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Hodge Cycles on Abelian Varieties with Complex
Multiplication by Cyclic CM-Fields

By Fumio HAzZAMA

Abstract. For any cyclic CM-fields of degree 2pq with p, ¢ dis-
tinct odd primes, we determine which CM-types among 2P? ones give
rise to degenerate abelian varieties and in what codimension nondivi-
sorial Hodge cycles exist on them.

1. Introduction

The purpose of this paper is to classify the CM-types for cyclic CM-fields
of degree 2pq with p, ¢ distinct odd primes according to the structures
of the Hodge rings of corresponding abelian varieties. Our classification
reveals in what codimension non-divisorial Hodge cycles lie, and at the
same time shows that the algebraicity of these Hodge cycles implies the
Hodge conjecture for any self-products of the abelian varieties. From our
result follows, for example, that there are > <;<, (1;)‘1 — 2P p-dominated
CM-types, > <i<q (4)P — 24 g-dominated CM-types, and the other primitive
ones are nondegenerate. As a byproduct we obtain the result to the effect
that there is always a degenerate CM-type for Q({2,+1) whenever n = 3¢
with ¢ a prime > 3. This gives an effective version of a result (due to
Lenstra and Stark) in [5, (3.11)] stating that for sufficiently large prime
2n 4+ 1 = 7(mod 12) there exists a degenerate CM-type for Q((2n+1). As
another consequence of our theorem, we have a stronger version of a theorem
by Lenstra in the case of cyclic CM-fields of degree 2pg. He showed that for
any degenerate abelian variety A with complex multiplication by an abelian
CM-field, there always exists a nondivisorial Hodge cycle on A itself (see
[7]). Our theorem shows, as well as this, that for our cyclic cases the whole
Hodge rings H(A¥), k > 1 of its self-products are generated (up to some
equivalence relation) by Hodge cycles on A itself when A is degenerate (see
Section four and five for more details).
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The plan of this paper is as follows. Section two recalls some fundamen-
tal properties of Hodge cycles on abelian varieties of CM-type. In particular,
the notions of N-dominatedness and h-degeneracy are explained here. In
Section three, we construct a Z-basis of the group algebra Z[Z/2nZ] which
reflects the orthogonal decomposition according to the characters of Z/2nZ.
The basis plays a fundamental role in the remaining sections. In Section
four, we determine completely (Theorem 4.8) what and how many CM-
types for Z/2nZ are degenerate, when n = pq is the product of distinct odd
primes pg. Section five is devoted to show that any absolutely simple and
degenerate abelian varieties with complex multiplication by a cyclic CM-
field of degree 2pq must be p-dominated or ¢g-dominated. Furthermore, it is
shown that all of them are 1-degenerate. As an application of our theorem
we show in Section six how it is simple to construct degenerate CM-types
for some cyclotomic fields and to count the number of those CM-types.

2. Hodge Cycles and Characters

The purpose of this section is to recall some fundamental facts about
the relationship between Hodge cycles on an abelian variety of CM-type
and characters of the Galois group of the corresponding CM-field. We also
recall the notions of N-dominatedness and h-degeneracy.

Let K be a CM-field with abelian Galois group G of order 2n. Let G =
{91, 9n,91P,-- ., gnp}, where g; is assumed to be the identity element
and p denotes the complex conjugation. Let S C G be a CM-type, namely
a subset of G such that S]] Sp = G (disjoint union), and let Ag denote
the abelian variety associated with S (see [3], for example). We identify
Q[G] with Q?", the space of row vectors of length n, through the given
ordering of the elements of G. Furthermore we identify a subset T" C G
with the element >, ot € Q[G]. For any g € G, let hy = Sg— Spg € Q[G].
We define the Hodge matrix Hg to be the n by 2n matrix whose i-th row
vector is hg,, 1 < i < n. For any abelian variety A, let Hg(A) denote the
Hodge group of A. It is known that Hg(A) is an algebraic torus over Q,
and the inequality dim Hg(A) < dim A holds. When dim Hg(A) is smaller
than dim A, the abelian variety is degenerate in the sense that there is a
nondivisorial Hodge cycle on some A* %k > 1 ([1]). The Hodge matrix is
of fundamental importance for the study of the Hodge ring of Ag, since
rank Hg = dim Hg(Ag) and the kernel Kg = ker Hg depicts the set of
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nondivisorial Hodge cycles on A*, k > 1 (see [1], [3] for details). Moreover,
the rank of the Hodge matrix is related to the character sums. For any
character x € X(G) = Hom(G, C* and a subset 7' C G, we write x(T') =

>ger X(9) € C.

