Algebraic Property of Dilatation Constants of Piecewise Linear Structures of Anosov Foliations

By Hiroyuki Minakawa

Abstract. Let ϕ_t be an orientable Anosov flow of a closed 3manifold and \mathcal{F}^s , the stable foliation of the flow. If \mathcal{F}^s has a λ piecewise linear structure, then we show that it is equivalent to the one obtained by using a surface of section S of the flow. Then we prove, for a positive integer p, λ^p is equal to the dilatation of the first return mapping of S which is a pseudo-Anosov diffeomorphism of a compact surface with boundary. Therefore, λ is a zero of a monic reciprocal polynomial with integral coefficients. In particular, λ is not transcendental and this gives a negative answer to the question raised in [10]. We also comment on the Ghys inequality for the group $PL_{\lambda}(S^1)$ of all orientation preserving piecewise linear homeomorphisms whose derivatives are integral powers of λ at each differentiable point.

§0. Introduction

Let Σ_g be a closed orientable surface of genus $g \geq 2$ equipped with a metric with the constant curvature -1. Since the universal covering of Σ_g is the Poincaré disk, there is a holonomy homomorphism

$$\pi_1(\Sigma_q) \to PSL(2, \mathbf{R}).$$

By identifying the circle at infinity of the Poincaré disk with $S^1 = \mathbf{R}/\mathbf{Z}$, it induces a homomorphism

$$\Phi_q: \pi_1(\Sigma_q) \to PSL(2, \mathbf{R}) \subset \mathrm{Diff}^\infty_+(S^1).$$

For any $\lambda > 1$, let $PL_{\lambda}(S^1)$ be the group of all orientation preserving piecewise linear homeomorphisms h of S^1 such that $h'(x) \in \{\lambda^n \mid n \in \mathbb{Z}\}$ at every differentiable point. If there exists $\lambda > 1$ and an orientation preserving homeomorphism h of S^1 such that, for any $\gamma \in \pi_1(\Sigma_g)$,

$$h \circ \Phi_g(\gamma) \circ h^{-1} \in PL_\lambda(S^1),$$

¹⁹⁹¹ Mathematics Subject Classification. 58F18, 58F25.

then Φ_g is said to be λ -piecewise linearizable. For the following numbers $\lambda = \lambda_g, \nu_g, \Phi_g$ is λ -piecewise linearizable.

1)([10],[13]) λ_g is the largest eigen value of the matrix A_g , where

$$A_g = \begin{pmatrix} 2g^2 - 1 & 2g^2 + 2g \\ 2g^2 - 2g & 2g^2 - 1 \end{pmatrix}.$$

2)([4]) ν_g is the largest eigen value of the matrix B_g , where

$$B_g = \begin{pmatrix} 4g^2 - 2g - 1 & 2g^2 - 2g \\ 8g^2 - 2 & 4g^2 - 2g - 1 \end{pmatrix}.$$

All these examples are constructed by using a surface of section (also called a Birkhoff section) S of a geodesic flow on unit tangent bundles $T_1\Sigma_g$. Indeed, a surface of section S gives rise to a cross section \hat{S} of the blow-up flow of the geodesic flow along a finite number of closed orbits which are contained in the boundary of the surface of section([8],[9]). Then the first return map f of \hat{S} is a pseudo-Anosov diffeomorphism of compact surface \hat{S} with boundary([7]). Then, for the dilatation λ of f, the stable foliation of the geodesic flow has a transversely λ -piecewise linear structure (see §1). If a λ -piecewise linearization of Φ_g is obtained in such a way, then the number λ must be algebraic. Then we have the following natural question which was first raised in [10].

QUESTION. Is there a transcendental number λ such that Φ_g is λ -piecewise linearizable for some integer $g \geq 2$?

In this paper, we prove the following theorem which gives the negative answer to Question. A polynomial P(x) of degree *n* is called *reciprocal* if $x^n P(\frac{1}{x}) = P(x)$.

THEOREM 0.1. Let Φ_g $(g \ge 2)$ be as above. If Φ_g is λ -piecewise linearizable, then there exists a monic reciprocal polynomial P(x) with integral coefficients such that λ is a zero of P(x). In particular, for any transcendental or rational number λ , Φ_g is not λ -piecewise linearizable.

