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of Subfactors
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Dedicated to Professor Susan Montgomery on her sixtieth birthday

Abstract. By using homological tools in [M4], we refine in a
slightly generalized form the result by Izumi and Kosaki [IK] which
classifies outer actions of a matched pair of finite groups on the hyper-
finite II1 factor. An analogous result on outer weak actions is proved.
We naturally connect outer (weak) actions with Galois extensions for
Hopf (or Kac) algebras or coquasi-Hopf algebras.

Introduction

Interactions among different research areas in mathematics are undoubt-

edly welcome. This paper would hopefully contribute to such interactions

between Hopf algebras and operator algebras.

Almost at the same time that Chase and Sweedler founded the algebraic

study of Hopf algebras in the 1960s, George Kac, an operator algebraist,

reached almost the same notion as a Hopf algebra, more precisely what is

nowadays called a Kac algebra, and achieved pioneering works. A finite-

dimensional Kac algebra is precisely a finite-dimensional C∗-Hopf algebra.

For a matched pair (F,G) of finite groups, Kac [K] especially classified those

Kac algebra extensions Ĝ→ H→ CF of the group algebra CF by the dual

group algebra Ĝ which are associated to (F,G), by proving an isomorphism

Opext(CF, Ĝ) � H2(TotE··)(1)

between the group of extensions modulo equivalence and the 2nd total co-

homology of some double complex E·· (with our notation). This result due

to Kac has been extended and applied mainly by Hopf algebraists including

the author [M1,3,4] and Peter Schauenburg [P1,2]; see also [VV]. A matched

2000 Mathematics Subject Classification. Primary 46W37; Secondary 16W30.

599
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pair (F,G) is accompanied by actions � : G × F → G, 	 : G × F → F of

permutations so that the cartesian product F × G forms a group, F 	� G,

under the product (a, x)(b, y) = (a(x 	 b), (x � b)y) [T].

As was stated by Ocneanu and proved by Szymański [S], Longo [L]

and others, an irreducible inclusion P ⊃ Q of II1 factors with finite index

is of depth 2 if and only if it corresponds, roughly speaking, to a finite-

dimensional Kac algebra. Izumi and Kosaki [IK] realized this correspon-

dence for inclusions of the form

R�α F ⊃ R(β,G)(2)

which arise from outer actions (α, β) of a fixed matched pair (F,G) on a

factorR. By definition [IK], an outer action (α, β) of (F,G) onR is a pair of

homomorphisms α : F → Aut(R), β : G→ Aut(R) such that (a, x) 	→ αaβx
induces a monomorphism F 	� G→ Out(R). Let R be the hyperfinite II1
factor. Assuming that the action � : G×F → G in the matched pair (F,G)

is trivial, Izumi and Kosaki [IK] proved that there is a natural bijection

Out((F,G),R)/ ∼c � H2(TotE··),(3)

where the left-hand side denotes the set of outer actions (α, β) modulo

cocycle conjugation ∼c; see also [HS]. By using homological tools in [M4],

we will refine this result (Theorem 3.6), removing the assumption that � is

trivial. We define (Definition 3.7) an outer weak action (α, β) of (F,G), by

relaxing the requirement for outer actions so that α can be just a map. As

an analogue of (3), we will prove a bijection (Theorem 3.10)

Outw((F,G),R)/ ∼wc � H2(TotD··)(4)

between the set of outer weak actions (α, β) modulo weak cocycle conju-

gation ∼wc and the 2nd total cohomology of some double complex D··.
H2(TotD··) is easier to compute than H2(TotE··), and is isomorphic to the

group Opext′′(CF, Ĝ) of coquasi-Hopf algebra extensions [M4]. As the dual

notion of quasi-Hopf algebra due to Drinfeld, coquasi-Hopf algebras gener-

alize Hopf algebras in that in their monoidal categories of comodules, the

associativity constraints may be non-trivial.

There are known some equivalent ways of connecting irreducible inclu-

sions of depth 2 with Kac algebras; for example in [IK], multiplicative uni-

taries are used for this connection. The most direct seems, as in [KN], to
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give to each inclusion a structure of Hopf-Galois extension for the corre-

sponding Kac algebra. We will give (Theorem 4.1) to the inclusion (2) such

a structure for the Kac algebra which corresponds to (α, β) via (3) and then

(1). An analogous result (Proposition 4.3) relating with (4) will be also

proved; this seems useful even for the original correspondence. In fact the

result is applied to finding explicitly the irreducible inclusions of depth 2

which correspond to the Kac algebras B4m defined in [M2], which includes

Kac and Paljutkin’s algebra of dimension 8 (Proposition 5.6).

Our results giving (3), (4) largely depend on Jones’ classification [J]

of outer actions of a finite group on R. We begin with reproducing some

results from [J] in the form suited for us, especially introducing formal

twisted crossed products; see the paragraph following Example 1.2.

1. Jones’ Classification of Outer Actions of a Finite Group

Throughout let R be a factor. Let U denote the group of unitaries in

R. The center of U is thus T = {z ∈ C | |z| = 1}.
Let Γ be a finite group; the identity element in Γ will be denoted by e.

By a twisted action of Γ on R, we mean a map α : Γ → Aut(R) such that

αe = id, the identity map, and the composite

πα : Γ→ Aut(R)→ Out(R) = Aut(R)/ Int(R)

with the natural projection π : Aut(R) → Out(R) is a group homomor-

phism. A twisted action α is called an action if it is a homomorphism. It is

said to be outer if the composite πα is a monomorphism.

Given a twisted action α : Γ→ Aut(R), there exits a map ν : Γ×Γ→ U

such that

ν(g, e) = 1 = ν(e, g),(5)

αgαh = Ad(ν(g, h))αgh,(6)

where g, h ∈ Γ. We have imposed the requirement (5) and also αe = id,

in order to have normalized (abelian or non-abelian) cohomologies. Such

normalization gives no influence on our results, but is often convenient; see

the remark following Theorem 2.1. One sees that

δν(g, h, l) = αg(ν(h, l))ν(g, hl)ν(gh, l)
∗ν(g, h)∗(7)
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gives a 3-cocycle δν : Γ×Γ×Γ → T in the normalized standard complex for

computing the group cohomology Hn(Γ,T) with coefficients in the trivial

left Γ-module T. Define the obstruction Obs(α) of α to be the cohomology

class of δν in H3(Γ,T); this is independent of the choice of ν, since ν is

unique up to multiple by a 2-cochain Γ× Γ → T. The obstruction Obs(α)

vanishes if and only if α together with an appropriate 2-cocycle ν ′ : Γ×Γ→
U form a twisted crossed product of Γ over R; see below.

We remark that to change the order of the four terms in the product of

the right-hand side of (7), only cyclic permutations are allowed.

It will be convenient to formally think as if ν as above were a cochain

in the standard complex for computing the imaginary group cohomology

Hn(Γ,U), which does not exist since U is not a real Γ-module under α. The

3-cocycle δν given by (7) is formally thought as the coboundary of ν. We

call a map ν : Γ× Γ → U a cochain (associated to α) if it satisfies (5) (and

(6)).

Two twisted actions α, α′ : Γ → Aut(R) are said to be outer conjugate

and denoted by α ∼ α′, if there exist θ ∈ Aut(R) and unitaries {ug}g∈Γ

with ue = 1 such that

θα′
gθ

−1 = Ad(ug)αg (g ∈ Γ).

If α ∼ α′, then Obs(α) = Obs(α′).
Let Out(Γ,R) denote the set of all outer twisted actions of Γ on R.

Theorem 1.1 (Jones [J]). Suppose R is the hyperfinite II1 factor.

Then, Obs induces a bijection

Out(Γ,R)/ ∼ ∼→ H3(Γ,T)

from the set of all outer conjugacy classes in Out(Γ,R) onto H3(Γ,T).

