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Tyurin Parameters and Elliptic Analogue of

Nonlinear Schrödinger Hierarchy

By Kanehisa Takasaki

Abstract. Two “elliptic analogues” of the nonlinear Schrödinger
hiererchy are constructed, and their status in the Grassmannian per-
spective of soliton equations is elucidated. In addition to the usual
fields u, v, these elliptic analogues have new dynamical variables called
“Tyurin parameters,” which are connected with a family of vector bun-
dles over the elliptic curve in consideration. The zero-curvature equa-
tions of these systems are formulated by a sequence of 2 × 2 matrices
An(z), n = 1, 2, . . . , of elliptic functions. In addition to a fixed pole
at z = 0, these matrices have several extra poles. Tyurin parameters
consist of the coordinates of those poles and some additional parame-
ters that describe the structure of An(z)’s. Two distinct solutions of
the auxiliary linear equations are constructed, and shown to form a
Riemann-Hilbert pair with degeneration points. The Riemann-Hilbert
pair is used to define a mapping to an infinite dimensional Grassmann
variety. The elliptic analogues of the nonlinear Schrödinger hierarchy
are thereby mapped to a simple dynamical system on a special subset
of the Grassmann variety.

1. Introduction

Many integrable systems are expressed in the form of a Lax equation

∂tA(λ) = [B(λ), A(λ)] or a zero-curvature equation [∂x−A(λ), ∂t−B(λ)] =

0, where A(λ) and B(λ) are matrices of rational functions of the spectral

parameter λ. In other words, these Lax or zero-curvature equations are

defined on the Riemann sphere. Some integrable systems, such as the elliptic

Calogero-Moser system and the Landau-Lifshitz equation, have a Lax or

zero-curvature representation defined on a torus, i.e., a complex elliptic

curve. One will naturally expect to find a generalization to a curve of

higher genus. Unfortunately, it is well known that such a naive attempt will
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be confronted with a serious difficulty that stems from the Riemann-Roch

theorem [17].

Recently, Krichever presented a general scheme for constructing a Lax

or zero-curvature equation on an algebraic curve Γ of arbitrary genus [8].

A central idea is to allow the matrices A,B to have extra “movable” poles

γ1, . . . , γrg ∈ Γ, where r is the size of the matrices. Moreover, the matrices

A,B at these poles are assumed to have a special structure. A set of addi-

tional parameters are introduced to parametrize this special structure. The

coordinates of poles and these parameters are called “Tyurin parameters.”

This notion originates in algebraic geometry of holomorphic vector bundles

over algebraic curves [16], and was applied by Krichever and Novikov in

1970’s to the study of commutative rings of differential operators [5, 6, 7].

The aforementioned difficulty can be resolved by adding Tyurin parameters

as new dynamical variables.

Once applied to zero-curvature equations, Krichever’s method yileds a

large class of 1 + 1 dimensional integrable PDE’s. These equations are to

be called “soliton equations” associated with an algebraic curve (though it

is not known whether these equations do have a soliton or soliton-like solu-

tion). For instance, Krichever illustrates his construction for the case of a

“field analogue” of the elliptic Calogero-Moser system. This raises a natural

question: What is the status of these new equations in the Grassmannian

perspective of soliton equations due to Sato [14] and Segal and Wilson [15]?

We address this problem in a simplified setting, namely, zero-curvature

equations of 2 × 2 matrices defined on an elliptic curve. This system is an

analogue of the usual nonlinear Schrödinger hierarchy. More precisely, we

construct two distinct versions of this “elliptic analogue,” one being based

on Krichever’s idea, and the other inspired by the work of Enriquez and

Rubtsov [2]. Whereas Krichever’s construction requires all Tyurin parame-

ters to be dynamical variables, Enriquez and Rubtsov keeps the position of

poles constant and use the other parameters as dynamical variables. In this

respect, the elliptic analogue à la Enriquez and Rubtsov’s is much closer to

usual soliton equations.

Our strategy is, firstly, to derive a kind of Riemann-Hilbert problem for

these systems, and secondly, to translate it to the language of an infinite

dimensional Grassmann variety. This is indeed the procedure that has been

used in the literature for many soliton equations and some higher dimen-
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sional systems; see, e.g., the book of Mason and Woodhouse [11]. The usual

Riemann-Hilbert problem, however, does not work literally in the present

situation. Whereas the usual Riemann-Hilbert problem is based on triviality

of a holomorphic vector bundle over the Riemann sphere, the systems formu-

lated by Tyurin parameters are obviously related to a nontrivial holomorphic

vector bundle over an algebraic curve of positive genus. An answer to this

puzzle can be found in the work of Krichever and Novikov [5, 6, 7] cited

above. They consider a Riemann-Hilbert problem with degeneration points;

Tyurin parameters are nothing but the geometric data of those points. The

next task is, therefore, to connect this kind of Riemann-Hilbert problems

with an infinite dimensional Grassmann variety. Fortunately, a related is-

sue has been investigated by Previato and Wilson [13]. They demonstrate

therein a Grassmannian version of the “dressing method” — a classical tech-

nique in soliton theory — to solve a Riemann-Hilbert problem of the same

type. Moreover, their paper shows what should be the “vacuum” (to be

“dressed”) that corresponds to a holomorphic vector bundle in the Tyurin

parametrization. Our goal is to develop a similar machinery for the present

setting.

This paper is organized as follows. Section 2 is a brief review of the

usual nonlinear Schrödinger hierarchy. This will serves as a prototype of

the subsequent construction. Section 3 is devoted to the construction of

the first version, à la Krichever, of the elliptic analogues. A technical clue

is a generating function U(z), which has been used for the usual nonlinear

Schrödinger hierarchy as well. This enables one to formulate the generators

of time evolutions systematically. Section 4 deals with an auxiliary linear

system of the hierarchy and a pair of solutions thereof. This pair of so-

lutions turns out to satisfy a Riemann-Hilbert problem with degeneration

points on the elliptic curve. Section 5 presents main results of this paper,

namely, a Grassmannian perspective of the elliptic analogue of the nonlin-

ear Schrödinger hierarchy. An infinite dimensional Grassmann variety Gr,

a special basepoint (“vacuum”) W0 ∈ Gr and the set M ⊂ Gr of “dressed

vacua” are introduced. The Riemann-Hilbert pair determines a point of

M, whose motion turns out to obey a simple exponential law. The elliptic

nonlinear Schrödinger hierarchy is thus mapped to a dynamical system on

M. In Section 6, the same story is repeated for the elliptic analogue à la

Enriquez and Rubtsov. Our conclusion is shown in Section 7.
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2. Nonlinear Schrödinger Hierarchy

As a prototype of the elliptic analogue, we here review a standard con-

struction of the nonlinear Schrödinger hierarchy. Generalities and back-

grounds of this kind of construction of soliton equations can be found in

Frenkel’s lectures [3].

2.1. A-matrix

The construction starts from the A-matrix

A(λ) =

(
λ u

v −λ

)
(2.1)

with a rational spectral parameter λ ∈ P1; u and v are fields on the x

space. In view of the homogeneous grading of an underlying loop algebra,

it is natural to express this matrix as

A(λ) = Jλ+A(1)(2.2)

where

J =

(
1 0

0 −1

)
, A(1) =

(
0 u

v 0

)
.

2.2. Generating functions

A clue of the construction of the hierarchy is a Laurent series

U(λ) =
∞∑
n=0

Unλ
−n, U0 = J,

that satisfies the differential equation

[∂x −A(λ), U(λ)] = 0.(2.3)

Although this equation itself does not determine U(λ) uniquely, there is a

good or canonical solution that takes the form

U(λ) = φ(λ)Jφ(λ)−1,(2.4)

where φ(λ) is a Laurent series of the form

φ(λ) = I +
∞∑
n=1

φnλ
−n
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and satisfies the differential equations

∂xφ(λ) = A(λ)φ(λ) − φ(λ)Jλ.(2.5)

A solution of (2.3) of this form is indeed “good” or “canonical” in the

sense that the coefficients Un can be calculated from A(λ) by a purely

algebraic procedure (namely, without actually solving differential equations)

as follows. Expanded in powers of λ, (2.3) becomes a system of differential

equations

∂xUn = JUn+1 − Un+1J + [A(1), Un]

for the coefficients Un. On the other hand, if U(λ) is written as (2.4), the

algebraic constraint

U(λ)2 = I(2.6)

is automatically satisfied. This yields the algebraic relations

0 = JUn+1 + Un+1J +

n∑
m=1

UmUn+1−m

of Un’s. One can use these relations to eliminate the term Un+1J on the

right hand sides of the foregoing differential equations. The outcome are

the recurrence relations

2JUn+1 = ∂xUn − [A(1), Un] −
n∑

m=1

UmUn+1−m(2.7)

that determine Un’s successively as

U1 =

(
0 u

v 0

)
, U2 =

(
−1

2uv
1
2ux

−1
2vx

1
2uv

)
,

etc. Note that the matrix elements of all Un’s thus turn out to be “local”

quantities, namely, polynomials of x-derivatives of u and v.