This theorem is a special case of the following theorem, because the geodesic flow of a hyperbolic closed surface is an orientable transitive Anosov

flow(see §1). An Anosov flow ϕ_t of a closed 3-manifold M is called *orientable* if M, the stable foliation \mathcal{F}^s , and the unstable foliation \mathcal{F}^u are all orientable. The flow ϕ_t is *transitive* if every leaf of the stable foliation \mathcal{F}^s is dense in M. It is known that every leaf of \mathcal{F}^s is dense in M if it has a transversely piecewise linear structure (see [18]). Then the flow ϕ_t is transitive in that case.

THEOREM 0.2. Let ϕ_t be an orientable Anosov flow of a closed 3manifold with the stable foliation \mathcal{F}^s . If \mathcal{F}^s has a transversely λ -piecwise linear structure, λ is a zero of a monic reciprocal polynomial P(x) with integral coefficients.

The author would like to thank the referee for his usuful comments and advices.

§1. A Blowup Flow of an Anosov Flow

A smooth flow ϕ_t of a closed 3-manifold M is Anosov if there exists a continuous splitting $TM = E^0 \oplus E^s \oplus E^u$ of the tangent bundle TM of M into $D\phi_t$ invariant one dimensional subbundles with the following properties. Given a Riemannian metric, there are constants $a \ge 1$ and b > 0 such that 1) E^0 is tangent to the flow,

2) $||D\phi_t(v)|| \le ae^{-bt} ||v||$ for any $v \in E^s, t \ge 0$, and

3) $||D\phi_{-t}(v)|| \le ae^{-bt}||v||$ for any $v \in E^u, t \ge 0$.

Both subbundles $E^0 \oplus E^s$ and $E^0 \oplus E^u$ are integrable, producing codimension one foliations \mathcal{F}^s and \mathcal{F}^u which are called a *stable foliation* and an *unstable foliation* of the flow ([1]). An Anosov flow is called orientable if M, E^0 , E^s , and E^u are all orientable.

Let ϕ_t be a smooth orientable Anosov flow of a closed 3-manifold Mand \mathcal{F}^s (resp. \mathcal{F}^u) the stable (unstable) foliation of ϕ_t . Let γ be a closed orbit of ϕ_t . A new flow $\hat{\phi}_t : \hat{M} \to \hat{M}$ is defind as follows, which is called the blowup flow of ϕ_t along γ ([6]). A compact manifold \hat{M} with boundary is obtained by replacing each point $x \in \gamma$ by the circle of normal directions

$$\{T_x M/T_x \gamma - \{0\}\}/\mathbf{R}_{>0} \cong S^1.$$

Then γ is replaced by a torus T_{γ} . The flow $\hat{\phi}_t$ is conjugate to ϕ_t on $M - \gamma$ and defined by $D\phi_t$ on T_{γ} . On T_{γ} , $\hat{\phi}_t$ has four closed orbits, 2 attracting

Hiroyuki Minakawa

and 2 repelling. A foliation $\hat{\mathcal{F}}^{\epsilon}$ ($\epsilon = s, u$) is defined by $\hat{\mathcal{F}}^{\epsilon} = \mathcal{F}^{\epsilon}$ on $M - \gamma$ and T_{γ} is contained in a singular leaf of $\hat{\mathcal{F}}^{\epsilon}$. The flow $\hat{\phi}_t$ is an example of a pseudo-Anosov flow of a compact 3-manifold with boundary and has a Markov partition. When $\hat{\phi}_t$ has a cross section S, a first cohomology class u_S is defined as follows. Suppose an oriented loop c intersects S transversely. At any intersection point p, define $\delta_p = 1$ (resp. -1) if c passes through S at p in the same (resp. opposite) direction of the flow, and put $u_S(c) = \sum_{p \in c \cap S} \delta_p$. Then u_S determines a first cohomology class of \hat{M} denoted by the same symbol. Then we have the following theorem due to D.Fried ([8]).

THEOREM 1.1. For a cohomology class $u \in H^1(\hat{M}, \mathbb{Z})$, there is a cross section S of $\hat{\phi}_t$ such that $u = u_S$, if and only if u([c]) > 0 for any closed orbit c, where [c] is the first homology class represented by the closed orbit c oriented in the flow direction.

