On the Stability of Homogeneous Vector Bundles

By Indranil BISWAS

Abstract. Let G be a connected semisimple linear algebraic group over an algebraically closed field k and $P \subset G$ a parabolic subgroup without any simple factor. Let V be an irreducible P-module and $E_P(V) = (G \times V)/P$ the associated vector bundle over G/P. We prove that $E_P(V)$ is stable with respect to any polarization on G/P. In [Um] this was proved under the assumption that the characteristic of k is zero and the question was asked whether it remains valid when the characteristic is positive.

1. Introduction

We begin by recalling a result due to Hiroshi Umemura.

Let k be an algebraically closed field. Let G be a connected semisimple linear algebraic group over k and $P \subset G$ a reduced proper parabolic subgroup without any simple factor. The projection $G \longrightarrow G/P$ defines a principal P-bundle over G/P which will be denoted by E_P . Let $\rho : P \longrightarrow \operatorname{GL}(V)$ be an irreducible P-module and

$$\mathbb{V} := E_P(V) = \frac{G \times V}{P}$$

the vector bundle associated to the P-bundle E_P for the P-module V.

The main theorem of [Um] says that the vector bundle \mathbb{V} is stable with respect to any polarization on G/P provided the characteristic of k is zero [Um, page 136, Theorem 2.4].

Umemura asks the question whether the theorem remains valid if the characteristic of k is positive (see the end of the introduction in [Um, page 131]).

The aim here is to show that the above question has an affirmative answer. We prove that the vector bundle \mathbb{V} is stable for any algebraically closed field k (Theorem 2.1).

²⁰⁰⁰ Mathematics Subject Classification. 14L30, 14F05, 14M17. Key words: Homogeneous bundle, parabolic subgroup, stability.

Indranil BISWAS

2. Homogeneous Bundles

Let k an algebraically closed field and G a connected semisimple linear algebraic group over k. Let

 $P \subsetneq G$

be a (reduced) proper parabolic subgroup. We will further assume that P does not contain any simple factor. This means that the intersection of P/Z(G) with any simple factor $G' \subset G/Z(G)$, where Z(G) is the center of G, is a proper parabolic subgroup of G'.

Let

 $R_u(P) \subset P$

be the unipotent radical. So $R_u(P)$ is a connected normal unipotent subgroup and the quotient $P/R_u(P)$, which is called the *Levi quotient*, is reductive (see [Hu, page 125]).

Let

 $\rho: P \longrightarrow \operatorname{GL}(V)$

be a finite dimensional irreducible left P-module. Therefore,

(1)
$$\rho(R_u(P)) = e.$$

Indeed, if $\rho(R_u(P))$ is a nontrivial unipotent subgroup, then $\rho(R_u(P))$ preserves a nontrivial filtration of V. Since $R_u(P)$ is a normal subgroup of P, this filtration is also preserved by $\rho(P)$. But this contradicts the assumption that ρ is irreducible. Therefore, (1) is valid.

As before, let

(2)
$$E_P(V) = \frac{G \times V}{P}$$

be the vector bundle over G/P associated to the principal P-bundle E_P , defined by the projection $G \longrightarrow G/P$, for the P-module V. We recall that the action of any $h \in P$ on $G \times V$ sends any $(g, v) \in G \times V$ to $(gh, \rho(h^{-1})v)$.

For notational convenience the vector bundle $E_P(V)$ defined in (2) will also be denoted by \mathbb{V} .

Fix an ample line bundle ξ on G/P. Note that the left-translation action of G on G/P induces the trivial action of G on Pic(G/P). The *degree* of a coherent sheaf F on G/P is defined to be the cycle class

$$\operatorname{degree}(F) := [c_1(F)c_1(\xi)^{\dim G/P-1}] \in \mathbb{Z}.$$

134

We recall that a torsionfree coherent sheaf E over G/P is called *stable* (respectively, *semistable*) if for any nonzero coherent proper subsheaf $F \subsetneq E$, with E/F torsionfree, the inequality

$$\frac{\operatorname{degree}(F)}{\operatorname{rank}(F)} < \frac{\operatorname{degree}(E)}{\operatorname{rank}(E)}$$

(respectively, degree(F)/rank(F) \leq degree(E)/rank(E)) is valid. Also, E is called *polystable* if it is a direct sum of stable sheaves of same degree/rank quotient (see [Ko, Ch. V, §7]).

