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Large Deviation Principles for a Type of

Diffusion Processes on Fuclidean Space

By Song LiANG

Abstract. We consider a class of diffusion processes on Euclidean
spaces, with the drift terms not weaker than linear order. We show
large deviation principles for empirical distributions of positions for
pinned processes under some explicit conditions in terms of the coef-
ficients of the generator. Such a problem was discussed by Donsker-
Varadhan [2] under some implicit conditions.

1. Introduction

Consider the stochastic differential equation (SDE) on Euclidean space
R? given by

d
(1.1) dX] =" 0yj(X)dB] +b(Xp)dt, i=1,--d,
j=1
where (B}, ---, BY) is a d-dimensional Brownian motion. We assume that
the coefficients o = (Uij)g;j:l and b = (b1, - ,bg) satisfy the following:

(A1) o € CgO(Rd;RdQ) and a = o'o is uniformly elliptic, i.e., there exist
c1,c2 > 0 such that

d d d
c1 Z&Q < Z Qjj (m)f&} < c9 ng, for all IE,S (S Rd.
i=1 ig=1 i=1

(A2) b € C*(R%R?) and there exists a c3 > 0 such that

d d
D &g Vibi(z) <3y & for all z,¢& € RY.
=1

1,j=1
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(A3) There exist cy,c5 > 0 such that x - b(z) < ¢4 — c5|2|? for any z € R%.

Let P, denote the distribution of the solution of (1.1) with Xy = x. Then
(Py, X}) is the diffusion with generator Ly = % Z;‘i,jzl aij#;xj +b-V. We
will prove that (P,, X;) has a unique invariant probability u and P;(x, dy) :=
P, (X} € dy) has a positive smooth density with respect to . (See Corollary
2.2 and Lemma 2.3). So we can define the pinned measure Py( - ‘Xt =)

for all t > 0 and z,y € R%.
Fort > 0, let L; = %fot 0x.ds, where 6. denotes the delta measure. Let
u;Y be the probability given by

Y (A) = Py(Ly € Al Xy = y).

Since the diffusion (P, X;) has a unique invariant probability p, we see
by the ergodic theorem that p;"Y converges to 6, as ¢ — oo weakly in
o(RY), where p(R?) is the metric space consisting of all probabilities on R?
endowed with the Prohorov metric.

We say that u;" satisfies the large deviation principle (LDP) with rate
function I if I is lower semi-continuous and

1 1
—inf I < liminf = log ;Y (A) < limsup - log ;Y (A) < —inf T
A0 t—oo ¢ t 1

t—o0 A

for any A € B(p(R%)). Here B(:) is the Borel o-field of -, and A° and A
means the interior and the closure of A, respectively. [ is said be to a good
rate function if, in addition, {v € p(R%); I(v) < £} is compact in p(R?) for
all £ > 0.

THEOREM 1.1. Y satisfies the LDP with rate function I given by

L L
I(v) = SUP{ —/ ﬂdi/;u € COO(Rd),u >0, 20 s bounded},
Rd U U

v e p(RY),

for any z,y € R, and I is a good rate function.

The condition (A3) implies that the drift has an enough effect to at-
tract the process toward the origin, which guarantees the existence of the
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invariant probability. We do not know if (A3) is optimal or not. The
following example shows that the existence of an invariant probability is
not sufficient for the LDP with good rate function: let d = 1, a = 1
and b(z) = —(1 4 |z|?)~Y/22. Then the only candidate for the rate func-
tion is not a good rate function. Actually, the invariant probability is
m(dx) = const X e_(“‘x‘z)_l/zd:c, and the rate function, if exists, is the
entropy function I given by I(f%dr) = [ |V f|*dr for f2dr € p(R), which
does not have compact level sets. (See, for example, Deuschel-Stroock [3]).

The LDP problem for compact state spaces is initiated by the celebrated
work Donsker-Varadhan [1]. As for non-compact state spaces, Donsker-
Varadhan [2] considered the same problem for Markov processes on com-
plete separable metric spaces. They showed the LDP under some technical
assumptions. Especially, to get the upper bound, they need the following
condition:

(D-V) There exist a function V(z) and a sequence {u,;n € N} C
C?(R%) such that
(1) {z € R?: V(x) > ¢} is a compact set for any £ € RU{+0o0},
(2) up(x) > 1 for all n € N and all z € R,
(3) SUPep SUP,eN Un(T) < oo for each compact set W C R,
(4) limy, oo (LSZ”)(:E) = V(z) for each x € RY,

()

5 SuanN,xERd (ngn)(x) < 0.

We remark that, although Donsker-Varadhan [2] checked that the
Ornstein-Uhlenbeck process satisfies (D-V), it is not easy to prove (D-V)
for diffusions given by SDEs in general. Our purpose is to give an explicit
condition for the LDP in terms of the coefficients of SDEs.