We note that this theorem is true for any blow-up flow $\hat{\phi}_t$ of any orientable transitive Anosov flow ϕ_t , because such flow ϕ_t has a surface of section ([9]).

When ϕ_t has a cross section S, the first return mapping f of S is a pseudo-Anosov diffeomorphism of the compact surface with boundary ([7]). That is, there exist measured foliations (F^s, μ^s) (F^u, μ^u) with common prong singularities and a real number $\lambda > 1$ such that

1) F^{ϵ} is preserved by f for $\epsilon = s, u$,

2) F^s is transverse to F^u outside the singularities and the boundary of S,
3) f_{*}μ^s = λ⁻¹μ^s, f_{*}μ^u = λμ^u.

Here, $f_*\mu^{\epsilon}(A) = \mu^{\epsilon}(f^{-1}(A))$ for any transverse arc A of F^{ϵ} ($\epsilon = s, u$). In the case above, we can take $F^{\epsilon} = \hat{\mathcal{F}}^{\epsilon}|S|$ ($\epsilon = s, u$) by a standard argument constracting a Markov partition([5]). Then μ^{ϵ} gives rise to a transversely Euclidean structure of F^{ϵ} . By the condition 3) above, this structure can be extended to a transversely λ -affine structure of $\hat{\mathcal{F}}^{\epsilon}|(\hat{M} - \partial \hat{M})|$ ([10]). Then we obtain a transversely λ -piecewise linear structure of \mathcal{F}^{ϵ} by recollapsing \hat{M} to M. See §2 for the transverse structure of foliations of codimension one.

Note that all explained above is valid for a blowup flow of π_t along the union of a finite number of closed orbits.

§2. Transversely Piecewise Linear Foliations

An orientation preserving homeomorphism g of \mathbf{R} is called *affine* if there are real numbers a > 0, b such that g(x) = ax + b for any $x \in \mathbf{R}$ and called λ -affine when we can chose $a = \lambda^n$ for some $\lambda \ge 1$ and integer n. An orientation preserving homeomorphism g of \mathbf{R} is called *piecewise linear* if there exists a sequence $\{x_i\}_{i=-\infty}^{\infty}$ of \mathbf{R} such that

1) $x_i < x_{i+1}$ for any i,

2) $x_i \to \pm \infty$ if $i \to \pm \infty$,

3) $g|[x_i, x_{i+1}]|$ is a restriction of an affine homeomorphism.

A piecewise linear homeomorphism g of \mathbf{R} is called λ -piecewise linear if the derivative g'(x) is an integral power of λ for any differentiable point x of g.

Recall that a codimension one foliation \mathcal{F} on a 3-manifold M is a division of M by codimension one immersed submanifolds, called leaves which is defined by a family of local C^0 submersions $f_i: U_i \to \mathbf{R}$ such that $\{U_i\}$ is a open covering of M and that, for any $x \in U_i$, $f_i^{-1}(f_i(x))$ is contained in a leaf of \mathcal{F} , and a family of local homeomorphisms, called transition functions

$$g_{ij}: f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$$

such that $f_i = g_{ij}f_j$ on $U_i \cap U_j$.

A codimension one foliation is said to have a transeversely affine (resp. λ -affine, piecewise linear, λ -piecewise linear) structure if we can choose each transition function g_{ij} as the restrictions of an affine (resp. λ -affine, piecewise linear, λ -piecewise linear) homeomorphism of **R**. A transversely 1-affine structure is usually called a transversely Euclidean structure. The next lemma is remarked in [18, remark 2.1].

LEMMA 2.1. Let \mathcal{F} be a transversely piecewise linear foliation on a closed manifold M. Then there exists a compact subset K contained in the union of a finite number of leaves such that $\mathcal{F}|(M-K)$ is a transeversely affine foliation.

The next theorem is the most important to prove Theorem 0.2.

THEOREM 2.2. Let ϕ_t be an Anosov flow with the weak stable foliation \mathcal{F}^s . If \mathcal{F}^s has a transversely piecewise (resp. λ -piecewise) linear structure, then there exist a finite munber of closed orbits $\gamma_1, \dots, \gamma_n$ such that the

Hiroyuki Minakawa

restriction $\mathcal{F}^s|(M - \Gamma)$ ($\Gamma = \bigcup_{i=1}^n \gamma_i$) has a transversely affine (resp. λ -affine) structure.

