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A Characterization of Tempered Distributions

with Support in a Cone by the Heat Kernel Method

and its Applications

By Masanori Suwa and Kunio Yoshino

Abstract. We will characterize the space of tempered distribu-
tions with support in a proper convex cone by the heat kernel method.
As applications we give a new proof of the Paley-Wiener’s theorem and
the Edge-of-the-Wedge theorem for tempered distributions supported
by a proper convex cone.

1. Introduction

In 1987, T.Matsuzawa characterized the spaces of distributions, ultra-

distributions and hyperfunctions as the initial values of C∞-solutions of

the heat equation with appropriate growth rate conditions [4], [5]. In 1990,

T.Matsuzawa also characterized the spaces of tempered distributions by the

same method. We shall call this method “ The heat kernel method”. In this

paper, we shall characterize the space of tempered distributions supported

by a proper convex cone by the heat kernel method (Theorem 3.4).

As applications of the heat kernel method, T.Matsuzawa gave a new

proof of the Paley-Wiener theorem for hyperfunctions supported by a ball

by the heat kernel method in [4]. The proof is simpler than the former

proof because we need not use the higher functional analysis and algebra

techniques. Touched by this work, in 1998, S.Lee and S.-Y.Chung gave a

new proof of the Paley-Wiener theorem for distributions supported by a

compact convex set by the heat kernel method [2] and in 2003, M.Suwa and

K.Yoshino gave a new proof of the Paley-Wiener theorem for hyperfunctions

supported by a convex compact set by the heat kernel method [10]. In §4, we

shall treat the Paley-Wiener theorem for tempered distributions supported

by a proper convex cone by the heat kernel method. For an element of

distributions or hyperfunctions supported by a convex compact set, the
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image by the Fourier-Laplace transform becomes an entire function. So it

is trivial that we can take its boundary value. However, in our case, the

image by the Fourier-Laplace transform is not an entire function. Hence, it

is the most important point to show the existence of the boundary value in

tempered distributions.

In §5, we shall give a new proof of the Edge-of-the-Wedge theorem for

tempered distributions supported by a proper convex cone. Also we must

notice that it is simpler than the former proof to show the existence of the

boundary value in tempered distributions by the heat kernel method.

2. Preliminaries

Let x = (x1, · · · , xn) ∈ R
n, ξ = (ξ1, · · · , ξn) ∈ R

n and ζ = (ζ1, · · · , ζn) ∈

C
n. Then we set |ζ| =

√
|ζ1|2 + · · ·+ |ζn|2, 〈x, ξ〉 =

n∑
j=1

xjξj , x2 = 〈x, x〉 and

B(x0, δ) = {x ∈ R
n; |x−x0| < δ, δ > 0}. If α = (α1, · · · , αn) ∈ N

n
0 , then we

set |α| = α1 + · · ·+ αn, α! = α1! · · ·αn!, Dα = ∂α1
x1
· · · ∂αn

xn
and 
 =

n∑
j=1

∂2
xj

.

We define the heat kernel by E(x, t) = (4πt)−n/2exp(−x2/4t), t > 0. Let

Ω be an open set in C
n. We denote by H(Ω) the space of holomorphic

functions on Ω. D(Rn) is the space of C∞ functions with compact support.

S(Rn) is the space of rapidly decreasing C∞ functions and S ′(Rn) is the

space of tempered distributions. We put S ′
A

:= {T ∈ S ′(Rn); supp T ⊂ A}.
If ϕ(ξ) ∈ S(Rn), then the Fourier transform F(ϕ)(x) is defined by

F(ϕ)(x) =
1

(2π)n/2

∫
Rn

ϕ(ξ)eiξxdξ

and the Fourier inverse transform F−1(ϕ)(ξ) is defined by

F−1(ϕ)(ξ) =
1

(2π)n/2

∫
Rn

ϕ(x)e−iξxdx.