Example 1.2 (Connes [C]). Let R be as above. Suppose Γ = Zn = 〈g〉,
the cyclic group of order n, generated by g. Then Jones’ bijection just given

factors through the bijection

Out(Γ,R)/ ∼ ∼→ µn, class of α 	→ γ(αg),

where µn denotes the group of nth roots of 1 in C. The nth root γ(αg) of

1, called the Connes obstruction of αg, is given by

αg(u) = γ(αg)u, where u ∈ U with αn
g = Ad(u).
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By [C, Remark 6.8], Obs(α) is the class of the 3-cocycle κ which is defined

for 0 ≤ i, j, k < n by

κ(gi, gj , gk) = γ(αg)
iη(j,k), where η(j, k) =

{
0 if j + k < n

1 if j + k ≥ n.

Let α : Γ → Aut(R) be a twisted action. Let ν : Γ × Γ → U be a

cochain. We define the formal twisted crossed product R(α, ν) as the free

left R-module consisting of all sums
∑

g∈Γ rg � g (rg ∈ R) that is given the

bilinear product

(r � g)(s � h) = rαg(s)ν(g, h) � gh.

This has the identity element 1 � e, but is not necessarily associative. ν is

associated to α if and only if the partial associativity

[(r � g)(s � h)](t � e) = (r � g)[(s � h)(t � e)](8)

holds true for r, s, t ∈ R, g, h ∈ Γ. If this is the case, the product is

associative (so that R(α, ν) is a real twisted crossed product) if and only

if δν = 1, the trivial 3-cocycle with constant value 1; such ν is called a

2-cocycle associated to α. R(α, ν) is a Γ-graded (non-associative) algebra

with g-component R�g. One will see that R(α, ν) is a real algebra in some

monoidal category if ν is associated to α; see Remark 4.4 (1).

Definition 1.3. Let α, α′ be twisted actions, and let ν, ν ′ be cochains.

We write

R(α, ν) � R(α′, ν ′),

if there exist θ ∈ Aut(R) and unitaries {ug}g∈Γ with ue = 1, such that

θα′
gθ

−1 = Ad(ug)αg,(9)

θ(ν ′(g, h))ugh = ugαg(uh)ν(g, h)(10)

for g, h ∈ Γ.

The conditions (9), (10) are equivalent to that the Γ-graded isomor-

phism R(α′, ν ′)
∼→ R(α, ν) given by r � g 	→ θ(r)ug � g preserves the prod-

uct. Hence, � gives an equivalence relation among formal twisted crossed

products.
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Proposition 1.4. Two twisted actions α, α′ are outer conjugate to

each other if and only if there exist cochains ν, ν ′ associated to α, α′, re-

spectively, such that R(α, ν) � R(α′, ν ′).

Proof. The ‘if’ part is trivial. For the ‘only if’ part suppose we are

given θ, {ug}g∈Γ satisfying (9). Choose a cochain ν associated to α, and

define ν ′ by the formula (10). Then we have R(α, ν) � R(α′, ν ′). Since α

and ν satisfy (8), α′ and ν ′ do, too. Hence ν ′ is associated to α′. �

Proposition 1.5. Let ν, ν ′ be cochains associated to twisted actions

α, α′, respectively.

(1) R(α, ν) � R(α′, ν ′) implies δν = δν ′.
(2) The converse holds true, if R is the hyperfinite II1 factor, and α

and α′ are outer.

Proof. (1) Let θ ∈ Aut(R), and let {ug}g∈Γ be unitaries with ue = 1.

Notice that the cochains µ, µ′ defined by

µ(g, h) = ugαg(uh)ν(g, h)u∗gh, µ′(g, h) = θ(ν ′(g, h))

are associated to the twisted actions β, β′ defined by

βg = Ad(ug)αg, β′
g = θα′

gθ
−1,

respectively. Since we see by direct computations that δµ = δν, δµ′ = δν ′,
it follows that if (9) and (10) are satisfied, δν = δν ′.

(2) Suppose δν = δν ′ under the assumptions given in Part 2. Then,

α ∼ α′ by Theorem 1.1. By Proposition 1.4, there exists some ω : Γ×Γ→ T

such that R(α, ων) � R(α′, ν ′). One sees by Part 1 that ω is a 2-cocycle.

It remains to prove that R(α, ν) � R(α, ων). This is proved by the

idea which proves [IK, Lemma 2.7], in the special case when α is an outer

action and ν = 1. In fact, choose then an arbitrary outer action α◦, and let

(π,X) be a finite-dimensional projective representation corresponding to ω,

so that

π(g)π(h) = ω(g, h)π(gh) (g, h ∈ Γ).

Let N = B(X). We have unitaries ug = 1⊗π(g) in R⊗N (� R) such that

ug(α
◦ ⊗ id)(uh) = uguh = ω(g, h)ugh.
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Hence, R ⊗ N (α◦ ⊗ id, 1) � R ⊗ N (α◦ ⊗ 1, ω), which implies R(α, 1) �
R(α, ω) since any two outer actions (in particular, α◦ ⊗ id and α) are con-

jugate by Jones [J].

To prove in general, let α◦ be as above. Then, ν⊗ω is associated to the

∗-automorphism α ⊗ α◦ of R ⊗ R (� R), and δ(ν ⊗ ω) = δ(ων). By the

results in the preceding paragraphs, we have a 2-cocycle η : Γ×Γ → T such

that

R(α, ων) � R⊗R(α⊗ α◦, ν ⊗ ωη) � R⊗R(α⊗ α◦, ν ⊗ 1).

Since ω is arbitrary, R(α, ν) � R(α, ων), as desired. �

2. The Cohomology of a Matched Pair of Groups

Let (F,G) be a matched pair of groups [T]. Thus F and G are (possibly

infinite) groups, and there are given actions of permutations

G
�← G× F

�→ F

(one from the right and the other from the left) such that

xy � a = (x � (y 	 a))(y � a), x 	 ab = (x 	 a)((x � a) 	 b),

where a, b ∈ F , x, y ∈ G. These conditions are equivalent to that the

cartesian product F ×G forms a group, F 	� G, under the product

(a, x)(b, y) = (a(x 	 b), (x � b)y).

The group Γ = F 	� G exactly factorizes into the subgroups F = F × {e},
G = {e} ×G in the sense that

Γ = FG, F ∩G = {e}.(11)

Therefore we will write ax for the element (a, x) in F 	� G.

The notion of a matched pair was implicit in Kac’s paper [K]. But, his

notion was somewhat irregular in that the two group actions were both sup-

posed to be from the left. Kac [K] also constructed some double complex to

obtain such a cohomology that describes Kac (or Hopf) algebra extensions.

His construction was reproduced in [M1, Appendix] in such a modified way
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that specializes the construction of the Singer cohomology [Si] which de-

scribes Hopf algebra extensions in a more general form. This construction

in [M1] was further modified by [M4] in such a way that is suited to describe

explicit homotopy equivalences between relevant complexes. We are going

to reproduce some of the results in [M4], which are suited for right modules,

modifying in such a way that is suited for left modules.

For a group Γ, Γ-modules will mean as usual modules over the integral

group ring ZΓ. We define a double complex of left F 	� G-modules,

C·· =

...
...� �

C01
∂←−−− C11 ←−−− · · ·�∂′

�∂′

C00
∂←−−− C10 ←−−− · · · ,

as follows. Cpq denotes the free left F 	� G-module with basis (x1, . . . , xq;

a1, . . . , ap), where e �= ai ∈ F , e �= xi ∈ G. This is also regarded as the

quotient module of the free left F 	� G-module over the set Gq × F p, the

cartesian product of q copies of G and p copies of F , by the submodule

generated by those elements (x1, . . . , xq; a1, . . . , ap) in which some ai or xi
equals e. The horizontal and vertical differentials, ∂ and ∂′, are the F 	� G-

linear maps given by

(−1)q∂(x1, . . . , xq; a1, . . . , ap)

= x1 · · ·xq 	 a1(x1 � (x2 · · ·xq 	 a1), . . . ,

xq−1 � (xq 	 a1), xq � a1; a2, . . . , ap)

+

p−1∑
i=1

(−1)i(x1, . . . , xq; a1, . . . , aiai+1, . . . , ap)

+ (−1)p(x1, . . . , xq; a1, . . . , ap−1),

∂′(x1, . . . , xq; a1, . . . , ap)

= x1(x2, . . . , xq; a1, . . . , ap)

+

q−1∑
i=1

(−1)i(x1, . . . , xixi+1, . . . , xq; a1, . . . , ap)
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+ (−1)q(x1, . . . , xq−1;xq 	 a1, (xq � a1) 	 a2, . . . ,

(xq � a1 · · · ap−1) 	 ap).

