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Abstract. In this paper, the possibility of embedding a non triv-
ial string (R3,K) in the trivial knot (S3, U) is investigated. Uncount-
ably many examples are given. The complementary space in S

3 of
the image of R

3 under the embedding is a continuum. Some well
known snake-like continua appear as these residual spaces. The 2-fold
coverings of R

3 branched over the strings involved are studied. As a
consequence, concrete descriptions of the p-adic solenoids are given,
and it is shown that the Whitehead continuum is homeomorphic to
Bing’s snake-like continuum without end points.

1. Introduction

A closed set C in a 3-manifold M is tame if there is a homeomorphism

of M in itself sending C onto a subcomplex of some locally finite simplicial

complex triangulating M . If there is no such homeomorphism, we say that

C is wild. A knot is a pair (S3, N), where N is a tame subspace of the

3-sphere S
3 homeomorphic to the 1-sphere S

1. A string is a pair (R3,K),

where K is a tame subspace of the real 3-space R
3 properly homeomorphic

to the real line R
1. A knot (S3, N) is the unknot if N bounds a tamely

embedded disk in S
3. A string (R3,K) is the trivial string if it bounds a

tamely embedded half-plane in R
3. We say that a string (R3,K) lies in the

unknot (S3,S1) if there is a (topological) embedding f : R
3 → S

3 mapping

K homeomorphically onto a subspace of S
1. A wild knot is a pair (S3, N),

where N is a wild subspace of the 3-sphere S
3 homeomorphic to the 1-sphere

S
1.
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Of course, the trivial string lies in the unknot, but is there a non trivial

string lying in the unknot? It turns out that this question has a positive

answer, and it uncovers a curious relationship between strings and continua.

A continuum is a compact, connected, metric space with more than one

point. A chain is a finite and linearly ordered collection of (no necessarily

connected) open sets such that two members of the collection intersect if

and only if they are consecutive. The chain is called an ε-chain if the links

of the chain are of diameter less than ε. A continuum is called snake-like

(SL in short) if for each positive number ε it can be covered by an ε-chain.

We call a point p of a SL-continuum X an end-point if, for each positive

number ε, X can be covered by an ε-chain such that only the first link of

the chain contains p.

Snake-like continua were first defined and studied by R.H.Bing in [1]

who gave a number of examples with special properties. We are interested

in Examples 6 and 7 of that paper. Example 6 is a SL-continuum with only

one end point, while Example 7 is a SL-continuum without end points. We

will denote these continua, respectively, by S and W. They were defined as

particular subspaces of R
2.

The above mentioned relationship between non trivial strings lying in

the unknot and continua can be stated as follows. If (R3,K) is a string

lying in the unknot (S3,S1) then there exists a compact, connected space X

such that (i) X is cellularly embedded in S
3; (ii) X∩S

1 is an arc or a point;

and (iii) (S3 − X,S1 − X) is homeomorphic to (R3,K). If X is a singleton

then (S3 −X,S1 −X) is the trivial string. We will offer uncountably many

almost unknotted strings lying in the unknot. Their corresponding continua

X will be SL-continua similar to S.

An obvious necessary condition for a non trivial string (R3,K) to lie in

the unknot is that, for any positive integer m, the m-cyclic covering of R
3

branched over K is an open 3-manifold that can be embedded in S
3, (and

this was the starting point of our investigations). Using this, we will exhibit

uncountably many almost unknotted strings having no embedding in the

unknot (and, in fact, in any tame knot). That condition will be used also to

give concrete descriptions of two famous continua: the dyadic solenoid and

the Whitehead continuum. In particular, we will show that the Whitehead

continuum is homeomorphic to Bing’s SL-continuum W without end points.
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Fig. 1. The string (R3,KJI).

Fig. 2. The box bi = σ−2mi
2 (σ1σ

2
2σ1)

−ni .

2. Some Non Trivial Strings

Definition 1. Given an integer sequence I = {ni}∞i=1 and a sequence

of half integers J = {mi}∞i=1, we define the string (R3,KJI) as the string

depicted in Figure 1. The box bi is depicted in Figure 2; it denotes the

3-braid σ−2mi
2 (σ1σ

2
2σ1)

−ni , with mi = −3
2 , ni = 2.
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Fig. 3. I = {1, 1, 1, · · ·}, J = {0, 0, 0, · · ·}.

