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Invariants of Plane Curves and Polyak-Viro Type

Formulas for Vassiliev Invariants

By Tomoshiro Ochiai

Abstract. The Kontsevich integral is decomposed into two parts;
one part depends on overpass or underpass of the crossing of a knot
while the other depends only on the plane curve obtained by projecting
the knot to the plane. In this paper, firstly, we express the latter part
in terms of Arnold’s invariants of plane curves J+, J− and St up to
degree three. Secondly, we show that the Gauss diagram formulas for
the Kontsevich integral agree with other types of formulas for Vassiliev
invariants which are introduced by M. Polyak and O. Viro.

1. Introduction

V.A Vassiliev [18] introduced an important concept of Vassiliev invari-

ants for knots. It is recognized that the coefficients of the perturbative

series expansion of many known knot invariants, e.g., the Conway, Jones

and Homfly polynomial, are Vassiliev invariants. One major step in the

study of Vassiliev invariants was undertaken by M. Kontsevich, when he

introduced the Kontsevich integral which expresses Vassiliev invariants of

knots as iterated integrals [8].

M. Polyak and O. Viro introduced the notions of Gauss diagrams, as well

as the idea of Gauss diagram formulas for Vassiliev invariants and various

notations [17]. They also provided Gauss diagram formulas for invariants

of degree 2, 3 and 4. Their pioneer work enables us to actually compute

Vassiliev invariants in a combinatorial way up to degree four [13, 17]. M.

Polyak [16] intensively studied the relation between Gauss diagrams and

invariants of plane curves, pointing out the close relation between a Vassiliev

invariant of degree two and invariants of plane curves.

On the physical side, E. Witten [19] established the connection between

the three-dimensional Chern-Simons gauge theory and knot theory. The
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Chern-Simons gauge theory is a three dimensional model based on the func-

tional of a connection A:

Sk(A) =
k

4π

∫
R3

tr(A ∧ dA+ i
2

3
A ∧A ∧A)(1.1)

where a connection A is su(N)-valued one form on R3 and “tr” means the

trace. The important operator in the Chern-Simons gauge theory is given

by the trace over the holonomy around a knot K

tr(P exp i

∮
K
A),(1.2)

which is called the Wilson loop operator. E. Witten showed that the expec-

tation value of the Wilson loop operator in the Chern-Simons gauge theory

∫
[DA] eiSk(A) tr(P exp i

∮
K
A)(1.3)

gives a knot invariant, and it satisfies the HOMFLY skein relation. It is

also known that the expectation value of the Wilson loop operator in the

Chern-Simons gauge theory is equivalent to the Kontsevich integral coupled

with a suitable weight system, i.e.,

WSU(N) ◦ Ẑ(L) =

∫
[DA] eiSk(A) tr(P exp i

∮
K
A),(1.4)

whereWSU(N) is the weight system defined by Lie group SU(N). Therefore,

the coefficients of the pertubetive series expansion of the expectation value

of the Wilson loop operator in the Chern-Simons gauge theory are Vassiliev

invariants.

Since then the Chern-Simons gauge theory has been studied from a

variety of points of view. A.C. Hirshfeld, U. Sassenberg, T. Kloker [4, 5, 6]

gave combinatorial expressions for Vassiliev invariants of links up to degree

three based on the study of the configuration space integral of the Chern-

Simons gauge theory. In 1998, J.M.F. Labastida and E. Perez [10] obtained

combinatorial expressions for the Vassiliev invariant of knots up to degree

four based on the Chern-Simons gauge theory in the temporal gauge.

Motivated by the physical side [4, 5, 6, 9, 10], we gave the Gauss diagram

formulas for the Kontsevich integral (GDK formulas) of links up to degree
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four in [13]. In this paper, we discuss the relation between our GDK formulas

and two other results, namely, invariants of plane curves and the Polyak-

Viro type formulas.