THEOREM 2.1. The vector bundle $\mathbb{V} := E_P(V)$ (defined in (2)) is stable with respect to any polarization on G/P.

PROOF. We will first prove that $\mathbb{V} := E_P(V)$ is semistable.

Let $F \subset \mathbb{V}$ be the maximal semistable subsheaf. So F is the first nonzero term in the Harder–Narasimhan filtration of \mathbb{V} (see [Ko, page 174, Theorem 7.15]).

The left-translation action of G on G/P lifts to an action of G on \mathbb{V} . More precisely, construct the diagonal action of G on $G \times V$ using the left-translation action of G on itself and the trivial action of G on V. This action of G on $G \times V$ clearly commutes with the action of P on $G \times V$ in (2). Therefore, we get an action of G on the quotient $\mathbb{V} := E_P(V) = (G \times V)/P$.

Since the Picard group $\operatorname{Pic}(G/P)$ is discrete and G is connected, the induced action of G on $\operatorname{Pic}(G/P)$ is the trivial action. Since the polarization ξ is left invariant by the action of G on G/P, the uniqueness of the Harder–Narasimhan filtration implies that the subsheaf F is left invariant by the action of G on \mathbb{V} . As the action of G on G/P is transitive, this immediately implies that F is a subbundle of the vector bundle \mathbb{V} and the fiber

$$F_{eP} \subset \mathbb{V}_{eP} = E_P(V)_{eP}$$

over the point $eP \in G/P$ is left invariant by the action of the isotropy subgroup $P \subset G$ for eP; here $e \in G$ is the identity element.

Note that the fiber \mathbb{V}_{eP} considered above is canonically identified with V by sending any $v \in V$ to the equivalence class of $(e, v) \in G \times V$ (the equivalence relation is defined by the action of P). Furthermore, this identification $\mathbb{V}_{eP} := E_P(V)_{eP} = V$ takes the action of P on the P-module V to the action of the isotropy subgroup P (of eP) on the fiber \mathbb{V}_{eP} .

Since V is an irreducible P-module, we conclude that

$$F_{eP} = \mathbb{V}_{eP} := E_P(V)_{eP}.$$

Therefore, $F = \mathbb{V}_{eP}$, and hence the vector bundle \mathbb{V} is semistable.

We will next show that the vector bundle \mathbb{V} is polystable.

Let

$$S \subset \mathbb{V}$$

be the *socle* of the vector bundle \mathbb{V} . So S is generated by all polystable subsheaves W of \mathbb{V} with

$$\frac{\operatorname{degree}(W)}{\operatorname{rank}(W)} = \frac{\operatorname{degree}(\mathbb{V})}{\operatorname{rank}(\mathbb{V})}$$

(see [MR, Section 2], [AB, Section 2]). We recall that S is the unique maximal polystable subsheaf of the semistable vector bundle \mathbb{V} with same degree/rank quotient as that of \mathbb{V} , and furthermore, S is left invariant by any automorphism of the vector bundle \mathbb{V} [MR, page 164, Lemma 2.2].

Therefore, repeating the above argument for the semistability of \mathbb{V} we conclude that $S = \mathbb{V}$. Hence the vector bundle \mathbb{V} is polystable. So \mathbb{V} is a direct sum of stable vector bundles.

Therefore, to complete the proof of the theorem it suffices to show that

(3)
$$\dim H^0(G/P, \operatorname{End}(\mathbb{V})) = 1.$$

Let

$$(4) W \subseteq \operatorname{End}(\mathbb{V})$$

be the coherent subsheaf generated by the global sections of $\operatorname{End}(\mathbb{V})$. So W is globally generated.

The action of G on $\text{End}(\mathbb{V})$ induced by the action of G on \mathbb{V} evidently leaves invariant the subsheaf W in (4).