We remark that (D-V) follows from the following (see Appendix):

(A3’) There exist constants c4,c5,c6 > 0 and v2 > v > 1 satisfying v, <
2v; — 1 such that = - b(x) < ¢4 — cslz["™ and |b(x)| + |Vb(z)] <
ce(1+]z|7?) for any = € R?, where Vb(z) is the matrix (a%ibj(x))g,jzl-

The condition (A3’) is more rigid than (A3) and excludes the Ornstein-

Uhlenbeck process. It seems hard to deduce (D-V) from (A3). So we develop

a new technique to prove the LDP under (A3).
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It is standard to use spectral decomposition and measure change to prove
the LDP. Unfortunately, one can not carry out these on Cy(R%) (see Remark
2). To overcome this difficulty, we introduce new spaces

By :={f € CRY; || fllpg == sup (1+[2) 2 |f(2)| < o0}, az0.
z€R?

Considering Pff(z) = ET= [efot e(Xs)ds £(X,)] on BY in stead of Cy(R%) en-
ables us to use the spectral decomposition and the measure change argument
(see Section 2 and Section 3 for the details).

The organization of the paper is as follows: In Section 2 we will show
the boundedness of {P;};>0 on BY and give some basic facts. In Section 3
we will discuss measure changes. In Section 4 we will proof the exponential
tightness of {u;}1>0. The proof of Theorem 1.1 will be given in Sections 5
and 6.

Acknowledgments. The author would like to express her deepest grat-
itude to Professor Shigeo Kusuoka and Professor Hirofumi Osada for their
helpful suggestions and advice. She also thank the referee for useful com-
ments.

2. Boundedness of P,

Define ¢(z) = (1 + |z| )% r € R4 For any a € R, let Kl =
264+62d;c(:_2)+62 and K2 = 20/ ( + (K} a/2). Our main result of this
section is the following;:

LEMMA 2.1. Foranya>2, z€R% andt >0,

21)  EP[IX)?]" < max {e—%st\x\? + K- 6_2‘35t),Ké}.
(2.2) VTOPY < K2,

— «

IN
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PrROOF. By Ito’s formula and (1.1), we have for any o > 2

d
(2.3)  dX|* = XY Xjoy(Xy)dB]
i,j=1

+(a]Xt\°‘_2Xt (X)) + %|Xt]°‘_2tm(Xt)
1 d.
+50(0 =201 3 XiXfay (X))
1,j=
Let vy . (t) = EP* [|X;]|%]. Then (2.3) together with (A1) and (A3) implies

4
dt

2 2
«

(Uayx(t)%) < (2ea+cod+(a—2)c2) —2¢504,4(t) @ = 2¢5 (Koll — Ua,x(t)5> )

Solving this and noting that v, (0) = |z|%, we obtain (2.1). (2.2) is imme-
diate from (2.1). O

Lemma 2.1 gives us the tightness of { P(y, ‘) }+>0, which combined with
the positivity of the transition probability yields the following:

COROLLARY 2.2. The diffusion process (P, X;) has a unique invariant
probability p, which has all moments finite.

By Kusuoka-Liang [5], we deduce from (A1) and (A2) the following

LEMMA 2.3 Pi(x,dy) = Py(X: € dy) has a smooth positive density
pi(x,y) with respect to u, and

sup  pe(x,y) < oo, for any r,t > 0.
mERd,|y\§T

3. Measure Changes

For ¢ € Cy(R?) define the transition kernel { Pf};>o by

t
Pf(z,A) = EF: [exp(/ o(X)du)la(Xy)|, zeRLAcERY,t>0.
0
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We use the same symbol {P/};>0 to denote the corresponding semi-group.
When ¢ = 0, we write P/ as P; for the sake of simplicity.

We have by (2.2) that, if @ > 2, then {¢)"*P*};>0 is a semi-group
on Cy(R%), whose infinitesimal generator is Lo 4+ aA - V + B, + ¢, where

d

A= <w_1 Zle aijviw), . and By (z) = ¢¥(x)"*Loy“(x). By assump-
©J=

tion, limsup,|_o Ba(z) < —csa. So there exists an a = a(p) > 2 such

We have by (2.2) that ¢~ P£4¥) maps Cy(R?) to Cy(RY) for any
t >0 and

(3.1) [~ PEye @y, < el
where [| - [|op means || - ||, m4)—c,re)- Also,
||¢—a(<p)pt<ﬂ¢a(so)uop > w—a(so) (0)pt%0¢a(<p)1(0) > e~ tlellos

So its logarithmic spectral radius A¥ = limy_, % log ||t~ PEp#) ||, on
Cy(RY) is well-defined and satisfies |[A?| < ||¢]|o- Let

(3.2) Q_f = ¢ Aty mal9) prypele)
Then by (3.1) and |A?| < ||¢||s we have

(3.3) sup [|QZlop < 00, for all t € [0, 00).
0<s<t

We remark that the infinitesimal generator of Q_f is Lo + a(p)A -V +
By + ¢ — AP Hmsup oo Ba(y) (7) + ¢(x) — A¥ < —c5 by the definition
of a(p) and A¥. So there exist two functions BY, By € C(R?) such that
By +¢ — A = BY + BY, B (z) — 0 as |z| — oo, and By (z) < —c5 for
any z € R?. We have

B t___
(3.4) QF = Q; 1y /0 QY B Q% ds, for any t > 0,

where Qf 1 is the semi-group with generator Lo + a(p)A -V + By,

LemMmA 3.1. (1) ||Qf ’IHOP <e %! for any t > 0,
(2) Qf’l has a continuous density q| ’l(x, y) with respect to p for any t > 0,
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(3) for any ¢ € Cy(RY) satisfying ¢(x) — 0 as |z| — oo, ¢Q¥" is a compact
operator for any s > 0.