The convolution (ϕ ∗ φ)(x) of functions ϕ(x) ∈ S(Rn) and φ(x) ∈ S(Rn) is

defined by

(ϕ ∗ φ)(x) =

∫
Rn

ϕ(x− y)φ(y)dy.
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If ϕ(x)eiζx ∈ L1(Rn
x), then LF(ϕ)(ζ) is defined by

LF(ϕ)(ζ) =
1

(2π)n/2

∫
Rn

ϕ(x)eiζxdx, ζ ∈ C
n.

Let A be a set in R
n. Then we denote by A◦ the interior of A, by A the

closure of A, for ε > 0, Aε = {x ∈ R
n; dis(x,A) ≤ ε} and by ch(A) the

convex hull of A.

Definition 2.1 ([3],[11]). Let Γ be a cone with vertex at 0. If ch(Γ)

contains no straight line, then we call Γ a proper cone. Furthermore we put

Γ′ := {ξ ∈ R
n; 〈y, ξ〉 ≥ 0 for all y ∈ Γ}.

Then we call Γ′ the dual cone of Γ.

Remark 2.2 ([11]).

1. The following conditions are equivalent:

(a) Γ is a proper cone.

(b) (Γ′)◦ �= ∅.

2. The following equalities hold:

(a) (Γ′)′ = ch(Γ)

(b) (Γ1 ∩ Γ2)
′ = ch(Γ′

1 ∪ Γ′
2).

Definition 2.3 ([9],[12]). Let A ⊂ R
n be a closed set and satisfy the

following condition:

∃d > 0 ∃ω ≥ 0 ∃q ≥ 1, ∀x1 ∈ A, ∀x2 ∈ A, |x1 − x2| ≤ d,

∃γ, γ ⊂ A, a curve binding x1 and x2,

such that l ≤ ω|x1 − x2|1/q, where l is the length of a curve γ.

Then we call A a regular closed set.

Remark 2.4. We note that a closed convex set is a regular closed set.
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3. Tempered Distributions as the Boundary Values of Smooth

Solutions of Heat Equations

First, we recall the results about tempered distributions as the initial

values of smooth solutions of heat equations.

Theorem 3.1 (Matsuzawa [6],[7]). Let T ∈ S ′(Rn) and U(x, t) =

〈Ty, E(x − y, t)〉. Then U(x, t) ∈ C∞(Rn × (0,∞)) satisfies the following

conditions:

(∂t −
)U(x, t) = 0.(1)

U(x, t) −→ T in S ′(Rn) (t→ 0+).(2)

There exist some positive constants N, M and C such that(3)

|U(x, t)| ≤ Ct−N (1 + |x|)M , (0 < t < 1).

Conversely, for a function U(x, t) ∈ C∞(Rn× (0,∞)) satisfying (1) and (3),

there exists a unique T ∈ S ′(Rn) such that 〈Tξ, E(x− ξ, t)〉 = U(x, t).

Lemma 3.2 ([9], [12]). Let A ⊂ R
n be a regular closed set. If T ∈ S ′

A,

then there exists a tempered measure µα (|α| ≤ m), supp µα ⊂ A, such that

T =
∑

|α|≤m

Dαµα.

Lemma 3.3 (Bros-Epstein-Glaser [1],[8]). Let Γ be a proper open con-

vex cone in R
n and let T ∈ S ′

Γ
. Then there exists a polynomially bounded

continuous function G with support in Γ and a partial differential operator

P (D) so that T = P (D)G.