Fig. 4. I = J = {1, 1, 1, · · ·}.

For instance, Figure 3 shows (R3,KJI) for mi = 0 and ni = 1 for all i.

Figure 4 shows (R3,KJI) for mi = 2/2 and ni = 1 for all i, and Figure 5

shows (R3,KJI) for mi = 4/2 and ni = 2 for all i.

Remark 2. If the sequence I is the zero sequence, then certainly

(R3,KJI) is the trivial string. If the sequence I contains the zero sequence

as a subsequence, the (R3,KJI) is the trivial string also (see Figure 6).

Proposition 3. If the sequence I is an odd sequence, that is, ni is

odd for every i, then π1(R
3 − KJI) has an epimorphism onto the dihedral

group of order 2p, for any odd integer p ≥ 3, sending meridians to elements

of order 2. This epimorphism is unique up to conjugation. In particular the
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Fig. 5. I = J = {2, 2, 2, · · ·}.

Fig. 6. Part of a zero subsequence.

string (R3,KJI) is not trivial.

Proof. Start asigning to the meridians µ0, µ1 of Figure 1 two different

elements of order two of the dihedral group D2p of order 2p. Then, there

exists a unique asignment of elements of order two to the remaining (infinite)

Wirtinger generators of π1(R
3 −KJI) due to the following remark. In the

3-braid of Figure 2 there is exactly one solution {x, y, z}, for any elements

{a, b, c} of order 2, compatible with the Wirtinger relations, if ni is odd.

The proof of this remark reduces to solving linear equations mod. p and

can be reproduced easily by the reader taking into account the following

observation of Fox. Think of D2p as a subgroup of the symmetric group of p
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indices {1, 2, · · ·, p} in such a way that an element of order 2 fixes precisely

one index i ∈ {1, 2, · · ·, p}. Denote an element of order 2 by the index i that

it fixes. Then, to find an epimorphism of the group of a knot, or string (in

normal projection), onto D2p sending meridians to elements of order 2 we

only need to asign an index of {1, 2, · · ·, p} to each overpass of the projection

provided that the following conditions are satisfied: (i) at least two indices

are used, and (ii) for each crossing point of the projection, twice the index

of the overpass equals mod. p the sum of the indices of the two adjacent

underpasses. �

Definition 4. According to Fox [6], a string (R3,K) is almost unknot-

ted if it is homeomorphic to a string (R3,K1) having the following property.

For any 3-cell U in R
3 there is a 3-cell V ⊃ U and a homeomorphism h of

R
3 on itself such that (i) h is the identity in R

3 − IntV , and (ii) h(K1 ∩ V )

is a subset of a fixed plane in R
3. (In particular, ∂V lies in the fixed plane.)

Proposition 5. For any sequence I, the string (R3,KII) is almost

unknotted.

Proof. Note that the 3-braid σ−2ni
2 (σ1σ

2
2σ1)

−ni = (σ2σ1σ2)
−2ni . The

details are left to the reader. See Figures 4 and 5. �

Corollary 6. The strings (R3,KI1I1) and (R3,KI2I2) are homeomor-

phic if the sequences I1 and I2 are cofinal.

Corollary 7. The p-fold irregular covering of R
3 branched over KII ,

given by the representation of π1(R
3−KII) onto the dihedral group of order

2p sending meridians to elements of order 2, is R
3, for any odd sequence I

and any odd integer p ≥ 3.

Proof. Since by Proposition 5 the string (R3,KII) is almost unknot-

ted it is possible to find a sequence {Bi}∞i=1 of closed 3-cells in R
3 such that

(i) Bi ⊂ IntBi+1; (ii) ∪∞
i=1Bi = R

3 ; and (iii) Bi ∩KII is the disjoint union

of two properly embedded arcs lying in a properly embedded disk in Bi, for

any i ≥ 1. Since the p-fold irregular covering of Bi branched over Bi ∩KII

is a closed 3-cell, it follows that the p-fold irregular covering of R
3 branched

over KII is an increasing union of closed 3-cells. Hence it is homeomorphic

to R
3 by a Theorem of Brown [3]. �
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3. Characterizing Strings Lying in the Unknot

The following result is evident.

Proposition 8. If the string (R3,K) lies in the unknot then, for all

n ≥ 2, the n-fold cyclic covering of R
3 branched over K lies in S

3.