The lowest horizontal complex C·0 and the leftmost vertical complex C0·
coincide with the normalized bar resolutions of Z, the trivial left modules

over F and G, respectively. The rows and columns in C·· are all exact, so

that the total complex TotC·· gives a non-standard free F 	� G-resolution

of Z if we define an augmentation ε : C00 = Z(F 	� G) → Z by ε(ax) = 1.

Hence it is homotopy equivalent to the normalized bar F 	� G-resolution of

Z, which we denote by

B· = 0← B0
δ← B1

δ← B2
δ← · · · .

To give explicit homotopy equivalences,

Π· : B· → TotC··, Φ· : TotC·· → B·,

we set Γ = F 	� G, and let the diagrams

F
�

�
�

FG
❅❅

❅❅
G

F F

F

G F G

Γ Γ

(12)

stand respectively for the map (in fact a bijection)

: G× F → F ×G, (x, a) = (x 	 a, x � a),

the product F×F → F , the trivial map G→ {e} and the inclusions F ↪→ Γ,

G ↪→ Γ. We thus omit to write {e} in diagrams. In the following we fix

n > 0, and suppose n = p+ q with p, q ≥ 0.

As a variant of the Alexander-Whitney map, Πn : Bn → TotnC·· =⊕
p+q=nCpq is the Γ-linear map whose (p, q)-component is given by

(Πn)p,q =

F G F G · · · F G

❊
❊
❊❊✆

✆
✆✆· · ·

✆
✆
✆✆

❊
❊
❊❊
F F · · · F︸ ︷︷ ︸

p

F G F G F G · · · F G

· · ·
F G G G · · · G︸ ︷︷ ︸

q

.



608 Akira Masuoka

For example,

Π2(ax, by) = ((a, x 	 b), a(x; b), a(x 	 b)(x � b, y)).

Let Sq,p denote the set of (q, p)-shuffles, that is, those permutations t

on {1, . . . , n} such that t(1) < · · · < t(q), t(q + 1) < · · · < t(n). For each

t ∈ Sq,p, let t∗ denote such a braid diagram of n strings coming out of

G · · · G︸ ︷︷ ︸
q

F · · · F︸ ︷︷ ︸
p

and terminating into

Γ · · · · · · Γ︸ ︷︷ ︸
n

that is determined by the following rules: (i) The string which comes out

of G or F in the ith place, counted from the left, terminates into Γ in the

t(i)th place; (ii) Any crossing in t∗ must be of the same form as the first

diagram in (12). We understand that t∗ defines a Γ-linear map Cpq → Bn,

giving values of the basis elements. Now, Φn : TotnC·· → Bn is the Γ-linear

map given by

Φn|Cpq =
∑

t∈Sq,p

(sgn t)t∗.

By definition, sgn t = (−1)l(t), where l(t), the length of t, coincides with the

number of crossings in t∗. For example, since the (1, 2)-shuffles gives the

diagrams

G

Γ

F

Γ

F

Γ

G

Γ

F
✡

✡
✡✡

Γ

F

Γ

G

Γ

F

Γ

F
✚

✚
✚

✚
Γ ,

we have

Φ3(x; a, b) = (x, a, b)− (x 	 a, x � a, b) + (x 	 a, (x � a) 	 b, x � ab),

where x ∈ G, a, b ∈ F . When n = 0, we define Π0 and Φ0 both to be the

identity map on ZΓ.
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Theorem 2.1 ([M4, Thm. 1.8]). Π· : B· → TotC·· and Φ· : TotC·· →
B· are F 	� G-linear homotopy equivalences which induce the identity map

on Z, such that Π·Φ· = id.

It only holds that Π·Φ· = id since the complexes we consider are nor-

malized.
Regard T as a trivial left module over Γ = F 	� G. The group

HomΓ(Cpq,T) of Γ-linear maps Cpq → T is naturally identified with the
multiplicative group Map+(Gq × F p,T) of those maps f : Cpq → T which
are normalized in the sense that f(x1, . . . , xq; a1, . . . , ap) = 1 whenever any
ai or xi equals e. We define a double cochain complex by C ·· = C ··(T) :=
HomΓ(C··,T), which looks like:

C ·· = C ··(T)

=

...�
Map+(G2,T) −−−→

... · · ·�∂′
�

Map+(G,T)
∂−−−→ Map+(G× F,T) −−−→

... · · ·�∂′
�∂′

�
T

∂−−−→ Map+(F,T)
∂−−−→ Map+(F 2,T) −−−→ · · · .

Up to sign of differentials, this double complex coincides with D·· in [M3,

p. 173] (with k× replaced by T), and with C ··(T) in [M4, Sect. 2].

The cochain complex B· = B·(T) := HomΓ(B·,T) is the normalized

standard complex for computing Hn(Γ,T), which looks like:

B· = B·(T) = T
δ→ Map+(F 	� G,T)

δ→ Map+((F 	� G)2,T)→ · · · .

Corollary 2.2. Π· and Φ· induce homotopy equivalences,

Π· : TotC ·· → B·, Φ· : B· → TotC ··,
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such that Φ·Π· = id.

Remove from C ·· the leftmost vertical complex and then the lowest hor-

izontal one, to obtain the following complexes.

D·· = D··(T) =

...
...� �

Map+(G× F,T) −−−→ Map+(G× F 2,T) −−−→ · · ·� �
Map+(F,T) −−−→ Map+(F 2,T) −−−→ · · ·

E·· = E··(T) =

...
...� �

Map+(G2 × F,T) −−−→ Map+(G2 × F 2,T) −−−→ · · ·� �
Map+(G× F,T) −−−→ Map+(G× F 2,T) −−−→ · · · .

We can regard E·· ⊂ D·· ⊂ C ··. However, we count the total dimension

in D·· and E·· so that TotnD·· (resp., TotnE··) equals the direct sum of

Map+(Gq × F p,T) with p + q = n + 1, where p > 0, q ≥ 0 (resp., p > 0,

q > 0); as a consequence, it is their second total cohomology groups, as

is common in various extension theories, that are isomorphic to groups of

(coquasi-)Hopf algebra extensions (see Section 4). We have thus

TotE··[1] ⊂ TotD··[1] ⊂ TotC ··,

where [1] stands for +1 dimension shift. The inclusions induce homomor-

phisms

Hn(TotE··)→ Hn(TotD··)→ Hn+1(F 	� G,T).(13)

Since the quotient complex of TotC ·· by TotD··[1] is the standard complex

for computing Hn(G,T), we have a long exact sequence,

· · · → Hn−1(TotD··)→ Hn(F 	� G,T)(14)

→ Hn(G,T)→ Hn(TotD··)→ · · · .
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The analogous long exact sequence involving Hn(TotE··) is the so-called

Kac exact sequence; see [K, (3,14)], [M1, Appendix] and also [M3,4], [P1,2].

Replacing the coefficients T by C
× = C\{0}, we have double complexes

D··(C×), E··(C×). It follows by the universal coefficient theorem that for any

finite group Γ, the natural homomorphisms Hn(Γ,T)→ Hn(Γ,C×), n > 0,

are isomorphisms. This together with (14) and the Kac exact sequences

prove the following.

Proposition 2.3. If F and G are finite, we have natural isomor-

phisms

Hn(TotD··(T)) � Hn(TotD··(C×)),

Hn(TotE··(T)) � Hn(TotE··(C×))(15)

for all n > 0.

