k) + g.c.d.(k1, k) .

Again one between ε2, ε3 has to be negative. Without loss of generality we

assume that ε2 > 0 and ε3 < 0. Therefore ε2/n2 > 1/3 so that ε2 = 2 as a

consequence of the fact that n2 ≥ 3.
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• Suppose that n2 = 3 so that 4−s3 = k/3+g.c.d.(k3, k) and ε3/n3 = −1/3.

If ε3 = −1 then n1 = n2 = n3 = 3 and k = 6 so that we are in the same

situation considered above. Similarly ε3 = −2 yields n3 = 6 and k = 6.

Thus k3 = 1, 5 whereas k2 = 2, 4 and k3 = 2, 4. This is not consistent with

k1 + k2 + k3 = k = 6.

• The case n2 = 4 implies ε3/n3 = −1/6 and 4− s3 = k/6 + g.c.d.(k3, k). If

ε3 = −1 then n3 = 6 and 4 = k/6 + k/6 i.e. k = 12. Thus g.c.d.(k1, k) = 4,

g.c.d.(k2, k) = 3 and g.c.d.(k3, k) = 2. In other words k1 = 4, 8; k2 = 3, 9

and k3 = 2, 10 so that all the resulting possibilities are incompatible with

k1 + k2 + k3 = 12. Next we consider the case ε3 = −2 so that n3 = 12

and 4 = k/6 + k/12 = k/12 i.e. k = 12. Now one has g.c.d.(k1, k) = 4,

g.c.d.(k2, k) = 3 and g.c.d.(k3, k) = 1 which is equivalent to k1 = 4, 8;

k2 = 3, 9 and k3 = 1, 5, 7, 11. The only possibilities are c.1 and c.2.

Finally we have to consider the case n2 = 5. Clearly ε3/n3 = 1/15 and

4 − s3 = k/15 + g.c.d.(k3, k). If ε3 = −1 then n3 = 15 and 4 = 2k/15 so

that k = 30. Thus g.c.d.(k1, k) = 10, g.c.d.(k2, k) = 6 and g.c.d.(k3, k) = 2.

Hence we have the forms c.3, c.4, c.5 and c.6. Next we consider ε3 =

−2 so that n3 = 30 and k = 30. The possibilities are now k1 = 10, 20;

k2 = 6, 12, 18, 24 but k3 has to be odd. This is clearly incompatible with

k1 + k2 + k3 = 30.

The next step is to consider n1 = 4. Clearly ε2/n2 +ε3/n3 ≤ 1 so that ε1
has to be 1 or 2. Let us first suppose that ε1 = 1 so that ε2/n2+ε3/n3 = 3/4

and 4−s2−s3 = −3k/4+g.c.d. (k2, k)+g.c.d. (k3, k). As usual ε2, ε3 cannot

be simultaneously positive so that we can suppose ε2 > 0 and ε3 < 0. In

particular ε2/n2 > 3/4 and therefore n2 < 8/3 < 3. This is impossible since

n2 ≥ 4. Thus we conclude that ε1 = 2. However in this case ε2/n2+ε3/n3 =

1/2 and, in addition,

4− s2 − s3 = −k/2 + g.c.d. (k2, k) + g.c.d. (k3, k) .

Once again we can suppose that ε2 > 0 and ε3 < 0. Therefore ε2/n2 > 1/2

which implies n2 < 4 yielding a contradiction.

The last case to be considered is n1 = 5. As above ε2/n2 + ε3/n3 < 1

so that ε1 > 0. If ε1 = 1, then we have ε2/n2 + ε3/n3 = 4/5 and the only

possibility is ε2 = ε3 = 2 and n2 = n3 = 5. Therefore 4 = −k + k = 0

which is a contradiction. Thus we must have ε1 = 2. However ε1 = 2 still

implies (just as before) that either ε2 or ε3 is negative. Letting ε2 > 0 and
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ε3 < 0. we conclude that ε1/n2 + ε2/n2 > 1 which is again impossible. It

follows that n1 �= 5. A similar argument works for n1 = 6 and, obviously,

we cannot have n1 = min{n1, n2, n3} ≥ 7 by virtue of (14). The proposition

is proved. �

6. Proofs of Theorem (5.1) and of Theorem B

This section is primarily devoted to the proof of Theorem (5.1). The

arguments involved in this proof will also be adapted to provide a proof for

Theorem B. Let X = fY/g and F be as in the statement of this theorem.

Consider a resolution tree for F

(F , U) = (F(0), U(0))
π=π(1)←− (F̃(1), Ũ(1))

π(2)←− · · ·
π(n)←− (F̃(n), Ũ(n)) ,(18)

where U is a neighborhood of (0, 0) ∈ C2 like that of Lemma (5.2). Recall

that all singularities pi of F̃(n) have two eigenvalues λ1/λ2 different from

zero and such that λ1/λ2 ∈ Q−. Naturally to each foliation F̃(i) there

corresponds a meromorphic vector field X̃(i) obtained through the original

vector field X. Recall also that En stands for the total exceptional divisor

whose irreducible components are D1, . . . , Dn. The proposition below is

fundamental to the proof of Theorem (5.1).

Proposition 6.1. Let X be a vector field as in the statement of Theo-

rem (5.1). Denote by F the foliation associated to X and consider a smooth

separatrix S of F . Then Ind(0,0)(F ,S) is strictly negative.

To begin with, let us make two general and elementary remarks which

will be used throughout the proof of Proposition (6.1). First let F be a

foliation defined on a neighborhood of (0, 0) ∈ C2 and consider a separatrix

S of F . Denote by F̃ the blow-up of F and by S̃ the proper transform of

S. Naturally S̃ constitutes a separatrix for some singularity p of F̃ . The

following relation will implicitly be used several times in the sequel

Indp(F̃ , S̃) = Ind(0,0)(F ,S)− 1 ,(19)

provided that S is smooth at (0, 0) ∈ C2.

For the second remark, we keep the same notations and consider a sin-

gularity p ∈ π−1(0) of F̃ . Here we suppose that the proper transform S̃ of

S is smooth at p. As to the original separatrix S = π(S̃) of F , one has:
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Fact. S = π(S̃) is smooth at (0, 0) ∈ C2 if and only if S̃ is transverse

to π−1(0) at p.