Proposition 8 gives the key to obtain examples of strings not lying in

the unknot.

Lemma 9. Let M be a closed 3-manifold and let o be a point in M . If

M − o can be embedded in S
3, then M is homeomorphic to S

3.

Proof. Let B be a tame closed 3-cell centered at o. If h : M − o → S
3

is an embedding, then by the generalized Schoenflies Theorem ([11],[4]), the

closure of each complementary domain of S
3 − h(BdB) is a closed 3-cell. It

follows that M − IntB is a closed 3-cell. Hence M is homeomorphic to

S
3. �

Theorem 10. If a non trivial string (R3,K) lies in the unknot then

the knot (R3 + ∞,K + ∞) is wild.

Proof. If (R3 + ∞,K + ∞) is a tame non trivial knot then the 2-

fold covering of R
3 +∞ branched over K +∞ is a closed 3-manifold M not

homeomorphic to S
3. But if (R3,K) lies in the unknot, then, by Proposition

8 M − {point} can be embedded in S
3, which contradicts Lemma 9. �

Corollary 11. Let (S3, N) be a non trivial (tame) knot and let o be

a point in N . Then the string (S3 − o,N − o) fails to lie in the unknot.

However (S3−o, N−o) lies obviously in the knot (S3, N). If it is required

to obtain examples of strings not lying in any (tame) knot, one can take an

infinite sum of non trivial (tame) knots.

Theorem 12. An infinite sum of non trivial (tame) knots is a string

which fails to lie in any (tame) knot

Proof. The 2-fold covering of such a string will be an infinite con-

nected sum of closed 3-manifolds, and again, this open 3-manifold M fails
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to lie in any closed 3-manifold X. Because if X has, say, n prime compo-

nents we can look at the embedding of a bicollared 2-sphere of M separating

from M a compact 3-manifold with more than n prime components. �

A more difficult question is to obtain almost unknotted strings not lying

in any knot. Corollary 38 offers uncountably many almost unknotted strings

not lying in any (tame) knot.

A subset X of an n-manifold M is said to be cellular if there exists a

sequence {Bi}∞i=1 of n-cells in M such that Bi+1 ⊂ IntBi (i = 1, 2, · · ·) and

X = ∩∞
i=1Bi. Clearly, cellular sets are compact and connected. They are

also pointlike [5], that is M − X is homeomorphic to the complement of

some point in M . The concepts of ”pointlike” and ”cellular” coincide in

S
n for compact, connected sets.

Proposition 13. The complement of the image of an embedding of

R
n into S

n is cellular.

Proof. By invariance of domain, the image of the embedding is open.

By Jordan separation Theorem, its complement is connected. Therefore, it

is a connected compact set. It is also pointlike. Therefore, it is cellular.

Alternatively, one can represent R
n as a union of an increasing sequence of

closed n-cells with bicollared boundary, and use the generalized Schoenflies

Theorem [3] to show that the complement of the image of an embedding of

R
n into S

n is cellular. �

As a Corollary we characterize the strings lying in the unknot as follows.

Corollary 14. If (R3,K) is a string lying in the unknot (S3,S1) then

there exists a space X such that (i) X is cellularly embedded in S
3; (ii) X∩S

1

is an arc or a point; and (iii) (S3−X,S1−X) is homeomorphic to (R3,K).

Proof. By Proposition 13 the complement X in S
3 of the image of

R
3 is a cellular set. Therefore, X is a space cellularly embedded in S

3 such

that (S3 −X,S1 −X) is homeomorphic to (R3,K). Also by Proposition 13,

the complement in S
1 of the image of K is a cellular subset of S

1; hence a

point or an arc. �

Definition 15. A space X such that (i) X is cellularly embedded in

S
3;and (ii) X ∩ S

1 is an arc or a point, will be called a residual space.
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4. Embedding the SL-Continuum with Only One End Point in