PROOF. Let {Qf’l}tzo be the semi-group corresponding to Lo+ a(p)A-

V. Then ||Q¥]|,p < 1 and Q' < e~tQP!, which yields assertion (1).
(2) and (3) follow from a routing argument. [J

Notice that the set of compact operators is closed with respect to Rie-
mann integral. Therefore, by Bf(z) — 0(as |z| — o00) and (3.3), Lemma
3.1 implies the following:

LEMMA 3.2. fot fostQf’lds is a compact operator for any t > 0.
Lemma 3.1 and (3.4) give us the following.

LEMMA 3.3. For any ¢ € Cy(RY), there exist N € N, \,--- , Ay €
C with R\; =0, ¢ = 1,--- N, finite dimensional spectral projections
Ey,--+ ,Ex and a semi-group {Qf }i>0 on Cp(RY) such that ||Qf||op — 0

exponentially fast as t — oo, Ey,- - ,Ex and Qf are orthogonal to each
other and
t ﬁ tni_2 t”i_l
2! (ni—22! (n;—1)!
IS IR e
(3.5) Qf:Zel Coee e E;+ Q7
=1 0 0 0o --- 1 t
0 0 0o --- 0 1
as operators on C’b(Rd), where n; is the dimension of E;, i =1,--- | N.

We refer to [4] for the definitions of the spectral projections and orthog-
onal.

PROOF. By using the same method as in the proof of [5, Proposition
5.4] and the paragraph following it, there exist N € N, Ay,--- , Ay € C and
corresponding finite dimensional spectral projections F1, - -- , Enx such that

1. Q_fEi:EiQ_fforallt>Oandi:1,---,N, and

2. ||QF — Zf\;l Q_fEiHop — 0 exponentially as t — oc.
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As a semi-group on E;(Cy(RY)), QF (R is uniformly continuous.
i\“b

Therefore, by [4, Theorem VIII.1.2], there exists a bounded operator A;
such that

QY — et4i,

U ecuma

The spectrum of A; is );. So by taking an orthonormal base of E;(Cj(R%))
suitably, and by dividing E;(Cy,(R%)) into perpendicular parts if necessary,

we may and do assume that

Ao 1 0
0o X 1 0
A; =
0 O Ao 1
0 O 0 i
Hence
2 n;—2 n;—1
1ot g i DT
o 1 t (tnf;)l (tnF;)l
i1 = e T o
E;(Cy(R4))
0O 0 O 1 t
0O 0 O

Let Coo (RY) denote the set of the continuous functions that converge to
0 at oo.

LEMMA 3.4. (1) Q_‘f maps Coo(R?) into Cso(RY),
(2) Ey,---, Exy map Coo(RY) into Coo (R?).

PROOF. Choose any f € Co(R?) and fix it. For any £ > 0, there
exists a R > 0 such that |f(y)| < e for |y| > R. So by (3.2),

QFf(@) < elelle(y=o@) (@) B [y (X,); X < R |1f]loc
+p7 @ (@) B |00 00 F(X): X > R )
e2Hl¢lleo (H Fllooth®™ @) (R)=) (2)
e () EP: [zpa(m ( Xt)} ) ‘

AN
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By Lemma 2.1, ¢p~(®) z)Efs [1/10‘ 9") (Xy ] z € R%, is bounded, which com-
pletes the proof of assertlon (1). Assertion (2) follows from (1) and the
definition of E;,i =1,--- ,N. O

LEMMA 3.5. Let ny,--- ,ny be the ones defined in Lemma 3.3. Then
ni = 1 for any i € {1,--- N} with E;(Cs(R%)) # {0}. Therefore, there
exist bounded linear functionals aq,--- ,any and f1, -+, fn € C’OO(Rd) such

that a;(f;) = 6ij, QF fi =0 fori,j=1,--- N and

N —_—
QEf=> (N fi+Qff,  for any f € Co(RY).
=1

PROOF. Let n = max{ny,---,ny}. Without loss of generality, we may
and do assume that n =n;. Let a = _2;;1.

We first show that there exists a § € Coo(R?, RT) such that Q%5 =3.
Since L i) e converges as m — oo for any b € R, we have by Lemma
3.4 that for any f € Coo(R?), L 377 (ak)™ akf converges in Cs (R?) as
n — oo. Define the operator A : Cso(R?) — Co (RY) by

m

. l n d
Af = lim —% (ak)"Qpf,  f € Cool(R).

k=1

Af >0 for any f > 0, and there exists a g € Coo(R?) such that Ag # 0.
So Alg| > |Ag| > 0 and Alg| # 0. By definition QFA = AQY = A, so
Q7 Alg| = Alg|, which implies that Alg|(z) > 0 for any = € R?. Therefore,
we have found a § = A|g| € Coo(RY, RY) such that Q%5 =7.