This fact will be useful for the proof of Proposition (6.1) since we only

need to keep record of the index of smooth separatrizes. Clearly, a singu-

lar separatrix cannot be part of an irreducible component Di of En. As

mentioned, these remarks will be assumed without further comments in the

proof below.

Proof of Proposition (6.1). The statement is obvious if F has non-

vanishing eigenvalues at (0, 0). In general, we consider a resolution tree as

in (18) for F . If n = 1, then the statement follows from a direct inspection

in the normal forms provided by Proposition (5.4). In the sequel, we are

going to proceed by recurrence from the last level of the resolution tree (18).

First we blow-down (collapse) the rational curve D(n) which is an irreducible

component of the total exceptional divisor E(n) having self-intersection −1.

If p(n−1) stands for the singularity of F̃(n−1) obtained in this way, we notice

that F̃(n−1) admits one of the normal forms of Proposition (5.4) on a neigh-

borhood of p(n−1). The next step is to search for an irreducible component,

say D(i0), of the corresponding exceptional divisor E(n−1), satisfying the

following:

• D(i0) has self-intersection −1.

• D(i) contains only singularities of F̃(n−1) where F̃(n−1) has non-vanishing

eigenvalues.

If there exists such component D(i) we can suppose without loss of gen-

erality that D(i) = D(n−1) and we collapse D(i) = D(n−1). In particular, this

collapsing produces a new singularity having again one of the normal forms

indicated in Proposition (5.4). Continuing inductively, after a finite number

of steps, we find n0 < n such that, if p is a singularity of the corresponding

foliation F̃(n0) , then either F̃(n0) has two non-vanishing eigenvalues at p or

F̃(n0) admits one of the normal forms of Proposition (5.4) on a neighborhood

of p.

Let D(n0) be an irreducible component of E(n0) with self-intersection −1.

Denoting by p
(n0)
1 , . . . , p

(n0)
l the singularities of F̃(n0) in D(n0), we can sup-

pose without loss of generality that the eigenvalues of F̃(n0) at p
(n0)
1 vanish.



Vector Fields and Fibrations 225

Therefore F̃(n0) admits one of the normal forms of Proposition (5.4) around

p
(n0)
1 . Note also that D(n0) defines a separatrix for F̃(n0) at p

(n0)
1 . Because

the index of D(n0) with respect to F̃(n0) at each p
(n0)
i , i = 1, . . . , l, is strictly

negative we have that Ind
p
(n0)
1

(F̃(n0), D(n0)) ≥ −1.

The only models possessing a separatrix whose index is not strictly less

than −1 are a.2, b.1, b.2, b.3 and c.2, c.5, c.6. The model c.2 (resp. c.5,

c.6) has a separatrix of index −1/2 (resp. −2/3, −1/2) whereas each of the

models a.2, b.1, b.2, b.3 has a separatrix of index −1.

Suppose first that the above model is b.1, b.2 or b.3. Then it results

from Formula (9) that l = 1 i.e. p
(n0)
1 is the unique singularity of F̃(n0)

on D(n0). We claim that this situation is impossible. Indeed, Condition E

ensures that all the components of the divisor of zeros/poles of the corre-

sponding vector field X̃(n0) are invariant by F̃(n0). Hence, on a neighborhood

of D(n0), the divisor of zeros/poles of X̃(n0) is contained in the separatrizes

of F̃(n0) at p
(n0)
1 (one of them being D(n0) itself). Nonetheless the order

of X̃(n0) on its separatrizes can be determined from the possible values of

(ε1, ε2, ε3) for the normal forms b.1, b.2, b.3 in Proposition (5.4). It turns

out that these orders are not compatible with Formula (10) which gives

the desired contradiction. Alternatively, by using the notion of asymptotic

order to be introduced below, we can say that the asymptotic order of the

vector field X̃(n0) along its separatrix of self-intersection −1 is 3 and this

provides a contradiction with Proposition (6.3).

On the other hand, if the model in question is a.2, then it is possible

to collapse D(n0) to obtain singularity a.3 (again we can notice that the

asymptotic order involved here equals 2 and is therefore compatible with

Proposition (6.3)).

Finally suppose that the normal form of F̃(n0) around p
(n0)
1 is c.1 (the

cases c.5, c.6 are analogous). Hence Ind
p
(n0)
1

(F̃(n0), D(n0)) = −1/2 (resp.

−2/3, −1/2).

• Suppose first that there is another singularity among p
(n0)
2 , . . . , p

(n0)
l where

the eigenvalues of F̃(n0) vanish. Denoting by p
(n0)
2 this singularity, it follows

that p
(n0)
2 has the normal form c.1 or c.6 (this possibility would immediately

be excluded if the normal form of F̃(n0) around p
(n0)
1 were c.5). In particular,

Formula (9) implies that l = 2 in this case.
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• Suppose now that all the remaining singularities p
(n0)
2 , . . . , p

(n0)
l are such

that the eigenvalues of F̃(n0) do not vanish at them. If l = 2, then F̃ (n0) has

a separatrix of index −2 (resp. −3, −2 when the normal form around p
(n0)
1

is c.5, c.6). In this case, the collapsing of D(n0) leads to the singularity c.7

(resp. c.8, c.9). On the other hand, if l ≥ 3, then each pi, i = 2, . . . , l, has a

separatrix transverse to D(n0) whose index is strictly smaller than −2 (resp.

−3, −2). In particular, the collapsing of D(n0) gives rise to a singularity

with l + 1 separatrizes, S1,S2, . . . ,Sl+1, such that S1,S2 are tangent to

each other. The remaining separatrizes S3, . . . ,Sl+1 also have a common

tangent and they are transverse to S1,S2. Let us denote by Rc.5
1 the class

of singularities arising from the collapsing of D(n0) when the normal form

of F̃(n0) around p
(n0)
1 is c.5.

More generally let us denote by R1 the class of singularities constituted

by the singularities of foliations that can be obtained by collapsing D(n0)

in the above cases (in particular Rc.5
1 ⊂ R1). Also the singularities a.3,

c.7, c.8 and c.9 belong to R1. Besides it is convenient to denote by R0 the

singularities listed in Proposition (5.4). The preceding discussion shows that

the separatrizes of a singularity in R1 have strictly negative index. Hence,

if the recurrence procedure ends with a R1 singularity, the proposition is

proved.