The coefficients of φ(λ) are “nonlocal.” To construct φ(λ) from A(λ),

one expands (2.5) to the differential equations

∂xφn = [J, φn+1] +A(1)φn(2.8)
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for the coefficients and solves them step by step. Actually, this is not so

straightforward; one has to split φn into the diagonal and off-diagonal parts,

φn = (φn)diag + (φn)off−diag,

and consider them separately. The differential equation for the coefficients

of φ(λ) are thereby decomposed to the two equations

∂x(φn)diag = (A(1)φn)diag(2.9)

and

∂x(φn−1)off−diag = [J, (φn)off−diag] + (A(1)φn−1)off−diag.(2.10)

(For convenience, the index n in the second equation has been shifted.)

The first equation determines (φn)diag, up to integration constants, if

φ1, . . . , φn−1 and (φn)off−diag are given. The second equation is rather an

algebraic equation that determines (φn)off−diag from φ1, · · · , φn−1. To con-

struct a solution, therefore, one has to use these equations in a cyclic way:

1. Solve (2.10) for (φn)off−diag.

2. Solve (2.9) for (φn)diag.

3. Increase n by 1 and return to step 1.

The first step of this cycle is to construct (φ1)off−diag as a solution of (2.10)

(n = 1); note that the only data necessary here is φ0 = I. Starting

with this step, one can proceed as (φ1)off−diag → (φ1)diag → (φ2)off−diag

→ (φ2)diag → · · · . Changing integration constants in the solution of (2.9)

amounts to the right action φ(λ) → φ(λ)C(λ) by a diagonal matrix C(λ) =

diag(c1(λ), c2(λ)) of Laurent series with constant coefficients.

2.3. Construction of hierarchy

Having constructed the generating function U(λ), one can formulate the

hierarchy as the system of the Lax equations

[∂tn −An(λ), U(λ)] = 0,(2.11)

where An(λ) denotes the “polynomial part” of U(λ)λn:

An(λ) = U0λ
n + U1λ

n−1 + · · · + Un.(2.12)
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Since U1 = A(1), A1(λ) coincides with A(λ), so that x can be identified with

the first time variable t1. As we shall show later in a more complicated

situation, one can derive the zero-curvature equations

[∂tm −Am(λ), ∂tn −An(λ)] = 0(2.13)

from these Lax equations of U(λ). Actually, another set of zero-curvature

equations, i.e.,

[∂tm −A−
m(λ), ∂tn −A−

n (λ)] = 0,(2.14)

can be derived for the Laurent “tail”

A−
n (λ) = An(λ) − U(λ)λn = −Un+1λ

−1 − Un+2λ
−2 − · · ·(2.15)

as well. These “dual” zero-curvature equations are the Frobenius integra-

bility condition of the linear system

∂tnφ(λ) = A−
n (λ)φ(λ),(2.16)

which thereby determine the time evolutions of φ(λ). This linear system

turns out to be equivalent to the usual auxiliary linear system

∂tnψ(λ) = An(λ)ψ(λ)(2.17)

upon identifying

ψ(λ) = φ(λ) exp
( ∞∑
n=1

tnJλ
n
)

(t1 = x).

3. Construction of Elliptic Analogue à la Krichever

Let Γ be a nonsingular elliptic curve realized as the torus C/(2ω1Z +

2ω3Z), and z the complex coordinate of C, which is also understood as a

local coordinate of Γ. The polynomial matrices A(λ), An(λ) in the nonlinear

Schrödinger hierarchy are replaced by matrices A(z), An(z) of meromorphic

functions on Γ. They have a fixed pole at z = 0 (which amounts to λ = ∞ in

the nonlinear Schrödinger hierarchy) and two “movable” poles at z = γ1, γ2,

γ1 	= γ2.
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3.1. A-Matrix on elliptic curve

The role of the A-matrix in the usual nonlinear Schrödinger hierarchy is

now played by a 2 × 2 matrix A(z) (z ∈ Γ) of meromorphic functions on Γ

with the following properties:

1. A(z) has poles at z = 0, γ1, γ2 and is holomorphic at other points.

2. As z → 0,

A(z) =

(
z−1 u

v −z−1

)
+O(z).(3.1)

3. As z → γs, s = 1, 2,

A(z) =
βs

tαs

z − γs
+O(1),(3.2)

where αs and βs are two-dimensional column vectors that do not

depend on z. αs is normalized as αs = t(αs, 1).

γs and αs in this definition are the Tyurin parameters in the present setting.

u and v are counterparts of those in the nonlinear Schrödinger hierarchy.

All these parameters are understood to be dynamical, i.e., a function of x

(and the time variables tn to be introduced later). We have thus altogether

six dynamical variables γ1, γ2, α1, α2, u, v.

Lemma 1. If α1 	= α2, a matrix A(z) of meromorphic functions on Γ

with these properties does exists. It is unique and can be written explicitly

in terms of the Weierstrass zeta function ζ(z) as

A(z) =
∑
s=1,2

βs
tαs(ζ(z − γs) + ζ(γs)) +

(
ζ(z) u

v −ζ(z)

)
,(3.3)

where

β1 =
1

α1 − α2

(
−1

−α2

)
, β2 =

1

α1 − α2

(
1

α1

)
.(3.4)
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Proof. The defining properties of A(z) imply that A(z) can be written

as

A(z) =
∑
s=1,2

βs
tαsζ(z − γs) + Jζ(z) + C,

where C is a constant matrix. By the residue theorem, the coefficients have

to satisfy the linear relation∑
s=1,2

βs
tαs + J = 0

that ensures that A(z) is single valued on Γ. Solving these equations for

βs leads to the formula stated in the lemma. On the other hand, matching

with the Laurent expansion of A(z) at z = 0 yields to the relation

A(1) =
∑
s=1,2

βs
tαsζ(−γs) + C,

which determines C. �

The Tyurin parameters γs and αs are required to satisfy the equations

∂xγs + Trβs
tαs = 0,(3.5)

∂x
tαs + tαsA

(s,1) = κs
tαs,(3.6)

where A(s,1) stands for the constant term of the Laurent expansion of A(z)

at z = γs,

A(s,1) = lim
z→γs

(
A(z) − βs

tαs

z − γs

)
,

and κs is a constant to be determined by the equation itself. More explicitly,

we have

∂xγ1 =
α1 + α2

α1 − α2
, ∂xγ2 = −α1 + α2

α1 − α2
,(3.7)

∂xα1 = −2α1ζ12 − v + α2
1u, ∂xα2 = 2α2ζ12 − v + α2

2u,(3.8)

where

ζ12 = ζ(γ1) − ζ(γ2) − ζ(γ1 − γ2),
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and the constants κs take the form

κs = − 2αs

α1 − α2
ζ12 + αsu.(3.9)

As Krichever’s lemma [8, Lemma 5.2] shows, these equations ensure that

the auxiliary linear system ∂xψ(z) = A(z)ψ(z) has a 2 × 2 matrix solution

that is holomorphic at z = γs and invertible except at these points. One

will notice from (3.7) and (3.8) that not all of the six dynamical variables

γ1, γ2, α1, α2, u, v are independent; for instance, one can solve (3.8) for u and

v to eliminate u and v as auxiliary dynamical variables. In the following,

however, we shall treat these six variables on a equal footing.

3.2. Generating functions

We now proceed to the construction of two generating functions

φ(z) = I +
∞∑
n=1

φnz
n, U(z) = J +

∞∑
n=1

Unz
n.

The first generating function φ(z) is a Laurent series that satisfies the

differential equation

∂xφ(z) = A(z)φ(z) − φ(z)Jz−1.(3.10)

Here A(z) is understood to be its Laurent expansion

A(z) = Jz−1 +

∞∑
n=1

A(n)zn−1(3.11)

at z = 0; the first few coefficients of this expansion read

A(1) =

(
0 u

v 0

)
,

A(2) =
1

α1 − α2

(
α1℘(γ1) − α2℘(γ2) ℘(γ1) − ℘(γ2)

α1α2(℘(γ1) − ℘(γ2)) α2℘(γ1) − α1℘(γ2)

)
,

etc.

Lemma 2. A Laurent series solution φ(z) of (3.10) does exist.
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Proof. Expanded in powers of z, (3.10) yields the differential equa-

tions

∂xφn = [J, φn+1] +
n+1∑
m=1

A(m)φn+1−m

for the coefficients φn. One can decompose these equations into the diagonal

and off-diagonal parts. The diagonal part becomes the equation

∂x(φn)diag =
n+1∑
m=1

(A(m)φn+1−m)diag,

which determines the diagonal part (φn)diag of φn up to integration con-

stants. The off-diagonal part gives the algebraic relation

∂x(φn)off−diag = [J, (φn+1)off−diag] +

n+1∑
m=1

(A(m)φn+1−m)off−diag.