Let Co(R?) denote the set of continuous functions with compact sup-
port. For any f € Co(R?), since g(z) > 0 for any 2 € R?, there exists
a constant ¢y > 0 such that |f| < cfg. Notice that by Lemma 3.4, c7 :=
SUPye(0,q] [|@tgl[oo < 00. For any t > 0, let t = inf{s > 0;a|(t — s)} € (0,q].

Since the operator Q_f is monotone nondecreasing, we have that
QY IfI <c¢fQ7g = CfQ%Og < cgey.

i.e., Q_f]f],t > 0, is bounded. This is true for any f € Co(R%). Therefore,
n; must be 1 for any i = 1,--- , N with EfCo(R?) # {0}. In other words,
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for any i =1, N with n; # 1, we must have EYCo(R?) = {0}. Since the
operator EY is bounded and Co(RY) is dense in Cuo (R?), this implies that
EfC(RY) = {0}. This gives us our first assertion.

The others are now easy. [

LEMMA 3.6. There exist a h¥ € Coo(R?) and a probability v¥ such that
supp(v¥) = R, {QF }i~0 is invariant under v¥ and

QPf = he / Jdve + QFf,  for any f € Cy(RY),
Rd

where QF is the same as in Lemma 3.3. Qf is orthogonal to h¥(-,dv¥),
hence h¥ is the only positive eigenfunction of QY .

PrOOF. Fori=1,---,N,let f; € Co(R?) be the eigenfunction cor-
responding to A;, as given in Lemma 3.5. Then Q_ﬂ fil = 1fil- So by Lemma
3.5, fo Qt | fi|dt converges in Cy (Rd) to a non-trivial limit as T" — oc.
Write the limit as fZ So foz = fZ Let h = Zfil fz Then Q_fh =h
for any t > 0. So h > 0 and h # 0 imply that h(z) > 0 for any 2 € R%
Choose a z € R and fix it. We have that %fOT QP h(z)dt = h(x) > 0. Let
B, ={y;|y| <r}, r> 0. Then

1 (T—
(3.6) T/ Qf (x, By) < - hz) < 00, for any r > 0.
0

meT h
On the other hand, hlge — 0 in Coo(R?) as r — oo, hence Q_f(hlBg) =
Z?Ll eita;(hlpe) +C§%(h13$) — 0 uniformly in ¢t > 0 as r — oco. Therefore,
there exists a rog > 0 such that for any r > rg, supt>0 Qf (hlpe)(x) <
M0 hence & [ QF (hp,)(x)dt = & [ QFn(x)dt — L [T QF (hlpe)(x)dt >
h(z) > 0. So

_h=z)
(3.7) / Qt 2supB . > 0, for any r > rg.
(3.6) and (3.7) give us that %fOT Q—f(x, dy)dt converges to a non-trivial

measure. Write the limit as v#. It is obvious that {Q]} is v#-invariant. So
suppr? = R4,
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Notice that fi,---, fy are all integrable with respect to v¥. Also, for
any feCx (Rd) we have by the definition of Qf that %fOT @fo(x)ds =
T fo 7 sf(x)ds — 0 as T — oo. Therefore, Q7 f is integrable with respect
to v¥ and fRd fodl/‘P =0 for any f € Cso(R%) and t > 0.

For ¢ = 1,---, N, we have Q_ffi = eMf;. If f; could not be written
as a complex number times a positive valued function, then W\ fil = 1fil
and the equality does not always holds. Since suppr? = R?, this implies
that [pa QF|fildv? > [ga|fildv?, which contradicts with the fact that QY is
v¥-invariant. Therefore, by ignoring the constant times, any eigenfunction
must be in Coo(Rd;R+). Hence \; = 0 for i = 1,--- ,N. If N > 2, then
there would exist fi, fo € Coo(R?% RT) such that f; # fo and Q_ffi = fi
i = 1,2. So there exists a constant a € R such that f; — afe is neither
always positive nor always negative, and Q_f( fi—af2) = (fi —af2). This
contradicts with the fact that any eigenfunction must be in Coo (R4, RT),
as we just proved. Therefore, N =1 and A\; = 0.

Write f1 as h¥. For any f € O (R?), we have that Q_ff = a1(f)h?+QY .
Both sides above are integrable with respect to v¥, {Q_f}tzo is v¥-invariant,
and Qf is orthogonal to ay(-)h¥. Therefore, [pa fdv? = [ga Q—ffdw” =
a(f) fRd h¥dv¥. So by re-normalizing h¥ if necessary, we have that a1 (f) =
S fd®, f € Coo(RI),

We show that v¥ is actually a finite measure, so by re-normalizing,

we may assume that it is a probability. There exist bounded functions
fn € Coo(RERT), n € N, such that ||fp|leo < 1 and fu(z) 11 as n — oo
for any # € R%. Choose any = € R? and fix it. By Lemma 2.1,

fadv? = 1 (@) (QFfule) = QF fula)
< we(@) 7t (Aeloym @) B [ (X)) + 11QF llop) < o0

Rd

Therefore, 1 is also integrable with respect to v%, i.e., v¥ is a finite measure.