We have the following theorem:

Theorem 3.4. Suppose that Γ is a proper convex cone in R
n. Let

T ∈ S ′
Γ

and U(x, t) = 〈Ty, E(x − y, t)〉. Then U(x, t) ∈ C∞(Rn × (0,∞))

satisfies the following conditions:

(∂t −
)U(x, t) = 0.(4)

U(x, t) −→ T in S ′(Rn) (t→ 0+).(5)

There exist some positive constants N, M and C such that(6)

|U(x, t)| ≤ Ct−N (1 + |x|)Mexp
(
−dis(x,Γ)2

16t

)
, (0 < t < 1, x ∈ R

n).
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Conversely, for a function U(x, t) ∈ C∞(Rn× (0,∞)) satisfying (4) and (6),

there exists a unique T ∈ S ′
Γ

such that 〈Ty, E(x− y, t)〉 = U(x, t).

Proof. Let T ∈ S ′
Γ
. By Theorem 3.1, we have (4) and (5). Let

0 < t < 1. By Lemma 3.3, we have

T (x) = P (D)G(x), supp G(x) ⊂ Γ,

∃M ≥ 0, ∃C ≥ 0, |G(x)| ≤ C(1 + |x|)M , (x ∈ R
n).

Since

U(x, t) = 〈Ty, E(x− y, t)〉
= 〈G(y), P (−Dy)E(x− y, t)〉

=

∫
Γ

G(y)P (−Dy)E(x− y, t)dy,

we have

|U(x, t)| ≤
∫

Γ
|G(y)P (−Dy)E(x− y, t)|dy

≤ C

∫
Γ
(1 + |y|)M+2n|P (−Dy)E(x− y, t)| 1

(1 + |y|)2ndy.

For the heat kernel we have the following estimate [7]:

|DαE(x, t)| ≤ α!

(4πt)n/2

(
en

2t|α|

)|α|/2
exp

(
−x2

8t

)
.

So

|U(x, t)|

≤ C1t
−N (1 + |x|)M+2n

∫
Γ
(1 + |x− y|)M+2ne−

|x−y|2
16t e−

|x−y|2
16t

1

(1 + |y|)2ndy

≤ C2t
−N (1 + |x|)M+2ne−

dis(x,Γ)2

16t

∫
Γ

1

(1 + |y|)2ndy

≤ C3t
−N (1 + |x|)M+2ne−

dis(x,Γ)2

16t .

Hence we have

|U(x, t)| ≤ Ct−N (1 + |x|)M+2nexp

(
−dis(x,Γ)2

16t

)
.
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Now we will prove the converse. Assume that U(x, t) ∈ C∞(Rn × (0,∞))

satisfies (4) and (6). Then

|U(x, t)| ≤ Ct−N (1 + |x|)Me−
dis(x,Γ)2

16t

≤ Ct−N (1 + |x|)M , (0 < t < 1, x ∈ R
n).

By Theorem 3.1, there exists T ∈ S ′ such that

U(x, t) = 〈Ty, E(x− y, t)〉.

Let ϕ(x) ∈ D(Rn) and K = supp(ϕ) ⊂ R
n\Γ. Then∣∣∣∣

∫
Rn

U(x, t)ϕ(x)dx

∣∣∣∣ =

∣∣∣∣
∫

supp ϕ
U(x, t)ϕ(x)dx

∣∣∣∣
≤ Ct−N

∫
K

(1 + |x|)M |ϕ(x)|e−
dis(x,Γ)2

16t dx.

Set δ := dis(K,Γ) > 0. Then for some constant C1 > 0 we have∣∣∣∣
∫
Rn

U(x, t)ϕ(x)dx

∣∣∣∣ ≤ Ct−N

∫
K

(1 + |x|)M |ϕ(x)|e−
dis(K,Γ)2

16t dx

≤ C1t
−Ne−

δ2

16t .

So we have

lim
t→0+

∫
Rn

U(x, t)ϕ(x)dx = 0.