3. The Izumi-Kosaki Invariant and its Variant

We fix a matched pair (F,G) of finite groups.

Definition 3.1 ([IK, Def. 2.1]). A pair (α, β) of actions (or homo-

morphisms) α : F → Aut(R), β : G → Aut(R) is called an action (resp.,

outer action) of the matched pair (F,G), if the map αβ : F 	� G→ Aut(R)

defined by

(αβ)ax = αaβx (a ∈ F, x ∈ G)(16)

is a twisted action (resp., outer twisted action). Two actions (α, β), (α′, β′)
of (F,G) are said to be cocycle conjugate and denoted by (α, β) ∼c (α′, β′),
if there exist θ ∈ Aut(R) and systems {ua}a∈F , {vx}x∈G of unitaries with

ue = ve = 1, such that

uab = uaαa(ub),(17)

vxy = vxβx(vy),(18)

θα′
aθ

−1 = Ad(ua)αa,(19)

θβ′
xθ

−1 = Ad(vx)βx.(20)
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Let (α, β) be an action of the matched pair (F,G). Let ν : F 	� G×F 	�

G→ U be a cochain associated to αβ. Since

(αβ)ax(αβ)by = αaβxαbβy = αa Ad(ν(x, b))αx�bβx�bβy

= Ad(αa(ν(x, b)))(αβ)axby,

we can choose ν so as

ν(ax, by) = αa(ν(x, b)),(21)

where a, b ∈ F , x, y ∈ G.

Definition 3.2. Such ν is said to be reduced.

We can formally think the complexes C ··(U), B·(U) with coefficients in

U on which F 	� G acts by αβ, and also Π· : TotC ··(U) → B·(U). Then, ν

is reduced if and only if ν = Π2(ν1), where we formally define

ν1 = ν|G×F in C11(U).(22)

Proposition 3.3. Suppose ν is a reduced cochain associated to αβ.

(1) The 3-cocycle δν (see (7)) is given by

δν(ax, by, cz) = αx�bβx�b(ν(y, c))ν(x, b)
∗ν(x, b(y 	 c))αx�b(ν((x � b)y, c))

∗.

(2) Φ3(δν) is in Tot2 E··. If we write Φ3(δν) = (σ, τ), where σ : G ×
F 2 → T, τ : G2 × F → T, then

σ(x; a, b) = ν(x, a)∗ν(x, ab)αx�a(ν(x � a, b))
∗

τ(x, y; a) = ν(x, y 	 a)ν(xy, a)∗βx(ν(y, a)).

(3) Π3(σ, τ) = δν.

Proof. (1), (2) Straightforward.

(3) This follows since we compute

Π3(σ, τ)(ax, by, cz) = σ(x; b, y 	 c)τ(x � b, y; c)

= σ(x; b, y 	 c)αx�b(τ(x � b, y; c))

= ν(x, b)∗ν(x, b(y 	 c))αx�b(ν(x � b, y 	 c))
∗

αx�b(ν(x � b, y 	 c))αx�b(ν((x � b)y, c))
∗

αx�bβx�b(ν(y, c))

= δν(ax, by, cz). �
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Since by Part 2 above, we can formally suppose that σ = ∂ν1, τ = ∂′ν1,

we write

(σ, τ) = ∂∂∂∂∂∂∂∂ν1,(23)

the formal coboundary in TotE··(U). Part 3 states

Π3(∂∂∂∂∂∂∂∂ν1) = δν.(24)

Let (α, β), (α′, β′) be actions of (F,G) on R.

Proposition 3.4. (α, β) ∼c (α′, β′) if and only if there exist reduced

cochains ν, ν ′ associated to αβ, α′β′, respectively, such that R(αβ, ν) �
R(α′β′, ν ′).

Proof. ‘If’. Suppose an isomorphism R(α′β′, ν ′)
∼→ R(αβ, ν), r �

ax 	→ θ(r)wax � ax is given by θ and {wax}a,x. Notice that ν and ν ′, being

reduced, are both trivial on F ×F and G×G. Let ua = wa, vx = wx. Then,

(17)–(20) follow from (9), (10), and hence (α, β) ∼c (α′, β′).
‘Only if’. Suppose θ, {ua}a∈F and {vx}x∈G satisfy (17)–(20). Choose a

reduced cochain ν ′ associated to α′β′. By the proof of Proposition 1.4 there

exists uniquely a cochain ν associated to αβ, such that the bijection

R(α′β′, ν ′)
∼→ R(αβ, ν), r � ax 	→ θ(r)uaαa(vx) � ax

preserves the product.

It remains to prove ν is reduced. Notice from (10) that ν|F×F , ν|F×G

and ν|G×G are all trivial. In this case, R(αβ, ν) satisfies the partial asso-

ciativities

[(r � a)(s � x)](t � by) = (r � a)[(s � x)(t � by)],(25)

[(r � ax)(s � b)](t � y) = (r � ax)[(s � b)(t � y)],(26)

if and only if the equations

ν(ax, by) = αa(ν(x, by))ν(a, (x 	 b)(x � b)y),(27)

ν(ax, by) = ν(ax, b)ν(a(x 	 b)(x � b), y)(28)
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hold, where a, b ∈ F , x, y ∈ G, r, s, t ∈ R. It is easy to see (21) implies (27),

(28). To prove the converse, let b = e in (27), a = e in (28), and x = e in

(28). Then we have

ν(ax, y) = 1, ν(x, by) = ν(x, b), ν(a, by) = 1,

which together with (27) imply (21).

The result implies that R(α′β′, ν ′) satisfies (25), (26), and so R(αβ, ν)

does, too. Hence ν, satisfying (27), (28) and hence (21), is reduced. �

Proposition 3.5. Let ν, ν ′ be reduced cochains associated to αβ, α′β′,
respectively.

(1) R(αβ, ν) � R(α′β′, ν ′) implies ∂∂∂∂∂∂∂∂ν1 = ∂∂∂∂∂∂∂∂ν ′1.
(2) The converse holds true, if R is the hyperfinite II1 factor, and (α, β)

and (α′, β′) (or namely, αβ and α′β′) are outer.

Proof. This follows from Proposition 1.5, since by (24), ∂∂∂∂∂∂∂∂ν1 = ∂∂∂∂∂∂∂∂ν ′1 if

and only if δν = δν ′. �

Given an action (α, β) of (F,G) on R, we choose a reduced cochain ν

associated to αβ, and define the Izumi-Kosaki invariant ik(α, β) to be the

cohomology class of ∂∂∂∂∂∂∂∂ν1 in H2(TotE··); see (23). This is independent of

the choice of ν. By Propositions 3.4 and 3.5 (1), (α, β) ∼c (α′, β′) implies

ik(α, β) = ik(α′, β′).
Let Out((F,G), R) denote the set of outer actions of the matched pair

(F,G) on R. The following generalizes Izumi and Kosaki [IK, Thm. 2.5],

removing their assumption that the action � : G × F → G associated to

(F,G) is trivial.

Theorem 3.6. Suppose R is the hyperfinite II1 factor. Then, ik in-

duces a bijection

Out((F,G),R)/ ∼c
∼→ H2(TotE··)

from the set of all cocycle conjugacy classes in Out((F,G),R) onto

H2(TotE··).

Proof. Injectivity. Let (α, β), (α′, β′) be outer actions. Let ν, ν ′ be

reduced cochains associated to αβ, α′β′, respectively. Suppose ∂∂∂∂∂∂∂∂ν1 and ∂∂∂∂∂∂∂∂ν ′1
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are cohomologous in H2(TotE··). Then for some cochain η : G × F → T,

(∂∂∂∂∂∂∂∂ν1)(∂∂∂∂∂∂∂∂η) = ∂∂∂∂∂∂∂∂ν ′1 in TotE··. Replace ν with νΠ2(η). Then, ∂∂∂∂∂∂∂∂ν1 = ∂∂∂∂∂∂∂∂ν ′1. By

Propositions 3.5 (2) and 3.4, R(αβ, ν) � R(α′β′, ν ′) and (α, β) ∼c (α′, β′).
Surjectivity. Let (σ, τ) ∈ Z2(TotE··), and define φ = Π3(σ, τ) ∈ Z3(B·).