So W is associated to the P-bundle E_P for the left P-module

$$W_{eP} \subset \operatorname{End}(\mathbb{V})_{eP} = \operatorname{End}(V).$$

We will now need a couple of results.

136

LEMMA 2.2. Let V' be a subquotient of the left P-module End(V). Then

$$c_1(E_P(V')) = 0,$$

where $E_P(V') = (G \times V')/P$ is the vector bundle over G/P associated to the principal P-bundle E_P for the P-module V'.

PROOF. To prove the lemma, let $Z \subset L(P)$ be the reduced center. Since V is an irreducible L(P)-module (recall that the unipotent radical $R_u(P)$ acts trivially on an irreducible P-module), the action of Z on V is as scalar multiplications (Schur's lemma). Hence Z acts trivially on End(V). Consequently, the action of Z on V' is trivial.

Note that the quotient L(P)/Z is semisimple; in particular, L(P)/Z does not admit any nontrivial character. Therefore, the line bundle $\bigwedge^{\text{top}} E_P(V')$, which is associated to the *P*-bundle E_P for the left *P*-module $\bigwedge^{\text{top}} V'$, is trivial. Indeed, since *Z* acts trivially on $\bigwedge^{\text{top}} V'$, the *P*-module $\bigwedge^{\text{top}} V'$ is defined by a character of L(P)/Z; hence $\bigwedge^{\text{top}} V'$ is a trivial *P*-module. Therefore, we have $c_1(E_P(V')) = 0$. This completes the proof of the lemma. \Box

PROPOSITION 2.3. Let E be a globally generated vector bundle of rank n over G/P with $c_1(E) = 0$. Then E is isomorphic to the trivial vector bundle of rank n.

PROOF. To prove the proposition, fix a closed point $x \in G/P$. Fix sections

$$s_i \in H^0(G/P, E)$$

 $1 \leq i \leq n$, such that $\{s_i(x)\}_{i=1}^n$ is a basis of the fiber E_x .

Let $\phi_i : \mathcal{O}_{G/P} \longrightarrow E$ be the homomorphism defined by the section s_i using the natural identification $\operatorname{Hom}_{\mathcal{O}_{G/P}}(\mathcal{O}_{G/P}, E) = H^0(G/P, E)$ Now consider the homomorphism of vector bundles

$$\phi := \bigoplus_{i=1}^{n} \phi_i : \mathcal{O}_{G/P}^{\oplus n} \longrightarrow E.$$

Let

(5)
$$\wedge^n \phi \in H^0(G/P, \wedge^n E)$$

be the section defined by ϕ using the fact that $\bigwedge^n \mathcal{O}_{G/P}^{\oplus n} = \mathcal{O}_{G/P}$.

The homomorphism ϕ is an isomorphism over a Zariski open dense subset of G/P containing x. Therefore, $\bigwedge^n \phi$ in (5) is a nonzero section.

Since $c_1(\bigwedge^n E) = c_1(E) = 0$, the nonzero section $\bigwedge^n \phi$ must be nowhere zero. Indeed, the effective divisor over which $\bigwedge^n \phi$ vanishes defines $c_1(\bigwedge^n E)$.

As the section $\bigwedge^n \phi$ vanishes nowhere we conclude that the homomorphism ϕ is an isomorphism over G/P. This completes the proof of the proposition. \Box

Continuing with the proof of the theorem, Lemma 2.2 and Proposition 2.3 together imply that the vector bundle W in (4) is isomorphic to a trivial vector bundle.

Let

$$(6) 0 = U_0 \subset U_1 \subset \cdots \subset U_k := W_{eP}$$

be a filtration of left P-modules such that each subsequent quotient U_i/U_{i-1} , $i \in [1, k]$, is an irreducible P-module. So the filtration (6) defines a filtration of subbundles

(7)
$$0 = F_0 \subset F_1 \subset \cdots \subset F_k := W,$$

where F_i is the vector bundle over G/P associated to the principal P-bundle E_P for the P-module U_i .

Note that, as before, $U_i = (F_i)_{eP}$ by sending any $u \in U_i$ to the equivalence class of $(e, u) \in G \times U_i$. Our aim is to show that each U_i is a trivial P-module.