First, we discuss the relation between the GDK formulas and invariants

of plane curves introduced by V. I. Arnold [1]. The GDK formulas consist of

two parts; one part depends on overpass or underpass of the crossings of knot

diagrams while the other does not. Therefore, it is natural to ask whether

the latter part can be expressed by invariants of plane curves introduced

by V. I. Arnold [1]. In this paper, we answer this question affirmatively up

to degree three and indeed express the latter part in terms of invariants of

plane curves.(Theorem 1)

Secondly, we discuss the relation between the GDK formulas and the

Polyak-Viro type formulas [17]. The difference between the GDK formulas

and the Polyak-Viro type formulas is as follows. First, the GDK formulas

use unoriented Gauss diagrams, while the Polyak-Viro type formulas use

oriented Gauss diagrams. Secondly, the GDK formulas use α(K) and the

concept of splitting the crossing, while the Polyak-Viro type formulas do

not. It is necessary to clarify the relationship between the GDK formulas

and the Polyak-Viro type formulas. So our goal is to derive the Polyak-

Viro type formulas of knots up to degree three from the GDK formulas.

(Theorems 2, 3)

We also give some supplementary explanations for the GDK formulas

which we did not present in [13].

Acknowledgements. The author would like to express his hearty thanks

to Professor T. Kohno for suggesting the problem and for his advice and

constant encouragement.

2. The Gauss Diagram Formulas for the Kontsevich Integral

In this section, we review the Gauss diagram formulas for the Kontsevich

integral (GDK formulas) as in [13, 17]. We limit our consideration up to

degree three.

2.1. The Kontsevich integral

A chord diagram is n-oriented circles ∪ni=1S
1
i together with finite chords

whose endpoints are marked on ∪ni=1S
1
i . By convention, we set the orienta-
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tion of ∪ni=1S
1
i counterclockwise.

Let L be an embedding of n-oriented circles into R
3 = C×R, where C is

parameterized by z and R is parameterized by t. Let Â be the quotient of

the linear span of chord diagrams by the four term relation and the framing

independence relation. We define the Kontsevich integral on Â as in [3]

Z(L) =
∞∑
m=0

1

(iπ)m

∫
tmax>t1>···>tm>tmin

(2.1)

×
∑

applicable pairings
P={(zi,z′i)}

(−1)�P↓Dp

m∧
i=1

dzi − dz′i
zi − z′i

∈ Â

We have used a slightly different normalization from [3, 8].

It is known that the Kontsevich integral is invariant under only horizon-

tal deformation of L. Therefore we define the modified Kontsevich integral

by

Ẑ(L) = Z(L)Z(U0)
−m(L),(2.2)

where m(L) denotes the number of maximal points of link L and U0 is a

knot given in Fig. 1. It is known that Ẑ(L) is invariant under arbitrary

deformations of the link L.

Fig. 1. U0

Let L = {K1, · · · ,Kn} be an arbitrary n-component link where Ki is its

component. The Kontsevich integral is factorized as follows:

Ẑ(L) = exp
{

(−1

2
)

n∑
i=1

v2(Ki) + (−1

2
)2

n∑
i=1

v3.1(Ki) + · · ·
}

(2.3)

×
{

+
∑

1≤i<j≤n

1

2
(v1({Ki,Kj}))2

+
∑

1≤i<j≤n

1

3!
(v1({Ki,Kj}))3
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+ (−1

2
)

∑
1≤i<j≤n

v3.2({Ki,Kj})

+
∑

1≤i<j<k≤n
v1({Ki,Kj})v1({Kj ,Kk})v1({Kk,Ki}) + · · ·

}
.

If we consider one-component knot K instead of link L, the above Kontse-

vich integral is reduced to the following simple form:

Ẑ(K) = exp
{

(−1

2
) v2(K) + (−1

2
)2 v3.1(K) + · · ·

}
.(2.4)

We give some comments on v1, v2, v3.1 and v3.2. v1 is twice the linking

number, which is a Vassiliev invariant of degree one for two-component links.

v2 is a Vassiliev invariant of degree two for one-component knots. v3.1 and

v3.2 are Vassiliev invariants of degree three for one-component knots and for

two-component links respectively. We shall recall the GDK formulas for v1,

v2, v3.1 and v3.2 in the following subsections.

2.2. The Gauss diagram formulas for the Kontsevich integral

In this subsection, we introduce a concept of Gauss diagram of links and

define a pairing of Gauss diagrams, which has nice properties for acutual

computations. The GDK formulas for v1, v2, v3.1 and v3.2 are expressed by

this pairing.

Let X = ∪ni=1S
1
i be n-oriented circles and �y : X → R

2 an immersion. An

n-component oriented link diagram L is its image L = {K1, · · · ,Kn} (Ki =

�y(S1
i )) together with the information of overpass or underpass at each cross-

ing. We assign a sign ± to each crossing as the information of overpass or

underpass.