S3

According to Corollary 14, to obtain examples of strings (R3,K) lying

in (S3,S1) we need to select some residual continuum X. A good candidate

is Bing’s SL-continuum S with only one end point. An abstract definition

of S is the following. Let (Cn, gn,N) be the inverse system where, for every

positive integer n, Cn is the interval [−1, 1] and gn : Cn → Cn−1 is defined

by gn(x) = 2x2 − 1. Then S is the inverse limit of this inverse system. The

end point o is (1, 1, · · ·).
Bing’s definition of S (equivalent to the abstract definition) is the fol-

lowing subspace of R
2. Let C be the Cantor set in the (x, y)-plane, which

is obtained by deleting the middle open third of the interval from (0, 0) to

(1, 0), deleting the middle open thirds of the remaining intervals,···. Let

S0 be the union of all semicircles in the upper half plane with both end

points on C which are symmetric with respect to the line x = 1/2. Let Si

(i = 1, 2, · · ·) be the union of all semicircles in the lower half plane with both

Fig. 7. The snake-like continuum S.
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end points on C which are symmetric with respect to the line x = 5/(3i ·2).

Then S = ∪∞
i=0Si. The SL-continuum without end points W is the union of

S and the continuum which is symmetric to it with respect to the origin.

The only end point of S is the origin o. Figure 7 depicts part of S.

We assume R
2 ⊂ R

3 ⊂ R
3 + ∞ = S

3. Thus S and W are embedded

in S
3. We embed the unknot U in S

3 as the subset {(x, y, 0) : y = −x(1 +

0.1)/5} + ∞. Thus U∩ S = o (see Figure 7).

Definition 16. The triple (S3,S, U) is called the standard embedding.

We now modify the standard embedding to obtain some others.

Definition 17. Given an integer sequence I = {ni}∞i=1 and a sequence

of half integers J = {mi}∞i=1, we define the embedding (S3,SJ , UI) such that

UI ∩ S = o as follows. Take the standard embedding (S3,S, U) shown in

Figure 7 and place UI in S
3 in such a way that it coincides with the U

”away” of the sets Si (i = 1, 2, · · ·), and ”links” Si (i = 1, 2, · · ·) ni times as

shown in Figure 8. (If ni ≥ 1 there are ni right handed twists; left handed,

if ni ≤ −1; no linking if ni = 0.) Simultaneously, twist the set Si mi times.

Fig. 8. Modifying the embedding of S.
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Fig. 9. J = {0, 0, 0, · · ·}, I = {1, 1, 1, · · ·}.

That is, cut it along the plane x = 5/(3i · 2), twist one of the ends by 2mi

half twists and paste it back again (see Figure 8).

For instance, in Figure 9 we see (S3,SJ , UI) for J = {0, 0, 0, · · ·} and

I = {1, 1, 1, · · ·}.

5. Non Trivial Strings Lying in the Unknot

Theorem 18. Given an integer sequence I = {ni}∞i=1 and a sequence

of half integers J = {mi}∞i=1, the string (R3,KJI) lies in the unknot. In fact

the string (R3,KJI) is homeomorphic to (S3 − SJ , UI − o). If the sequence

I is an odd sequence, the string (R3,KJI) is not trivial.

Proof. Consider (R3,KJI) of Figure 1. The vertical lines Σi represent

a sequence of concentric 2-spheres with common center at some point at

the left of the picture. They divide R
3 in the disjoint union of a 3-ball,

denoted C0, and a sequence {Ci}∞i=1 of 3-shells (hollow balls). The standard

shell Ci is depicted in Figure 10. The 3-braid bi has been displayed as

boxes ni = (σ1σ
2
2σ1)

−ni and mi = σ−2mi
2 . To reconstruct (R3,KJI) one

have to identify Σ+
i in Ci−1 with Σ−

i in Ci by an orientation reversing
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Fig. 10. The standard shell.

homeomorphism sending the arcs {α+
i , β

+
i , γ

+
i , δ

+
i } in the 2-sphere Σ+

i to

the arcs {α−
i , β

−
i , γ

−
i , δ

−
i } in the 2-sphere Σ−

i , for i = 1, 2, · · ·.
Now we ”stretch” Ci∩ KJI , as depicted in Figure 11, forcing KJI to

become the unknot. This process converts the round sphere Σ+
i+1 into an

elongated sphere Σ̂+
i+1, twisted mi times (notice the mi twisting in the right

lower part of Σ̂i+1). Denote the deformed 3-shell of Figure 11 by Ĉi.

Next, we reconstruct (R3,KJI) by identifying Σ̂+
i in Ĉi−1 with Σ̂−

i in Ĉi

so that {α+
i , β

+
i , γ

+
i , δ

+
i } is identified with {α−

i , β
−
i , γ

−
i , δ

−
i }, for i = 1, 2, · · ·.