The only thing left is to extend the results above to the whole Cy(RY).
For any f € Cy(R%), there exist functions f,, € Cs(R?) such that || f||oo <
||flloo for any n € N and f,(z) — f(z) as n — oo for any z € R%

Q7 Fu = Una Fadv?)1#| = 1QF Fal < 1QFllopll Il for any ¢ > 0 and n € N.
Notice that Qf f,(z) — QY f(z) for any z € R% and Jra fadv? — [ga fdv¥
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asn — oo. Take n — oo in the inequality above, and we get our assertion. [
COROLLARY 3.7. Use the same notations as in Lemma 3.6. Then
PYf= e/\“’twa(w)h@/ f¢—a(eo)dy<p + e/\“’twa(e@)@@(w—a(w)f)
RA
for any f € Cy(RY) and t > 0.
We also have the following:

COROLLARY 3.8. If there exist a A € R and a f € C(RY,RT) such
that PP f = e\ f for anyt > 0, then \ > A¥.

~_ PROOF. Since Prf= e M f for any t > 0, we get from the definition of
QF that

Q—f(lﬂ_a((’p)f) = ekte_A(ptf, for any ¢ > 0.

On the other hand, choose any fe Cy(R4, R7) such that fg @)
and choose any = € R¢. We have by Lemma 3.6 that

QG ne = Gfw) = ([ Far)w @)+ Qe

— </Rd fdu”)h“"(m) >0

as t — 0o. These give us that A > A¥. [

REMARK 1. When ¢ = 0, we can take a(0) = 2. Since P;1 = 1, it is
easy that A9 =0, h® = ¢=2 and ° = ¢?p.

REMARK 2. For general ¢ € Cy(R%), we may not expect the (unique)
positive eigenfunction of P/ to be bounded. For example, let b(z) = —z,
a € R, and po(z) = —¢%(z) (A¢*(z) — 2 - VY*(z)). Then ¢, is in
Cp(RY), and (3A+b-V + @q )9 = 0. So * is a positive eigenfunction of
Py, which is certainly not bounded if a > 0.

Now, we can define a set of probabilities {QF },cga on (£, F) such that

_A®
6At

QA = o

Y () B [1A<Xt>exp( /0 P(Xu)du)y P (X )h?(Xy)
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for any x € R%, ¢t > 0 and A € F;. Let {Qf} be the corresponding semi-
group of bounded linear operators on Cy(RY).
Notice that by Lemma 3.6,

Q7 (fh?)(x)

1
- he du®
R fhodv? + he(z)

(@) = o

Q7 (fh¥)(@),  f€Cy(R),
The (unique) invariant probability of {Qf} is 7% := h?v?.
4. Exponential Tightness

A family of probabilities {1;}:>0 is said to be exponentially tight if for
any L > 0, there exists a compact Cp, such that lim;_ %log n(C§) < —L.
Our main result of this section is the following:

PROPOSITION 4.1.  {uf"}i>0 is exponentially tight for any x,y € RY.

We first prepare several lemmas. Notice that by Stirling’s formula

1 an

K3 .= Z ] (2K},) 2 < oo, for any a € (0,2),
n=0

where K}, is as defined in Section 2. So we have the following by Lemma

2.1:

LEMMA 4.2. For any a € (0,2), there exist constants Co, > 0 and
To € N such that

Efs [e'X”a} < Cae%|x|a, for anyt > Ty —1 and z € R,

PrOOF. For any m € N, there exists a constant C'(m) < 1 such that
S L2 < C(m)e? for any z > 0. Hence

n=0 n!

[e.9]

1
e < (1-C(m))™ ! <1 + Z ﬁz">, for any z > 0.
n=m+1
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For o € (0,2), let m = [2]. Then by Lemma 2.1,

an

BP (160" < (7 o + KD,) % < 2% el 4 (KD, ¥
for any n > m + 1, z € R? and ¢ > 0. Therefore,

B[] < (= cm) 7 (1+ > 1)

n=m+1

< (1-C(m)"M (K] +2) exple*=2/%a|*).

Choosing T,, € N so that e~ @¢2t2%/2 < % for any t > T, — 1 completes the
proof. [J

LEMMA 4.3. For any C € (0, 2—2), there exists a constant & > 0 such
that

Efs [eqxtﬂ < eC|“”|2eECt, for any x € R* and t > 0.