The off-diagonal part (φn+1)off−diag of φn+1 is thus determined from

φ1, · · · , φn. �

The second generating function U(z) can be obtained from φ(z) as

U(z) = φ(z)Jφ(z)−1,(3.12)

which satisfies the differential equation

[∂x −A(z), U(z)] = 0,(3.13)

and the algebraic constraint

U(z)2 = I.(3.14)

As we have seen in the case of the nonlinear Schrödinger hierarchy, this al-

gebraic constraint singles out a unique Laurent series solution of (3.13), and

the Laurent coefficients can be calculated by a set of recurrence relations.

Lemma 3. The coefficients Un of U(z) satisfy the recurrence relations

2JUn+1 = ∂xUn −
n+1∑
m=1

[A(m), Un+1−m] −
n∑

m=1

UmUn+1−m.(3.15)
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Proof. (3.13) yields the differential equations

∂xUn = JUn+1 − Un+1J +

n+1∑
m=1

[A(m), Un+1−m]

for the coefficients Un. The algebraic constraint U(z)2 = 1 gives the alge-

braic relations

0 = JUn+1 + UJn+1 +
n∑

m=1

UmUn+1−m.

Combining them, one obtains the recurrence relation. �

One can thus calculate Un’s successively from the Laurent coefficients

A(n) of A(z) as

U1 =

(
0 u

v 0

)
,

U2 =

(
−1

2uv
1
2ux

−1
2vx

1
2uv

)

+
1

α1 − α2

(
0 ℘(γ1) − ℘(γ2)

α1α2(℘(γ1) − ℘(γ2)) 0

)
,

etc. In particular, the matrix elements of all Un’s turn out to be a polynomial

of x-derivatives of u, v, γs, αs.

3.3. Construction of hierarchy

Generators of time evolution are 2 × 2 matrices An(z), n = 1, 2, · · · , of

meromorphic functions on Γ with the following properties:

1. An(z) has poles at z = 0, γ1, γ2 and is holomorphic at other points.

2. As z → 0,

An(z) = U(z)z−n +O(z).(3.16)
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3. As z → γs, s = 1, 2,

An(z) =
βn,s

tαs

z − γs
+O(1),(3.17)

where βn,s is a two-dimensional column vector that does not depend

on z.

Lemma 4. If α1 	= α2, a matrix An(z) of meromorphic functions on Γ

with these properties does exists. It is unique and can be written explicitly

as

An(z) =
∑
s=1,2

βn,s
tαs(ζ(z − γs) + ζ(γs))(3.18)

+
n−1∑
m=0

(−1)m

m!
∂mz ζ(z)Un−1−m + Un.

The vectors βn,s are determined by the linear equation

∑
s=1,2

βn,s
tαs + Un−1 = 0(3.19)

that ensures the single-valuedness of An(z) on Γ.

Proof. Repeat the same reasoning as the case of A(z). �

Solving the last linear equation, one can eventually find an explicit form

of An(z) . For instance, A1(z) coincides with A(z), and A2(z) takes the

form

A2(z) =
∑
s=1,2

β2,s
tαs(ζ(z − γs) + ζ(γs))(3.20)

+ J℘(z) + U1ζ(z) + U2,

where

β2,1 =
1

α1 − α2

(
uα2

−v

)
, β2,2 =

1

α1 − α2

(
−uα1

v

)
.(3.21)
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Let us assume the genericity condition

α1 	= α2(3.22)

throughout the following consideration. We now formulate an elliptic ana-

logue of the nonlinear Schrödinger hierarchy as the system of the Lax equa-

tions

[∂tn −An(z), U(z)] = 0(3.23)

for the generating function U(z) and the differential equations

∂tnγs + Trβn,s
tαs = 0,(3.24)

∂tn
tαn + tαsA

(s,1)
n = κn,sαs(3.25)

for the Tyurin parameters. Here A
(s,1)
n denotes the constant term of the

Laurent expansion of An(z) at z = γs, i.e.,

A(s,1)
n = lim

z→γs

(
An(z) −

βn,s
tαs

z − γs

)
,

and κn,s is a constant determined by the differential equation itself. As

in the case of (3.5) and (3.6), the two equations (3.24) and (3.25) for the

Tyurin parameters are the necessary and sufficient conditions for the aux-

iliary linear system ∂tnψ(z) = An(z)ψ(z) to have a 2 × 2 matrix solution

that is holomorphic at z = γs and invertible except at these points.

3.4. Zero-curvature equations

Commutativity of the time evolutions in tn’s is by no means obvious

from the construction. If one can derive the zero-curvature equations for

An(z)’s, commutativity of the time evolutions is an immediate consequence.

As it turns out below, however, the zero-curvature equations in the present

setting possess richer contents.

Let us first derive a “dual” expression of the curvature components

Fmn(z) = [∂tm −Am(z), ∂tn −An(z)].(3.26)

Let A+
n (z) denote the the “tail” part in the Laurent expansion of (3.16).

Namely,

A+
n (z) = An(z) − U(z)z−n,(3.27)
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which has a Laurent expansion of the form

A+
n (z) = (A(n+1)

n − Un+1)z + (A(n+2)
n − Un+2)z

2 + · · · ,

where A
(m)
n ’s denote the coefficients of the Laurent expansion

An(z) =

∞∑
m=0

A(m)
n zm−n

of An(z) at z = 0. The Lax equations (3.23) of U(z) can be rewritten in

the “dual” form

∂tnU(z) = [A+
n (z) − U(z)z−n, U(z)] = [A+

n (z), U(z)].(3.28)

The curvature components turn out to have a similar dual expression as

follows.

Lemma 5. If the Lax equations (3.23) are satisfied, the curvature com-

ponents Fmn(z) can be written in the dual form

Fmn(z) = [∂tm −A+
m(z), ∂tn −A+

n (z)].(3.29)

Proof. Differentiating Am(z) = U(z)z−m + A+
m(z) by tn and using

the Lax equation (3.23), one has

∂tnAm(z) = [An(z), U(z)]z−m + ∂tnA
+
m(z)

= [A+
n (z), U(z)]z−m + ∂tnA

+
m(z),

and exchanging m and n,

∂tmAn(z) = [A+
m(z), U(z)]z−n + ∂tmA

+
n (z).

As for the commutator [Am(z), An(z)],

[Am(z), An(z)] = [U(z)z−m +A+
m(z), U(z)z−n +A+

n (z)]

= [A+
m(z), U(z)]z−m − [A+

n (z), U(z)]z−n

+ [A+
m(z), A+

n (z)].
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Collecting these pieces yields the dual expression of the curvature. �

Lemma 6. If (3.24) and (3.25) are satisfied, the zero-curvature equa-

tions

[∂tm −Am(z), ∂tn −An(z)] = 0(3.30)

can be derived from the Lax equations (3.23).

Proof. The following method of proof originates in the early work of

Krichever and Novikov [7]. The curvature component Fmn(z) is a matrix of

meromorphic functions on Γ. Suppose that Fmn(z) turns out to satisfy the

following conditions:

1. Fmn(z) is holomorphic at all points of Γ other than possible poles at

γ1, γ2.

2. As z → 0, Fmn(z) = O(z).

3. As z → γs, s = 1, 2,

Fmn(z) =
βmn,s

tαs

z − γs
+O(1),

where βmn,s is a two-dimensional column vector.

Such a matrix of function can be expressed as

Fmn(z) =
∑
s=1,2

βmn,s
tαs(ζ(z − γs) + ζ(γs)).

By the residue theorem, the coefficients satisfy the relation∑
s=1,2

βmn,s
tαs = 0,

which, under the the genericity condition (3.22), imply that βmn,s = 0,

hence Fmn(z) = 0. Thus the proof is reduced to confirming that Fmn(z)

does have the three properties. The first and second properties are now

obvious; in particular, the dual expression of Fmn(z) and the fact that
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A+
n (z) = O(z) imply that Fmn(z) = O(z) as z → 0. What is left is to check

the third property. To this end, note that

Fmn(z) =

[
∂tm −

βm,s
tαs

z − γs
−A(s,1)

m +O(z − γs),

∂tn −
βn,s

tαs

z − γs
−A(s,1)

n +O(z − γs)

]

as z → γs. Expanded to powers of z − γs, one can readily see, by (3.24),

that the coefficient of (z − γs)
−2 vanishes. It is also easy to see, by (3.25),

that the coefficient of (z− γs)
−1 is a rank-one matrix of the factorized form

βmn,s
tαs. �

One can conversely derive the Lax equations (3.23) from the zero-cur-

vature equations.

Lemma 7. The Lax equations (3.23) can be derived from the zero-

curvature equations (3.30).