Let fi : Σ̂+
i → Σ̂−

i be the identification map.

Start with Ĉ0 ∪ Ĉ1 ⊂ S
3 shown in Figure 12. Now S

3 − Int(Ĉ0 ∪ Ĉ1) is a

closed 3-cell B2 such that BdB2 is Σ̂+
2 . We extend f−1

2 : Σ̂−
2 → Σ̂+

2 = BdB2

to an embedding g2 of Ĉ2 in B2.

Now S
3 − Int(Ĉ0 ∪ Ĉ1 ∪ g2Ĉ2) is a closed 3-cell B3 such that BdB3 is

g2Σ̂
+
3 . We extend f−1

2 ◦ f−1
3 : Σ̂−

3 → Σ̂+
3 → g2Σ̂

+
3 = BdB3 to an embedding

of Ĉ3 in B3, ···. If we are careful with the extensions gi we can assume that

the intersection ∩∞
i=2Bi is 1-dimensional.
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Fig. 11. Stretching the string.

Fig. 12. Reconstructing the string: m1 = 1/2; n1 = 1; m2 = 4/2; n2 = −1.
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It is not difficult to see that (S3,∩∞
i=2Bi) is homeomorphic to (S3,SJ),

J = {mi}∞i=1. This construction shows that (R3,KJI) is homeomorphic to

(S3 − SJ , UI − o). �

6. The 2-Fold Covering of R
3 Branched Over KJI

Since by Theorem 18 (R3,KJI) is homeomorphic to (S3−SJ , UI−o), the

2-fold covering K̃JI of R
3 branched over KJI is homeomorphic to S

3−p−1
I SJ

where pI : S
3 → S

3 is the standard 2-fold covering branched over the unknot

UI . We have:

Theorem 19. The 2-fold covering K̃JI of R
3 branched over KJI is

the complement in S
3 of the continuum S̃JI depicted in Figure 13, where

pi = mi − ni/2. The symbol pi in Figure 13 stands for 2pi half twists as in

Fig. 13. The continuum S̃JI : J = {mi}∞i=1, I = {ni}∞i=1.
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Definition 17.

Proof. It is obvious that S̃JI = p−1
I SJ . Note that when S̃JI is pro-

jected onto SJ under the map pI , the (ni/2)-twist in Figure 13, gives rise

to the ni-times linking of Figure 8, plus an additional (ni/2)-twisting in the

set Si of Figure 8. For this reason pi is taken to be mi − ni/2 in order to

compensate for the extra (ni/2)-twisting. �

Corollary 20. If the sequence I is even, the continuum S̃JI is home-

omorphic to Bing’s SL continuum without end points W.

Remark 21. The embedding of W in S
3 is cellular. The embeddings

(S3, S̃JI) are not cellular, in general.

On the other hand, we have seen, in the proof of Theorem 18, that SJ

is the intersection ∩∞
i=1Bi, where Bi is a closed 3-cell in S

3 intersecting the

branching set UI of pI : S
3 → S

3 in two trivial arcs (see Figure 12). Then it

follows that S̃JI is the intersection ∩∞
i=1Vi of a sequence {Vi}∞i=1 of solid tori

in S
3. (A sequence like that is called a defining sequence for S̃JI , see [5].)

The way Vi+1 lies in Vi is shown in Figure 14. In this picture we see also

the restriction of pI : S
3 → S

3 to the solid tori pair (Vi,Vi+1). Therefore,

we have:

Theorem 22. S̃JI is ∩∞
i=1Vi where {Vi}∞i=1 is a defining sequence of

solid tori in S
3 such that Vi+1 lies in IntVi as shown in Figure 14.

Corollary 23. S̃II is ∩∞
i=1Vi where {Vi}∞i=1 is a defining sequence of

solid tori in S
3 such that Vi is unknotted in S

3 for every i ≥ 1.

Proof. V1 is unknotted in S
3. By induction, suppose Vi is unknotted

in S
3, and suppose the longitude δ−i of Vi is nulhomologous in S

3 − IntVi.