LEMMA 2.4. For each $i \in [1, k]$, the quotient F_i/F_{i-1} in (7) is a trivial vector bundle.

PROOF. To prove the lemma first consider the vector bundle W/F_i . This vector bundle is associated to the *P*-bundle E_P for the *P*-module U_k/U_i (see (6)). Also, note that W/F_i is globally generated since W is so. Now using Lemma 2.2 and Proposition 2.3 we conclude that W/F_i is a trivial vector bundle.

Since W and W/F_i are both trivial, it follows immediately that the vector bundle F_i is also trivial. Since F_i and F_{i-1} are both trivial, the

138

quotient bundle F_i/F_{i-1} is also trivial. This completes the proof of the lemma. \Box

The assumption that the parabolic subgroup P does not contain any simple factor is used in the proof of the following lemma.

LEMMA 2.5. For each $i \in [1, k]$, the quotient U_i/U_{i-1} in (6) is a trivial P-module.

PROOF. To prove the lemma, first consider the vector bundle F_i/F_{i-1} in (7) which is associated to the principal *P*-bundle E_P for the *P*-module U_i/U_{i-1} in (6). Lemma 2.4 says that F_i/F_{i-1} is a trivial vector bundle. From this it follows that the action of *P* on U_i/U_{i-1} extends to an action of *G* on U_i/U_{i-1} . To prove this, consider the action of *G* on $H^0(G/P, F_i/F_{i-1})$ constructed using the action of *G* on F_i/F_{i-1} . Since the evaluation homomorphism

$$H^0(G/P, F_i/F_{i-1}) \longrightarrow (F_i/F_{i-1})_{eP} = U_i/U_{i-1}$$

is an isomorphism (as F_i/F_{i-1} is trivial), this gives an action of G on U_i/U_{i-1} . The restriction of this action to $P \subset G$ clearly coincides with the one defined by the P-module structure of U_i/U_{i-1} .

If $Q \subset G'$ is a proper parabolic subgroup of a simple group G' and V'a nontrivial G'-module, then the vector space V' has a nontrivial filtration preserved by Q. Since $P \subset G$ is a parabolic subgroup without any simple factor, any nontrivial left G-module V_1 has the property that there is a nontrivial filtration of the vector space V_1 which is preserved by P. Therefore, the given condition that U_i/U_{i-1} is an irreducible P-module implies that the above constructed action of G on U_i/U_{i-1} is the trivial action. Consequently, U_i/U_{i-1} is a trivial P-module. This completes the proof of the lemma. \Box

Continuing with the proof of the theorem, since L(P) is reductive and each quotient U_i/U_{i-1} in (6) is a trivial L(P)-module (Lemma 2.5), it follows immediately that $U_k = W_{eP}$ itself is a trivial L(P)-module. Indeed, there is no nontrivial homomorphism from a reductive group to a unipotent group.

Since V is an irreducible L(P)-module, the Schur's lemma says that the space of L(P)-invariants in End(V) is one-dimensional (generated by Indranil BISWAS

scalar multiplications). We have proved that $U_k = W_{eP}$ in (6) is a trivial submodule of the L(P)-module End(V). Consequently, we have dim $W_{eP} \leq$ 1. This immediately implies that (3) is valid. This completes the proof of the theorem. \Box

References

- [AB] Anchouche, B. and I. Biswas, Einstein–Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. Jour. Math. 123 (2001), 207–228.
- [Hu] Humphreys, J. E., *Linear algebraic groups*, Graduate Texts in Mathematics, Vol. 21, Springer-Verlag, New York, Heidelberg, Berlin, 1987.
- [Ko] Kobayashi, S., Differential Geometry of Complex Vector Bundles, Publications of the Math. Society of Japan 15, Iwanami Shoten Publishers and Princeton University Press, 1987.
- [MR] Mehta, V. B. and A. Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. **77** (1984), 163–172.
- [Um] Umemura, H., On a theorem of Ramanan, Nagoya Math. Jour. **69** (1978), 131–138.

(Received December 9, 2003)

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400005, India E-mail: indranil@math.tifr.res.in