Conversely if the recurrence procedure is not ended yet, we then con-

tinue as before. To go beyond R1 singularities, we need to arrive to an

irreducible component D(n1) of self-intersection −1 together with a foliation

F̃(n1) satisfying the following conditions:

1. F̃(n1) has singularities p
(n1)
1 , . . . , p

(n1)
l on D(n1).

2. p
(n1)
1 is a singularity of the class R1 (in particular the eigenvalues of F̃(n1)

at p
(n1)
1 vanish and p

(n1)
1 does not belong to the class R0).

3. A singularity p
(n1)
i ∈ {p(n1)

2 , . . . , p
(n1)
l } either belong to R0 ∪ R1 or F̃(n1)

has non-vanishing eigenvalues at p
(n1)
i .

As before D(n1) defines a smooth separatrix for F̃(n1) at p
(n0)
1 whose index

is not smaller than −1. However it follows from the above discussion that

the singularities in the class R1 are have only (smooth) separatrizes whose

index is smaller than or equal to −1. More precisely the only singularities
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in R1 having a smooth separatrix of index −1 are those belonging to Rc.5
1

or to the list a.3, c.7, c.8 and c.9. According to Formula (9) and to the

fact number 3 above, p
(n1)
1 must be the unique singularity of F̃(n1) in D(n1)

in these cases. However the same argument employed for the models b.1,

b.2, b.3 now exclude the case a.3. This can directly be seen from the fact

that the asymptotic order of this model with respect to its separatrix of

self-intersection −1 is 3). Next we collapse D(n1) and denote by R2 the

class of singularities that can be obtained in this way. We also denote by

Rc.5
2 the subclass of R2 corresponding to the cases in which the normal form

of F̃(n1) around p
(n1)
1 belongs to Rc.5

1 . Again a direct inspection shows that

every singularity in R2 verifies the conclusion of our statement.

Let us continue inductively our procedure. It is clear that the only

way to go beyond singularities in the class R2 is by finding an irreducible

component D(n2) of self-intersection −1 together with a foliation F̃(n2) which

satisfy the conditions below:

4. F̃(n2) has singularities p
(n2)
1 , . . . , p

(n2)
l on D(n2).

5. p
(n2)
1 is a singularity of the class R2.

6. A singularity p
(n2)
i ∈ {p(n2)

2 , . . . , p
(n2)
l } either belong to R0 ∪ R1 ∪ R2 or

F̃(n2) has non-vanishing eigenvalues at p
(n2)
i .

However, it turns out that the only singularities in R2 which have a smooth

separatrix whose index is greater than or equal to −1 are c.7, c.8 and c.9.

Indeed, the smooth separatrizes of singularities in Rc.5
2 have indices strictly

smaller than −1. In particular, it follows that F̃(n2) has a unique singularity

p
(n2)
1 on D(n2) and this singularity belongs to the list c.7, c.8 and c.9. The

rest of the proof of the proposition is now clear. �

To deduce Theorem (5.1) we just need to identify which singularities,

among those obtained in the preceding proof, actually verify the Conditions

A, B, C, D and E. The discussion will be organized into two parts. In the

course of these parts, the proof of Proposition (6.1) will be reviewed.

Going back to the resolution tree (18), let p(n−1) ∈ En−1 be the center

of π(n) and set D(n) = π−1
(n)(p

(n−1)). By assumption, F̃(n−1) has trivial

eigenvalues at p(n−1). Hence, on a neighborhood of p(n−1), F̃(n−1) admits

one of the normal forms indicated in Proposition (5.4). Similar conclusion

holds for the corresponding vector field X̃(i). The proof of Theorem (5.1)
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consists of a closer analysis of the structure of the resolution tree (18).

Case 1: Suppose that the normal form mentioned above is a.1, a.2,

c.1, c.3 or c.4.

Proof of Theorem (5.1) in Case 1. If n = 1, there is nothing to

be proved so that we can suppose n ≥ 2. With this assumption p(n−1) lies

in some rational curve D(n−1) whose self-intersection is −1. Clearly D(n−1)

defines a separatrix for F̃(n−1) at the point p(n−1).

Let us denote by p(n−1) = p
(n−1)
1 , . . . , p

(n−1)
l the singularities of F̃(n−1)

lying in D(n−1). According to Proposition (6.1), the remaining singularities

p
(n−1)
2 , . . . , p

(n−1)
l of F̃(n−1) on D(n−1) satisfy Ind

p
(n−1)
i

(F̃(n−1), D(n−1)) <

0 (strictly, for i ∈ {2, . . . , l}). Thanks to Formula (9), it follows that

Indp(n−1)(F̃(n−1), D(n−1)) ≤ 1.

On the other hand a direct inspection of the foliations associated with

the normal forms a.1, a.2, c.1 c.3 or c.4 shows that their indices with

respect their separatrizes is always less than or equal to −1. In fact, only

the model a.2 possesses one separatrix whose index is −1. Given that n ≥ 2,

it results that the model in question is a.2 and that p(n−1) = p
(n−1)
1 is the

unique singularity of F̃(n−1) in D(n−1). By collapsing D(n−1) we obtain the

normal forms a.3.

Next we assume for a contradiction that n ≥ 3. With similar notations,

it follows the existence of a singularity p(n−2) of F̃(n−2) which belongs to

a rational curve D(n−2) whose self-intersection is −1. Furthermore F̃(n−2)

admits the normal form a.3 on a neighborhood of p(n−2). Again a direct

inspection shows that this singularity cannot belong to a rational curve of

self-intersection −1 (note also that the asymptotic order of the model a.3

along its separatrix of self-intersection −1 is 3). The resulting contradiction

shows that n ≤ 2 and completes the proof. �

Case 2: Suppose that the normal form mentioned above is b.1, b.2,

b.3, c.2, c.5 or c.6.