PROOF. For any C' € (0,2), by (A3), there exists a {& > 0 such
that 2Cx - b(z) + Ccad + 2C2%cy|z|? < & for any z € R Therefore, we
have by Ito’s formula that %EPI [eth‘Q} < EEPe [eC|Xt|2} . This and

2 2 . .
EPs [€C|XO| ] = %" give us our assertion. [

LEMMA 4.4. For any o € (0,2), there exists a constant p, > 0 such
that

t « l/t
sup (EPZ [ep"‘ Jo 1Xsl dsD < 00, for any W cc R
t>0,xeW

Here CC means compact subset.

Proor. For any t > 0, let n = [t] € N U {0}. Choose and fix any
a € (0,2), and let C,, > 0 and T, € N be as in Lemma 4.2. Also, fix any
C<ZA % Then

(41)  E™ [e% o 'XS'adS] < EP [e% it |Xs|ads:|

Jun

1 ES
. - 5 c(n+1)Tw a 2
< ple [e%‘foTa | X ds] > g [eﬁjT(aJr e, ds] .
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We estimate the first term on the right hand side of (4.1). Since 2z <
1+ 22 for any z > 0, we have by Jensen’s inequality and Lemma 4.3

. Ta
(4.2) EP: [e%,}OTa ‘Xs\ads} < eci/ ol |:€C|XS|2:| ds < eCeClol gboTa,
0

[e%

As for the second term on the right hand side of (4.1), we see by Holder’s
inequality

1 I (n+1)Ta X.|od Ta—l 1 s fkTa"rT"‘rl X.led I/Ta
(4_3) EPw eTa ' Ta | Xs|*ds < H EPw [62 k=17 kTo+r | Xs|~ds )
r=0

On the other hand, by Schwartz’s inequality and Jensen’s inequality,

1 Tat
EPs [65 I |Xs|adse%|XTa+r|a}

To+r
</ EPL |:6|Xs|a:| ds . EP‘L |:€|XTa+T|a]>
Ta+r—1

1
< ezl

=

IN

Here we used Lemma 4.2 for the second line. This combined with the
Markovian property implies by induction that

B [eézzﬂf:%ff“ Xoltds e3Xomasral®] < CRedll®, neN.
In particular,
(4.4) Polic [6%22:1 oot \Xs\“ds} < mebll®
By (4.3) and (4.4),
(4.5) EP: [eﬁfﬁm" 'Xs"”dS] < Cnedll®,
(4.1), (4.2) and (4.5) complete the proof. (]

LEMMA 4.5. For any o € (0,2), there exists a constant p, > 0 such
that

ot .
sup sup (Epm [epa I8 X s> ds

1/t
X = yD < 00, for any W cc R%.
z,yeW t>0




570 Song LIANG

PRrROOF. Choose any C € (0,ps A 2%) and fix it, where p, is as in

Lemma 4.4. We have by Lemma 4.3 that

1
EP- [eCfo1 ‘Xs\ﬂds} < ec/ EP- [eqXS'Z} ds
0

2
< (COto Ll

for any z € R

By Lemma 2.3, we have that cs := sup,cra yew P1 (z,y) < oo. Therefore,

EP: [624 U1 Xs|*ds

Xt:y]

1/2

< EP [ecfg‘l |Xs|"‘ds} gP [(ec+5060|xt_1|2)2] 1/2

1/2

t—1 o
< B {emo X ds}  eCtee Clal’ fact/2. for any y € RY.

This and Lemma 4.4 give us our assertion. [

PROOF OF PROPOSITION 4.1. Choose an « € (0,2) and fix it. Let p, >
0 be as in Lemma 4.5. Define V : R — R,z — pg|z|®. By Lemma 4.5,
there exists a constant cg > 0 such that EF= [exp (f(f V(Xs)ds> ‘Xt = y} <
et for any t > 0. For any [ > 0, there exists a k; € N such that infB;él V>

I2. Therefore,

IN

1 —tlinfge V
P, (Lt(Bil) > Y‘Xt _ y) . l(m B, >EP” [e’o V(Xs)ds

ef(lng;)t‘

thy}

IN

For any L € N, let C, = N>, {V € p(Rd);y(Bkl) >1— %} Then Cp,
is compact and

e (L Cg)t

ﬁ, for anytz 1.
— e

PI<Lt€CE‘Xt:y> Ze (=)t <

This gives us our assertion. []
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5. Proof of Upper Bound

We show the upper bound in this section (See Lemma 5.3 below).
First, we have the following. As the proof is easy, we omit it here.

LEMMA 5.1. For any ¢ € Cy(R%), P/ has a strictly positive continuous
density p{ (z,y) with respect to p, and |log pf (z,y)| < ||¢||ect+]1log pe(x, y)|.
In particular, pf(-,y) is bounded for any y € R

Let AY = limy .o 1log |y~ PPy@)||,, as before. Notice that
pi(z,y) = PY(pY(-,y))(z), and pf(-,y) is bounded. So we have the follow-
ing by Corollary 3.7:

LEMMA 5.2. For any z,y € RY, %logpf(x,y) — A? ast — oo. In
particular, %logpt(:r, y) — 0 ast — oo.