Proof. Substituting Am(z) = A+
m(z)+U(z)z−m in the zero-curvature

equation yields

[∂tm −A+
m(z) − U(z)z−m, ∂tn −An(z)] = 0,

which one can further rewrite as

[∂tn −An(z), U(z)] = [∂tn −An(z), ∂tm −A+
m(z)]zm.

Since A+
m(z) = O(1) and An(z) = O(z−n) as z → 0, the right hand side of

the last equation is O(zm−n), so that

[∂tn −An(z), U(z)] = O(zm−n).

Letting m→ ∞, one obtains the Lax equation (3.23) as expected. �

We thus eventually arrive at the following conclusion.

Theorem 1. As far as (3.24) and (3.25) are satisfied, the Lax equa-

tions (3.23) and the zero-curvature equations (3.30) are equivalent.
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Let us conclude the present consideration with a comment on (3.24)

and (3.25). Although these equations look somewhat distinct from the

other equations, these equations themselves are directly related to the zero-

curvature equations

[∂tn −An(z), ∂x −A(z)] = 0(3.31)

between An(z) and A(z). Namely, if (3.5) and (3.6) are satisfied (this should

be understood as part of the definition of A(z)), (3.24) and (3.25) follow

from these zero-curvature equations. One can indeed derive these equations

from the Laurent expansion of the left hand side of (3.31) at z = γs. In

this respect, one may consider the zero-curvature equations (3.31) as the

defining equation of a hierarchy. This is indeed the way Krichever formulates

a hierarchy.

4. Riemann-Hilbert Problem

In this and next sections, we encounter various initial value problems

with regard to the time variables t = (t1, t2, · · · ), in which t1 is identified

with x. For this reason, let us make the notations slightly more strict.

Namely, we write a t-dependent quantity always indicating its t-dependence

explicitly as An(t, z), γs(t), αs(t), etc. Otherwise, a quantity is understood

to be independent of t.

4.1. Laurent series solution of auxiliary linear system

As a consequence of (3.29), we have the “dual” zero-curvature equations

[∂tm −A+
m(t, z), ∂tn −A+

n (t, z)] = 0.(4.1)

These equations are the Frobenius integrability condition of the linear sys-

tem

∂tnφ(t, z) = A+
n (t, z)φ(t, z).(4.2)

One can redefine the generating function φ(t, z) to satisfy these equations

as well.

Theorem 2. Upon being suitably modified, the generating function

φ(t, z) satisfies the forgoing linear system or, equivalently,

∂tnφ(z) = An(t, z)φ(t, z) − φ(t, z)Jz−n.(4.3)



Tyurin Parameters and Elliptic Analogue 109

In particular,

ψ(t, z) = φ(t, z) exp
( ∞∑
n=1

tnJz
−n
)

(t1 = x)(4.4)

gives a Laurent series solution of the auxiliary linear system

∂tnψ(t, z) = An(t, z)ψ(t, z).(4.5)

Proof. One can construct a Laurent series φ̃(t, z) = I + φ̃1z + · · · as

a solution of the initial value problem

∂tn φ̃(t, z) = A+
n (t, z)φ̃(t, z), φ̃(t, z)|t2=t3=···=0 = φ(t, z)|t2=t3=···=0.

The Frobenius integrability condition of this system is ensured by the zero-

curvature equation of A+
n (t, z)’s. Moreover, since A+

n (t, z) = O(z), the

solution persists to be of the form I +O(z). Now consider the new Laurent

series

Ũ(t, z) = φ̃(t, z)Jφ̃(t, z)−1,

which satisfies the differential equations

∂tnŨ(t, z) = [∂tn φ̃(t, z) · φ̃(t, z)−1, Ũ(t, z)] = [A+
n (t, z), Ũ(t, z)].

On the other hand, one knows that U(t, z), too, satisfies differential equa-

tions of the same form, i.e., (3.28). Since Ũ(t, z) and U(t, z) have the same

initial data at t2 = t3 = · · · = 0, uniqueness of solution of the initial value

problem implies that Ũ(t, z) = U(t, z), i.e.,

U(t, z) = φ̃(t, z)Jφ̃(t, z)−1,

so that one can rewrite the foregoing differential equation for φ̃(t, z) as

∂tn φ̃(t, z) = (An(t, z) − U(t, z)z−n)φ̃(t, z) = An(t, z)φ̃(t, z) − φ̃(t, z)Jz−n.

Thus φ̃(t, z) turns out to fulfill all requirements. �
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4.2. Global solution of auxiliary linear system

The Laurent series solution ψ(t, z) of the auxiliary linear system, by its

nature, carries no information on the global structure of An(t, z)’s on Γ.

To fill this gap, we now introduce another solution χ(t, z) that is globally

defined on Γ with several singular points. As it turns out, these two distinct

solutions of the same auxiliary linear system play the role of the Riemann-

Hilbert (or factorization) pair in the usual nonlinear Schrödinger hierarchy.

To avoid delicate problems, we assume in the following that the solutions

of the hierarchy under consideration are (real or complex) analytic in a

neighborhood of the initial point t = 0.

χ(t, z), by definition, is a solution of the auxiliary linear system

∂tnχ(t, z) = An(t, z)χ(t, z)(4.6)

that satisfies the initial condition

χ(0, z) = I.(4.7)

Since the auxiliary linear system is a collection of ordinary differential equa-

tions, any solution remains nonsingular as far as the coefficients of the equa-

tions are nonsingular. Consequently, if z is in a subset of Γ where An(0, z)’s

are holomorphic, such a solution χ(t, z) does exists in a (possibly small)

neighborhood of t = 0 in the t-space. Since all singularities of An(0, z) on

Γ are located at the three points 0, γ1(0), γ2(0), we can conclude that the

singularities of χ(t, z) on Γ are confined to a neighborhood of these three

points as far as t is sufficiently close to 0.

To elucidate the nature of singularities on Γ more precisely, we expand

χ(t, z) into a Taylor series at t = 0 and examine the Taylor coefficients as a

function of z. Note that this is reasonable, because this Taylor series has a

nonzero radius of convergence as far as z 	= 0, γ1(0), γ2(0).

The Taylor coefficients of χ(t, z) at t = 0 can be evaluated by successively

differentiating the differential equations as

∂tnχ(t, z) = An(t, z)χ(t, z),

∂tm∂tnχ(t, z) = (∂tmAn(t, z) +An(t, z)Am(t, z))χ(t, z),

∂tk∂tm∂tnχ(t, z) =
(
∂tk∂tmAn(t, z) + ∂tk(An(t, z)Am(t, z))

+ (∂tmAn(t, z))Ak(t, z)

+An(t, z)Am(t, z)Ak(t, z)
)
χ(t, z),
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etc. Letting t = 0, we are left with a noncommutative polynomial of deriva-

tives of An’s. We can deduce from these calculations the following precise

information.

Lemma 8. The derivatives ∂tn1
· · · ∂tnp

χ(t, z)|t=0 of all orders of χ(t, z)

at t = 0 are a matrix of meromorphic functions of z on Γ with poles at

z = 0, γ1(0), γ2(0) and holomorphic at other points. As z → γs(0), s = 1, 2,

∂tn1
· · · ∂tnp

χ(t, z)|t=0 =
βn1,··· ,n1,s(0) tαs(0)

z − γs(0)
+O(1),(4.8)

where βn1,··· ,n1,s(0) is a two-dimensional constant column vector.

Proof. As illustrated above, the derivatives of χ(t, z) of all order can

be written as

∂tn1
· · · ∂tnp

χ(t, z) = An1,··· ,np(t, z)χ(t, z).(4.9)

Differentiating this equation by tm yields the recurrence relations

Am,n1,··· ,np(t, z) = ∂tmAn1,··· ,np(t, z) +An1,··· ,np(t, z)Am(t, z).

for the coefficients An1,··· ,np(t, z). One can prove, by induction on p, that

An1,··· ,np(t, z) is a matrix of meromorphic functions of z on Γ with poles at

z = 0, γ1(t), γ2(t), and

An1,··· ,np(t, z) =
βn1,··· ,np,s(t)

tαs(t)

z − γs(t)
+O(1)(4.10)

as z → γs(t), where βn1,··· ,np,s(t) is a two-dimensional column vector. As-

sume that the Laurent expansion (4.10) holds for An1,··· ,np(t, z). The Lau-

rent expansion of Am,n1,··· ,np(t, z) can be read off from the recurrence rela-

tion as

Am,n1,··· ,np(t, z)

= βn1,··· ,np,s(t)
tαs(t)

(
∂tmγs(t) + tαs(t)βs(t)

)
(z − γs(t))

−2

+
(
∂tmβn1,··· ,np,s(t) ·

tαs(t) + βn1,··· ,np,s(t) · ∂tm
tαs(t) +

+A
(s,1)
n1,··· ,np,sβs(t)

tαs(t) +

+βn1,··· ,np,s(t)
tαs(t)A

(s,1)
m (t)

)
(z − γs(t))

−1

+O(1),
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where A
(s,1)
n1,··· ,np(t) denotes the constant term in the Laurent expansion

(4.10). By (3.24), the coefficient of (z − γs(t))
−2 vanishes; by (3.25), the

terms containing ∂tm
tαs(t) and tαs(t)A

(s,1)
m (t) in the coefficient of (z −

γs(t))
−1 cancel out. Thus Am,n1,... ,np(t, z), too, turns out to have a Lau-

rent expansion of the expected form. This completes the proof of (4.10).