By Theorem 1.1, there exists a twisted action α̃ of F 	� G together with

an associated cochain µ such that δµ = φ. Since φ is trivial on F × F × F

and G × G × G, Theorem 1.1 and Proposition 1.4 allow us to suppose

α̃ = αβ, where α and β are actions of F and G, respectively, so that (α, β)

is an outer action of (F,G). By the same reason we may suppose µ is

trivial on F × F and G × G. Nevertheless, µ may not be reduced. But,

we can write ν = ωµ, where ν is reduced and ω is a T-valued 2-cochain.

Since ω is necessarily trivial on F × F and G × G, Φ2(ω) is in Tot1 E··.
We see δν = (δω)φ. It follows by applying Φ3 that ∂∂∂∂∂∂∂∂ν1 = ∂∂∂∂∂∂∂∂Φ2(ω)(σ, τ),

since Φ3(δω) = ∂∂∂∂∂∂∂∂Φ2(ω), a coboundary in TotE··. This proves that the

cohomology classes [∂∂∂∂∂∂∂∂ν1] = ik(α, β) and [(σ, τ)] in H2(TotE··) coincide. �

To obtain an analogous result (Theorem 3.11), we modify Definition 3.1

as follows.

Definition 3.7. A pair (α, β) of a map α : F → Aut(R) with αe = id

and a homomorphism β : G→ Aut(R) is called a weak action (resp., outer

weak action) of the matched pair, if the map αβ : F 	� G→ Aut(R) defined

by (16) is a twisted action (resp., outer twisted action). Two weak actions

(α, β), (α′, β′) of (F,G) are said to be weakly cocycle conjugate and denoted

by (α, β) ∼wc (α′, β′), if there exist θ ∈ Aut(R) and systems {ua}a∈F ,

{vx}x∈G of unitaries with ue = ve = 1, such that (18), (19) and (20) are

satisfied.

Let (α, β) be a weak action of the matched pair (F,G). A cochain ν

associated to αβ can be chosen so that

ν(ax, by) = αa(ν(x, b))ν(a, x 	 b).(29)

Such ν is said to be reduced in this generalized case. Define

ν0 = ν|F×F , ν1 = ν|G×F .(30)

We can formally suppose that (ν0, ν1) is in Tot1 D··(U), and ν = Π2(ν0, ν1)

in B2(U).
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Proposition 3.8. Suppose ν is a reduced cochain associated to αβ.

(1) The 3-cocycle δν (see (7)) is given by

δν(ax, by, cz) = αa(x�b)βx�b(ν(y, c))ν(a, x 	 b)
∗

αa(ν(x, b))
∗αaβx(ν(b, y 	 c))

αa(ν(x, b(y 	 c)))ν(a, x 	 b(y 	 c))ν(a(x 	 b), (x � b)y 	 c)
∗

αa(x�b)(ν((x � b)y, c))
∗.

(2) Φ3(δν) is in Tot2 D··. If we write (ω, σ, τ) = Φ3(δν), where ω :

F × F × F → T, σ : G× F × F → T and τ : G×G× F → T, then

ω(a, b, c) = δν0(a, b, c) = αa(ν(b, c))ν(a, bc)ν(ab, c)
∗ν(a, b)∗,

σ(x; a, b) = ν(x, a)∗βx(ν(a, b))ν(x, ab)ν(x 	 a, (x � a) 	 b)
∗

αx�a(ν(x � a, b))
∗,

τ(x, y; a) = βx(ν(y, a))ν(x, y 	 a)ν(xy, a)
∗.

(3) Π3(ω, σ, τ) = δν.

Proof. (1), (2) Straightforward.

(3) This follows since we compute

Π3(ω, σ, τ)(ax, by, cz) = τ(x � b, y; c)σ(x; b, y 	 c)ω(a, x 	 b, (x � b)y 	 c)

= αa(x�b)(τ(x � b, y; c))ν(a, x 	 b)
∗αa(σ(x; b, y 	 c))

ω(a, x 	 b, (x � b)y 	 c)ν(a, x 	 b)

= αa(x�b)(ν((x � b)y, c))
∗

αa(x�b)βx�b(ν(y, c))ν(a, x 	 b)
∗αa(ν(x, b))

∗

αaβx(ν(b, y 	 c))αa(ν(x, b(y 	 c)))

ν(a, (x 	 b)((x � b)y 	 c))

ν(a(x 	 b), (x � b)y 	 c)∗

= δν(ax, by, cz). �

With the notation as above we write

(ω, σ, τ) = ∂∂∂∂∂∂∂∂(ν0, ν1),(31)
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since we can formally suppose that this equation holds in TotD··(U). Part

3 above states

Π3(∂∂∂∂∂∂∂∂(ν0, ν1)) = δν.(32)

Proposition 3.9. Two weak actions (α, β), (α′, β′) of (F,G) on R are

weakly cocycle conjugate if and only if there exist reduced cochains ν, ν ′

associated to αβ, α′β′, respectively, such that R(αβ, ν) � R(α′β′, ν ′).

Proof. Modify the proof of Proposition 3.4. We only remark that

such a cochain ν associated to αβ that is trivial on F × G and G × G

is reduced if and only if R(αβ, ν) satisfies the partial associativities (25),

(26). �

Proposition 3.10. Let (α, β), (α′, β′) be weak actions of the matched

pair (F,G) on R. Let ν, ν ′ be reduced cochains associated to αβ, α′β′, re-

spectively.

(1) R(αβ, ν) � R(α′β′, ν ′) implies ∂∂∂∂∂∂∂∂(ν0, ν1) = ∂∂∂∂∂∂∂∂(ν ′0, ν
′
1); see (31).

(2) The converse holds true, if R is the hyperfinite II1 factor, and (α, β)

and (α′, β′) (or namely, αβ and α′β′) are outer.

Proof. By (32), ∂∂∂∂∂∂∂∂(ν0, ν1) = ∂∂∂∂∂∂∂∂(ν ′0, ν
′
1) if and only if δν = δν ′. Hence

this proposition follows from Proposition 1.5. �

Given a weak action (α, β) of (F,G), choose a reduced cochain ν asso-

ciated to αβ, and define ikw(α, β) to be the cohomology class of ∂∂∂∂∂∂∂∂(ν0, ν1)

in H2(TotD··). This is independent of the choice of ν. By Propositions 3.9

and 3.10 (1), (α, β) ∼wc (α′, β′) implies ikw(α, β) = ikw(α′, β′).
Let Outw((F,G),R) denote the set of outer weak actions of the matched

pair (F,G) on R. An easy modification of the proof of Theorem 3.6, using

Propositions 3.9 and 3.10, proves the following.

Theorem 3.11. Suppose R is the hyperfinite II1 factor. Then, ikw

induces a bijection

Outw((F,G),R)/ ∼wc
∼→ H2(TotD··)
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from the set of all weak cocycle conjugacy classes in Outw((F,G),R) onto

H2(TotD··).

One sees from (24), (32) that the following diagram commutes, where

the vertical arrows in the left-hand side are given by (α, β) 	→ (α, β) 	→ αβ,

and those in the right-hand sides are as in (13).

Out((F,G),R)
ik−−−→ H2(TotE··)� �

Outw((F,G),R)
ikw−−−→ H2(TotD··)� �

Out(F 	� G,R)
Obs−−−→ H3(F 	� G,T)

4. Hopf-Galois Extensions Arising from (Weak) Actions of a

Matched Pair

We continue to fix a matched pair (F,G) of finite groups.

A finite-dimensional Kac algebra is precisely a finite-dimensional C∗-
Hopf algebra. We denote by CF the group algebra of F , which forms a

Kac algebra with a∗ = a−1, where a ∈ F . We denote by Ĝ, though often

denoted by (CG)∗, C
G or l∞(G), the dual Kac algebra of CG. The dual

basis of the basis x (∈ G) in CG will be denoted by ex, so that (ex)
∗ = ex

in Ĝ.