Let D be a chord diagram and C(D) the set of all chords of D. By an

integer-labelling of D, we mean a map κ : C(D) → Z. An Integer-Labeled

Chord Diagram (IL Diagram) is a pair {D,κ} of a chord diagram D together

with an integer-labelling κ.

We shall define a Gauss Diagram and ML Diagram as special cases of

IL Diagrams.

An IL diagram {G, ε} is called a Gauss Diagram if ε(c) = ±1 (c ∈ C(G)).

An integer-labelling ε of the Gauss diagram is called a sign-labelling.

Let {L : a1, · · · , am} be a link diagram L where we select some distinct

crossings a1, · · · , am out of all crossings of L. Define a Gauss diagram P ({L :
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a1, · · · , am}) as follows. For each ai, set �y−1(ai) = {s(ai), s′(ai)} as the

inverse image of ai. For each crossing ai, we join s(ai), s
′(ai) by a chord on

X and label this chord by the sign of ai (i = 1, · · · ,m). We define a Gauss

diagram P ({L : a1, · · · , am}) to be the result.

Specially, if {a1, · · · , am} are all the crossings of L (this means we select

all the crossings of L) , we write G(L) = P ({L : a1, · · · , am}) and call it the

Gauss diagram of L.

An IL diagram {D,m} is called a Multiplicity-Labeled Diagram (ML

Diagram) if m(c) = 1, 2 (c ∈ C(D)). In figures, we draw a chord c with

m(c) = 1 by a thin line and a chord c with m(c) = 2 by a thin line with a

letter “2” as follows:

m(c)=1, 2 m(c)=2.

We give two examples of ML diagrams:

2

,

2

We will define a pairing of Gauss diagrams and ML diagrams, by which

the Vassiliev invariants v1, v2, v3.1 and v3.2 are expressed.

Let Ĝ = {G, ε} be a Gauss diagram and D̂ = {D,m} a ML diagram.

Let ψ : D → G be an embedding of D into G which maps the circles

of D to those of G preserving the orientations and each chord of D to a

chord of G. Let C(G) be the set of all chords of G. For ψ, define a map

κψ : C(G)→ {0, 1, 2} by

κψ(c) =

{
m(ψ−1(c)) if c ∈ ψ(D)

0 if c ∈/ ψ(D)

Two embedding ψ,ϕ are said to be equal if κψ = κϕ. The equivalence class

of an embedding ψ is denoted by [ψ].

Let C(D) be the set of all chords of D. Define E([ψ]) by

E([ψ]) =
∏

c∈C(D)

{ε(ψ(c))}m(c),

where the product is taken over all chords of D. Notice that this definition

is well defined.
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Define a pairing of Gauss diagrams and ML diagrams 〈Ĝ, D̂〉χ by

〈Ĝ, D̂〉χ =
∑
[ψ]

E([ψ]),

where the sum is taken over all the distinct equivalence classes [ψ].

We will introduce some concepts for the GDK formulas.

First, we will introduce a concept of splitting the crossings of a link

diagram. Let {L : a1, · · · , am} be a link diagram L where we select some

distinct crossings a1, · · · , am out of all crossings of L. By a splitting infor-

mation, we mean a finite sequence [s1, · · · , sm] (si = α, β, γ), where α, β, γ

are formal letters. For example, [α, β, α, γ] (m = 4).

We shall define a link diagram Q({L : a1, · · · , am}, [s1, · · · , sm]) as fol-

lows. For 1 ≤ i ≤ m, we replace each crossing ai by Fig. 2 or Fig. 3, and

give any orientation to the resulting diagram. Define Q({L : a1, · · · , am},
[s1, · · · , sm]) to be the resulting oriented link diagram.

ai →




if si = α

if si = β

if si = γ

Fig. 2. Replacing a crossing of overpass

Remark 1. The calculation in the sequel does not depend on the ori-

entation we give to the resulting diagram.

Remark 2. Notice that we do not split ai, if si = γ. But we introduce

it for convenience. We give a trivial example:

Q({K : a}, [γ]) = K.
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ai →




if si = α

if si = β

if si = γ

Fig. 3. Replacing a crossing of underpass

In this case, we do nothing at all at ai.