Lastly, letting t = 0 in (4.9), one eventually arrives at the statement of the

lemma. �

All Taylor coefficients of χ(t, z) at t = 0 thus turn out to have poles at the

same position, namely, the three points 0, γ1(0), γ2(0). Moreover, whereas

the order of pole at z = 0 is unbounded, the poles at z = γs(0), s = 1, 2, are

of the first order. Accordingly, χ(t, z) has an essential singularity at z = 0

and simple poles at the other two points. The leading part of the Laurent

expansion at z = γs(0) takes the familiar form

χ(t, z) =
βχ,s(t)

tαs(0)

z − γs(0)
+O(1),(4.11)

where βχ,s(t) is a two-dimensional column vector that depends on t. Note

that the pole of χ(t, z) at z = γs(0) disappears when t = 0 (because χ(0, z) =

I).

Lastly, let us mention another important property of χ(t, z).

Lemma 9. detχ(t, z) is a meromorphic function on Γ with simple poles

at z = γs(0), s = 1, 2, and simple zeroes at z = γs(t), s = 1, 2. tαs(t) is a

left null vector of χ(t, γs(t)).

Proof. The auxiliary linear system ∂tnχ(t, z) = An(t, z)χ(t, z) in-

duces the linear system

∂tn detχ(t, z) = TrAn(t, z) detχ(t, z)

for n = 1, 2, . . . . Since An(t, z) = U(t, z)z−n + O(z) as z → 0 and

TrU(t, z) = 0, one finds that the coefficients of this linear system for

detχ(t, z) has no singularity at z = 0, but rather a zero, namely,

TrAn(t, z) = O(z) (z → 0).

This implies that χ(t, z) has no singularity at z = 0. In view of the initial

condition χ(0, z) = I, one can conclude that detχ(t, z)|z=0 = 1. One can
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thus confirm that detχ(t, z) is a meromorphic function on Γ with poles at

z = γs(t), s = 1, 2, and holomorphic at other points. Since the residue

matrix of χ(t, z) at z = γs(t) is a rank-one matrix, detχ(t, z) has a simple

pole there. The position of zeroes of detχ(t, z) can be deduced from the the

linear equation

∂xχ(t, z) = A(t, z)χ(t, z)

(or from any any member of the auxiliary linear system). Extracting the

residue at z = γs(t) yields the relation

0 = βs(t)
tαs(t)χ(t, γs(t))

which, because βs(t) 	= 0, reduces to the relation

tαs(t)χ(t, γs(t)) = 0.

Thus tαs(t) turns out to be a left null vector of χ(t, γs(t)). On the other

hand, rewriting the linear system as

A = ∂xχ(t, z) · χ(t, z)−1,

one can see that the zeroes γs(t) of detχ(t, z) are simple. If they are a

multiple zero, the matrix A will have a multiple pole; this contradicts the

construction of the matrix A. �

These results show that χ(t, z) is exactly the solution mentioned in

Krichever’s lemma [8, Lemma 5.2], namely a matrix solution holomorphic

at the movable poles of A(t, z).

In summary, χ(t, z) has the following properties.

Theorem 3. χ(t, z) has an essential singularity at z = 0 and simple

poles at z = γs(0), s = 1, 2, and is holomorphic at other points of Γ. As

z → γs(0), χ(t, z) behaves as (4.11) shows. Moreover, detχ(t, z) is a mero-

morphic function on Γ with simple poles at z = γs(0), s = 1, 2, and simple

zeros at z = γs(t), s = 1, 2. tαs(t) is a left null vector of χ(t, γs(t)).
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4.3. Riemann-Hilbert problem with degeneration points

We now have two distinct solutions of the same linear system, namely,

the Laurent series solution ψ(t, z) and the solution χ(t, z) carrying global

information on Γ. The “matrix ratio” of these these two solutions is a

constant matrix, i.e.,

∂tn

(
χ(t, z)−1φ(t, z) exp

( ∞∑
n=1

tnJz
−n
))

= 0.

Equating this matrix ratio with its value at t = 0, we are led to the relation

χ(t, z)−1φ(t, z) exp
( ∞∑
n=1

tnJz
−n
)

= φ(0, z)(4.12)

or, equivalently,

φ(0, z) exp
(
−

∞∑
n=1

tnJz
−n
)

= χ(t, z)−1φ(t, z).(4.13)

The last relation may be thought of as a kind of Riemann-Hilbert prob-

lem concerning a small circle |z| = a on the torus Γ. The input of this

problem are the initial values γs(0), αs(0) and φ(0, z). The left hand side of

(4.13) is a GL(2,C)-valued function on the circle, in other words, a GL(2,C)

loop group element. The problem is to factorize it to two factors. The sec-

ond factor φ(t, z) is a loop group element that can be extended to a matrix

of holomorphic functions on the inside of the circle. The first factor χ(t, z)

is a loop group element that can be similarly extended to the outside of the

circle, but not holomorphic everywhere; χ(t, z) is required to have poles at

z = γs(0), s = 1, 2, with the structure described in (4.11). Moreover, in

addition to these poles, χ(t, z) have degeneration points, i.e., zeros of the

determinant at z = γs(t), s = 1, 2. These zeroes are nothing but the poles

of An(t, z)’s.

Thus the Riemann-Hilbert problem relevant to the present setting is

a Riemann-Hilbert problem with movable degeneration points (and extra

fixed poles) on a torus. A similar Riemann-Hilbert problem appears in

Krichever’s work [5] on commutative rings of differential operators. In that

case, the Riemann-Hilbert problem is formulated on the “spectral curve”
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of the commutative ring under consideration, and the genus of the spectral

curve can be an arbitrary positive integer.

Krichever converts the Riemann-Hilbert problem to an integral equation

and solves it by a standard procedure. The same method can be applied

to the present setting as well, though we shall not seek this approach here.

An alternative approach, as demonstrated by Previato and Wilson [13], is

to translate the Riemann-Hilbert problem to the language of an infinite

dimensional Grassmann variety. We shall present this method in the next

section.

4.4. Back to hierarchy

It will be instructive to show how to derive a solution of (3.23), (3.24)

and (3.25) from the Riemann-Hilbert problem. This is more or less parallel

to the procedure that Krichever and Novikov employ in their work [6, 7].

Notice, first of all, that χ(t, z) is a matrix version of the “vector Baker-

Akhiezer function” in their terminology. This is an immediate consequence

of the Riemann-Hilbert problem: χ(t, z) has an essential singularity of the

exponential type at z = 0, and fixed simple poles at z = γs(0), s = 1, 2.

Accordingly, the determinant detχ(t, z) has zeros at γs(t), s = 1, 2, that

depend on t. Let us consider the generic situation where γs(t)’s are simple

zeros of detχ(t, z). The matrices An(t, z), now defined by

An(t, z) = ∂tnχ(t, z) · χ(t, z)−1,

thereby has simple poles at γs(t). As simple linear algebraic calculations

show, the residue of χ(t, z)−1 at the degeneration point γs(t) is a rank-one

matrix. Consequently, the residue of An(t, z), too, is a rank-one matrix and

takes the factorized form βn,s(t)
tαs(t) with a common vector αs(t) inde-

pendent of n. The dynamical Tyurin parameters γs(t), αs(t), s = 1, 2, are

thus obtained. According to a general theorem of Krichever and Novikov

(restated in Krichever’s recent paper [8]), these parameters satisfy the dif-

ferential equations (3.24) and (3.25).

One can now derive the Lax equation (3.23) as follows. Differentiating

the Riemann-Hilbert relation (4.13) yields another expression of An(t, z),

An(t, z) = ∂tnφ(t, z) · φ(t, z)−1 + U(t, z)z−n,

where U(t, z) is defined as

U(t, z) = φ(t, z)Jφ(t, z)−1.
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The Lax equations (3.23) are thereby satisfied automatically. Moreover, the

second expression of An(t, z) also shows the singular behavior of An(t, z) as

z → 0:

An(t, z) = U(t, z)z−n +O(z).

Thus An(t, z)’s turn out to have all properties that we have assumed in the

construction of the hierarchy.