As already explained, the models b.1, b.2, b.3 cannot exist on a rational

curve of self-intersection −1. Thus, in these cases, we have n = 1 and the

corresponding normal form (b.1, b.2, or b.3) must be the normal form of

the original foliation F around (0, 0).
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Thus we just have to analyse the cases c.2, c.5 and c.6 in order to

complete the proof of Theorem (5.1). Here a further idea will be needed,

namely the previously mentioned notion of asymptotic order. LetX = fY/g

be a meromorphic vector field defined on a neighborhood of (0, 0) ∈ C2 and

denote by F the foliation associated to X (or Y ). Assume that S is a

smooth separatrix of F . We want to define a notion of order for X along

S (called the asymptotic order of X on S) even in the case where S is a

component of the divisor of zeros or poles of X. In order to do that, we

consider local coordinates (x, y) around (0, 0) ∈ C2 in which S is given by

{y = 0}. In these coordinates, we have

X = yd[f1∂/∂x+ ymh2∂/∂y]

where d ∈ Z, m ∈ N∗ and h1, h2 are meromorphic functions for which

{y = 0} is not a component of the divisor of zeros or poles. We then define

the asymptotic order of X along S ord asy(0,0)(X,S), by the formula

ord asy(0,0)(X,S) = k + d.Ind(0,0)(F ,S) .

The next proposition is a direct by-product of the “division” techniques

introduced in [Re2].

Proposition 6.2. Let X, F and S be as above. Assume that X is

2-determined. Then −1 ≤ ord asy(0,0)(X,S) ≤ 3.

The second needed result has a more global nature, its proof is ele-

mentary in essence and can be found in [Re4]. Again X is a meromorphic

vector field whose associated foliation is F . Assume that C is a rational

curve invariant by F and denote by p1, . . . , pl the singularities of F on C.

Proposition 6.3. Let X, F and C be as above. Then one has

l∑
i=1

ord asypi(X,C) = 2.

Now we go back to the vector field X = fY/g defined on a neighborhood

of (0, 0) ∈ C2. In practice, X and its associated foliation F will be as in one

of the models c.2, c.5, c.6. When X, F are as in the model c.2 (resp. c.5,
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c.6), we denote by Sc
1 the separatrix of F whose index is −1/2 (resp. −2/3,

−1/2). Direct calculations based on the data provided by Proposition (5.4)

yield:

1. ord asy(0,0)(X,Sc
1) = 2 for the models c.2 and c.6.

2. ord asy(0,0)(X,Sc
1) = 1 + 2/3 for the model c.5.

Let us return to the proof of Theorem (5.1). Our recurrent procedure of

collapsing appropriate irreducible components of the exceptional divisors in

question can be summarized, in the present case, by the following lemma.

Lemma 6.4. There exists n1, 0 < n1 < n, in the resolution tree (18)

of F such that the following holds:

1. The corresponding foliation F̃(n1) has a singularity p
(n1)
1 around which

F̃(n1) has a normal form belonging to the list c.2, c.5, c.6.

2. p
(n1)
1 lies in a rational curve D(n1) of self-intersection −1 which is con-

tained in the (total) exceptional divisor associated to F̃(n1).

3. Let p
(n1)
2 , . . . , p

(n1)
l be the remaining singularities of F̃(n1) in D(n1). Given

p
(n1)
i , i = 2, . . . , l, either F̃(n1) has non-vanishing eigenvalues at p

(n1)
i or

F̃(n1) admits one of the normal forms c.2, c.5, c.6 around p
(n1)
i .

Remark 6.5. Consider again a vector field X satisfying our standard

assumptions and defined on a neighborhood of (0, 0) ∈ C2. Suppose that X

has, in fact, the form

X = taxbh(t, x)[nt(1 + h.o.t)∂/∂t−mx(1 + h.o.t.)∂/∂x](20)

where h(0, 0) �= 0. The asymptotic order of X on {x = 0} is given by 1+ε/n

with ε ∈ {−2,−1, 0, 1, 2}. In particular, ord asy(0,0)(X, {x = 0}) is strictly

positive provided that n ≥ 3. This remark will be used in the sequel.

Proof of Theorem (5.1) in Case 2. We suppose that the normal

form of F̃(n1) around p
(n1)
1 is c.2 (resp. c.5, c.6). The rational curve D(n1)

clearly must coincide with Sc
1. Thus we have ord asy(0,0)(X̃(n1),Sc

1) = 2

(resp. 5/3, 2) and Ind
p
(n1)
1

(F̃(n1), D(n1)) = −1/2 (resp. −2/3, −1/2), where

X̃(n1) stands for the corresponding blow-up of X.
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The combination of Formula (9), Proposition (6.1) and Proposition (6.3)

promptly implies that F̃(n1) has two eigenvalues different from zero at all of

its remaining singularities p
(n1)
2 , . . . , p

(n−1)
l in D(n1). Next we observe that

X̃(n1) has the form (20) on a neighborhood of each pn1
i , i = 2, . . . , l. There-

fore Remark (6.5) and Proposition (6.3) show that all the “n’s” involved

must be equal to 2 (resp. 2 or 3, 2). Now Formula (9) immediately implies

that l = 2 and, with the notations of Equation (20), n = 2, m = 1 (resp.

n = 3, m = 1, n = 2, m = 1). These cases give rise to the models c.7, c.8,

c.9.

To complete the proof of Theorem (5.1) in Case 2. All we need to do

is to follow the indices associated to the separatrizes of these vector fields

(relying of course on Proposition (6.1)). In fact, these models have only one

separatrix whose index is exactly −1. The indices of the other separatrizes

being strictly smaller than −1. The rest of the proof results at once from

this fact. �

The remainder of this article is devoted to the proof of Theorem B. As

we are going to see, this proof is a simple adaptation of the methods used

to prove Theorem A. Again we consider a vector field X = fY/g defined

on a neighborhood of (0, 0) ∈ C2. We are going to suppose that X satisfies

conditions A, B, C and D of Section 5. However, Condition E is going to

be replaced by the following condition:

F. The (local) vector field X is realized by a global vertical vector field, as

in the statement of Proposition (4.6), which is defined on a hyperelliptic

fibration of genus less than or equal to 3.

The main step of our proof consists of obtaining a suitable analogue of

Proposition (5.4). Denote by F the foliation associated to X and let F̃ be

its blow-up. Let p1, . . . , pr be the singularities of F̃ in π−1(0). With these

notations, the desired analogue of Proposition (5.4) can be stated as

Proposition 6.6. Assume that F̃ has non-zero eigenvalues at each

pi, i = 1, . . . , r. Then, up to an invertible factor, X has one of the normal

forms indicated below:

1. Non-ramified cases: the forms are a.1, a.2, c.1, c.2 or

b.1 with k1 ≤ 8;

b.2 with k1 ≤ 7;
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b.3 with k1 ≤ 6.