PROOF. We prove in a piecewise linear case, because the same proof is valid for a λ - piecewise linear case. For a transversely piecewise linear structure of \mathcal{F} , take a compact set K as in Lemma 2.1 and fix it. Since we consider in the orientable category, then every leaf of \mathcal{F} is homeomorphic to \mathbf{R}^2 or $S^1 \times \mathbf{R}$. Suppse L_1, \dots, L_n are the leaves such that $L_i \cap K \neq \emptyset$ for any i and $K \subset \bigcup_{i=1}^n L_i$. If L_i is homeomorphic to \mathbf{R}^2 , then take an embedded compact 2-disk K_i in L such that $L_i \cap K \subset \operatorname{int} K_i$. If L_i is homeomorphic to $S^1 \times \mathbf{R}$, then take an embedded compact annulus K_i in L_i such that $L_i \cap K \subset \operatorname{int} K_i$ and that the unique closed orbit of ϕ_t in L_i is contained in int K_i . Put $K' = \bigcup_{i=1}^n K_i$ and let $\{\gamma_1, \dots, \gamma_n\}$ be the set of closed orbits of ϕ_t contained in K'. Then $\mathcal{F}^s | M - K'$ also has a transversely affine structure. That is, there is a C^0 devoloping submersion

$$\mathcal{D}: \widetilde{M} - K' \to \mathbf{R}$$

and a holonomy homomorphism

$$h: \pi_1(M - K') \to \operatorname{Aff}_+(\mathbf{R})$$

satisfying the equivariant condition

$$\mathcal{D}(\gamma x) = h(\gamma)(\mathcal{D}(x))$$

for any $\gamma \in \pi_1(M - K')$ and any $x \in \mathbf{R}$ ([14]). Here, the symbol tilder means a universal covering space and $\operatorname{Aff}_+(\mathbf{R})$ denotes the group of all affine homeomorphisms of \mathbf{R} . It is well known that to give a transversely affine structure is equivalent to to give such pair (\mathcal{D}, h) as above. Since the inclusion map $\iota : M - K' \to M - \Gamma$ ($\Gamma = \bigcup_{i=1}^n \gamma_i$) induces an isomorphism $\iota_* : \pi_1(M - K') \to \pi_1(M - \Gamma)$, then $\widetilde{M - K'}$ is naturally included in $\widetilde{M - \Gamma}$. Then we easily see that there exists a natural extension

$$\mathcal{D}_{\Gamma}: \widetilde{M} - \Gamma \to \mathbf{R}$$

of \mathcal{D} which is constant on each leaf of the lifted foliation of $\mathcal{F}^s|M-\Gamma$. Then it turns out that the pair $(\mathcal{D}_{\Gamma}, h \circ \iota_*^{-1})$ is equivariant. This complete the proof. \Box