5. Grassmannian Perspective

We here translate the Riemann-Hilbert problem to the language of an

infinite dimensional Grassmann variety. This leads to a mapping of the

elliptic nonlinear Schrödinger hierarchy to a multi-time dynamical system

on a subset (the set of dressed vacua) of the infinite dimensional Grassmann

variety.

5.1. Formulation of Grassmann variety

Two different models of infinite dimensional Grassmann varieties have

been used in the literature of integrable systems. One is Sato’s algebraic or

complex analytic model based on a vector space of (formal or convergent)

Laurent series [14]. The other is Segal and Wilson’s functional analytic

model based on the Hilbert space of square-integrable functions on a circle

[15]. Which to choose is rather a problem of taste; both of them work well

in the present context. Let us use Sato’s model in the following. Actually,

Sato’s formulation contains a continuous family of different models. Among

them, we choose one of the presumably simplest models.

Let V denote the vector space of all 2 × 2 matrices of Laurent series

X(z) =
∞∑

n=−∞
Xnz

n, Xn ∈ gl(2,C),

that converges in a neighborhood of z = 0 except at z = 0; gl(2,C) denotes

the vector space of 2×2 complex matrices without any algebraic constraints.

This vector space is a matrix analogue of V ana(∞) in Sato’s list of models

[14]; as noted therein, one can introduce a natural linear topology in this

vector space.
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We construct an infinite dimensional Grassmann variety Gr from this

vector space V and the vector subspace

V+ = {X(z) ∈ V | Xn = 0 for n ≤ 0}(5.1)

of all X(z) ∈ V that are holomorphic and vanish at z = 0. The Grassmann

variety Gr consists of all closed vector subspaces W ⊂ V for which the

composition of the inclusion map W ↪→ V and the canonical projection

V → V/V+ is a Fredholm map of index 0:

Gr = {W ⊂ V | dim Ker(W → V/V+)(5.2)

= dim Coker(W → V/V+) <∞}.

The so called “big cell” Gr◦ ⊂ Gr is an open subset that consists of subspaces

for which the map W → V/V+ is an isomorphism:

Gr◦ = {W ∈ Gr |W � V/V+}.(5.3)

5.2. Vacuum and dressing

Following the idea of Previato and Wilson [13], we now introduce a spe-

cial element W0(γ, α) of the big cell determined by constant Tyurin parame-

ters γ = (γ1, γ2) and α = (α1, α2). This is a matrix version of the “vacuum”

that Previato and Wilson suggest to use for a holomorphic vector bundle in

the Tyurin parametrization.

Lemma 10. Let γ = (γ1, γ2) be a pair of distinct points of Γ, γ1 	= γ2,

and α = (α1, α2) a pair of constants satisfying the genericity condition

α1 	= α2. Then, for any integer n ≥ 0 and the matrix indices i, j = 1, 2,

there is a unique 2× 2 matrix wn,ij(z) of meromorphic functions on Γ with

the following properties:

1. wn,ij(z) has poles at z = 0, γ1, γ2 and is holomorphic at other points.

2. As z → 0, wn,ij(z) = Eijz
−n + O(z), where Eij, i, j = 1, 2, are the

standard basis of gl(2,C).

3. As z → γs, s = 1, 2,

wn,ij(z) =
βn,ij,s

tαs

z − γs
+O(1),
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where αs = t(αs, 1), and βn,ij,s is another two-dimensional constant

column vector.

The subspace

W0(γ, α) = 〈wn,ij(z) | n ≥ 0, i, j = 1, 2〉(5.4)

spanned by (the Laurent series of) wn,ij(z)’s is an element of the big cell.

Proof. One can confirm the existence and uniqueness of wn,ij(z) in

the same way as the case of A(z) and An(z). Since the leading terms

Eijz
−n of the Laurent expansion at z = 0 are in one-to-one correspondence

with the elements of the standard basis {Eijz
−n | n ≥ 0, i, j = 1, 2} of

V/V+, the linear map W0(γ, α) → V/V+ is obviously surjective. To prove

the injectivity, note that any element X(z) of W0(γ, α) ∩ V+ is a matrix

of functions holomorphic at all points of Γ other than possible poles at

z = γ1, γ2, behaves as

X(z) =
βX,s

tαs

z − γs
+O(1)

at these points (where βX,s is a two-dimensional column vector), and has

a zero at z = 0. Such a matrix of function is equal to 0 as one can see

by the same reasoning as the proof of the zero-curvature equation (3.30).

Therefore W0(γ, α) ∩ V+ = {0}, hence the injectivity of the linear map

W0(γ, α) → V/V+ follows. �

This special base point W0(γ, α) of the big cell plays the role of vacuum

in the “dressing method.” This is a complicated vacuum with nontrivial

structure that stems from an underlying holomorphic vector bundle over Γ.

We “dress” this vacuum to obtain an element W of the big cell that repre-

sents a general solution of our hierarchy. Dressing is achieved by multiplying

a Laurent series φ(z) from the right side as

W = W0(γ, α)φ(z), φ(z) = I +

∞∑
n=1

φnz
n, φn ∈ gl(2,C).(5.5)
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Our goal in the following is to show that our hierarchy can be mapped to a

multi-time dynamical system on the set

M = {W ∈ Gr◦ |W = W0(γ, α)φ(z),(5.6)

γ = (γ1, γ2) ∈ Γ2, α = (α1, α2) ∈ C2,

γ1 	= γ2 α1 	= α2, φn ∈ gl(2,C)}

of these dressed vacua.

5.3. Interpretation of Riemann-Hilbert problem

We now translate the Riemann-Hilbert problem (4.13) to the language

of dressed vacua. Because of several reasons, the following consideration is

limited to a small neighborhood of t = 0. Firstly, this is to ensure that the

conditions γ1(t) 	= γ2(t) and α1(t) 	= α2(t) are satisfied; this issue is related

to boundaries of the Tyurin parametrization of holomorphic vector bundles.

Secondly, if t gets large, the dressed vacuum W (t) ∈ M representing a

solution of (4.13) can hit the boundary of the big cell, so that more careful

analysis is required.

The first step is the following.

Lemma 11. W0(γ(t), α(t))χ(t, z) ⊆W0(α(0), γ(0)).

Proof. Let wn,ij(t, z), n ≥ 0, i, j = 1, 2, denote the elements of the

basis of W0(γ(t), α(t)) defined in Lemma 10. wn,ij(t, z) has poles at z =

0, γ1(t), γ2(t), and behaves as

wn,ij(t, z) =
βn,ij,s(t)

tαs(t)

z − γs(t)
+O(1)

as z → γs(t). Upon multiplication with χ(t, z), the poles at z = γs(t) are

cancelled out because tαs(t) is a left null vector of χ(t, γs(t)) (see Theorem

3). Thus one finds that wn,ij(t, z)χ(t, z) has an essential singularity at z = 0,

simple poles at z = γs(0), s = 1, 2, and is holomorphic at other points of Γ.

The leading part of the Laurent expansion at z = γs(0) takes the form

wn,ij(t, z)χ(t, z) =
wn,ij(t, γs(0))βχ,s(t)

tαs(0)

z − γs(0)
+O(1),
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so that the residue matrix has such a factorized form as (column vector) ·
tαs(0). One can thus confirm that wn,ij(t, z)χ(t, z) fulfills all conditions to

be an element of W0(γ(0), α(0)). �

The next step is to show that the inclusion relation in this lemma is

actually an equality. To this end, we prove the following lemmas.

Lemma 12. χ(t, z)−1 has an essential singularity at z = 0, simple poles

at γs(t), s = 1, 2, and is holomorphic at other points. As z → γs(t),

χ(t, z)−1 =
βχ−1,s(t)

tαs(t)

z − γs(t)
+O(1),(5.7)

where βχ−1,s(t) is a two-dimensional column vector.

Proof. It is shown in Theorem 3 that tαs(t) is a left null vector of

χ(t, γs(t)). A clue to the proof of the lemma is the fact that the left null space

(i.e., the left zero-eigenspace) of χ(t, γs(t)) is, actually, one-dimensional and

spanned by tαs(t). If the left null space is two-dimensional, χ(t, γs(t)) itself

is a zero matrix, so that detχ(t, z) has a double zero at z = γs(t); this

contradicts the present setting. [Remark: The same reasoning holds for an

r × r analogue of the present case as well. Namely, if the left null space of

χ(t, γs(t)) has k dimensions, then detχ(t, z) has a zero of the k-th order at

z = γs(t).] Bearing this fact in mind, one can prove the statement of the

lemma as follows. Theorem 3 implies that γs(t) is a simple zero of χ(t, z)−1.

Extracting the residue from the obvious identity χ(t, z)−1χ(t, z) = I yields

the relation

Res
z=γs(t)

χ(t, z)−1dz · χ(t, γs(t)) = 0.