ProproSITION 2.1 ([4], [5]). The difference dim A—rank H(A) is equal
to the number of the odd characters of G such that x(S) = 0.

REMARK 2.2. A character y is said to be odd (resp. even) if x(p) = —1
(resp. x(p) = 1). Note that for any nontrivial even character y we have
X(8) = (x(5) + x(5))/2 = (x(5) + x(pS))/2 = x(G)/2 = 0. Hence we can
rephrase the proposition as an equality rank H(A) = #{x € X(G); x(S) #
0} —1.

A CM-type S is said to be primitive if the corresponding abelian variety
is absolutely simple. The following criterion for primitivity will be used
later frequently.

PROPOSITION 2.3 ([5, Section 2]). A CM-type S is primitive if and
only if it is not stable under any elements of G — {g1}.

Next we recall a characterization of N-dominatedness and h-degeneracy
of an abelian variety A. Originally they are defined in terms of the struc-
ture of the Hodge rings of the self-products A*, k > 1 (see [1] for N-
dominatedness and [3] for h-degeneracy). Here we explain them through
their characterizations given in the papers cited above, and thereafter we de-
scribe their relevance in the theory of Hodge cycles. Forany v =} cqaq9 €
Z[G], we set

w(v) =) lagl/2,

geG
h(v) = max{|ay4]; g € G},

and call (resp. h(v)) the weight (resp. height) of v. Moreover for any finite
subset X of Z[G], we put

w(X) = max{w(v) : v e X},
h(X) = max{h(v) : v € X}.
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Furthermore for any Z-submodule N of Z[G], we put

w(N) = min{w(X) : X is a spanning subset of N},
h(IN) = min{h(X) : X is a spanning subset of N}.

Using this notion of weight (resp. height), we can characterize the N-
dominatedness (resp. N-degeneracy) as follows.

ProposITION 2.4 ([1], [3]). Notation being as above, the abelian vari-
ety Ag is

(i) N-dominated if and only if w(Kg) = N.

(ii) h-degenerate if and only if h(Kg) = h.

REMARK 2.5. These two notions are related to the investigation of the
Hodge conjecture in the following way. If A is N-dominated, then the Hodge
conjecture for all the self-products A*, k > 1, is implied by the truth of the
conjecture for up to codimension N. On the other hand, if A is h-degenerate,
then the Hodge conjecture for all the self-products A¥, k > 1, is implied by
the truth of the conjecture for A¥, k > h. See [1], [3] for more details.

3. Decomposition of Z[Z/2nZ]

In this section we construct a Z-basis of Z[Z/2nZ], which reflects the
decomposition C[Z/2nZ] = @, ¢ x(z/2nz) ClZ/2nZ]y. This basis will play
an important role in Sections four and five.

The character group X (Z/2nZ) consists of 2n characters y;, 0 < i <
2n — 1, where y; is defined by x;(a) = (% for a € Z/2nZ with ( = (3, a
fixed primitive 2n-th root of unity. In particular, the set of odd characters
X7(Z/2nZ) consists of x2;-1, 1 <1i < n. For any commutative ring R, let
R[Z/2nZ)] denote the group algebra of Z/2nZ with coefficients in R. For
any X € X(Z/2nZ), let vy = 3 cz/0n7 X(—a)[a] € C[Z/2nZ]. Then the
X-part

ClZ/2nZ), = {v € C[Z/2nZ];a.v = x(a)v for any a € Z/2nZ}

is a one-dimensional subspace spanned by wv,, and we have an isomor-

phism C[Z/2nZ] = @, cx(z/2nz) ClZ/2nZ]y. Let p denote the element
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n € Z/2nZ, which will correspond later to the complex conjugation of re-
spective CM-field. Let

R[Z/2nZ]” = {v € R[Z/2nZ]; p.v = —v}

the odd part of R[Z/2nZ]. Then through the isomorphism above we have
C[Z/2nZ]” = @, cx - (z/2nz) ClZ/2nZ]. For any positive divisor m of 2n,
let X,, = {x € X(Z/2nZ); is of order m} = {xq € X(Z/2nZ);(d,2n) =
2n/m}. Let ™ > xa€Xm ¢4y, , for a € (Z/mZ)*. These are a priori ele-
ments of C[Z/2nZ] and linearly independent over C. They, however, are vis-
ibly invariant under the action of the Galois group Gal(Q(m)/Q) of the m-
th cyclotomic field, hence we have o™ e QI[Z/2nZ] for every a € (Z;,Z)*.
Therefore they give a Q-structure on the direct sum @, ¢, C[Z/2nZ]y,
and we have

QZ/2nZ] = EB Vin, where Vi = (0™ 0 € (Z/mZ)*) .
m|2n
When n = pg with p, ¢ distinct odd primes, they can be expressed quite
explicitly.