On the other hand, by (5), U(x, t) → T, (t → 0+) in S ′. Hence we have

supp T ⊂ Γ. �

For (6) in Theorem 3.4, we have the following lemma:

Lemma 3.5. Let U(x, t) ∈ C∞(Rn × (0,∞)) and satisfies

(∂t − 
)U(x, t) = 0. Then condition (6) in Theorem 3.4 is equivalent to

the following conditions:

There exist some positive constants N, M and C such that(7)

|U(x, t)| ≤ Ct−N (1 + |x|)M , (0 < t < 1, x ∈ R
n),

and U(x, t)→ 0, (t→ 0+), uniformly on all compact sets in R
n\Γ.



A Characterization of Tempered Distributions 81

Proof. (6)⇒ (7) is obvious. Now we suppose (7). By the estimate in

(7) and Theorem 3.1, there exists T ∈ S ′ such that U(x, t) = 〈Ty, E(x−y, t)〉.
Let ϕ(x) ∈ D(Rn), supp (ϕ) ⊂ R

n\Γ. Then by (2) in Theorem 3.1 and the

assumption in (7), we have

〈T, ϕ〉 = lim
t→0+

∫
Rn

U(x, t)ϕ(x)dx = 0.

It means that T ∈ S ′
Γ
. By Theorem 3.4, we have (6). �

By Lemma 3.5, we have the following corollary:

Corollary 3.6. Let T ∈ S ′
Γ

and U(x, t) = 〈Ty, E(x − y, t)〉. Then

U(x, t) ∈ C∞(Rn × (0,∞)) satisfies the following conditions:

(∂t −
)U(x, t) = 0.(8)

U(x, t) −→ T in S ′(Rn) (t→ 0+).(9)

There exist some positive constants N, M and C such that(10)

|U(x, t)| ≤ Ct−N (1 + |x|)M , (0 < t < 1, x ∈ R
n)

and U(x, t)→ 0, (t→ 0+), uniformly on all compact sets in R
n\Γ.

Conversely, for a function U(x, t) ∈ C∞(Rn × (0,∞)) satisfying (8) and

(10), there exists a unique T ∈ S ′
Γ

such that 〈Ty, E(x− y, t)〉 = U(x, t).

4. Paley-Wiener’s Theorem for S ′
Γ

In [2], S.Lee and S.-Y.Chung proved Paley-Wiener’s theorem for distri-

butions with compact support by the heat kernel method. In this section,

we give a new proof of Paley-Wiener’s theorem for S ′
Γ

by the similar way.

Γ denotes a proper open convex cone in this section.

Definition 4.1 ([3], [11]). For T ∈ S ′
Γ
, putting ζ = ξ + iη ∈ R

n +

i(Γ
′
)◦, we define the Laplace transform of T by

LF(T )(ξ + iη) := (2π)−n/2〈Tx, e
iζx〉.
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The right hand side means 〈Tx, e
iζx〉 = 〈Tx, χ(x)eiζx〉 where χ(x) ∈ C∞(Rn)

which satisfies

χ(x) =

{
1 , x ∈ Γε

0 , x /∈ Γ2ε, ε > 0.

First we need the following lemma:

Lemma 4.2. For every ϕ ∈ D(Rn), let

Vη(x, t) = e−tη2−ηx(E(x, t) ∗ ϕ(−x))

= e−tη2−ηx

∫
Rn

E(x− y, t)ϕ(−y)dy, 0 < t < 1.

Then for every N ≥ 0 and β ∈ N
n
0 , there exists a constant C ≥ 0 such that

sup
x∈Rn

|(1 + |x|2)N∂β
x (Vη(x, t)− ϕ(−x)e−ηx)| ≤ C

√
t, 0 < t < 1.

Proof.