2. Ramified cases:

r.a.0 H(x, y)X where H is a holomorphic function admitting the normal

form y2 = x2h(x), h(0) = 0 (or (α1x − β1y)(α2xg(x) − β2y)) and X has

one of the following forms:

• [x(x− 2y)∂/∂x+ y(y − 2x)∂/∂y].

• [x(x− 2y)∂/∂x+ y(2y − 3x)∂/∂y].

• [(2(τ1 +1)x2y−x3−3τ1xy
2)∂/∂x+(3x2y−2(τ1 +1)xy2 +τ1y

3)∂/∂y].

r.a.1 (x−τ1y)−1(x−τ2y)−1[x(x−2y)∂/∂x+y(y−2x)∂/∂y] with (ε1, ε2, ε3) =

(1,−2,−2) (8 ramification points).

r.a.2 (x−τ1y)−1(x−τ2y)−1[x(x−2y)∂/∂x+y(y−2x)∂/∂y] with (ε1, ε2, ε3) =

(2,−1,−1) or (−2, 1, 1) (7 ramification points).

r.a.3 (x−τy)−1[x(x−2y)∂/∂x+y(4y−5x)∂/∂y] with (ε1, ε2, ε3) = (−1, 1, 1)

or (1,−1,−1) (6 ramification points) or ε1 = ±1 and ε2 + ε3 = 2ε1 (7

ramification points).

r.a.4 (x−τy)−1[x(x−2y)∂/∂x+y(2y−3x)∂/∂y] with (ε1, ε2, ε3) = (−1, 1, 1)

or (1,−1,−1) (4 ramification points, all of them being poles).

r.a.5 (x−τy)−1[x(3x−4y)∂/∂x+y(4y−5x)∂/∂y] with (ε1, ε2, ε3) = (−1, 1, 1)

or (1,−1,−1) (8 ramification points).

r.d.1 (x− τ2y)−1[(2(τ1 +1)x2y−x3−3τ1xy
2)∂/∂x+(3x2y−2(τ1 +1)xy2 +

τ1y
3)∂/∂y] with (ε1, ε2, ε3, ε4) = (−2, 2, 2, 2) (8 ramification points).

r.e.1 (x − τ1y)
−1[x(k3y − k2(x − y))∂/∂x + y(k3x + k1(x − y))∂/∂y where

k1+k2+k3 = 5, (ε1, ε2, ε3) = (2,−1,−1) or (−2, 1, 1) (6 ramification points).

r.f.1 (x − τ1y)
−1[x(k3y − k2(x − y))∂/∂x + y(k3x + k1(x − y))∂/∂y where

k1+k2+k3 = 7, (ε1, ε2, ε3) = (2,−1,−1) or (−2, 1, 1) (8 ramification points).

In the sequel, we resume the notations of Section 5 and suppose that

X, F are as in the statement of Proposition (6.6). Again we denote by Xho

the first homogeneous component of X and by Fho the foliation associated

to Xho. It is immediate to check that Lemmas (5.6), (5.8) and (5.9) still

hold in the present context. In fact, their proofs do not require Condition E

of Section 5.
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Next we consider a regular leaf Lho of Fho as well as its closure L
ho

in

CP(2). Recall that the genus of Lho (or of L
ho

) is by definition the genus of

the (smooth) Riemann surface obtained by normalization (“desingulariza-

tion”) of L
ho

. Note also that we make no distinction between L
ho

and its

normalization (or “desingularization” or non-singular model) which is also

denoted by L
ho

. Now one has:

Lemma 6.7. The genus of Lho (i.e. of L
ho

) is not greater than 3.

Proof. The proof relies on condition F. Precisely, there is a global

vertical vector field Z as in the statement of Proposition (4.6) which is

defined on a surface M and satisfies the following:

1. The foliation FZ associated to Z defines a hyperelliptic fibration on M

whose fibers have genus ≤ 3.

2. There is a singularity p ∈M of FZ around which FZ is conjugate to the

restriction of Fho to a neighborhood of (0, 0) ∈ C2.

Consider a ball B(p) ⊂ M with center at p and a holomorphic diffeo-

morphism h : B(p) → U that conjugates the restriction of FZ to B(p) and

that of Fho to U , where U stands for a neighborhood of (0, 0) ∈ C2. Let

LZ be a regular leaf of FZ . Without loss of generality, we can suppose that

LZ intersects transversely the boundary ∂B(p) of B(p). Thus LZ ∩ ∂B(p)

consists of a finite number of simple closed curves (“circles”) c1, . . . , cl. Let

LB
Z be the part of LZ contained in B(p), i.e. LB

Z = LZ ∩ B(p). The leaf

LZ is therefore constructed by attaching surfaces (of real dimension 2) with

boundaries S1, . . . , Sr to LB
Z along the curves c1, . . . , cl. Note that on such

surface Si may be glued along several curves cj (i.e. its boundary may have

more than one connected component).

Setting Lho,U = Lho ∩ U , it follows that Lho,U and LB
Z are diffeomor-

phic. Furthermore Lho is obtained from Lho,U by gluing real surfaces (of

dimension 2) along the circles h(c1), . . . , h(cl) contained in ∂U . To prove the

statement, it suffices to verify that Lho is obtained from Lho,U by attaching

topological disks to the curves ci. In fact, this way of performing the gluing

of surfaces automatically minimizes the genus of the resulting (compact,

boundariless, real 2-dimensional) surface. Hence the statement will follow.