The way Vi+1 lies in Vi, and the way Vi lies in S
3, is then shown in Figure

14. Then, certainly, Vi+1 is unknotted in S
3. We need to show that the

longitude δ−i+1 of Vi+1 is nulhomologous in S
3 − IntVi+1. Then, refering

again to Figure 14, 2pi = 2mi − ni (compare Theorem 19). Since mi = ni

by hypothesis, it follows that 2pi equals ni. Now 2pi is the ”framing” of

the longitude δ+
i+1 = δ−i+1 of Vi+1in S

3, and −ni is the number of complete

twists of Vi+1 as projected in Figure 14. Therefore δ−i+1 is nulhomologous
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Fig. 14. The restriction of pI : S
3 → S

3 to the solid tori pair (Vi,Vi+1).

in S
3. �

Corollary 24. S
3 − S̃II is an open, contractible 3-manifold if I has

an even subsequence.

Proof. If {Vi}∞i=1 is a defining sequence of solid tori in S
3 such that



Embedding Strings in the Unknot 647

Vi is unknotted in S
3 for every i ≥ 1 then S

3−IntVi has the homotopy type

of S
1. If, moreover, ni is even, S

3 − IntVi is contractible in S
3 − IntVi+1,

because the core of the solid torus S
3 − IntVi is nullhomologous inside the

solid torus S
3−IntVi+1. It follows that the manifold S

3−S̃II is contractible

because there is a subsequence of {S3 − V 2
i }∞i=1 each member of which is

contractible in the next member of the sequence {S3 − V 2
i }∞i=1. �

The following Corollary shows that the method used in Proposition 3

to see that the string (R3,KII) is not trivial when I is odd does not work

when I is even.

Corollary 25. If the sequence I has an even subsequence, then

π1(R
3 − KII) has no transitive homomorphism into the symmetric group

of n ≥ 3 elements sending meridians to a product of transpositions.

Proof. Suppose ω : π1(R
3 −KII) → Σn is such a representation. Let

M be the open 3-manifold which is the n-fold covering of R
3 branched over

KII corresponding to the transitive representation ω. Because M can be

interpreted as an orbifold covering of the orbifold (R3,KII , 2) with singular

set KII and isotropy cyclic of order two, it follows that M is covered by the

universal orbifold covering of the orbifold (R3,KII , 2). But this universal

orbifold covering coincides with the 2-fold covering K̃II of R
3 branched over

KII , because by Corollary 24 and Theorem 19 K̃II is contractible. Hence

n = 2. �

For the particular sequences I = J = {1, 1, 1, · · ·} the intersection

∩∞
i=1{Vi} is the standard embedding in S

3 of the dyadic solenoid (it helps to

look at Figure 14). In fact, in the defining sequence {Vi}∞i=1 of solid tori in

S
3 the torus Vi+1 runs smoothly around inside Vi two times longitudinally

without folding back, and Vi has cross diameter of less than 1/i [2], and

also Vi is unknotted in S
3 for every i ≥ 1. Therefore:

Theorem 26. The standard embedding in S
3 of the dyadic solenoid

is depicted in Figure 15. If the sequence I is odd, the continuum S̃JI is

homeomorphic to the dyadic solenoid.

Proof. When the sequence I is odd, compare Figure 15 with Figure

13. �
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Fig. 15. The standard embedding in S
3 of the dyadic solenoid.

The standard embedding of the dyadic solenoid can be described as fol-

lows. Let C be the Cantor set in the (x, y)-plane, which is obtained by

deleting the middle open third of the interval from (0, 0) to (1, 0), delet-

ing the middle open thirds of the remaining intervals,···. Let C0 be the

union of all circles in the(x, y)-plane with both end points on C which are

symmetric with respect to the line x = 1/2. Let Di (i = 1, 2, · · ·) be the

disk in the (x, y, z)-space, which is orthogonal to the (x, y)-plane, with cen-

ter (5/(3i · 2), 0, 0) and radius 1/3i. Cut the (x, y, z)-space open along Di,

perform a negative half-twist in one of the sides of Di and paste it back

again. Do this simultaneously for every i ≥ 1. The image of C0 under this

operation is the standard embedding of the dyadic solenoid (Figure 16).