Vη(x, t)− ϕ(−x)e−ηx

= e−tη2

∫
Rn

E(x− y, t)e−η(x−y)ϕ(−y)e−ηydy − ϕ(−x)e−ηx

= e−tη2

∫
Rn

E(u, t)e−ηuϕ(u− x)e−η(x−u)du

− e−tη2
ϕ(−x)e−ηx

∫
Rn

E(u, t)e−ηudu

= e−tη2

∫
Rn

E(u, t)e−ηu(ϕ(−(x− u))e−η(x−u) − ϕ(−x)e−ηx)du

= e−tη2

∫
Rn

E(u, t)e−ηu(φ(x− u)− φ(x))du,

where φ(x) = ϕ(−x)e−ηx. Applying the mean value theorem and Peetre’s

inequality [2]

(1 + |ξ|2)s(1 + |η|2)−s ≤ 2|s|(1 + |ξ − η|2)|s|
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for s ∈ R and ξ, η ∈ R
n, we obtain

(1 + |x|2)N |∂βφ(x− u)− ∂βφ(x)|
≤ sup

0<θ<1
(1 + |x|2)N |∇∂βφ(x− θu)||u|

≤ sup
0<θ<1

C(1 + |x|2)N (1 + |x− θu|2)−N |u|

≤ C2N (1 + |u|2)N |u|.

Then for every N > 0 and β ∈ N
n
0 and 0 < t < 1, we have

(1 + |x|2)N |∂βVη(x, t)− ∂βφ(x)|

= (1 + |x|2)Ne−tη2

∣∣∣∣
∫
Rn

E(u, t)e−ηu(∂βφ(x− u)− ∂βφ(x))du

∣∣∣∣
≤ e−tη2

∫
Rn

E(u, t)e−ηu(1 + |x|2)N |∂βφ(x− u)− ∂βφ(x)|du

≤ C2Ne−tη2

∫
Rn

E(u, t)e−ηu(1 + |u|2)N |u|du

= C
2N

πn/2
e−tη2

∫
Rn

e−v2
e−

√
4tηv(1 + 4tv2)N

√
4t|v|dv

≤ C1

√
4t

∫
Rn

e−(v+
√
tη)2(1 + 4v2)N |v|dv

≤ C1

√
4tetη

2

∫
Rn

e−
1
2
v2

(1 + 4v2)N |v|dv

≤ C2

√
t.

So we obtain the lemma. �

By Lemma 4.2, we have the following corollary:

Corollary 4.3. Vη(x, t)→ ϕ(−x)e−ηx in S(Rn), as t→ 0+.

Theorem 4.4 (Paley-Wiener [8], [12]). Suppose that Γ is a proper

open convex cone in R
n. If F (ζ) = F(e−ηxT )(ξ) with some T ∈ S ′

Γ
and

ζ = ξ + iη ∈ R
n + i(Γ

′
)◦, then F (ζ) ∈ H(Rn + i(Γ

′
)◦). Furthermore there

exists an m > 0 and for every cone C satisfying {η ∈ C; η �= 0} ⊂ (Γ
′
)◦,

there exists a constant MC ≥ 0 such that

|F (ζ)| ≤ MC(1 + |ζ|)m(1 + |η|−m), ζ ∈ R
n + iC.(11)
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Conversely, for F (ζ) ∈ H(Rn + i(Γ
′
)◦) satisfying the conditions (11), there

exists T ∈ S ′
Γ

such that

F (ζ) = F(e−ηxT )(ξ).

Proof. For the necessity, we refer the reader to [11].

Now we will prove the sufficiency. Let ζ = ξ + iη ∈ R
n + i(Γ

′
)◦. We set

U(x, t) = (2π)−n/2

∫
Rn

F (ζ)e−tζ2
e−iζxdξ, t > 0.(12)

It is obvious that

(∂t −
)U(x, t) = 0.