Finally to check that Lho is obtained by attaching topological disks to

Lho,U as indicated above, we proceed as follows. Recall that Fho is invariant
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by homotheties so that Lho,U is diffeomorphic to the restriction of Lho to

any arbitrarily large ball of C2. In other words, to understand what are the

surfaces glued along the h(ci)’s to obtain Lho, we just need to understand

the compactification of Lho viewed as the compactification of its affine part

(contained in C2) into the entire leaf Lho (contained in CP(2)). Since Fho

possesses a polynomial first integral (cf. Section 5), it promptly results that

such compactification consists of adding a point (a dicritical singularity

of Fho at the line at infinity) to each branch of Lho passing through the

singularity in question. The claim follows at once. The proof of the lemma

is over. �

Now we go back to the proof of Proposition (6.6). If the origin (0, 0) ∈ C2

is a non-ramified singularity of X, then X must have one of the normal forms

indicated in Proposition (5.4). However, since the genus of the closure of

a regular leaf in the corresponding foliation is not greater than 3, the only

possible normal forms for X are those listed in the statement of Proposi-

tion (6.6) (cf. the “non-ramified” case).

Therefore we suppose from now on that (0, 0) is a ramified singularity

of X and therefore of Xho as well. Consider the vertical vector field Z

mentioned above which realizes X is a hyperelliptic fibration. Recall that

the number of poles of Z on a generic fiber is at most 8 (all of them being

simple, in fact, the number of poles is bounded by 2g + 2). Similarly, on

each generic fiber, either Z has a single zero whose order is exactly 3 (in

which case it has at most 7 poles) or it has exactly two zeros each of them

with order 2.

The lemma below allows us to work with Xho in most of our forthcoming

discussion.

Lemma 6.8. The foliations F and Fho are holomorphically conjugate

on a neighborhood of the origin. Furthermore the vector field Xho satisfies

conditions A, B, C, D and F.

Proof. The fact that F and Fho are holomorphically conjugate is

nothing but Lemma (5.8). According to Lemma (5.9), FdT realizes Lho as

a degree 2 ramified cover of CP(1). Since the time-form induced by Xho

on Lho agrees with the differential of FdT , it follows that it is 2-determined

and exact (in particular without periods). Finally Condition F results from

Lemma (6.7). �
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Lemma (6.8) does not allow us to completely substitute X by Xho since

the divisor of zeros/poles of the latter consists of finitely many radial lines

whereas the divisor of zeros/poles of the former may contain singular com-

ponents. However, since the associated foliations F and Fho are conjugate,

we can set X = fXho where f is a meromorphic function.

Again we consider the blow-up F̃ho of Fho. Recall that F̃ho, F̃ have the

same singularities pi ∈ π−1(0), i = 1, . . . , r. Thus there are local coordinates

(xi, ti) ({xi = 0} ⊂ π−1(0)) around pi in which F̃ho is given by a vector

field having the form (13).

Lemma 6.9. The divisor of zeros of X is invariant by Fho. The com-

ponents of the divisor of poles of X which is not invariant by Fho either

consists of an irreducible singular curve of the form y2 = x2h(x) or of

s ∈ {1, 2} smooth irreducible components each of them with order 1.

Proof. The proof is almost immediate. Consider the blow-up F̃ho of

Fho and the regular leaf π−1(0) \ {p1, . . . , pr} of F̃ho. Formula (12) and

Formula (9) clearly imply that the holonomy of π−1(0) \ {p1, . . . , pr} has

order at least 3. Hence the divisor of zeros of X must be invariant by Fho

otherwise there would be leaves intersecting this divisor three or more times.

This contradicts the fact that the intersection of this divisor with a generic

leaf consists of a single point.

As to the divisor of poles Dpoles of X, first suppose that it contains a

singular irreducible component. Let D̃poles be the proper transform of Dpoles

and notice that each singular irreducible component of Dpoles gives rise to

a component of D̃poles which is either singular or tangent to π−1(0). One

such component locally intersects a leaf of F̃ho at least twice. Since the

holonomy has order at least 3 and a generic leaf intersects Dpoles no more

than eight times, one can have exactly one irreducible singular component

which intersects π−1(0) at a single point p. Around p one can introduce

coordinates (x, t), {x = 0} ⊂ π−1(0), where D̃poles is given by an equation

of the form t2 = h(x). The statement results at once.

Now assume that all the irreducible components of Dpoles are smooth.

By construction the order of each irreducible component is one. Therefore

all we need to do is to check there cannot be more than two such components.

Again the order of the holonomy associated to the leaf π−1(0) \ {p1, . . . , pr}
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is 3 or larger. Thus each leaf intersects each irreducible component of Dpoles

in no less than three points. Thus s ≤ 2. The lemma is proved. �

Again we define εi = (ordπ−1(0) (X̃))mi − nidi and note that

ordπ−1(0) (X̃) = ordπ−1(0) (X̃ho). According to Lemma (5.3) one has εi ∈
{−2,−1, 0, 1, 2}.

Let us first deal with the case in which the divisor of zeros/poles of X

contains singular components.

Lemma 6.10. Suppose that the divisor of poles of X has a singular

component y2 = x2h. Then X has one of the forms indicated in item r.a.0.

Proof. As already seen the order of the holonomy of

π−1(0) \ {p1, . . . , pr} is at least 3 and at most 4. If this order is 3 the

statement is immediate. In the second case, the least common multiple of

the ni’s is 4. The Index Formula (9) then implies the statement. �

We can now suppose that the irreducible components of the pole divisor

of X are smooth. Given the normal form (13) of X̃, Equation (14) becomes

r∑
i=1

(1− εi/ni) = 2 + s(21)

as follows, for instance, from employing Proposition (6.3).

The case s = 0 was already discussed and is a particular case of Theo-

rem (5.1). The case s = 2 implies that the holonomy of π−1(0)\{p1, . . . , pr}
with respect to F̃ho must have order 3 or 4. This again leads to the forms

indicated in r.a.0.

Proof of Proposition (6.6). Clearly we just need to deal with s =

1. At this point we can suppose without loss of generality that the divisor of

zeros of X is a radial line through (0, 0) ∈ C2 and, in fact, we now substitute

X by Xho.

The holonomy of π−1(0)\{p1, . . . , pr} can have order at most equal to 8

which means that the minimum common multiple of the ni’s is not larger

than 8.
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Other than Formula (21), we also have the following relations:

e(Lho) = (2− r)k +
r∑

i=1

g.c.d.(ki, k) and e(Lho) = 4− s .(22)

First let us suppose that r ≥ 4. From (22), it follows that e(Lho) ≤ (3−r)k.
Since s ≤ 8, we have

−4 ≤ 4− s ≤ (3− r)k

so that r = 4 and k ≤ 4. It is easy to check that the only possibility is

k = 4; m1 = m2 = m3 = m4 = 1 and n1 = n2 = n3 = n4 = 4. In addition,

we must have ε1 = ε2 = ε3 = 2 and ε4 = −2 and this leads to form r.d.1.