When I = J = {2, 2, 2, ···} the intersection ∩∞
i=1{Vi} is the standard em-
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Fig. 16. The dyadic solenoid: cut open Di; half-twist one side; paste it back.

bedding in S
3 of the Whitehead continuum [5] (look at Figure 14). Therefore

we have (Corollary 20):

Theorem 27. The standard embedding in S3 of the Whitehead contin-

uum is depicted in Figure 17. The Whitehead continuum is homeomorphic

to Bing’s snake-like continuum without end points W. If the sequence I is

even, the continuum S̃JI is homeomorphic to the Whitehead continuum.

The standard embedding in S
3 of the Whitehead continuum can be de-

scribed using Dehn surgery notation (Kirby calculus) as follows. Take Bing’s

SL continuum with no end points W defined as S∪ S∗, where S∗ is the sym-

metric of S with respect to U (see Definition 16). Link the set Si and its

symmetric S∗
i with respect to U with a circle Ci, orthogonal to the (x,y)-

plane and passing through the point pi = (5/(3i ·2), 0, 0) and its symmetric

p∗
i with respect to U. Give to the circle Ci the surgery instruction −1. Equiv-

alently, cut S
3 open along a disk bounding Ci, give a complete right twist to

one of the sides of the disk, and paste it back again. Do this simultaneously
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Fig. 17. The standard embedding in S
3 of the Whitehead continuum.

for every i ≥ 1. The image of W = S∪ S∗ under this operation is the

standard embedding of the Whitehead continuum (Figure 18).

7. Uncountably Many Examples

Given a sequence P = {pi}∞i=1 of primes we define the three strings N1
P ,

N2
P , N3

P shown in Figures 19 and 20. The boxes Bk
2 , k = 1, 2, 3, are depicted

in Figures 21, 22 and 23, respectively. For an odd prime p = 2m + 1 the

boxes Bk
p are independent of k = 1, 2, 3, that is, they depend only on m.

The case m = 2 is depicted in Figure 24.

Using the methods explained before, the following Propositions are not

difficult to prove (compare with [10]).

Proposition 28. For k = 1, 2, 3, the set Nk
P has one component if and

only if P has an even subsequence. (Otherwise it is what we migth call a
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Fig. 18. The Whitehead continuum: cut along Di, twist one side, and glue back.

Fig. 19. The strings Nk
P , k = 1, 2.
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Fig. 20. The string N3
P .

link-string of two components.) Moreover, also for k = 1, 2, 3, the set Nk
P is

almost unknotted (with the obvious definition when it has two components).

Proof. It is obvious that N3
P is almost unknotted. Proving that Nk

P ,

k = 1, 2, are almost unknotted is more tricky. To help the reader, compare

Figures 21 and 22 with Figure 2 and take into account the proof of Propo-

sition 5. The best way to deal with Figure 24 is to experiment with cases

p = 3, 5. An inductive argument presents itself inmediately. �

Proposition 29. For k = 1, 2, the 2-fold covering Ñk
P of R

3 branched

over Nk
P is S

3 − ∩∞
i=1V

k
i where {V k

i }∞i=1 is a sequence of unknotted tori in

S
3 such that V k

i+1 lies in IntV k
i as shown in Figures 25 and 26 if pi = 2, or

in Figure 27 (case pi = 5) if pi = 2mi + 1. The manifold Ñ2
P is contractible

if P has an even subsequence.

Proof. Compare with Figures 14 and 11 and proceed analogously. If

P has an even subsequence, the manifold Ñ2
P is contractible because there

is a subsequence of {S3 − V 2
i }∞i=1 each member of which is contractible in

the next member of the sequence {S3 − V 2
i }∞i=1 (see Figure 26). �

Remark 30. Given a sequence of odd primes p1,p2, p3, · ··, an open

contractible 3-manifold W is constructed in Section 3 of [9]. The manifold

Ñ2
P , where P = {p1,2, p2, 2, p3,2, · · ·}, is essentially the same as the manifold

W .

Proposition 31. The 2-fold covering Ñ3
P of R

3 branched over N3
P is

∪∞
i=1Wi where {Wi}∞i=1 is an ascending sequence of tori such that Wi lies in
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Fig. 21. The box B1
2 .

Fig. 22. The box B2
2 .

IntWi+1 as shown in Figure 28 if pi = 2, or in Figure 29 if pi = 2mi + 1.

The manifold Ñ3
P is contractible if P has an even subsequence.