ProroOSITION 3.1. Letn = pq with p, q distinct odd primes. Forr =p
(resp. q), the elements Uc(i N.ode (Z/2rZ)*, are given by

(3.1) o= 3 P, where
a€X(Z/2nZ)
1, a: even, # 0(mod 2r),
f(%)( ) —1, a: odd, # d(mod 2r),
d ) r—1, a = d(mod 2r),

—(r—1), a = d + r(mod 2r).

Proor. This is essentially the orthogonality relations of characters.
We may assume that r = p. Furth?rn)aore we have only to determine the
2p

coefficients of [a] for even a, since v,
elements v,. For d € (Z/2pZ)*, we have

(2p) _ d-kq
Vg = Z 2n Uxirq
ke(Z/2pZ)*

is an odd element as a sum of odd
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= > Xkgld) D xXue(—a)la]

ke(Z/2pZ)* a€Z/2nZ
~ oy ( 5 qu<d—a>)[a].
a€Z/2nZ \k€(Z/2pZ)*

The coefficient of [a] with a even is computed as follows.

Yo oxwd—a) = > gl

ke(Z/2pZ)* ke(Z/2pZ)*
k(d—a —a
= X o -
kEZ/2pZ
k:odd
B 1, if d— a# p(mod2p),
N -p+1, if d—a=p(mod2p).

This completes the proof of Proposition 3.1. [

PROPOSITION 3.2. Letn = pq with p, q distinct odd primes. For (resp.
q) and 1 <k <r—1, let

(3.2) w,(fT) = Z g,i%) (a)[a] where
a€Z/2nZ
1, a = 0(mod 2r),
(2r) -1, a = r(mod 2r),
gi(a) = (=1)a-1, a = k(modr),
0, otherwise.
Then
(3.3) Vor NZ[Z/20Z) = (w1 <k <r— 1)z

PrROOF. We may assume that r = p. First we show that the equality
(3.4) Vpk—1j + Z vfp) = pw,(fp)
de(Z/2pZ)*

holds for 1 < k£ < p — 1. We have only to show that the coefficients of
[a] with a even on the both sides are equal. When a = 0(mod2p), the
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coefficient of [a] in Y 4e(z/2pz)* v((fp ) is equal to p — 1 by Proposition 3.1.
When a # 0(mod 2p), the coefficient is (p — 2) + (—p+ 1) = —1. Hence the
coefficient of [a] in the left hand side of (3.4) is given by

D, if a = 0(mod2p),
—p, if a=k(modp),
0, otherwise.

This coincides with the coefficient of [a] in the right hand side. This shows
that the equality (3.4) holds, and hence w,(fp ), 1 <k < p-—1 constitute
a Q-basis of Va,. Suppose that w = >4, 4 ckw,(fp) € Z[Z/2nZ] with
¢t € Q. Then the coefficient of [a] appearing in w is equal to £¢, by the
definition of wc(fp ). Hence Ca, 1 < a < p—1, must be integers, and our proof
is completed. []

4. Degenerate CM-types

In this section we determine what and how many CM-types for Z/2nZ
are degenerate, when n = pq is the product of distinct odd primes.

A CM-type of the cyclic CM-field K with Galois group Z/2nZ is speci-
fied by an n-element subset S of Z/2nZ such that S N pS = ¢. (Recall the
complex conjugation p corresponds to n € Z/2nZ.) Let fs = x17 — X, :
Z/2nZ — {£1}, where x7, T' C Z/2nZ, denotes the characteristic function
of T. Then for an odd character x € X~ (Z/2nZ) and a CM-type S, the
character sum x(S5) = > ,cg Xx(a) is expressed as

(4.1) x(S) = > fs(a)x(a)

0<a<n-—1

Furthermore we associate to any odd function f : Z/2nZ — C a function
E(f) : Z/nZ — C by the rule E(f)(i) = f(2i), 0 < i < n—1. For a
CM-type S, we write E(S) for E(fs).