§3. Proof of Theorem 0.2

Let ϕ_t be a smooth orientable Anosov flow on a closed 3-manifold M and \mathcal{F}^s (resp. \mathcal{F}^u) the stable (unstable) foliation of the flow. By Theorem 2.2, there is a finite number of closed orbits $\gamma_1, \dots, \gamma_n$ of ϕ_t such that $\mathcal{F}^s|(M-\Gamma)$ $(\Gamma = \bigcup_{i=1}^{n} \gamma_i)$ has an transversely λ -affine structure. That is, there exist a developing map $\mathcal{D}: \widetilde{M-\Gamma} \to \mathbf{R}$ and a holonomy homomorphism h: $\pi_1(M-\Gamma) \to \operatorname{Aff}_{\lambda}(\mathbf{R})$ satisfying the equivariant condition, where $\operatorname{Aff}_{\lambda}(\mathbf{R})$ denotes the group of all λ -affine homeomorphisms of **R**. By taking the blowup along Γ to the normal directions, we obtain a flow $\hat{\phi}_t : \hat{M} \to \hat{M}$, the stable foliation $\hat{\mathcal{F}}^s$, and the unstable foliation $\hat{\mathcal{F}}^u$ of $\hat{\phi}_t$. Here, we may assume each γ_i is replaced by a torus T_{γ_i} . Define a homomorphism \hat{h} : $\pi_1(\hat{M}) \to \operatorname{Aff}_{\lambda}(\mathbf{R})$ as to be the composition of the inverse of an isomorphism $\iota_*: \pi_1(M - \Gamma) \to \pi_1(\hat{M})$ and h, where $\iota: M - \Gamma \to \hat{M}$ is the inclusion map. Then define a homomorphism $u: \pi_1(\hat{M}) \to \mathbf{Z}$ by $u(\alpha) = \log_{\lambda} \hat{h}(\alpha)'(0)$ for any $\alpha \in \pi_1(\hat{M})$. For any closed orbit γ of $\hat{\phi}_t$ oriented by the flow direction, $u([\gamma])$ is positive, since the leaf holonomy of \mathcal{F}^s is expanding along any closed orbit oriented in the flow direction, where $[\gamma]$ denotes the first integral homology class in $H_1(\hat{M}, \mathbf{Z})$ represented by the oriented loop γ . Then there exists a cross section \hat{S} of $\hat{\phi}_t$ such that $u_{\hat{S}} = u$ by Theorem 1.1. The first return mapping \hat{f} of \hat{S} is a pseudo-Anosov homeomorphism of the compact surface with boundary whose invariant measured foliations are $\hat{\mathcal{F}}^s | \hat{S}$ and $\hat{\mathcal{F}}^u|\hat{S}$. Then there exist a transverse measure $\hat{\mu}^s$ of $\hat{\mathcal{F}}^s|\hat{S}$ and the dilatation $\lambda_0 > 1$ such that $\mu(\hat{f}(\tau)) = \lambda_0 \mu(\tau)$ for any transversal τ of $\hat{\mathcal{F}}^s|\hat{S}$. On one hand, since u([c]) = 0 for any oriented loop c in \hat{S} , then the transversely affine structure of $\hat{\mathcal{F}}^s$ induces a transversely Euclidean structure of $\hat{\mathcal{F}}^s|\hat{S}$. So, this transversely Euclidean structure gives us a transverse measure ν of it. Since $\hat{\mathcal{F}}^s|\hat{S}$ is uniquely $\operatorname{ergodic}([7])$, then there exists a positive constant b such that $\mu = b\nu$. Now fix a small transverse arc A of $\mathcal{F}^s|(\hat{S} - \partial \hat{S})$. Then we have

$$\lambda_0 = \frac{\nu(f(A))}{\nu(A)} = \frac{\mu(f(A))}{\mu(A)} = \lambda^p$$

for some integer p, since ν is induced by the λ -affine structure of $\mathcal{F}^s|\hat{S}$. Now, since everything is orientable, then the dilatation of \hat{f} is the maximal modulous root of the characteristic polynomial $P_{f_*}(x)$ of the induced homomorphism f_* on $H_1(S)$ ([20], [7]), where $f: S \to S$ is a pseudo-Anosov homeomorphism obtained from \hat{f} by collapsing each boundary of \hat{S} to a point. Then we have $P_{f_*}(\lambda^p) = P_{f_*}(\lambda_0) = 0$, and $P_{f_*}(x)$ is a monic reciprocal polynomial since the characteristic polynomial of a symplectic matrix is monic and reciprocal. Thus, $P_{f_*}(x^p)$ is the required polynomial and this completes the proof. \Box

§4. Ghys Inequality for $PL_{\lambda}(S^1)$

Let Σ_g be a closed oriented hyperbolic surface of genus g. let $\operatorname{PL}_+(S^1)$ be the group of all orientation preserving piecewise linear homeomorphisms of $S^1 = \mathbf{R}/\mathbf{Z}$. Any homomorphism $\varphi : \pi_1(\Sigma_g) \to \operatorname{PL}_+(S^1)$ gives rise to an S^1 -bundle E_{φ} over Σ_g which is often called the suspension of φ . The Euler number $eu(\varphi)$ of φ is defined to be the Euler class of the associated S^1 -bundle E_{φ} evaluated on the fundamental class $[\Sigma_g]$. Any homomorphism satisfies the following Milnor-Wood inequality ([16], [21]):