We have by Lemma 5.2

1 1
- log/ eV (dv) = ~log B [efot P(Xs)ds
t p(Rd) t

Xt:y]

©
T R
t pt(xay)

as t — oo. This is true for any ¢ € Cy(R?). Let
A0) =sup{ [ odv—A%6c GRY). v e p(RY,
Rd
Then we get the following by Proposition 4.1 and Deuschel-Stroock [3]:

LEMMA 5.3. A* is a non-negative, lower semi-continuous, convex func-
tion, and

1
lim sup n log ;Y (C) < — ing A (v), for any closed sets C' C p(RY).
t—o00 ve
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6. Proof of Lower Bound

We prove the lower bound in this section. First, we have the following
law of large numbers.

REMARK 3. For any ¢ € Cy(R%), W cc R? and € > 0,
QY (L € B(n¥,e)| Xy =y) — 1

as t — oo uniformly in z,y € W, where 7% is the probability defined at the
end of Section 3, and B(v,e) means the set {n € p(Rd)‘dist(u, n) < e} for

any v € p(R?) and ¢ > 0.
LEMMA 6.1. For any ¢ € Cy(RY), W cc R? and £ > 0,

hmmf log inf Py(L; € B(p? 6‘Xt_y)> —A*(u?).

_)w 7y6

PrOOF. Choose ¢ € Cy(RY) and fix it. For any § > 0, there exists
an €1 € (0,¢) such that | [ga @dv — [ga@dr?| < 6 for any v € p(R?) with
dist(v,m¥) < 1. Therefore, by Remark 3,

htmlnf t log 1nf P,(L; € B(n%?,e ‘Xt =y)
7y

litrgjgf log ngw( 2 S P D ).

A¥ — / odr? — 6
RA
> —A*(n¥) —6.

v

AV

Let 6 — 0, and we get our assertion. [

REMARK 4. From the proof of Lemma 6.1, we see that AP— f . Qdm? >
A? — [qa pdn? for any ¢ € Cy(R?). Therefore, A*(7?) = [gq pdn? — A%.

Let us define J in the following way. For any v € p(R?), let

n

J€(V) = lnf{znZA*(ﬂ-@)?neNanl2072771:17

=1 =1

b; € Cp(RY), dist(v Zm ) < 8}, e >0,
=1
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and let
J(v) = lim J.(v) = sup J(v).
e—0 e>0
Also, let J(v) = +oo for any v € M(R?) \ p(R?), where M(R%) denotes
the set of all signed measures on R? with finite total variations.

Notice that A* is always non-negative, and p(R?) is complete with re-
spect to the topology given by v, — v & [pa f(dvn, —dv) — 0 for any
f € Cy(RY), v, v € M(R?). So we have the following result. The proof is
easy and will be omitted.

LEMMA 6.2. J : M(R?Y) — R U {+oc} is convex and lower semi-
continuous.

Let J* be the Legendre transfer of J given by J*(¢) = sup{ [ga ¢dv —
J(w);v e M(RY}, ¢ € Cy(R%). Then we have the following.

LEMMA 6.3. A% = J*(¢) for any ¢ € Co(R?), and J(v) = A*(v) for
any v € p(RY).

PrROOF. A* is convex and lower semi-continuous. So it is easy by the
definition of J that J(v) > A*(v) for any v € p(R%). Therefore, for any
v € p(R?Y) and ¢ € Cy(R?), J(v) > A*(v) > [gaddv — A?, hence A? >
fRd ¢dv — J(v). On the other hand, it is easy from the definition of J that
J(7?) < A*(n?), which is equal to s ¢dr? — A? as mentioned in Remark
4. So A? < [¢dr? — J(n?). Therefore, A? = sup{ [ga ¢pdv — J(v);v €
PR} = sup{ [ga ddv — J(v);v € M(R)} = J*(¢) for any ¢ € Cp(R?).
This gives us our first assertion.

The second assertion is now easy by Lemma 6.2 and [3, Theorem
2.2.15]. O

LEMMA 6.4.

inf ,y) >0
t>TolE,y€Wpt($ y)

for any W cc R®* and Ty > 0.

PrROOF. We have by Lemma 2.1 (with o = 2) that

1 1
up P > 1)< sup SEPIXP] < pmax{ sup laf’ K}
s>0,0€W s>0,ceW T r xeW
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Therefore, there exists a constant 7 > 0 such that supy.oew Pu(|Xs| >
r) < 3, hence infsso gew Po(|Xs| < 1) > 3. Therefore,

plew) = [ pene2onaus)

> inf z X P.(| Xeer | <7
> pr(a) % Pl X < 1)

— inf z,y) > 0, for any t > Ty, z,y € W. U
31 Jnf Pz y) y 0,2, Y

LEMMA 6.5.
hmlnf logP (Lt € B(v,e )Xt =y)>—-AN(v)
for any v € p(RY), € > 0 and z,y € R%.

Proor. Let Ly, = t21t t *6x.ds, 0 < t1 < tg < oo. For any
n €N, n €10,1],¢; € Co(RY),i = 1,--- ,n, satisfying S1 ;7 = 1 and
dist(v, > 1y mim®) < §, we have that

n

n
¢ € b € }
m{Lzl OthEJ 0 M5t EB(W ’2)} = {LtEB(ET/ﬂT 72)
i—

=1 =
c {L € B(v,e)}.