PROPOSITION 4.1.  The correspondence S +— E(S) gives a bijection be-
tween the set of CM-types for Z/2nZ and the set of {£1}-valued function
on Z/nZ. Moreover for an odd character x of Z/2nZ and a CM-type S,

X(S) = 0 if and only if Sye, 7 EG)(0) - E(S)(B) = 0.
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PROOF. Only the last assertion needs to be proved. Let Sepen, = {a €
Z/2nZ;a is divisible by two}. Note that this set is a CM-type for Z/2nZ.
Hence

x(S) = Y x(a)

a€sS

= > x@- > x()

a€SevenNS a€Seven—>S

= > fslax(a)

a€Seyen

— Y ES®EN®)

beZ/nZ

This completes the proof of Proposition 4.1. [

For each odd divisor d of n = pq, let S; denote the set of CM-types S
such that x4(S) = 0. Since the order of x4 is equal to d = 2n/(d,2n), we
see that if S € Sy then x(S) = 0 for any x € X ;. First we consider the set
Spq-

PROPOSITION 4.2. For the unique odd character xpq € Xp = X2 of
degree two, there are no CM-types S such that x,q(S) = 0. Namely Sy, = ¢.

PROOF. Since xpq(a) = (=1)*, 0 < a < n—1, and #(5) is odd, the
character sum x(S) cannot be equal to zero. [J

Next we consider the set S,,.

PROPOSITION 4.3. There exists a natural bijection between the set S,
and the set of ¢ x p (0, 1)-matrices with constant row sum. Hence there are
So<i<p (B)F such CM-types.

Proor. By (4.1), our task is to characterize the solutions (e,...,
en—1) € {£1}" of the equation Y o<, <, _1€aXxp(a) = 0. If this holds, then
it holds for all the characters in XQ; = X,. Hence, by Proposition 3.2, it is
equivalent to the system of equations

(4.2) S oeagi(a) =0, 1<k<qg-1.
0<a<n-—1
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Set
(4.3) eq = (—1)%,, 0<a<n-1

Then the equations (4.2) become

(4.4) Y eahiPa)=0, 1<k<qg-1,
0<a<n-—1
where
1, a = 0(mod q),
h,(fq)(a) =4 -1, a = k(mod q),
0, otherwise.

Therefore (4.4) is equivalent to the condition that
(4.5) #{a € R;;e, = 1} does not depend on 1,
where R; = {a € Z;0 < a <n —1,a(modq) = i}. Let v: {£1} — {0,1}
be the map defined by v(1) =1, v(—1) = 0. Then it follows that we have a
natural bijection ® from the set
N ={(eoy...,en-1) € {£1}";(20,...,en—1) satisfies (4.2)}

to the set

M = {(zij € M(q,p); zij € {0,1}, and the row sums are constant }

(where M (q,p) denotes the set of p x ¢ matrices) defined by

@((60,...,671,1)) = (Zij)a with
2 = (=) gy ), 1<i<q 1<j<p.

Hence we have

0<i<p

This completes the proof of Proposition 4.3. [

By symmetry we have the following.
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PROPOSITION 4.4. There exists a natural bijection between the set S,
and the set of p x q (0, 1)-matrices with constant row sum. Hence there are

Zogigq (g)p such CM-types.
Combining these two propositions we have the following.

PROPOSITION 4.5. S, NS, = {Seven, Sodd}, where

Seven ={20;0<b<n-—1} CZ/2nZ,
Sodd = {2b+1;0 < bgn—l} C Z/2TLZ.

In particular, the CM-types in S, NSy are not primitive.