Remark 3. In this paper, we do not consider the case si = β, although

it is needed for the GDK formulas at degree four [13].

Let L = {K1,K2, · · · ,Kn} be an n-component link diagram. Define

S(L) to be the formal sum of each component Ki

S(L) =
n∑
i=1

Ki.

Define α(L) to be a trivial link diagram of n-separated trivial knots

which is obtained by switching the sign of the crossings of L properly. There

are several ways to obtain α(L) from L. So α(L) cannot be uniquely de-

termined from L. But the calculation in the sequel does not depend on the

way we choose.

We give the Gauss diagram formulas for v1, v2, v3.1, v3.2, which have a

nice property for acutual computations.

Formula 1. (GDK formulas) Let K be an one-component knot dia-

gram and {K1,K2} a two-component link diagram. The Vassiliev invariants

v1, v2, v3.1, v3.2 have the explicit combinatorial expressions as follows:

• v1({K1,K2}) =
〈
G({K1,K2}),

〉
χ
,(2.5)
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• v2(K) = −1

6
+

〈
G(K),

〉
χ
−

〈
G(α(K)),

〉
χ
,(2.6)

• v3.1(K) =
〈
G(K), 2 + +

1

2
2

〉
χ
− I3.1(K),(2.7)

• v3.2({K1,K2}) =
〈
G({K1,K2}),(2.8)

+ +
1

3

〉
χ

−I3.2({K1,K2}).

Set R = G ◦ α ◦ S ◦Q. Here I3.1, I3.2 are given as follows:

• I3.1(K) =
∑
a

〈
P ({K : a}),

〉
χ

〈
R({K : a}, [γ]− [α]),

〉
χ
,(2.9)

• I3.2({K1,K2}) =
∑
a

〈
(P ({K1,K2 : a}),

〉
χ

(2.10)

×
〈
R({K1,K2 : a}, [α]− [γ]),

〉
χ
,

where the sum
∑
a

is taken over all the crossings. �

Remark. The GDK formulas (2.6), (2.7) and (2.8) are expressed by

α(L). Since the concept of α(L) depends only on its shadow of L, we

expect that functions of α(L) may be expressed by Arnold’s invariants of

plane curves. This expectation is true for the GDK formulas up to degree

three. In the next section, we will rewrite the GDK formulas (2.6), (2.7)

and (2.8) in terms of J+, J− and St without using α(L).

Remark. These formulas were also obtained by using quantum field

theoretical methods. A.C. Hirshfeld, U. Sassenberg, T. Kloker [4, 5, 6] gave

the combinatorial expression for Vassiliev invariants of links up to degree

three based on the study of the configuration space integral of the Chern-

Simons gauge theory. In 1998, J.M.F. Labastida and E. Perez [10] obtained

the combinatorial expression for the Vassiliev invariant of knots up to degree

four based on the Chern-Simons gauge theory in the temporal gauge. The

GDK formulas (2.6), (2.7) and (2.8) coincide with those obtained by these

methods in [4, 10], [5, 10] and [6] respectively.
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2.3. Another expression for the Gauss diagram formulas

Let us transform the GDK formulas for v3.1, v3.2 into more convenient

forms to compute. Consider R = G ◦ α ◦ S ◦ Q in (2.9) and (2.10) more

carefully.

Definition 2.1. Define two new knot diagrams K
[1]
+ ,K

[1]
− by

{K [1]
+ ,K

[1]
− } = Q({K : a}, [α]).(2.11)

If a crossing a belongs to both K1 and K2, define K [2] by

K [2] = Q({K1,K2 : a}, [α]).(2.12)

See Fig. 4 and Fig. 5.

Corollary 1. We denote the sign of the crossing a by sign(a). Then,

the GDK formulas in Formula 1 are transformed into the following forms:

I3.1(K) =
∑
a

sign(a)
〈
G(α(K))−

∑
s=±

G(α(K [1]
s )),

〉
χ
,(2.13)

I3.2({K1,K2}) =
∑
a

sign(a)
〈
G(α(K [2]))−

∑
i=1,2

G(α(Ki)),
〉
χ
,(2.14)

where the first sum is taken over all crossings of knot diagram K and the

second sum is taken over all crossings where one branch comes from K1 and

the other branch comes from K2.