Essentially due to Kac [K], H2(TotE··) is naturally isomorphic to the

group Opext(CF, Ĝ) of the equivalence classes of those Kac algebra exten-

sions Ĝ→ H→ CF which are associated to the fixed matched pair (F,G).

For (σ, τ) ∈ Z2(TotE··), the vector space Ĝ ⊗ CF of tensor product forms

a Hopf algebra, Ĝ#σ,τCF , of twisted bicrossed product with the structure

described in [M3, p. 170]. This is in fact a Kac algebra in which all 1#a

(a ∈ F ) are unitaries, and forms in the obvious way an extension associated

to (F,G). The assignment (σ, τ) 	→ Ĝ#σ,τCF induces a natural isomor-

phism H2(TotE··) � Opext(CF, Ĝ). The isomorphism (15) implies that

any Hopf algebra extension is equivalent to a unique (up to equivalence)

Kac algebra extension.
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It follows by [IK, Remarks 1, p. 5] that given an outer action (α, β) of

(F,G) on R, we have an irreducible inclusion R�α F ⊃ R(β,G) of factors of

depth 2; the depth 2 condition follows also from the next theorem of ours.

We will connect this inclusion with such a Kac algebra extension whose

equivalence class corresponds to ik(α, β). Among the known equivalent

ways of connecting irreducible inclusions of II1 factors of depth 2, with Kac

algebras (see the Introduction), the most direct seems to give to such an

inclusion a structure of Hopf-Galois extensions. For a finite-dimensional

Kac algebra H, a ∗-algebra P is called a right H-comodule algebra if it is

given a ∗-homomorphism ρ : P → P ⊗ H which is a right H-comodule

structure. In this case, P ⊃ Q is called an H-Galois extension [Mo, Def.

8.1.1], if Q equals the ∗-subalgebra PcoH consisting of the elements p such

that ρ(p) = p⊗ 1, and the map

ρ̃ : P ⊗Q P → P ⊗H, ρ̃(p⊗ q) = (p⊗ 1)ρ(q)(33)

is a bijection. It follows by Kadison and Nikshych [KN] that an irreducible

inclusion of II1 factors with finite index is of depth 2 if and only if it is

H-Galois for some finite-dimensional Kac algebra H.

Theorem 4.1. Let (α, β) be an outer action of (F,G) on R. Choose a

reduced cochain ν associated to αβ. Let H = Ĝ#σ,τCF , where (σ, τ) = ∂∂∂∂∂∂∂∂ν1;

see (23). Then, R�α F ⊃ R(β,G) is an H-Galois extension with respect to

the structure ρ : R�α F → (R�α F )⊗H defined by

ρ(r � a) =
∑
x∈G

(βx(r)ν(x, a) � (x 	 a))⊗ (ex#a).(34)

Proof. We only prove that ρ preserves ∗. The remaining will be

proved in Proposition 4.3 below in a generalized situation.

Since one sees ρ(r∗�1) = ρ(r�1)∗, it remains to prove that ρ(1�a−1) =

ρ(1 � a)∗. Since a−1ex = ex�aa
−1 (= ex�a#a−1) in H, we see

ρ(1 � a)∗ =
∑

x,y∈G
(x 	 a)−1ν(x, a)∗ ⊗ σ(y; a−1, a)eya

−1ex

=
∑
y∈G

(y 	 a−1)ν(y � a−1, a)∗ ⊗ σ(y; a−1, a)eya
−1.
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This equals

ρ(1 � a−1) =
∑
x∈G

ν(x, a−1)(x 	 a−1)⊗ exa
−1,

since ν(x, a−1) = αx�a−1(ν(x � a−1, a))∗σ(x; a−1, a), as follows from Propo-

sition 3.3 (2). �

Remark 4.2. (1) For (α, β) as above, let ν ′ be another choice of a

reduced cochain associated to αβ. This gives rises, as above, to a structure

ρ′ : R�α F → (R�α F )⊗H′ with H′ = Ĝ#σ′,τ ′CF , where (σ′, τ ′) = ∂∂∂∂∂∂∂∂ν ′1.
Since we have η : G × F → T such that ν ′1 = ην1, it follows that (σ′, τ ′) =

(σ∂η, τ∂′η). By [M3, Prop. 1.8], ex#a 	→ η(x; a)ex#a gives an equivalence

H′ ∼→ H of extensions, which is compatible with the structures ρ′, ρ.
(2) Izumi and Kosaki [IK, Remarks 2, p. 5] prove that if (α, β) and

(α′, β′) are cocycle conjugate outer actions of (F,G), the inclusionsR�αF ⊃
R(β,G) and R�α′ F ⊃ R(β′,G) are conjugate to each other; see also Remark

4.4 (2) below.

It is proved in [M4, Prop. 4.15] that H2(TotD··) is naturally isomorphic

to the group Opext′′(CF, Ĝ) of the coquasi-equivalence classes of coquasi-

bialgebra extensions associated to the matched pair (F,G); see [M4, Defs.

4.11, 4.12].

Let (ω, σ, τ) ∈ Z2(TotD··). In particular, ω : F × F × F → T is a

3-cocycle. Denote ω̄ = ω−1, the inverse of ω. In the same way as above

we construct a coalgebra, H = Ĝ#σ,τCF , with unital, but non-associative

product. Each right H-comodule V can be regarded as an F -graded vector

space V =
⊕

a∈F Va through the canonical coalgebra epimorphism H →
CF . The tensor product V ⊗W of two right H-comodules forms a right

H-comodule along the product H ⊗ H → H. The 2-cocycle condition in

TotD·· assures that the right H-comodules form such a monoidal category,

M(H,ω̄), in which the left and right unit constraints are trivial, and the

associativity constraint (V ⊗W )⊗ U
∼→ V ⊗ (W ⊗ U) is given by

ω̄(a, b, c) = ω(a, b, c) : (Va ⊗Wb)⊗ Uc
∼→ Va ⊗ (Wb ⊗ Uc),

where a, b, c ∈ F . Thus, (H, ω̄) is a coquasi-bialgebra [M4, Sect. 4.2]; this

is in fact a coquasi-Hopf algebra as is proved in [M3, Lemma 4.1] in the
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dual context. For another (H′, ω̄′) = (Ĝ#σ′,τ ′CF, ω̄′), (H, ω̄) and (H′, ω̄′)
are said to be coquasi-equivalent [M4, Def. 4.11], if the monoidal cate-

gories M(H,ω̄) and M(H′,ω̄′) are monoidally equivalent in some specific way.

The assignment (ω, σ, τ) 	→ (Ĝ#σ,τCF, ω̄) induces a natural isomorphism

H2(TotD··)
∼→ Opext′′(CF, Ĝ).

For (H, ω̄) as above, an (H, ω̄)-Galois extension P ⊃ Q is an algebra

object P with structure, say ρ, in M(H,ω̄) such that Q = PcoH and the

map ρ̃ defined by (33) is a bijection. Notice that if Q = PcoH, Q is an

ordinary algebra, P is an ordinary Q-bimodule, and P ⊗Q P is defined in

the ordinary way. This definition of Galois extensions is available for general

coquasi-bialgebras.

Proposition 4.3. Let (α, β) be a weak action of (F,G) on R. Choose

a reduced cochain ν associated to αβ, and set (H, ω̄) = (Ĝ#σ,τCF, ω̄), where

(ω, σ, τ) = ∂∂∂∂∂∂∂∂(ν0, ν1); see (31).

(1) The formal twisted crossed product R(α, ν0) is an algebra object in

M(H,ω̄) with the structure ρ defined by the same formula as (34).

(2) If the action β is outer, the inclusion R(α, ν0) ⊃ R(β,G) is an (H, ω̄)-

Galois extension.