PROOF. Suppose that a CM-type S belongs to S, N'S,. Let (eo,...,
en—1) be the (0, 1)-vector which is associated to S in the proof of Proposition
4.3. Then it follows from Proposition 4.3 that #{a;0 < a <n—1 and e, =
1} is divisible by ¢. Similarly Proposition 4.4 implies that #{a;0 < a < n—1
and e, = 1} is divisible by p. Hence is divisible by pq, and we have

eq = 1 (resp. = 0) for any a.
This means by (4.3) that

gq = (—1)%, 0<a<n-—1,
(resp. g, = (—1)*T, 0<a<n—1),

hence we have
Sp N Sq - {Sevena Sodd}-

These two CM-types, however, are stable under the addition of even ele-
ments in Z/2nZ. Thus they are not primitive by Proposition 2.3. This
completes the proof of Proposition 4.5. [

In order to investigate the CM-types in S;, a theorem in [6] plays a
definite role. Let Lyg = {(co, ..., ¢pq-1) € ZPI; > gcicpg1 CiCpy = 0}, which
consists of Z-linear relations among the pg-th roots of unity. For r = p

(resp. q), let

PET) = (a07 cee 7apq71) S qua
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where

w — 1, if j=i(modr),
700, otherwise.

It is clear that pl(p), 0<i<p—-1, pé-q), 0 < j <qg—1, and hence every Z-

linear combination of them belong to the relation module L,,. The theorem
in [6] asserts the converse holds too, namely

(4.6) Ly is spanned by p(p), 0<i<p-—1,and pg-q), 0<j<q-1.

i
Using this fact we can prove the following proposition.
PROPOSITION 4.6. The CM-types in S/1 are not primitive.

ProOOF. By Proposition 2.3, it suffices to show the following.

LEMMA 4.6.1. A CM-type S belongs to Sy if and only if S is stable
under the action of either Z/2pZ or Z/2qZ.

PROOF OF LEMMA 4.6.1. We use the map E(e) in Proposition 4.1.
Note that it gives a bijection from S; to the subset

Tog = {(cor- oo s cpg1) € (2L Y0 il =0}
0<i<pg—1

of Ly,. One can check easily that

(4.7) S € S; is stable under the action of Z/2pZ (resp. Z/2qZ)
if and only if
E(9) is stable under the action of Z/pZ (resp. Z/qZ).

Here i € Z/pZ acts on (cq,...,cpq—1) € ZP? by the rule
( p ) 'Dq y

i.(co, . 7cpq—1) = (Ciqa Cig+1s--- 7C(p+i)q71)7

where the indices are regarded as elements of Z/pqZ, and the action of Z/qZ
is defined similarly.) Therefore we have only to show that

(4.8) if (co,...,cpg—1) € Tpq, then (co, ..., cpg—1) is stable
under the action of either Z/pZ or Z/qZ.
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Suppose (¢, ..., Cpg—1) € Tpg. Then we can express it by (4.6) as
(Coy---sCpg—1) = Z aipz(-p) + Z bjpg»q).
0<i<p—1 0<j<¢g-1

By adding or subtracting the all-one vector (1,...,1) € T}, which is Z/pZ-
and Z/qZ-invariant, we are reduced to showing that

(4.9) if (o, dpg-1) = Y. ap”+ > 0\, do =0,

0<i<p—1 0<5<q?
d; € {0,1}, 0 < i < pg — 1, then (dy,...,dpg—1) is invariant
under the action of either Z/pZ or Z/qZ.

Let ¢ : Z/pZ x Z/qZ — Z/pqZ denote the inverse map of the bijection

Z/pqZ — Z/pZ x Z/qZ defined through the two projection maps. By the

definition of pl(p ) and pg-Q)

, we have d.; j) = a; + bj, hence (4.9) implies that
(4.10) a; +b; € {0,1} for every pair (i,j) € Z/pZ x Z/qZ.

It follows from the equality dy = 0 that by = —ap. The conditions (4.10)
with ¢ = 0 imply

bj:_a()v _a0+1 for 1§]§q_17
and the conditions (4.10) with j = 0 imply by by = —ag that
a; = aop, ap+1 for 1<:<p—-1.

Suppose that there exists an ¢ with 1 < ¢ < p — 1 such that a; = ag + 1.
Then it follows from (4.10) that b; = —ag holds for any j with 1 < j < ¢—1.
This means that

(doy- -y dpg—1) + ao(1,..., 1) = 3 app?,
0<i<p—1

hence (do, . . ., dpg—1) is Z/qZ-invariant. On the contrary, suppose that there
exists no ¢ with 1 < ¢ < p — 1 such that a; = ag + 1. Then it follows from
(4.10) that

(do,...,dpq_l)—ao(l,...,l) = Z b]pj y
0<j<g—1
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hence (do,...,dpg—1) is Z/pZ-invariant. Thus we complete the proof of
Lemma 4.6.1 and at the same time that of Proposition 4.6. ]

Let CM denote the set of CM-types for Z/2nZ.

