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On an Ergodic Property of Diffusion Semigroups on

FEuclidean Space

By Shigeo Kusuoka and Song LIANG

Abstract. Consider a class of uniform elliptic diffusion processes
on Euclidean spaces. We estimate transition densities and their deriva-
tives uniformly with respect to the starting points. We use these re-
sults to prove an ergodicity of VPf (see (1.2) and Theorem 1.4) under
certain conditions. This is useful in precise estimate of large deviation
principles.

1. Introduction

Let N be an integer, W = {w € C(]0,0); RY) : w(0) = 0}, and u the
standard Wiener measure on W.

Let aj € C°(RY), 4,5 = 1,---, N, and assume that there exist c1,co >
0 such that
N N N N
C1 Zf@z < Z(Z al-j(az)&)Z <cy Zﬁ?, for any x,& € RY.
i=1 j=1 i=1 i=1

Let 3; € C*(RN), i = 1,---,N. We assume the following through the

paper.
(A-1) There exists a c3 > 0 such that

N N
Z glfjvlﬁ](x) S Cc3 2537 for any x7£ € R7
ij=1 i=1
where V; = a%i,i: 1,---,N.
Let us consider the following stochastic differential equation (SDE).
dXi(t,z) = Y00 i (X (¢, 2))dw;(t) + Bi(X (¢, x))dt,
(1.1) i=1,---,N,
X(0,7) = (X1(0,2),---,Xn(0,2)) =2 € RN,

1991 Mathematics Subject Classification. 60J60, 37A25.
Key words: ergodicity, diffusion process.

537



538 Shigeo KusuokA and Song LIANG

Our first main result is the following.

THEOREM 1.1.  There exists a modification X : [0, 00) xRY xW — RN
of the solution of (1.1) satisfying the following.
(1) X(t,-,w) : RN — RN is a smooth function for any t € [0,00) and any
weW.
(2) %X(-, - w) is continuous on [0,00) x RY for any w € W and multi
index .
(3) supgern Zf»yj:l EFsupyeo ) [ViXI (L, 2)[P] < oo, for any p>1,T > 0.

Let Cy(RY) denote the set of bounded continuous functions defined
on RV. We may regard Cy(R") as a Banach space with norm || f ||«
= sup,ery |f(7)], f € Co(RY). For any ¢ € Cp(RY), we define the semi-
group Pf, t € [0,00), on Cp(RY) by

(1.2) (P f)(x) = E“[GXP(/;C(X(S,ff))dS)f(X(tw))], f € G(RY).

In case of ¢ = 0, we denote Pf by P;. Then we have the following result
essentially due to Kusuoka-Stroock [4].

THEOREM 1.2. There erists a strictly positive smooth function p de-
fined on (0,00) x RN x RN such that (P.f)(z) = [g~ p(t,z,y)f(y)dy, f €
Cy(RY), and

o o
—p(t,x,y)\; z,y € RNa ’y’ S T} <

ol

for any t > 0, multi index v and r > 0.

Now let us introduce the following assumption.
(A-2) sup{u(|X(t,z)| > n);z € RV} — 0 as n — oo for any t > 0.

THEOREM 1.3. If there exists an increasing convex function

¢ :[0,00) — R such that p(s) — 00 as s T oo, [ Lp‘t,) < 00, and that

v ) < —p(lzf*), xR,

then (A-2) is satisfied.
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Let C}(RY) denote the set of continuously differentiable functions f
such that f itself and its derivatives V,;f, i =1,---, N, are bounded.

THEOREM 1.4. Assume (A-1) and (A-2). Then we have the following.
(1) For any ¢ € Cy(RN) andt > 0, the linear operator Pf defined on Cy(RY)
is compact. Moreover, there exist an h® € Cy(RN), a probability measure v°
on RN and constants \° € R, ¢ > 0 such that inf{h¢(x); z € RN} > 0 and

lesoxnpes — ([ Laone.
< e Ltexp(—et) || f |loos t>0, feCy(RY).

(2) Further, if c € CL(RYN), then h¢ € CH(RY), and there exits a constant
0 > 0 such that

- f
S epXOTAP ) = ([ 5o )Tin

N
< 5 exp(=8t)(| f lloo +D_ I Vif llo),  t20, f € CRY).
i=1

The problem of Theorem 1.1 for the case of bounded coefficients has
been discussed, for example, by Ikeda-Watanabe [2]. Kusuoka-Stroock [3]
[4] considered the similar question as Theorem 1.2, but under different con-
ditions. We use them to prove Theorem 1.4. With the help of Theorem 1.4,
it is easy to get an estimate of the derivative of Green operators which is
useful in precise estimates of large deviation principles. This problem has
been motivated by a work in [5].