Proof. (1) By [M4, Prop. 4.20], M(H,ω̄) is identified with the

monoidal category GMF
ω,σ,τ defined by [M4, Def. 4.1]. An algebra object in

GMF
ω,σ,τ is a unital, but non-associative F -graded algebra A =

⊕
a∈F Aa

with a unital, but non-associative G-action G×A→ A, (x, ξ) 	→ x · ξ such

that x · 1 = 1, x ·Aa ⊂ Ax�a,

x · (y · ξ) = τ(x, y; a)(xy) · ξ,
x · (ξη) = σ(x; a, b)(x · ξ)((x � a) · η),

(ξη)µ = ω̄(a, b, c)ξ(ηµ),(35)

where ξ ∈ Aa, η ∈ Ab, µ ∈ Ac. In particular the last condition (35) requires
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the diagram

(A⊗A)⊗A

❄
m⊗ id

✲ass
A⊗ (A⊗A)

❄
id⊗m

A⊗A A⊗A

❅
❅

❅❘
m

�
�

�✠
m

A

to commute, where m : A ⊗ A → A denotes the product and ass denotes

associativity constraint in GMF
ω,σ,τ which is given by the 3-cocycle ω̄.

R(α, ν0) is regarded as an object in GMF
ω,σ,τ with the original F -gra-

dation together with G-action x · (r � a) = βx(r)ν(x, a) � (x 	 a). It is

straightforward to see that this is an algebra object. See also Remark 4.4

(1) below.

(2) Let P = R(α, ν0), Q = R(β,G). Then one sees easily PcoH = Q.

Suppose β is outer. It is well-known, as Prof. Yamagami kindly informed

to the author, that R ⊃ Q is Ĝ-Galois, so that the map R⊗Q R → R⊗ Ĝ

given by r ⊗ s 	→
∑

x∈G rβx(s)⊗ ex is a bijection. As its base extension we

have a bijection

P ⊗Q R ∼→ P ⊗ Ĝ, p⊗ r 	→
∑
x∈G

pβx(r)⊗ ex.(36)

Regard P⊗QP and P⊗H as F -graded space with a-components P⊗Q(R�a)

and P ⊗ (Ĝ#a), respectively, where a ∈ F . Then ρ̃ is F -graded, whose a-

component (ρ̃)a is the composite of (36) with

P ⊗ Ĝ→ P ⊗ Ĝ, p⊗ ex 	→ pν(x, a)(x 	 a)⊗ ex.(37)

Here since (pr)q = p(rq) for p, q ∈ P, r ∈ R, we have written prq for them.

Since the right multiplications by ν(x, a), 1�(x	a) in P are both bijections,

the map (37) and hence ρ̃ are, too. �

Remark 4.4. Let the notation be as above.

(1) Write Γ = F 	� G. Let φ = δν, a 3-cocycle. We see as above that

R(αβ, ν) is an algebra object in the monoidal category M(Γ,φ̄) of Γ-graded
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spaces whose associativity constraint is given by φ̄ = φ−1. It includes the

ordinary algebra CG as a sub-algebra object since φ̄ is trivial on G×G×G.

It follows that R(αβ, ν) is an algebra objects in the monoidal category

GM(Γ,φ̄)
G of CG-bimodules in M(Γ,φ̄). Schauenburg [P1, Thm. 3.3.5] gives

a monoidal equivalence GM(Γ,φ̄)
G ≈ GMF

ω,σ,τ , under which R(αβ, ν) corre-

sponds toR(α, ν0). This gives an alternative proof of Part 1 of the preceding

proposition.

(2) Suppose the action β is outer. Let (α′, β′) be another weak ac-

tion of (F,G) such that (α, β) ∼wc (α′, β′). Choose a reduced cochain

ν ′ associated to α′β′. We will see that if δν ′0 = δν0, there is an isomor-

phism R(α′, ν ′0) � R(α, ν0) of non-associative algebras which induces a

∗-isomorphism R(β′,G) � R(β,G). We may suppose δν ′ = δν to obtain those

θ, {ua}a∈F , {vx}x∈G which satisfy (18), (19), (20) and make

f : R(α′, ν ′0)→ R(α, ν0), f(r � a) = θ(r)ua � a

an isomorphism. As in [IK, Remarks 2, p. 5], it follows by applying the

Noether-Skolem theorem to the two ∗-homomorphisms

CG→ R�β G, x (∈ G) 	→ 1 � x, vx � x,

we have w ∈ U such that wvx = βx(w), and hence

Ad(w)θβ′
x = Ad(w) Ad(vx)βxθ = βx Ad(w)θ,

where x ∈ G. This proves that Ad(w � e)f is a desired isomorphism.

5. Examples

Let n = 2m be an even natural number with m > 1. Let

D2n = 〈a, x | an = 1 = x2, xa = a−1x〉

denote the dihedral group of order 2n. We have four subgroups in D2n,

E = 〈ax〉, F1 = 〈a〉, F2 = 〈a2, ax〉, G = 〈x〉,(38)

which are isomorphic to Z2, Zn, Dn, Z2, respectively. One sees that D2n

exactly factorizes (see (11)) in two ways as D2n = F1G = F2G, in which
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Fi are both normal. Hence we have two matched pairs, (F1, G), (F2, G),

such that Fi � G = D2n. The cohomology groups H2(TotD··) arising from

the two matched pairs are naturally isomorphic to each other by a general

reason [M4, Prop. 4.6], and are computed in [M4, Prop. 5.3] so that

H2(TotD··) � Z2 ⊕ Zn.(39)

On the other hand it seems incident that the two cohomology groups

H2(TotE··) are isomorphic to each other, as is seen from [M2, Props. 3.10,

3.11] (or the independent [IK, Prop. 7.5]) so that

H2(TotE··) � Z2.(40)

Proposition 5.1. The restriction homomorphisms from D2n to

E,F1, G (see (38)) induce an isomorphism

H3(D2n,T)
∼→ H3(E,T)⊕H3(F1,T)⊕H3(G,T).

Proof. This might be known. But, this can be easily proved as fol-

lows, by using (39), (40).

Since the action � : G×Fi → G associated to the matched pair is trivial,

we have

Hn(TotC ··) � Hn−1(TotD··)⊕Hn(G,T).(41)

Choose here the matched pair (F1, G). Since H3(F1,T) � Zn, it follows by

(39), (40) that the exact sequence

H2(TotE··)→ H2(TotD··)→ H3(F1,T)(42)

arising from the obvious short exact sequence of complexes is necessarily a

split short exact sequence. Therefore we have a natural (split) short exact

sequence

H2(TotE··)→ H3(D2n,T)→ H3(F1,T)⊕H3(G,T).(43)

It remains to prove that the composite

H2(TotE··)→ H3(D2n,T)→ H3(E,T)(44)
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is an isomorphism. H2(TotE··) is generated by the cohomology class of

(σ, τ) ∈ Z2(TotE··), where σ : G× F1 × F1 → T is trivial, and τ : G×G×
F1 → T is given by τ(x, x; ai) = (−1)i. Its image in H3(E,T) is represented

by Π3(σ, τ)|E3 , whose cohomology class indeed generates H3(E,T) since

Π3(σ, τ)(ax, ax, ax) = τ(x, x; a) = −1.

This completes the proof. �

Remark 5.2. We assert that Proposition 5.1 fails to hold if F1 is re-

placed by F2. By the proposition, H3(D2n,T) � Z2 ⊕ Zn ⊕ Z2 if n is even.

This implies our assertion when m (= n/2) is even.

Suppose n is odd. We have still the exact factorization D2n = F1G,

while F2 then equals D2n. It follows by (41) that H3(D2n,T) � Z2n, since

we see by modifying the proof of [M4, Prop. 5.3] that H2(TotD··) arising

from (F1, G) is isomorphic to Zn. It follows that if m is odd, we have the

same split short exact sequences as (42), (43), with F1 replaced by F2. But,

the composite (44) is zero since ax is mapped to e through the projection

F2G→ G.