Choose and fix any W cC R? with 7(W) > 0 and =,y € W. Write 29 =
and x, = y. We have from Markov property that

Py(L; € B(u,e)‘Xt —y)

n
¢ € _
=z Px (ﬂ {LZZ onjtyzj 075t GB(F ’5)}‘Xt_y)

=1

n
/ [T 7o (Lo € Blx ’X i)
X1,

L Tp— 16VVZ 1

v

X Hpmt(xi,l, xi)m(dxy) - m(dxn—1)
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> H( inf_ P, (Lmt € B(r ‘X ))

Tj— 17$7,
X H < inf pmt(l’il,%’)) W(W)”fl.

=1
Ti—1,Z€
=1 ’

Notice that infyq [[7; (infs, | zyew Ppit(zi—1,2)) > 0 by Lemma 6.4.
Therefore, by Lemma 6.1,

htmlnf log P,(Ly € B(v,e ‘Xt_y

> liggf; 7 log (mi_ill,la:fl-ec Py, (Lmt € B(m ‘X = a:z)>
n
> =) At (n?).
i=1
Take infimum with respect ton € N and n;, 9,2 = 1,--- ,n, and we get from

the definitions of J./, and J that

htmlnf logP (Lt € B(v,e)| Xe =y) > —J.p2(v) = =J(v).

—00

This combined with Lemma 6.3 gives us our assertion. []
Therefore, we get the following lower bound.

LEMMA 6.6.

hmmf logP (Ly € G| Xy =y) > — inf A*(v)

t—o0 veG

for any open subset G C p(R?).
Finally, we prove the following identification of the rate function.
LEMMA 6.7. I =A*=J.

PrRoOOF. The second equality is done in Lemma 6.3. We show the first
one.
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First, for any ¢ € C®°(R%) N Cy(RY), by Corollary 3.7, there exists a
unique positive h¥ € C(R?) such that PYh?¥ = eA*'h%? for any ¢ > 0. So
he € C®(RY) and Loh? + ph? = A?h?. Define L? by L?f = (h#)~ (Lo +
o — A?)(h?f) = (h?) " Lo(h?f) + (¢ — A?)f. L¥ is nothing but the in-

finitesimal generator of {Q3 }.

L L
I(v) = sup{— ﬂdV; u € COO(Rd),u >0, 0% s bounded}
Rd U U

= / pdv — A?
Rd
LE((h9) M) so(pd
"—Sup{—/l:{d WdV,uEC (R ),U>0,

L?((h#) ")

()T is bounded}
u

> / wdv — A?.
Rd

This holds for any ¢ € C*®°(R%) N Cp(R?), hence for any ¢ € Cy(R?).
Therefore, I(v) > A*(v).

We next show the opposite inequality. For any u € C>®°(R%, R*) such
that £2% is bounded, let ¢, = —£9%. Then since (Ly — ¢, )u = 0, we have
P/*u = u for any t > 0. hence by Corollary 3.8, A¥» < 0. Therefore,
— fRd %dl/ < — fRd %du — A‘# < A*(v). Take supreme with respect
to u, and we get I(v) < A*(v). This completes the proof of our assertion. O

These finish the proof of Theorem 1.1.
Appendix: Deduction of (D-V) from (A3’)

In this Appendix, we sketch the proof of the fact that the condition
(D-V) is satisfied under the assumption (A3’).

We assume (A3’) throughout this appendix.

By (A3’), we have that 2y; — 72 — 1 > 0. Therefore, there exists an
ap € (0,271 — 2 —1). Let a > 0 be any constant, and let ¢(x) = |z|?,
r € R% Then we have by Liang [7] the following: (1) AP*? is well-defined
and finite, (2) there exists a unique (up to constant times) h? € BY such
that h? = e_MtPfh‘P for any ¢ > 0, and h¥ does not depend on a > 0, (3)
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(h?)™' € By and Vh® € BY, 1 5. 0.q, for any 8> 0. Let u, = 1R,

neN,and let V =A% —p+ Lz}lﬁa + = Lim Zﬂiibavjhw. By taking constant
times if necessary, we may assume that the second condition of (D-V) is
satisfied. The third and the forth conditions are trivial. Notice that by
(A3’), there exist constants Aj, Ao > 0 such that ¥ ~%(x) Loy (z) < A1 —
Asalz|17t for any x € RY. Also, since a;;,i,7 = 1,--- ,d, are bounded,
there exists a constant As > 0 such that

d
2ij=1 G ViprVih? | [ZlIVA?] o
YA Sa SWG ~2—y1+B+2a+ao"

Since ag < y1—1—(y2—71) by our assumption, there exist positive constants
a, 3 > 0 such that v —v1 + 8+ 2a+ ag < 1 — 1. Therefore, V(z) \, —o0
as |x| /" +o0, hence V satisfies the first condition of (D-V). The fifth one
is now also easy.
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