We notice that U(x, t) is independent of η ∈ (Γ
′
)◦. Then we have

|U(x, t)|

≤ (2π)−n/2

∫
Rn

|F (ζ)|e−tξ2+tη2+ηxdξ

≤ Metη
2+ηx(1 + |η|−m)

∫
Rn

(1 + |ξ + iη|)me−tξ2dξ

≤ Metη
2+ηx(1 + |η|−m)

∫
Rn

(1 + |ξ1|+ |η1|+ · · ·+ |ξn|+ |ηn|)me−tξ2dξ

≤ Metη
2+ηx(1 + |η|−m)

×
∫
Rn

{(1 + |ξ1|)(1 + |η1|) · · · (1 + |ξn|)(1 + |ηn|)}me−tξ2dξ

≤ 22mnMetη
2+ηx(1 + |η|−m)

×
∫
Rn

{(1 + |ξ1|2)(1 + |η1|2) · · · (1 + |ξn|2)(1 + |ηn|2)}me−tξ2dξ

= M1e
tη2+ηx(1 + |η|−m){(1 + |η1|2) · · · (1 + |ηn|2)}m

×
∫
Rn

{(1 + |ξ1|2) · · · (1 + |ξn|2)}me−tξ2dξ

= M2t
−(m+1/2)netη

2+ηx(1 + |η|−m){(1 + |η1|2) · · · (1 + |ηn|2)}m.



A Characterization of Tempered Distributions 85

Let |x| ≥ 1. For η of (12), we choose η′′ ∈ (Γ
′
)◦ such that |η′′| = 1

|x| . For

0 < t < 1, we have

|U(x, t)|
≤ M2t

−(m+1/2)net|η
′′|2+|η′′||x|(1 + |η′′|−m){(1 + |η′′1|2) · · · (1 + |η′′n|2)}m

≤ M3t
−(m+1/2)n(1 + |x|)m.

Let |x| ≤ 1. For η of (12), we choose η′′ ∈ (Γ
′
)◦ such that |η′′| = 1. For

0 < t < 1, we have

|U(x, t)| ≤ M ′′t−(m+1/2)n.

Therefore, we have

|U(x, t)| ≤ M ′′t−(m+ 1
2
)n(1 + |x|)m, (0 < t < 1, x ∈ R

n).

By Theorem 3.1, there exists T ∈ S ′ such that U(x, t) = 〈Ty, E(x− y, t)〉.

Let x0 /∈ Γ. By Proposition 2.2, there exists a η0 ∈ (Γ
′
)◦ with |η0| = 1

such that η0x0 = −2δ < 0. Then we have

sup
x∈B(x0,δ)

η0x = −2δ + δ = −δ.

Let η′ = η0/
√

t with 0 < t < 1 and ϕ ∈ D(Rn) satisfying supp(ϕ) ⊂
B(x0, δ). Then we have∫

Rn

|U(x, t)||ϕ(x)|dx

≤
∫
B(x0,δ)

{∫
Rn

|F (ξ + iη′)|e−tξ2+tη′2eη
′xdξ

}
|ϕ(x)|dx

≤ M1

∫
B(x0,δ)

e
η0x√

t |ϕ(x)|
∫
Rn

(1 + |ξ + iη′|)me−tξ2dξdx

≤ M22
2mne

− δ√
t

×
∫
Rn

{(1 + |ξ1|2)(1 + |η1|2) · · · (1 + |ξn|2)(1 + |ηn|2)}me−tξ2dξ

≤ M3t
−mne

− δ√
t

∫
Rn

(1 + |ξ1|2)m(1 + |ξ2|2)m · · · (1 + |ξn|)me−tξ2dξ

≤ Mt−(2mn+n/2)e
− δ√

t .
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So we have

〈T, ϕ〉 = lim
t→0+

∫
Rn

U(x, t)ϕ(x)dx = 0.

Since x0 /∈ Γ is arbitrary, we have T ∈ S ′
Γ
.