We suppose again that n (= 2m > 2) is even. In the following we also

suppose R is the hyperfinite II1 factor. Since the last proof shows that

the natural homomorphisms H2(TotE··) → H2(TotD··) → H3(D2n,T) are

(split) monomorphisms, we have by Theorems 3.6, 3.11 that

Out((Fi, G),R)/ ∼c ⊂ Outw((Fi, G),R)/ ∼wc(45)

⊂ Out(Fi 	� G,R)/ ∼,

where i = 1, 2.

Recall from Example 1.2 the definition of the Connes obstruction γ. To

each α ∈ Out(D2n,R), we can assign an element (γ(αax), γ(αx), γ(αa)) in

µ2 × µ2 × µn.

Corollary 5.3. This assignment gives a bijection

Out(D2n,R)/ ∼ ∼→ µ2 × µ2 × µn.
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Proof. This follows from the preceding proposition together with Ex-

ample 1.2. �

Proposition 5.4. Choose the matched pair (F1, G) = (Zn,Z2). As-

sign to each action or weak action (α, β) of (Zn,Z2), an element γ(αaβx)

in µ2 or (γ(αaβx), γ(αa)) in µ2 × µn. Then we have bijections

Out((Zn,Z2),R)/ ∼c
∼→ µ2,

Outw((Zn,Z2),R)/ ∼wc
∼→ µ2 × µn.

Proof. An outer twisted action α̃ of D2n is outer conjugate to some

αβ, where (α, β) is an action (resp., weak action) of (F1, G), if and only if

α̃|F1 and α̃|G are (resp., α̃|G is) outer conjugate to action(s), if and only if

γ(α̃a) = γ(α̃x) = 1 (resp., γ(α̃x) = 1). Hence the proposition follows from

Corollary 5.3 together with (45). �

We have precisely two (up to equivalence) Kac algebra extensions asso-

ciated to the matched pair (Zn,Z2). The split extension is given by the dual

D̂2n of the group algebra CD2n, while the unique non-split one is given by

T̂4m, where T4m is the dicyclic (or generalized quaternion) group of order

4m; see [M2, Remark 3.2]. By the preceding proposition we have precisely

two (up to cocycle conjugacy) outer actions (α, β) of (Zn,Z2) on R, which

are distinguished according to whether γ(αaβx) = 1 or −1. In each case, the

irreducible inclusion R�α Zn ⊃ R(β,Z2) is D̂2n- or T̂4m-Galois, respectively.

Proposition 5.5. Choose the matched pair (F2, G) = (Dn,Z2). As-

signing to each weak action (α, β) of (Dn,Z2), an element (γ(αax),

γ(αaxβx)) in µ2 × µn, we have a bijection

Outw((Dn,Z2),R)/ ∼wc
∼→ µ2 × µn.

A weak action (α, β) is weakly cocycle conjugate to some action of the

matched pair if and only if γ(αax) = 1 and γ(αaxβx) = ±1.

Proof. The proof of the first half is similar to the last proof. The

‘only if’ part of the second half follows since γ(αa2) = γ(αaxβx)
2. The

‘if’ part follows since we know that Out((Dn,Z2),R)/ ∼c consists of two

elements. �
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We have precisely two Kac algebra extensions associated to the matched

pair (Dn,Z2). They are explicitly described in [M2]; the split one is denoted

by A4m, while the unique non-split one is denoted by B4m. When m = 2, B8

coincides with the Kac algebra due to Kac and Paljutkin [KP]. Aside from

the Kac algebras constructed by Sekine [Se], B4m are another candidate of

generalizations of Kac and Paljutkin’s algebra. It is known so far that they

possess the following interesting properties: (i) B4m is selfdual [CDMM]; (ii)

B4m has precisely 2m quasitriangular structures, none of which is triangular

[Su]; (iii) There exists no B4m-Galois extension over C other than B4m itself

[M2] ([IK, Thm. 13.15] when m = 2); this implies that there exists no Hopf

algebra other than B4m whose (co)module category is monoidally equivalent

to B4m’s.

For an outer action α̃ : D2n → Aut(R), let α = α̃|F2 , β = α̃|G. Then

(α, β) is an outer action of (Dn,Z2), and R�αDn ⊃ R(β,Z2) is A4m-Galois.

By Proposition 5.5 there exists an outer weak action (α, β) of (Dn,Z2)

such that γ(αax) = 1 and γ(αaxβx) = −1. This (α, β) is weakly cocycle

conjugate to some outer action of the matched pair; it seems, however,

difficult to find such an outer action in an explicit form. Since α is outer

conjugate to some outer action of Dn, we can construct a twisted crossed

product R(α, ν), where ν : Dn × Dn → U is a 2-cocycle associated to α.

Once one finds such a twisted crossed product, it is the hyperfinite II1 factor,

and R(α, ν) ⊃ R(β,Z2) is an irreducible inclusion, which is B4m-Galois since

ikw(α, β) is the unique non-trivial element in H2(TotE··). The inclusion is

independent (up to conjugacy) of the choice of (α, β) and ν; see Remark 4.4

(2).

We wish to construct such a twisted crossed product explicitly by gen-

erators and relations, from two ∗-automorphisms χ, θ ∈ Aut(R) of period

2 such that the composite χθ has outer period n with γ(χθ) = −1. No-

tice that for the outer weak action (α, β) as above, we may suppose that

χ = αax and θ = βx satisfy the conditions just given, and conversely two

such ∗-automorphisms give rise to (α, β) as above. We have u ∈ U such

that (χθ)n = Ad(u) with χθ(u) = −u. As in [IK, (8.1)], we may suppose

χ(u) = u−1, θ(u) = −u−1,(46)

by replacing u with ξ−1/2u, where ξ = uχ(u). Notice here that ξ ∈ T, since

one sees

Ad(u−1) = χ(χθ)nχ = χAd(u)χ = Ad(χ(u)).
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Set b = a2, y = ax in G. Then,

G = Dn = 〈b, y | bm = 1 = y2, yb = b−1y〉.

Let ϕ = (χθ)2. Then,

ϕ(u) = u.(47)

χ, θ and ϕ give rise to an outer weak action (α, β) of (Dn,Z2) given by

αbiyj = ϕiχj , βxj = θj (0 ≤ i < m, 0 ≤ j < 2).(48)

By definition an R-ring is a pair of an algebra P and an algebra ho-

momorphism R → P. Any twisted crossed product R(α, ν) is naturally an

R-ring.

Proposition 5.6. Let P denote the R-ring generated by two elements

B, Y , and defined by the relations

Bm = u, Y 2 = 1, Y B = B−1Y,

Br = ϕ(r)B, Y r = χ(r)Y (r ∈ R).

There exists a 2-cocycle ν : Dn × Dn → U associated to the α as in (48),

such that

f : R(α, ν)→ P, f(r � biyj) = rBiY j (0 ≤ i < m, 0 ≤ j < 2)

gives an isomorphism of R-rings. Hence P is the hyperfinite II1-factor

including R, in which B and Y are unitaries. Moreover, P ⊃ Rθ is an

irreducible inclusion which is B4m-Galois, where Rθ = {r ∈ R | θ(r) = r}.

Proof. It is enough to prove the existence of ν. An easy application of

the diamond lemma [B, Prop. 7.1] proves that BiY j (0 ≤ i < m, 0 ≤ j < 2)

form a left R-free basis in P. A point is to see that the equations (46), (47)

resolve overlap ambiguities among the relations for P; for examples, since

ϕ(u) = u implies that BBm = Bu = uB = BmB, the overlap ambiguity

between Bm = u and itself is resolved.

It follows that P forms a twisted crossed product of Dn over R with

biyj-component RBiY j , where 0 ≤ i < m, 0 ≤ j < 2. Since

BiY jr = ϕiχj(r)BiY j = αbiyj (r)B
iY j ,
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we have a desired ν, which is indeed U-valued since u ∈ U. �

In a different manner, Izumi and Kosaki [IK, Thm. 8.3] give explicitly

an irreducible inclusion corresponding to Kac and Paljutkin’s algebra B8.
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