Proof. Compare with Figures 14 and 11 and proceed similarly �

Remark 32. The open, contractible manifold Ñ3
P , where P = {2, 2,

2, · · ·}, is the manifold M ′ defined in Section 3 of [8].Given sequences of
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Fig. 23. The box B3
2 .

Fig. 24. The box Bk
p ; p = 2m + 1 (= 5.

odd primes p1,p2, p3, · ··, the manifolds Ñ3
P , where P = {p1,2, p2, 2, p3,2, · · ·},

are essentially the ones to which the main result of [8] applies. That is, the

manifolds Ñ3
P are not embeddable in S

3. In fact they are not embeddable

in any closed, orientable 3-manifold [7].
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Fig. 25. V 1
i+1 ⊂ IntV 1

i .

Fig. 26. V 2
i+1 ⊂ IntV 2

i .

Using Proposition 29 or a direct proof, like in Theorem 18, we have:

Theorem 33. For k = 1, 2, and for all P , the link-string (R3, Nk
P ) lies

in the unknot.
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Fig. 27. pi = 2mi + 1 (= 5); k = 1, 2.

Fig. 28. Wi ⊂ Wi+1.
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Fig. 29. pi = 2mi + 1 (= 5).

Remark 34. It is interesting to obtain the residual space X of

(R3, N1
P ) for a given P . For instance, we have seen already that if P is

the sequence {2, 2, 2, · · ·} then X is the SL-continuum with only one end

point S: this continuum is the quotient of the dyadic solenoid under an invo-

lution. Analogously, for any odd prime p the residual space X of (R3, N1
P ),

for the sequence P = {p, p, p, · · ·}, is the quotient Sp of the p-adic solenoid

under an involution. The link-string (R3, N1
{3,3,3,···}) is depicted in Figure 30;

here (R3, N1
{3,3,3,···}) is homeomorphic to (S3−S3, U−S3), where (S3,S3, U)

is shown in Figure 31. Notice that Sp has two end-points.

Theorem 35. Corresponding to a sequence p = {pi}∞i=1 of distinct odd

primes construct the sequence P = {p1, 2, p2, 2, p3, 2, · · ·} which is obtained

from p by alternating a subsequence of 2′s. Then, (R3, N3
P ) is a (one com-

ponent) string which fails to lie in any (tame) knot.

Proof. By Remark 32 the manifold Ñ3
P cannot be embedded in any

closed, oriented 3-manifold. Therefore, the string (R3, N3
P ) fails to lie in any

(tame) knot (compare the proof of Theorem 12). �
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Fig. 30. The link-string N1
{3,3,3,···}.

Fig. 31. The link-string N1
{3,3,3,···} again.

Theorem 36. Let P = {pi}∞i=1 and Q = {qi}∞i=1 be sequences of primes

such that an infinite number of primes occur in P which do not occur in Q.

Then, for k = 1, 2, 3, (R3, Nk
P ) and (R3, Nk

Q) are topologically different.

Proof. It is enough to see that, for k = 1, 2, 3, Ñk
P and Ñk

Q are topo-

logically different. The proof of this fact is essentially the same as the proof

of Theorem 1 in [9], (see remark 30). �

Corollary 37. There exist uncountably many almost unknotted

strings lying in the unknot, no two of which are homeomorphic.
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Proof. Corresponding to a sequence p = {pi}∞i=1 of distinct odd

primes construct the sequence P = {p1, 2, p2, 2, p3, 2, · · ·} which is obtained

from p by alternating a subsequence of 2′s. Then, for k = 1, 2, (R3, Nk
P )

is a (one component) string. The Corollary follows from Theorem 33 and

Theorem 36 if one can ascertain that there is a set with cardinality of the

continuum, each element of which is a sequence of the above type p and such

that two such sequences have only a finite number of primes in common.

This is asserted to be true in Section 3 of [9]. However, as far as I know, the

proof of this fact depends on the axiom of Zorn, and is not constructive. �

Corollary 38. There exist uncountably many almost unknotted

strings not lying in any (tame) knot, no two of which are homeomorphic.

Proof. Corresponding to a sequence p = {pi}∞i=1 of distinct odd

primes construct the sequence P = {p1, 2, p2, 2, p3, 2, · · ·} which is obtained

from p by alternating a subsequence of 2′s. Then, (R3, N3
P ) is a (one com-

ponent) string. The Corollary follows from Theorem 35 and Theorem 36 as

before. �
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