PROPOSITION 4.7. Let r denote p or q. Then we have

(4.11) S1nS, = {5’ € CM; E(S) = Z EZ-X(T) for some

%
0<i<r—1
(50) s 557‘—1) € {il}r}a

(
i
1 <r—1, ofimodr. In particular

P) denotes the characteristic function of the residue class RZ@, 0<

where x
#(S1NSy) =27,
#(S1NS,) =27

PrROOF. We may assume that » = p. Suppose that a CM-type S
belongs to the right hand side of (4.11), so that E(S) = > <<,—1 5jx§p) for
some (g9, ...,6r—1) € {£1}". Then E(S) is stable under the action of Z/pZ
and it follows from Lemma 4.6.1 that S € Sy. Moreover 37, _ ) E(S)(b) =
> 0<j<p—1€; for any 4, since p and ¢ are coprime, hence it follows from
Proposition 4.3 that S € S,. Conversely, suppose that S € S N'S,. By
Proposition 4.3, it follows from S € S, that

(4.12) Z E(S)(b) is constant for 0 <i < g — 1.
beR(?

By Proposition 4.6, it follows from S € S; that E(S) is invariant under
Z/pZ- or Z/qZ-action. Suppose first that E(S) is invariant under Z/pZ-
action. Then (4.12) implies that

E(S)(b) =1 for any be Z/pqZ

or

E(S)(b) = -1 for any beZ/pqZ.
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Hence S belongs to the right hand side of (4.11). Suppose next that E(S)
is invariant under Z/qZ-action. Then it can be expressed as

E(S) = Z 5iX§p) for some (€0, .. Ep—1) € {£1}P,

0<i<p—1

hence S belongs to the right hand side of (4.11) too. This completes the
proof of Proposition 4.7. [

Summing up we obtain the following theorem, of which the assertion
(iv), (v), and (vi) will be proved in the next section.

THEOREM 4.8. Let p, q be distinct odd primes. Let CM denote the
set of CM-types for a cyclic galois CM-field of degree 2pq. Let Deg de-
note the subset of CM consisting of degenerate CM-types, and Prim (resp.
NonPrim) the subset of primitive (resp. nonprimitive) CM-types. Let N -
Dom denote the subset of CM consisting of N -dominated CM-types. More-
over for any divisor d of 2pq, let

Sqa={S € CM; x(S) =0 for one (hence every) character of degree
2pq/(d, 2pq)}.

Then
(i) CM = Prim U Nonprim (disjoint sum),
(ii) Deg =S US,US,, where

SpNSy={{26;0<b<pg—1},{20+1;0 <b<pg—1}} C Sy,

(iii) Nonprim = S,
(iv) PrimNp—Dom =S, — Sy,
(v) PrimnNg—Dom =S, - Sy,

(vi) all the primitive and degenerate CM-types are 1-degenerate in the
sense of Section two.



Hodge Cycles on Abelian Varieties of CM-Type 595

Furthermore the numbers of elements of S1, Sy, Sy and their intersec-
tions are given by

#(S1) = 2 429 -2,

#S) = Y <p> ,

REMARK 4.9. For sufficiently large prime 2n+1 = 7(mod 12), Lenstra
and Stark noticed that there is always a degenerate CM-type for Q(Con+1)
(see [5, (3.11)]). But the congruence means that n = 3 (an odd integer).
Hence our theorem for p = 3 gives a constructive version of this result to
the effect that there is always a degenerate CM-type for Q({2n+1) whenever
n is the product of three and an odd prime > 3.

REMARK 4.10. It is shown by Lenstra that for any abelian variety A
with complex multiplication by an abelian CM-field, there always exists
a nondivisorial Hodge cycle on A itself if A is degenerate (see [7]). Our
theorem, however, gives stronger results for the case of cyclic CM-fields of
degree 2pq that the whole Hodge rings H(A*), k > 1, of its self-products
are generated (up to distribution-equivalence) by Hodge cycles on A, if A
is degenerate. In particular, the Hodge conjecture for A¥, k > 1, is implied
by the truth of the conjecture for A.

REMARK 4.11. Theorem 4.8 cannot be generalized as it is to the case
when n is the product of three distinct odd primes. This is due to the
fact that the equality (iii) Nonprim = S; in the theorem does not hold
generally for such an n as is shown in the examples of [5, (3.14)].
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5. N-dominatedness

In this section we investigate the N-dominatedness and h-degeneracy
of the degenerate CM-types for the cyclic CM-fields of degree 2pq, and
complete the proof of the assertions (iv), (v), and (vi) of Theorem 4.8.