Proof. We insert the following obvious relations

R({K : a}, [γ]− [α]) = G(α(K))−
∑
s=±

G(α(K [1]
s )),(2.15)

R({K1,K2 : a}, [α]− [γ]) = G(α(K [2]))−
∑
i=1,2

G(α(Ki))(2.16)

into I3.1 and I3.2 respectively.
〈
P ({K : a1}),

〉
χ

and
〈
(P ({K1,K2 :

a2}),
〉
χ

in I3.1 and I3.2 are equal to the sign of the crossing a1 and

a2 respectively, if a2 belongs to both K1 and K2. This proves Corollary 1. �
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a

{K : a}

a

Q({K : a}, [α])

K
[1]
+

K
[1]
−

Fig. 4. Define K
[1]
+ and K

[1]
− by {K [1]

+ ,K
[1]
− } ≡ Q({K : a}, [α]).

{K1,K2 : a} K [2] ≡ Q({K1,K2 : a}, [α])

K1

K2

a a

Fig. 5. Define a knot diagram K [2] by K [2] ≡ Q({K1,K2 : a}, [α]).

3. The Gauss Diagram Formulas for the Kontsevich Integral and

Invariants of Plane Curves

In this section, we discuss the relation between the GDK formulas and

invariants of plane curves introduced by V. I. Arnold [1].

3.1. Invariants of plane curves

In this subsection, we review the invariants of plane curves as in [1, 2,

16].

We call an oriented immersed curve a plane curve. We change plane

curves as shown in Fig.6, which are called perestroikas. There are three

types of perestroika, direct self-tangency perestroika, inverse self-tangency

perestroika and triple point perestroika.

We will give some definitions for the triple point perestroika. A vanishing

triangle is the triangle formed by the three branches of a curve just before
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1. direct self-tangency ←→

2. inverse self-tangency ←→

3. triple point ←→

Fig. 6. Perestroikas

and just after the triple point perestroika in Fig. 6. A newborn (resp.

dying) vanishing triangle is a vanishing triangle exsisting just after (resp.

just before) the triple point perestroika.

We will define the sign of a vanishing triangle as follows. The orientation

of the plane curve defines a cyclic ordering of the edges of the vanishing

triangle. Hence the edges of the triangle acquire orientations induced by this

ordering. But each edge also has its own direction, which may or may not

coincide with the orientation defined by the ordering. For each vanishing

triangle we define q by the number of the edge for which the orientation

defined by the ordering coincides with its direction (see Fig. 7). The sign

of vanishing triangle is defined to be (−1)q.

A self-tangency perestroika is called positive (resp. negative) if it in-

creases the number of double points by 2 (resp. -2). A triple point pere-

stroika is called positive (resp. negative) if the sign of the newborn vanishing

triangle is positive (resp. negative).

It is known that invariants J+, J− and St of plane curves are character-

ized by the following properties.

(1) J+ does not change under inverse self-tangency or triple-point

perestoikas but increases by 2 (resp. -2) under a positive (resp. negative)

direct self-tangency perestroika.

(2) J− does not change under direct self-tangency or triple-point pere-
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12

3

Fig. 7. Sign of vanishing triangle (q = 1)

stroikas but decreases by 2 (resp. -2) under a positive (resp. negative)

inverse self-tangency perestroika.

(3) St does not change under self-tangency perestroikas but increases by

1 (resp. -1) under a positive (resp. negative) triple point perestroika.

(4) Set the initial values for the curves Ki (i = 0, 1, 2, · · ·) shown in Fig.8

as follows:

J+(K0) = 0, J+(Ki+1) = −2i, (i = 0, 1, 2, · · ·)(3.1)

J−(K0) = −1, J−(Ki+1) = −3i, (i = 0, 1, 2, · · ·)(3.2)

St(K0) = 0, St(Ki+1) = i, (i = 0, 1, 2, · · ·)(3.3)

K0 K1 K2 K3

Fig. 8. Ki, (i = 0, 1, 2, · · ·)

3.2. The relation to invariants of plane curves

Let K be a knot diagram. Define β(K) to be a plane curve obtained

from K by ignoring its signs. For convenience, set

F1(α(K)) =
〈
G(α(K)),

〉
χ

(3.4)

F2(β(K)) = −(St+
1

2
J+)(β(K)).(3.5)
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Let P2A, P2B, P3 be the operation of the direct self-tangency perestroika,

inverse self-tangency perestroika and triple point perestroika respectively.