Now we can assume that r = 3 so that Equation (21) becomes∑3
i=1 εi/ni = 0. In the present setting we can also write s = s1 + s2 + s3 +k

(cf. Formulas (22)). Again we let n1 = min{n1, n2, n3}.
• Suppose that n1 = 2 and ε1 = −2. The leaf Lho has a ramification point

at infinity corresponding to the direction of {x = 0}. At this point the

corresponding time-form has a pole of order 3 so that it has to be unique

(i.e. there must exist a single brach of Lho passing through this point). In

other words, the greatest common divisor between k1 and k1 +k2 +k3 = 2k1

must be 1 what is obviously impossible. Now let us suppose that ε1 = 2.

Formula (21) provides
ε2
n2

+
ε3
n3

= −1 .

The solutions are ε2 = ε3 = −2 and n2 = n3 = 4 or ε2 = ε3 = −2 and

n2 = 3, n3 = 6 (cf. also the relations in (12)). These solutions nonetheless

cannot be realized since each direction with εi = −2 produces a point at

which the time-forms induced by Xho has a cubic pole.

Suppose now that ε1 = −1 (again ε1 = 1 is analogous). In this case

Formulas (22) provide

4− s2 − s3 =
3∑

i=1

g.c.d. (ki, k) = k/2 + g.c.d. (k2, k) + g.c.d. (k3, k) .

It results that k ≤ 4. Actually, one easily checks that the only possibility is

k = 4 with n1 = 2, n2 = n3 = 4. In addition, we must have ε2 = ε3 = 1 so

that the model in question is given by form r.a.4.
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• Next we suppose that n1 = 3. Since the minimum common multiple

among the ni’s is at most 8, it follows that n2, n3 ∈ {3, 6}. Hence the

equation
∑3

i=1 mi/ni = 1 (cf. 12) admits only two solutions. The first

being n1 = n2 = n3 = 3 so that, in addition, we must have
∑3

i=1 εi = 0 and

s1 + s2 + s3 = 1. Indeed, the equation s1 + s2 + s3 = 1 is a consequence

of (22). This means that the normal form in question is r.a.2. The second

solution is m1 = 2,m2 = m3 = 1 and n2 = n3 = 6. The reader will easily

check that this case corresponds to form r.a.3.

• Now assume n1 = 4. Just as before n2, n3 ∈ {4, 8}. This time the equation∑3
i=1 mi/ni = 1 admits a single solution namely m1 = m3 = 1,m2 = 3 and

n2 = n3 = 8. The corresponding form is r.a.5.

• Now consider that n1 ≥ 5. Again the fact that the minimum common

multiple of the ni’s is at most 8 ensures that n1 = n2 = n3. When n1 =

6 or 8, the condition
∑3

i=1 mi/ni = 1 (equivalently
∑3

i=1 mi = 4 or 6)

immediately provides a contradiction excluding these possibilities (recall

that mi, ni do not have non-trivial common factors).

If n1 = 5 (resp. 7), we have
∑3

i=1 mi/ni = 1,
∑3

i=1 εi = 0 and

s1 + s2 + s3 = 1 .

The solutions are those indicated in the normal forms r.e.1 and r.f.1. This

completes the proof of the proposition. �

Finally we are going to provide the proof of Theorem B. As mentioned

this proof is now very similar to the proof of Theorem A so that we only

summarize its main steps.

Let M
P−→ S and F be as in the statement of this theorem. We con-

sider the 2-determined vector field X provided by Proposition (4.6) which

is associated to M,P and F . Recall that X satisfies conditions A, B, C,

D and F. Next we consider a singularity p of F in which the eigenvalues of

F are zero. To prove that F (or X) has one of the indicated normal forms

on a neighborhood of p, we need to employ the same recurrence procedure

used in the proof of Theorem A. First we consider a resolution tree (18) for

F at p. Next we observe that a straightforward adaptation of the proof of

Proposition (6.1) yields the following:

Lemma 6.11. Assume that X is as above and consider its associated
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foliation F . Given a singularity q of F and a separatrix S of F at p, the

index Indq(F ,S) is strictly negative.

Proof of Theorem B. Let X and F be as above. Using the same

notations of the proof of Theorem A, we consider an appropriate blow-up

F̃(n−1) of F . The foliation F̃(n−1) has a singularity p(n−1) such that, on a

neighborhood of p(n−1), F̃(n−1) possesses one of the normal forms listed in

Proposition (6.6). If F̃(n−1) is different from F , then the singularity p(n−1)

must belong to a rational curve D(n−1) of self-intersection −1 and invariant

by F̃(n−1).

Before continuing we observe that the leaves of our foliations cannot have

more than 8 ramification points. Some of these points however, being at

infinity, may disappear after implosion (i.e. once we take the homogeneous

model of a singularity obtained by implosion, this new model may have less

ramification points at infinity than the original model before implosion).

This leads us to talk about crossings, these are ramification points obtained

by intersection of leaves with non-invariant components of the divisor of

poles of the corresponding vector field (which are in the affine part of C2

and therefore are, in fact, present in any neighborhood of the origin). Clearly

crossings points are “stable” under blow-down so that their number cannot

be reduced in the above mentioned procedure.