This implies that the residue matrix of χ(t, z)−1 at z = γs(t) is a rank-

one matrix of the factorized form (column vector) · (row vector). The row

vector on the right side is accordingly a left null vector of χ(t, γs(t)). By the

aforementioned fact, one can choose this row vector to be equal to tαs(t).

Thus the residue matrix turns out to have a factorized form as shown in

the statement of the lemma. The other properties of χ(t, z)−1, too, can be

readily derived from Theorem 3. �

Lemma 13. tαs(0) is a left null vector of χ(t, z)−1|z=γs(0).
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Proof. The identity χ(t, z)χ(t, z)−1 = I yields the relation

Res
z=γs(0)

χ(t, z)dz · χ(t, z)−1|z=γs(0) = 0,

which, by (4.11), takes the form

βχ,s(t)
tαs(0)χ(t, z)−1|z=γs(0) = 0.

Since βχ,s(t) 	= 0, this implies that

tαs(0)χ(t, z)−1|z=γs(0) = 0. �

These lemmas show that the inverse matrix χ(t, z)−1 has essentially the

same properties as χ(t, z) except that the position of poles and degeneration

points are exchanged. Consequently, one can repeat the proof of Lemma 11,

replacing the role of χ(t, z), W0(γ(t), α(t)) and W0(γ(0), α(0)) with those of

χ(t, z)−1, W0(γ(0), α(0)) and W0(γ(t), α(t)), to derive the inclusion relation

W0(γ(0), α(0))χ(t, z)−1 ⊆W0(γ(t), α(t)).

Thus the equality

W0(γ(t), α(t))χ(t, z) = W0(α(0), γ(0)).(5.8)

follows as expected.

Having this equality, one can readily convert the Riemann-Hilbert prob-

lem to the language of dressed vacua as follows. The Riemann-Hilbert

relation (4.13) yields the relation

W0(γ(t), α(t))φ(t, z) = W0(γ(t), α(t))χ(t, z)φ(0, z) exp
(
−

∞∑
n=1

tnJz
−n
)
.

By (5.8), W0(γ(t), α(t)) absorbs χ(t, z) to become W0(γ(0), α(0)). The out-

come is the relation

W0(γ(t), α(t))φ(t, z) = W0(γ(0), α(0))φ(0, z) exp
(
−

∞∑
n=1

tnJz
−n
)
,
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which means that the dressed vacuum W (t) = W0(γ(t), α(t))φ(t, z) ∈ M
obeys the exponential law

W (t) = W (0) exp
(
−

∞∑
n=1

tnJz
−n
)
.(5.9)

Conversely, one can obtain a solution of the Riemann-Hilbert problem

from the exponential flows (5.9) as follows. (This is a variation of the

dressing method of Previato and Wilson [13].) Given a set of initial values

γ(0), α(0) and φ(0, z), let us consider the exponential flows (5.9) sending

W (0) = W0(γ(0), α(0))φ(0, z) to W (t). A clue is, again, the fact that W (t)

remains in the big cell as far as t is sufficiently small. In that case, the linear

map W (t) → V/V+ is an isomorphism. Let φ(t, z) denote the inverse image

of I ∈ V/V+ by this isomorphism. Being equal to I modulo V+, φ(t, z) is a

Laurent series of the form

φ(t, z) = I +
∞∑
n=1

φn(t)zn.

On the other hand, as an element of

W (t) = W0(γ(0), α(0))φ(0, z) exp
(
−

∞∑
n=1

tnJz
−n
)
,

φ(t, z) can also be written as

φ(t, z) = χ(t, z)φ(0, z) exp
(
−

∞∑
n=1

tnJz
−n
)

with an element χ(t, z) of W0(γ(0), α(0)). Recalling the definition of

W0(γ(0), α(0)), one finds that χ(t, z) is a matrix of functions with all prop-

erties in the statement of Theorem 3. The associated Tyurin parameters

(γs(t),αs(t)) are determined as the position of zeros of χ(t, z) and the nor-

malized left null vector of χ(t, z) at those degeneration points.

Thus we have been able to show the following fundamental picture of

our hierarchy as a dynamical system embedded in the Grassmann variety.

Theorem 4. The elliptic analogue of the nonlinear Schrödinger hier-

archy can be mapped, by the correspondence W (t) = W0(γ(t), α(t))φ(t, z),
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to a dynamical system on the set M of dressed vacua in the Grassmann va-

riety Gr. The motion of W (t) obeys the exponential law (5.9). Conversely,

the exponential flows on M yield a solution of the Riemann-Hilbert problem.

(4.13).

Let us conclude this section with a few remarks.

1. Our approach owes much to the work of Previato and Wilson [13].

They use a similar Grassmannian version of the dressing method as

a tool to reformulate the work of Krichever and Novikov [5, 6, 7] on

commutative rings of differential operators. Accordingly, the detail of

the dressing procedure is quite different from ours. In particular, they

take Krichever’s “algebraic spectral data” [5] as the input; dressing

is achieved by a matrix solution of linear differential equations deter-

mined by these data. In our case, the dressing matrix is the product

of φ(0, z) and the exponential matrix generating the exponential flows

(5.9).

2. In every aspect, the construction of the mapping to the Grassmann

variety is related to the geometry of holomorphic vector bundles over

Γ. First of all, the Tyurin parameters (γs(t), αs(t)) themselves corre-

spond to a holomorphic vector bundle that deforms as t varies. The

subspace W0(γ, α) ⊂ V can be identified with the space of holomor-

phic sections of the associated sl(2,C) bundle over the punctured torus

Γ \ {z = 0}. φ(t, z) is related to changing local trivialization of this

bundle at z = 0. Note, in particular, that the data of local trivial-

ization plays the role of dynamical variables. This is to be contrasted

with the work of Previato and Wilson; in their case, a set of func-

tional parameters in the algebraic spectral data play a similar role in

place of the data of local trivialization. In this respect, our approach

is more close to Li and Mulase’s approach [12, 9] to the classification

of commutative rings of differential operators, in which the choice of

local trivialization is treated as an independent data.

6. Construction à la Enriquez and Rubtsov

Enriquez and Rubtsov [2] parametrize the sl(2,C) Hitchin system on

an algebraic curve of genus g ≥ 2 [4] by 3g (rather than 2g) pairs (γs, αs),



124 Kanehisa Takasaki

s = 1, . . . , 3g, of Tyurin parameters. The roles of parameters are also

different from Krichever’s formulation. Namely, whereas the directional

vectors αs = t(αs, 1) remain dynamical, the poles γs are fixed.

We borrow their idea to construct another elliptic analogue of the nonlin-

ear Schrödinger hierarchy. This hierarchy has three pairs (γs, αs), s = 1, 2, 3,

as Tyurin parameters; γs are constant and αs are variables. In addition to

these Tyurin parameters, the hierarchy contains the nonlinear Schrödinger

fields u, v. The foregoing consideration on the elliptic analogue of the

Krichever type can be extended to this case with minimal modifications.

6.1. Construction of A-matrix

The A-matrix A(z) is a 2 × 2 matrix of meromorphic functions on Γ

characterized by the following properties:

1. A(z) has poles at z = 0, γ1, γ2, γ3 and holomorphic at other points.

2. As z → 0,

A(z) =

(
z−1 u

v −z−1

)
+O(z).

3. As z → γs, s = 1, 2, 3,

A(z) = λs

(
αs 1

−α2
s −αs

)
(z − γs)

−1 +O(1),(6.1)

where λs is a constant to be determined below.

One can write A(z) itself more explicitly as

A(z) =
∑

s=1,2,3

λs

(
αs 1

−α2
s −αs

)
(ζ(z − γs) + ζ(γs))(6.2)

+

(
ζ(z) u

v −ζ(z)

)
.

By the residue theorem, the coefficients have to satisfy the linear equations

∑
s=1,2,3

λs

(
αs 1

−α2
s −αs

)
+

(
1 0

0 −1

)
=

(
0 0

0 0

)
.(6.3)
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This yields the three linear equations∑
s=1,2,3

λs = 0,
∑

s=1,2,3

αsλs = −1,
∑

s=1,2,3

α2
sλs = 0,(6.4)

which can be solve for λs’s as

λ1 =
α2

3 − α2
2

∆
, λ2 =

α2
1 − α2

3

∆
, λ3 =

α2
2 − α2

1

∆
(6.5)

as far as the Vandermonde determinant

∆ = ∆(α1, α2, α3) =

∣∣∣∣∣∣
1 1 1

α1 α2 α3

α2
1 α2

2 α3
3

∣∣∣∣∣∣
does not vanish. This condition

∆ 	= 0(6.6)

is the “genericity condition” in the present setting. We assume this condi-

tion throughout the consideration in the following.