Let ζ = ξ + iη ∈ R
n + i(Γ

′
)◦. For ϕ(x) ∈ D(Rn), we have

〈U(x, t), ϕ(x)〉 =

〈∫
Rn

F (ζ)e−tζ2
e−iζxdξ, ϕ(x)

〉

= 〈F (ζ), e−tζ2LF(ϕ(x))(−ζ)〉
= 〈F (ζ),LF(E(x, t))(ζ)× LF(ϕ(x))(−ζ)〉
= 〈F (ζ),LF(E(x, t) ∗ ϕ(−x))(ζ)〉
= etη

2〈F (ζ),F(e−tη2
(E(x, t) ∗ ϕ(−x))e−ηx)(ξ)〉

= etη
2〈F(F (ζ)), e−tη2−ηx(E(x, t) ∗ ϕ(−x))〉.

By Corollary 3.6,

〈T, ϕ〉 = lim
t→0+

〈U(x, t), ϕ(x)〉

= lim
t→0+

etη
2〈F(F (ζ)), e−tη2−ηx(E(x, t) ∗ ϕ(−x))〉

= lim
t→0+

〈F(F (ζ)), e−tη2−ηx(E(x, t) ∗ ϕ(−x))〉.

By Corollary 4.3,

lim
t→0+

〈F(F (ζ))(x), e−tη2−ηx(E(x, t) ∗ ϕ(−x))〉

= 〈F(F (ζ))(x), ϕ(−x)e−ηx〉.

Therefore

〈T, ϕ〉 = 〈F(F (ζ))(x), ϕ(−x)e−ηx〉
= 〈F (ζ),F−1(ϕ(x)eηx)(ξ)〉

⇔ 〈T, ϕ(x)e−ηx〉 = 〈F (ζ),F−1(ϕ(x))(ξ)〉
⇔ 〈e−ηxT, ϕ(x)〉 = 〈F (ζ),F−1(ϕ(x))(ξ)〉
⇔ 〈F(e−ηxT ), ϕ〉 = 〈F (ζ), ϕ〉. �
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5. Edge-of-the-Wedge Theorem

In this section, we give a new proof of Edge-of-the-Wedge theorem.

First we see the following lemma:

Lemma 5.1. Let η ∈ (Γ
′
)◦, ϕ(x) ∈ D(Rn) and χ(x) be a function in

Definition 4.1 for Γ. For every N ≥ 0 and β ∈ N
n
0 , there exists a constant

C such that

sup
x∈Rn

(1 + |x|2)N |∂β(χ(x)e−ηxF(ϕ)(x)− χ(x)F(ϕ)(x))|

≤ C|η|, (|η| < 1).

Proof. For every N ≥ 0 and β ∈ N
n
0 ,

(1 + |x|2)N |∂β(χ(x)e−ηxF(ϕ)(x)− χ(x)F(ϕ)(x))|
= (1 + |x|2)N |∂β{χ(x)F(ϕ)(x)(e−ηx − 1)}|

≤
∑

0≤k≤β

(
β

k

)
(1 + |x|2)N |∂β−kF(ϕ)(x)||∂k(χ(x)(e−ηx − 1))|

=
∑

0≤k≤β

(
β

k

)
(1 + |x|2)N+1|∂β−kF(ϕ)(x)|

×{|∂kχ(x)(e−ηx − 1) +
∑

1≤l≤k

(
k

l

)
∂k−lχ(x)∂l(e−ηx − 1)|} 1

1 + |x|2

≤
∑

0≤k≤β

(
β

k

)
(1 + |x|2)N+1|∂β−kF(ϕ)(x)|

×{|∂kχ(x)e−θηxηx|+
∑

1≤l≤k

(
k

l

)
|∂k−lχ(x)||η|le−ηx} 1

1 + |x|2 ,

where some θ ∈ (0, 1). Since F(ϕ)(x) ∈ S, we have

(1 + |x|2)N |∂β(χ(x)e−ηxF(ϕ)(x)− χ(x)F(ϕ)(x))| ≤ C|η|. �
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By the above lemma, we have the following corollary:

Corollary 5.2.

χ(x)e−ηxF(ϕ)(x) → χ(x)F(ϕ)(x), η → 0, η ∈ C, in S,

where C is a cone in Theorem 4.4.