By Theorem 4.8, (ii) and (iii), if a CM-type S is degenerate and primi-
tive, then S € S, —S; or § € S; —S;. Hence it suffices to consider the case
S €S, —S1. A Hodge cycle on a self-product AF of A is said to be proper
if it does not come from the ones of lower codimension by intersecting with
a divisor. As is explained in [1], there is a natural bijective map between
the set of (additive) basis elements of the space of proper Hodge cycles on
a self-product A*, k& > 1, and the set of nontrivial nonnegative function
h:Z/2nZ — Z>( such that

(5.1) h(a)h(a +mn) =0 and
(h, fars) =0 for any a€Z/2nZ.

Here we denote by (, )} the natural inner product of functions on Z/2nZ
defined by (f,9) = Yqcz/onz f(a)g(a). To a function h : Z/2nZ — Z>

satisfying the condition (5.1), we associate an odd function h:ZonZ — Z
defined by

- h(a), if  h(a) # 0,
(5.2) h(a)—{ ~h(a+n), if h(a)=0.

This correspondence F': h — h defines a bijective map between the set
{h:Z/2nZ — Z>o; h(a)h(a+n) =0}
and the set
{h:Z/2nZ — Z;h is off}.

Moreover for any odd function f, (h, f) = 0 if and only if (h, f) = 0. Note
that the space of odd C-(resp. Z-)valued functions on Z/2nZ is identi-
fied naturally with the minus part of the group algebra C[Z/2nZ]~ (resp.
Z[Z/2nZ]™). Since S € S,—(S1US,US,,) by our assumption, the condition
(5.2) is equivalent to

(5.3) h € Vag N Z[Z/2n7Z].
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But, by Proposition 3.2, we already know that a Z-basis of Vo, N Z[Z/2nZ)]

is given by w,(fQ), 1 <k < g—1. Moreover the weight of the inverses

F_l(w,(fq)), q <k <q—1, are equal to p for any k. Therefore the abelian
variety A is p-dominated. Furthermore the height of them are equal to
one for any k. Therefore the abelian variety A is 1-degenerate. Thus we
complete the proof of the assertions (iv), (v), and (vi) of Theorem 4.8.

6. Examples

In this section we apply our theory to construct some examples of de-
generate abelian varieties with complex multiplication by a cyclotomic field.

Let K, = Q(¢,), the n-th cyclotomic extension of Q, and let G,, =
Gal(K,,/Q). When n = 31, we have G31 = (Z/31Z)*. We use the primitive
root 3 € (Z/31Z)* to specify an isomorphism Gg; = Z/30Z. The matrix
(aij) € M(5,3) defined by

aj; =1, 1 <e <5,
aij:0, jZQ,

satisfies the condition specified in Proposition 4.3 when p = 3, ¢ = 5. In
the notation used in the proof of the proposition, this matrix corresponds
to (60, - ,614) with

)L 0<i<4,
Ty 1, s5<i<i4
Furthermore this vector corresponds by (4.3) to (o, ...,c14) with
o (—-1), 0<i<4,
Y] (=D 5 << 14

Hence this gives the CM-type
S ={1,-9,19,-16,20,25,—-8,10,,—28,4, 5,14, —2,18, -7} C (Z/31Z)".

Since S € S3 — S1 by Proposition 4.3 and 4.6, the abelian variety Ag asso-
ciated to it is absolutely simple and 3-dominated by Theorem 4.8. This is
a member of the set of Y 5 ;<3 (3)5 — 23 = 480 of 3-dominated absolutely

i
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simple abelian varieties with complex multiplication by Ks;. If we define
another matrix (b;;) € M(3,5) by

bi1 =1, 1<0<3,
bij =0, otherwise.

then it corresponds to the CM-type
T ={1,-9,19,16,—20,25,—8,10,,—28,4,—5,14, —2,18, -7} C (Z/31Z)".

Since T € S5 — S; by Proposition 4.3 and 4.6, the abelian variety A’
associated to it is absolutely simple and 5-dominated by Theorem 4.8. This
is a member of the set of > o;5 (5)3 —25 = 2220 of 5-dominated absolutely

i
simple abelian varieties with complex multiplication by Ks;.
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