$$|eu(\varphi)| \le 2g - 2$$

Conversely, for any integer m such that $|m| \leq 2g - 2$, there exists a homomorphism $\varphi : \pi_1(\Sigma_g) \to \operatorname{PL}_+(S^1)$ with $eu(\varphi) = m$ ([17]). Now let $\varphi : \pi_1(\Sigma_g) \to \operatorname{PL}_{\lambda}(S^1)$ with $|eu(\varphi)| = 2g - 2$ ($\lambda > 1$). By changing the orientation of Σ_g , we may assume that $eu(\varphi) = 2 - 2g$. Any $\varphi(\pi_1(\Sigma_g))$ orbit on S^1 is dense in S^1 ([18]). Then φ is conjugate to the holonomy homomorphism Φ_g ([15]), that is, Φ_g is λ -piecewise linearizable. So, such a number λ is restricted by Theorem 0.1.

THEOREM 4.1. Suppose that $\lambda > 1$ can not be a zero of any monic reciprocal polynomial with integral coefficients. Then, for any integer $g \ge 2$ and any homomorphism $\varphi : \pi_1(\Sigma_g) \to PL_{\lambda}(S^1)$, the following inequality holds:

$$|eu(\varphi)| < 2g - 2.$$

Let $\operatorname{PL}_{2,1}(S^1)$ be the group of all element f in $\operatorname{PL}_2(S^1)$ such that both f([0]) and all the non-differentiable points of f are containd in $\{p2^q \mid p, q \in \mathbb{Z}\}$ modulo \mathbb{Z} . The theorem was already proved for $\operatorname{PL}_{2,1}(S^1)$ essentially by the results in [11] and [12]. The theorem above is a large extension of it and the way of the proof is different from that of them.

References

- [1] Anosov, D. C., Geodisic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math. AMS Translations (1969).
- Bowen, R., Symbolic dyanamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460.
- [3] Brunella, M., On the topological equivalence between Anosov flows on threemanifold, Comment. Math. Helv. **67** (1992), 459–470.
- [4] Brunella, M., On the discrete Godbillon-Vey invariant and Dehn surgery on geodisic flows, preprint.
- [5] Casson, A. and S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts (1998).
- [6] Fenley, S., Anosov flows in 3-manifolds, Ann. of Math. **139** (1994), 79–115.
- [7] Fathi, A., Laudenbach, F. and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66–67 (1979).
- [8] Fried, D., The geometry of cross sections to flows, Topology **21**, no. 4 (1982), 353–371.
- [9] Fried, D., Transitive Anosov flows and pseudo-Anosov maps, Topology 22, no. 4 (1983), 299–303.
- [10] Ghys, E., Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, Grenoble 37, 4 (1987), 59–76.
- [11] Ghys, E., Classe d'Euler et minimal exceptionnel, Topology 26 (1987), 93– 105.
- [12] Ghys, E. and V. Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987), 185–239.
- [13] Hashiguchi, N., On the Anosov diffeomorphisms corresponding to geodesic flows on negatively curved closed surfaces, J. Fac. Sci. Univ. Tokyo 37 (1990), 485–494.
- [14] Matsumoto, S., Codimension one Anosov flows, Seoul National Univ. Lecture Note Series 27 (1995).
- [15] Matsumoto, S., Some remarks on foliated S^1 bundles, Invent. Math. **90** (1987), 343–358.
- [16] Milnor, J., On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1957–58), 215–223.
- [17] Minakawa, H., Piecewise linear homeomorphisms of a circle and foliations, Tôhoku Math. J. 43 (1991), 69–74.
- [18] Minakawa, H., Transversely piecewise linear foliation by planes and cylinders; PL version of a theorem of E. Ghys, Hokkaido Math. J. 20 (1991), 531–538.
- [19] Plante, J. F., Anosov flows, transversely affine foliations, and a conjecture of Verjovsky, J. London Math. Soc. 23 (1981), 359–362.
- [20] Rykken, E., Expanding factors for pseudo-Anosov homeomorphisms, Michigan Math. J. 46 (1999), 281–296.

[21] Wood, J. W., Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257–273.

(Received November 25, 2003)

Department of Mathematics Faculty of Education Yamagata University Koshirakawa-machi 1-4-12 Yamagata 990-8560, Japan E-mail: ep538@kdeve.kj.yamagata-u.ac.jp