Let R2A, R2B, R3 be the operation of the Reidemeister move acting on knot

diagrams naturally corresponding to P2A, P2B, P3 respectively. Therefore,

it is clear that

β(Rj(K)) = Pj(β(K)) (j = 2A, 2B, 3).(3.6)

Lemma 3.1. If F1(K) = F2(β(K)), then F1(Rj(K)) = F2(Pj(β(K)))

(j = 2A, 2B, 3).

Proof. It is enough to show that F1 and F2 are changed by the same

amount under the Reidemeister moves Rj and the operation of perestroikas

Pj
There are three cases (j = 2A, 2B, 3). We consider each case from our

definitions of the pairing of Gauss diagrams and perestroikas of plane curves.

(1) (j = 2A) F1 and F2 decrease by 1 under the Reidemeister move R2A

and direct self-tangency perestroika P2A respectively.

(2) (j = 2B) F1 and F2 do not change under the Reidemeister move R2B

and inverse self-tangency perestroika P2B respectively.

(3) (j = 3) There are two cases shown in Fig. 9. We shall prove Case

A. We can prove Case B in the same way. Let (ε1, ε2, ε3) be the three

signs of the crossing which consist of the triangle of Reidemeister move R3.

Therefore there are 8 cases for the three signs (ε1, ε2, ε3). Two of them

(ε1, ε2, ε3) = (+,+,+), (−,−,−) are forbidden since the Reidemeister move

R3 is impossible. For the other six cases, F1 and F2 decrease by 1 under

the Reidemeister move R3 and triple point perestroika P3 respectively. �

Lemma 3.2. If F1(K) = F2(β(K)), then F1(Rj(K)) = F2(β(Rj(K)))

(j = 2A, 2B, 3).

Proof. It is clear from Lemma 3.1 and (3.6). �

Lemma 3.3.

F1(α(K)) = F2(β(K)).(3.7)
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Fig. 9. Case A and B

Remark. M. Polyak [16] obtained an identity similar to (3.7) in a

different situation.

Proof. From our definition of α(K), it can be expressed as

α(K) = RjnRjn−1 · · ·Rj1(Ki),(3.8)

where Ki is given by Fig. 8. From our definition of F1 and F2, it is clear

that

F1(Ki) = F2(β(Ki)).(3.9)

From (3.9) and Lemma 3.2, we can prove

F1(RjnRjn−1 · · ·Rj1(Ki)) = F2(β(RjnRjn−1 · · ·Rj1(Ki)))(3.10)

by induction on n. This shows (3.7). �

Theorem 1. Each of the GDK formulas (2.6), (2.7) and (2.8) has

another expression as follows.

• v2(K) = −1

6
+

〈
G(K),

〉
χ

+ St(β(K)) +
1

2
J+(β(K)),(3.11)

• v3.1(K) =
〈
G(K), 2 + +

1

2
2

〉
χ

(3.12)

+
∑
a

sign(a)
{
St(β(K))− St(β(K

[1]
+ ))− St(β(K

[2]
− ))
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+
1

2
J+(β(K))− 1

2
J+(β(K

[1]
+ ))− 1

2
J+(β(K

[1]
− ))

}

• v3.2({K1,K2}) =
〈
G({K1,K2}),(3.13)

+ +
1

3

〉
χ

+
∑
a

sign(a)
{
St(β(K [2]))− St(β(K1))

−St(β(K2)) +
1

2
J+(β(K [2]))

−1

2
J+(β(K1))−

1

2
J+(β(K2))

}
,

where the first sum is taken over all crossings of knot diagram K and the

second sum is taken over all crossings where one branch comes from K1 and

the other branch comes from K2.

Proof. Inserting (3.7) into (2.6), (2.13) and (2.14), we obtain (3.11),

(3.12) and (3.13) respectively. �

4. The Gauss Diagram Formulas for the Kontsevich Integral and

Polyak-Viro Type Formulas

In this section, we discuss the relation between the GDK formulas and

the Polyak-Viro type formulas [17].

4.1. The preparation for Polyak-Viro type formulas

In this subsection, we shall fix notations as in M. Polyak and O. Viro

[17]. This subsection is devoted to the oriented version of the definition

of Subsection 2.2. We use arrows (oriented chords) instead of unoriented

chords.