The Tyurin parameters are requirered to satisfy the differential equa-

tions (3.5) and (3.6). Note that the residue matrices of A(z) at z = γs can

be factorized as

λs

(
αs 1

−α2
s −αs

)
= λs

(
1

−αs

)(
αs 1

)
,

so that the role of βs is now played by λs
t(1,−αs). (3.5) reduces to

∂xγs = −Trλs

(
αs 1

−α2
s −αs

)
= 0,(6.7)

thus being consistent with the assumption that γs are understood to be

constant. On the other hand, (3.6) takes the form

∂xαs =
∑
r �=s

λr(αs − αr)
2(ζ(γs − γr) + ζ(γr))(6.8)

+ α2
su− 2αsζ(γs) + v

with the constant κs uniquely determined as

κs =
∑
r �=s

λr(αs − αr)(ζ(γs − γr) + ζ(γr)) + αsu− ζ(γs).(6.9)
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6.2. Construction of hierarchy

The construction of time evolutions is fully parallel to the previous case.

Firstly, we construct a 2 × 2 matrix of generating functions

U(z) =

∞∑
n=1

Unz
n, U0 = J,

as a solution of the equations

[∂x −A(z), U(z)] = 0, U(z)2 = I.

The coefficients Un are uniquely determined by a set of recurrence relations;

the matrix elements thus turn out to be a differential polynomial of αs

(s = 1, 2, 3), u and v.

Having this generating function as local data at z = 0, we now proceed

to the construction of the generators An(z) of time evolutions. An(z) is a

2 × 2 matrix of meromorphic functions on Γ with the following properties:

1. An(z) has poles at z = 0, γ1, γ2, γ3 and holomorphic at other points.

2. A z → 0,

An(z) = U(z)z−n +O(z).

3. As z → γs, s = 1, 2, 3,

An(z) = λn,s

(
αs 1

−α2
s −αs

)
(z − γs)

−1 +O(1),(6.10)

where λn,s is a constant to be determined below.

An(z) is uniquely determined by these conditions, and can be written as

An(z) =
∑

s=1,2,3

λn,s

(
αs 1

−α2
s −αs

)
(ζ(z − γs) + ζ(γs))(6.11)

+

n−1∑
m=0

(−1)m

m!
∂mz ζ(z)Un−1−m + Un.
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The coefficients λn,s are determined by the linear equations

∑
s=1,2,3

λn,s

(
αs 1

−α2
s −αs

)
+ Un−1 = 0(6.12)

or, equivalently, ∑
s=1,2,3

λn,s = −(Un−1)12,

∑
s=1,2,3

αsλn,s = −(Un−1)11 = (Un−1)22,

∑
s=1,2,3

α2
sλn,s = −(Un−1)21.(6.13)

Of course, these linear equations are uniquely solvable as far as the genericity

condition ∆ 	= 0 is satisfied.

Lastly, the hierarchy is defined by the system of Lax equations

[∂tn −An(z), U(z)] = 0(6.14)

for U(z) and the differential equations

∂tn
tαs + tαsA

(s,1)
n = κn,s

tαs,(6.15)

for tαs = (αs, 1). The differential equations for γs reduce to

∂tnγs = −Trλn,s

(
αs 1

−α2
s −αs

)
= 0(6.16)

as expected. One can derive the zero-curvature equations [∂tm − Am(z),

∂tn −An(z)] = 0 by the same procedure as in the previous case.

6.3. Riemann-Hilbert problem and Grassmann variety

The Riemann-Hilbert problem and the mapping to an infinite dimen-

sional Grassmann variety can be derived in almost the same form as the

previous case. The present case is conceptually rather simpler, because the

poles γs do not move. To avoid confusion, we again move to the conven-

tion that the t-dependence is always explicitly indicated as A(t, z), An(t, z),

αs(t), etc. Note that γs’s are constant throughout the present setting.
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The Riemann-Hilbert pair consists of a Laurent series solution ψ(t, z)

and a global solution χ(t, z) of the same auxiliary linear system. The former

takes the form

ψ(t, z) = φ(t, z) exp
( ∞∑
n=1

tnJz
−n
)
, φ(t, z) = I +

∞∑
n=1

φn(t)zn.

The prefactor φ(t, z) is connected with the generating function U(t, z) (the

t-dependence is now shown explicitly) as U(t, z) = φ(t, z)Jφ(t, z)−1. The

second solution χ(t, z) of the auxiliary linear system is characterized by the

initial condition χ(0, z) = I. One can prove, by the same technique as the

previous case, that χ(t, z) has essential singularity at z = 0 and poles at

z = γ1, γ2, γ3, and behave as

χ(t, z) = λχ,s

(
αs(0) 1

−αs(0)2 −αs(0)

)
(z − γs)

−1 +O(1)(6.17)

as z → γs. These two solutions χ(t, z), ψ(t, z) of the auxiliary linear system

obeys a relation of the same form as (4.13). On the other hand, since An(z)’s

are trace-free, both χ(t, z) and φ(t, z) are now unimodular, i.e.,

detχ(t, z) = detφ(t, z) = 1.(6.18)

Consequently, unlike the previous case, χ(t, z) has no degeneration point.

We use the same Grassmann variety Gr to embed the hierarchy. The

definition of the base point W0(γ, α) for the present case, too, is essentially

the same, except that we now use the three pairs (γs, αs), s = 1, 2, 3, as

the input. The basis {wn,ij(z) | n ≥ 0, i, j = 1, 2} of W0(γ, α) consists of

the matrices wn,ij(z) of meromorphic functions on Γ uniquely determined

by these parameters as in the statement of Lemma 10; the third condition

therein has to be modified as

wn,ij(z) = λn,ij,s

(
αs 1

−α2
s −αs

)
(z − γs)

−1 +O(1) (z → γs).(6.19)

By the correspondence φ(t, z) �→ W (t) = W0(γ, α(t))φ(t, z), the hierarchy

is converted to a dynamical system on the set M of dressed vacua. The

motion of W (t) again turns out to obey the same exponential law as (5.9).
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7. Conclusion

We have elucidated the status of the two elliptic analogues of the nonlin-

ear Schrödinger hierarchy in the Grassmannian perspective of Sato [14] and

Segal and Wilson [15]. Each of these systems are mapped to a dynamical

system in the Grassmann variety Gr. The phase space of the dynamical

system is the set M of dressed vacua W = W0(γ, α)φ(z). The motion of

the dressed vacuum W (t) = W0(γ(t), α(t))φ(t, z) under time evolutions of

the hierarchy obeys a simple exponential law. This is just the restriction

of universal exponential flows on the Grassmann variety itself. Thus the

situation is fully parallel to many classical soliton equations that have been

understood in the Grassmannian perspective.

It is straightforward to generalize the 2×2 system of the Krichever type

to an r×r system [8]. In that case, one has to use several U -matrices rather

than a single one. The Tyurin parameters consist of r pairs (γs,αs) ∈
Γ × Pr−1, s = 1, . . . , r, of a point γs of Γ and an r dimensional directional

vector αs. As a special case, one can obtain an elliptic analogue of the so

called N wave system, etc.

If one does not insist on an explicit description of the system, one can

generalize the results of this paper to an algebraic curve Γ of genus g with

a marked point P0. The Tyurin parameters for the construction of the

Krichever type consist of 2g pairs (γs,αs) ∈ Γ × P1 of a point of Γ and

a two dimensional directional vector [8]. The construction à la Enriquez

and Rubtsov requires 3g, rather than 2g, pairs of Tyurin parameters [2].

Upon choosing a local parameter z in a neighborhood of P0, one can start

the construction of the fundamental matrix A(P ) (P ∈ Γ) of meromorphic

functions on Γ and the matrix U(z) of Laurent series. A convenient choice

of z is to define it as the (multivalued) primitive function z(P ) =
∫ P
P0
ω of

a holormophic differential ω on Γ without zero at P0. The matrices An(P ),

like A(P ), are characterized by a set of conditions on the poles. Namely,

they are matrices of meromorphic functions on Γ with poles at P0 and γs’s,

and behave as

An(P ) = U(z(P ))z(P )−n +O(z(P )) (P → P0),

An(P ) =
βn,s

tαs

z(P ) − z(γs)
+O(1) (P → γs).

The existence and the uniqueness of these matrices are ensured by the



130 Kanehisa Takasaki

Riemann-Roch theorem. Formulating these systems in a more explicit form

is a problem left for future research.

Lastly, let us mention some other approaches to soliton equations associ-

ated with algebraic curves. Ben-Zvi and Frenkel [1] and Levin, Olshanetsky

and Zotov [10] propose to construct those equations as a 1 + 1 dimensional

analogue of the Hitchin systems [4]. The framework of Ben-Zvi and Frenkel

is conceptually similar to ours, though they use a Grassmann variety in a

different way. The work of Li and Mulase [12, 9] is also closely related to

the present issue. Our construction of dressed vacua has obviously a coun-

terpart in their description of commutative rings of differential operators in

the language of infinite dimensional Grassmann variety.
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