We now consider the normal form of F̃(n−1) around p(n−1). If all the

separatrizes of F̃(n−1) at p(n−1) have indices strictly smaller than −1, then

such singularity cannot belong to a rational curve of self-intersection −1 in

view of Lemma (6.11). It follows that the singularity (p(n−1)) in question is

terminal in the sense that F̃(n−1) = F . Besides, if F̃(n−1) has a separatrix

of index −1 (and no separatrix with index larger than −1), then p(n−1)

must be the unique singularity of F̃(n−1) over a −1-curve. Thus the next

step in our recurrence procedure must be the collapsing of the separatrix

in question producing a new model of foliation (F̃(n−2)). Proceeding in the

way described above, our “first generation” of singularities having at least

one separatrix of index larger than −1 consists of the following foliations:

c.2 x8y3(x − y) where {x = 0} has index −1/2 and ord asy(0,0)(X, {x =

0}) = 2.

b.1 x4y3(x − y) → y3(x2 − y) where {y = 0} has index −2/3 and

ord asy(0,0)(X, {y = 0}) = 4/3.
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b.2

a- x7y6(x − y) → y6(x2 − y) where {y = 0} has index −1/3 and

ord asy(0,0)(X, {y = 0}) = 4/3.

b- x7y2(x − y)5 → y2(x2 − y)5 where {x2 − y = 0} has index −4/5 and

ord asy(0,0)(X, {x2 − y = 0}) = 3/5.

c- x5y4(x − y) → y4(x2 − y) where {y = 0} has index −1/2 and

ord asy(0,0)(X, {y = 0}) = 3/2.

b.3 x6y5(x − y) → y5(x2 − y) where {y = 0} has index −2/5 and

ord asy(0,0)(X, {y = 0}) = 7/5.

r.e.1 (k1 = 3, k2 = k3 = 1) x3y(x− y) where {x = 0} has index −2/3 and

ord asy(0,0)(X, {x = 0})1 + ε/5, ε ∈ {−2,−1, 1, 2}.
r.f.1

a- x5y(x−y) where {x = 0} has index −2/5 and ord asy(0,0)(X, {x = 0}) =

1 + ε/5, ε ∈ {−2,−1, 1, 2}.

b- x4y2(x−y) where {x = 0} has index −3/4 and ord asy(0,0)(X, {x = 0}) =

1 + ε/5, ε ∈ {−2,−1, 1, 2}.

Note that the case c.2 has zero crossings, whereas the cases b.1, b.2

and b.3 have exactly one crossing. Finally the case r.e.1 has five crossings

and the cases r.f.1 have seven crossings.

Besides the Index Formula (9), the sum of the asymptotic orders must

be an integer. If this integer is different from 2, then this difference is com-

pensated by the intersection of the exceptional curve under consideration

with non-invariant components of the divisor of poles of X. Such possibil-

ity produces more crossings for the singularity obtained by collapsing the

exceptional curve.

A singularity in r.f.1 can only be combined with singularities having

at most 1 crossing (since the number of crossings cannot exceeds 8). From

the list above and given the formulas for the indices and asymptotic orders,

it follows that the only possibility is to combine a r.f.1 singularity with a

linear one. In fact, note that this claim essentially amounts to eliminating

c.2, c.3, b.3 and b.2a which can easily be done by using the mentioned

formulas. In the case of x5y(x−y), the eigenvalues of this linear singularity
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are −3, 5. This yields the singularity x3y(x2 − y) which has a separatrix of

index −2/3 and asymptotic order equal to 1 + ε/3. Similarly, in the case

x4y2(x − y), the Index Formula (9) immediately guarantees that the only

possibility is to combine it with a linear singularity of eigenvalues −1, 4.

The resulting singularity is x4y2(x2 − y) which is terminal.

Continuing the formation of our “second generation” of singularities, let

us consider the case r.e.1 x3y(x− y). According to the Index Formula, this

might combine with b.2a. However the formula for the asymptotic order

rules this combination out. Hence x3y(x− y) can only be combined with a

linear singularity of eigenvalues −1, 3. However the asymptotic orders are

1 +
ε1
5

and 1 +
ε2
3

with ε1, ε2 ∈ {−2,−1, 1, 2}

and therefore do not add up to an integer. In other words, this case cannot

be produced so that the singularity x3y(x− y) is, in fact, terminal.

Consider now the case c.2. The same analysis shows that c.2 can only

be combined with a linear singularity of eigenvalues −1, 2. This gives form

c.7.

As to the family b, the case b.1 can be combined with a linear singu-

larity of eigenvalues −1, 3 to produce the terminal singularity y(x2 − y3).

Analogously the case b.2b yields the terminal singularity y(x2 − y3)2. The

form b.2c yields y2(x2 − y3) which has a smooth separatrix of index −1.

The collapsing of this separatrix in turn leads to the terminal x2 − y5. Fi-

nally the cases b.2a (y6(x2 − y)) and b3 (y5(x2 − y)) lead respectively to

the models y4(x2 − y3) and y3(x2 − y3).

Summarizing the second generation of non-terminal singularities is con-

stituted by the models:

• x3y(x2 − y) (from r.f.1).

• c.7 (from c.2).

• y4(x2 − y3) (from b.2a).

• y3(x2 − y3) (from b.3).

The next step is to repeat the analysis by considering singularities from

both first and second generation. The argument is as before. The Index

Formula allows the case x3y(x2 − y) to be combined with b.2a. Note that

these two singularities brought together have already 8 crossings. On the

other hand, the sum of the corresponding asymptotic orders forces ε = −1
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(since no new crossing can be produced) and we arrive to the singularity

x2(y3 − x)2(x3 − y2) which is terminal. Furthermore x3y(x2 − y) can also

be combined with a linear singularity of eigenvalues −1, 3. The resulting

singularity is xy(x3 − y) which is also terminal.

The case c.7 is easy since separatrizes have indices −1. This leads

successively to c.10 and to the terminal c.13.

Let us now consider y4(x2 − y3) that has a smooth separatrix of index

−1/2. First we notice that it can be combined with a linear singularity

to produce y2(x2 − y5) (having a smooth separatrix of index −1) and thus

leading to the terminal singularity x2 − y7. Other than a linear singularity,

the Index Formula allows us to combine y4(x2 − y3) and b.2c. This pro-

duces the singularity (x2 − y5)(y2 − x3) which is obviously terminal since

all separatrizes are singular.

Finally we consider the case y3(x2 − y3) whose smooth separatrix has

index −2/3. Combined with a linear singularity of eigenvalues −1, 3, this

leads to the terminal singularity y(x2−y5). According to the Index Formula

the only other combination possible is with b.2a. This produces (x3 −
y2)(x2−y5)2 which is obviously terminal for all separatrizes are singular. To

finish the proof of the theorem it is now sufficient to eliminate the redundant

cases. �

Proof of Corollary C. It suffices to repeat the preceding argu-

ment restricting the discussion to foliations associated to genus 2 fibrations.

The leaves of these foliations can have at most 6 ramification points. One

then obtains the models indicated in the statement. �
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