An oriented Gauss Diagram and oriented ML Diagram are defined as in

Subsection 2.2, but we use arrows (oriented chords) instead of unoriented

chords. See Fig. 10 for examples of oriented ML diagrams.

Let K be a knot diagram. For each crossing a of K, we set �y−1(a) =

{s(a), s′(a)} as the inverse image of a, and join s(a), s′(a) by an arrow

oriented from the lower branch to the upper branch, and label this arrow

by the sign of a. We define an oriented Gauss diagram GA(K) ( A denotes

arrows) to be the result. See Fig. 11.
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,

2

.

Fig. 10. Two examples for oriented ML diagrams

Fig. 11. an oriented Gauss diagram GA(K)

Let ĜA = {GA, ε} and D̂A = {DA,m} (A denotes arrows) be an ori-

ented Gauss diagram and oriented ML diagram respectively. Define a pair-

ing 〈ĜA, D̂A〉χ as in Subsection 2.2, but ψ : DA → GA preserves all the

orientations of arrows.

We shall use also a version which uses base points. Based-oriented Gauss

diagram and Based-oriented ML diagram are obtained from oriented Gauss

diagram and oriented ML diagram respectively by marking a point on the

circles of the diagram. The base point is distinct from the endpoints of

arrows. Define a pairing of an based-oriented Gauss diagram and based-

oriented ML diagram 〈ĜA, D̂A〉χ as in Subsection 2.2, but in this case,

ψ : DA → GA maps the base point of DA to the base point of GA.

4.2. The relation to the Polyak-Viro type formulas

In this subsection, we derive the Polyak-Viro type formulas [17] from

the GDK formulas (2.6), (2.7).

The next lamma is proved in [17], but for the matter of convenience for

the reader we prove it below.
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Lemma 4.1.

〈
GA(K),

〉
χ

=
〈
GA(K),

〉
χ

(4.1)

Proof. Let L be a two-component link diagram. We use the obvious

identity

〈
GA(L),

〉
χ

=
〈
GA(L),

〉
χ
,(4.2)

where we naturally extend the definition of pairng to two-component link

diagrams. Lemma 4.1 is obtained by expanding the following identity:

0 =
∑
c

sign(c)
{〈
G({K+

c ,K
−
c }), −

〉
χ

}
(4.3)

where the sum is taken over all crossings c, and sign(c) denotes the sign of

c. �

Lemma 4.2.

〈
GA(K), + − −(4.4)

+ −3 +
1

2
2 +

1

2

2 〉
χ

= 0

Proof. The proof is similar to that of Lemma 4.1. Lemma 4.2 is

obtained by expanding the following identity:

0 =
∑
c

sign(c)
{〈
G({K+

c ,K
−
c }), −

〉
χ

}2
(4.5)

where the sum is taken over all crossings c. �

Theorem 2. The GDK formula (2.6) has another expression as fol-

lows:

v2 = −1

6
+ 4

〈
GA(K),

〉
χ
,(4.6)
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which is the same as the Polyak-Viro type formula [17].

Proof. We expand unoriented ML diagram into based-oriented ML

diagram as follows:

〈
G(K),

〉
χ

=
〈
GA(K), + + +

〉
χ
.(4.7)

We set α(K) to be a descending diagram which is obtained by switching

all the undercrossings to overcrossings when going along the knot from the

base point. Then we obtain

〈
G(α(K)),

〉
χ

=
〈
GA(α(K)),

〉
χ

(4.8)

=
〈
GA(K), + − −

〉
χ
.

Notice that if the sign of the crossing is changed, the direction of the corre-

sponding arrow is reversed and the sign of coefficient of the based oriented

ML diagram is changed. Inserting (4.7) and (4.8) into (2.6), we obtain

v2(K) = −1

6
+ 2

〈
GA(K), +

〉
χ
.(4.9)

Using Lemma 4.1, we obtain (4.6). �

Theorem 3. The GDK formula (2.7) has another expression as fol-

lows:

v3.1 =
〈
GA(K), 8 +2 +2

〉
,(4.10)

which is the same as the Polyak-Viro type formula [17].

Proof. Using the similar argument to (4.8), (2.9) is transformed into:

I3.1(K) =
〈
GA(K), −3

〉
χ
.(4.11)

Inserting Lemma 4.2 and (4.11) into (2.7), we obtain (4.10). �
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