Proposition 5.3. Let Γ be a proper open convex cone with vertex at

0 and let F (ζ) be a holomorphic function in R
n + i(Γ

′
)◦. Suppose that there

exists a constant m > 0 and that for every cone C satisfying C ∩{η �= 0} ⊂
(Γ

′
)◦, there exists a constant MC ≥ 0 such that

|F (ζ)| ≤ MC(1 + |ζ|)m(1 + |η|−m), ζ ∈ R
n + iC.

Then lim
η→0
η∈C

F (ξ + iη) converges as η → 0, η ∈ C in S ′.

Proof. By Theorem 4.4, there exists T ∈ S ′
Γ

such that

F (ζ) = F(e−ηxT )(ξ).(13)

Let ϕ(x) ∈ D(Rn). By (13),

〈F (ξ + iη), ϕ(ξ)〉 = 〈T, χ(x)e−ηxF(ϕ)(x)〉.

By Corollary 5.2,

lim
η→0
η∈C

〈F (ξ + iη), ϕ(ξ)〉 = 〈T, χ(x)F(ϕ)(x)〉

= 〈F(χ(x)T )(ξ), ϕ(ξ)〉.

Since T ∈ S ′, χ(x)T ∈ S ′ and F(χ(x)T )(ξ) ∈ S ′. Therefore,

lim
η→0
η∈C

F (ξ + iη) = F(χ(x)T )(ξ), in S ′. �

Theorem 5.4 (Edge-of-the-Wedge Theorem). Let Γ1, Γ2 be proper

open convex cones with vertex at 0 and let Fj(ζ) be holomorphic functions

in R
n + i(Γj

′
)◦, j = 1, 2. Suppose that there exist constants mj > 0 and
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for every cones Cj satisfying Cj ∩ {η �= 0} ⊂ (Γ
′
j)

◦, there exist constants

MCj ≥ 0 such that

|Fj(ζ)| ≤ MCj (1 + |ζ|)mj (1 + |η|−mj ), ζ ∈ R
n + iCj , j = 1, 2.

If

lim
η→0
η∈C1

F1(ξ + iη) = lim
η→0
η∈C2

F2(ξ + iη), in S ′,(14)

then there exists F (ζ) ∈ H(Rn + i(ch(Γ1
′ ∪ Γ2

′
))◦) such that

F (ζ)|
Rn+i(Γ1

′
)◦ = F1(ζ),

F (ζ)|
Rn+i(Γ2

′
)◦ = F2(ζ).

Proof. Let ϕ(x) ∈ D(Rn). By Proposition 5.3 and assumption (14),

〈F(χ1(x)T1)(ξ), ϕ(ξ)〉 = lim
η→0
η∈C1

〈F1(ξ + iη), ϕ(ξ)〉

= lim
η→0
η∈C2

〈F2(ξ + iη), ϕ(ξ)〉

= 〈F(χ2(x)T2)(ξ), ϕ(ξ)〉.

Here T1 ∈ S ′
Γ1

, T2 ∈ S ′
Γ2

are tempered distributions for F1(ζ), F2(ζ) in

Theorem 4.4, and χ1(x), χ2(x) be functions for Γ1, Γ2 in Definition 4.1

respectively.

Therefore, we have χ1(x)T1(x) = χ2(x)T2(x) =: T (x) and suppT ⊂
(Γ1 ∩ Γ2). By Remark 2.2 and Theorem 4.4,

F (ζ) ∈ H(Rn + i(ch(Γ1
′ ∪ Γ2

′
))◦),

F (ζ)|
Rn+i(Γ1

′
)◦ = F1(ζ),

F (ζ)|
Rn+i(Γ2

′
)◦ = F2(ζ). �
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7-1 Kioichô, Chiyoda-ku
Tokyo, Japan
E-mail: k yosino@mm.sophia.ac.jp