The organization of the paper is as follows: In Section 2 we give the
proof of Theorem 1.1. In Section 3 we define a new semi-group and use it
to prove Theorem 1.2. In Section 4 we give the proof of Theorem 1.3. And
the proof of Theorem 1.4 is given in Section 5.

2. Proof of Theorem 1.1

We give a proof of Theorem 1.1 in this section. First notice that by
(A-1) we have

(2.1) (x—y)- (B(x) - By))
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N
- X ) [ Vil + e - ) < esle — ol

PROPOSITION 2.1. There exists a version X(t,z) of the solution of
(1.1) such that X (-,-,w) : [0,00) x RY — RN is continuous for allw € W.

PROOF. Let ¢y = c3+ Zf&k:l | Viaij |loo< 00. It follows from Ito’s
formula and (2.1) that

t
< lo-yP e / X (s.) = X(s.9)ds

b2 3 [(0) ~ X)) (X0, ) = (Ko, ) ey ).

i,j=1

Let 7, = inf{t > 0; | X (¢t,z) — X(¢,y)| > n}, n > 1. For any p > 2, we
have by Doob’s inequality that

Erfsup{|X (s,2) = X(s,p)]; 5 € [0,¢ A 7]})
tATh
< 3p(|x—y|2p+(:4ptp*1 | X e - X (s Prds
0

]| S /W” (5,2) — Xi(5,1))

t,y=1
X (i (X (s,)) — i (X (s,9)))duw; (s)] '] ).

Therefore, by Burkholder’s inequality and Holder’s inequality, there exists
a ¢ > 0 depending only on C', T" and p such that

E* [sup{]X(s,:n) — X(s,9)]; s€[0,tA Tn]}%}
< o (Jo =y + [ BPBup{IX(s0) = X(s.9)k 5 € 0,0}l

for any t € [0,T],z,y € RV,n > 1. Letting n — oo and using Gronwall’s
inequality, we get that for any p € (2,00) and 7" > 0, there is a ¢ > 0
satisfying

EF[sup{|X (s,2) — X(s,9)|; 5 € [0,4]}] < colz —y[*,  z,y € RV
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This and Kolomogorov’s theorem (c.f., e.g., Stroock-Varadhan [8] or Revuz-
Yor [7]) imply our assertion. [

PrROOF OF THEOREM 1.1. By Proposition 2.1, we may and do assume
that the solution X (¢, z) is continuous with respect to (¢, ) for p—a.s.w. Let
Trn(w) = inf{t > 0;max, <, [ X(t,z,w)| > n},r,n > 1. Then 7 p(w) T 0o
as n — oo for y — a.s.w. Choose B,; € C°(RY), i =1,---, N, such that
Bni(x) = Bi(x) for x| <n+landi=1,---,N. Let X,,(¢,x) be the solution
of the SDE

dXpi(t,x) = 300 i (Xn(t, @))dw;(t) + Bri(Xn(t, z))dt,

i=1,--- N,
X,(0,2) =2z € RV,

We recall X, (t,z) has a modification such that X, (t,-,w) : RY — RN
is a smooth function for any ¢ € [0,00) and w € W, and %Xn(~,-,w) :
[0,00) x RY is continuous for any w € W and multi-index v (see Ikeda-
Watanabe [2]).

Uniqueness of the solution of the SDE implies that

p{w e Wi X(t,2) = Xa(t, )
for any (t,x) € [0,T] x RN with |z| <r})
> (e >T) — 1, as n — 0o

for any 7" > 0 and r > 1. This implies (1) and (2) of Theorem 1.1.
We next turn to (3). It is easy to see that

N
dViX;(t,x) = Y ViXg(t,x)Via(X(t, x))dw(t)
k=1

N
+ ) ViXy(t, @) Vi (X (8, ) dt
k=1

and V;X;(0,2) = 6;5,1,5 =1,---, N, for p-a.s. w. Therefore,

N
> IViX(t,@)?

i.j=1
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< N+2 Z / ViX;j(s,2)ViXp(s, 2)Viaj(X (s, z))dw(s)

,9,k,0=1
N t N

+ Z /0 ZViXk(s,x)VkOéjé(X(37$)))2d3
igf=1"Y k=1

¢ N
—1—03/ Z VX, (s, x)[*ds.
0

i,j=1
Use the same argument as in the proof of Proposition 2.1, we obtain (3) of
Theorem 1.1. [

3. Semigroup {Q;} and Proof of Theorem 1.2

In this section, we introduce a new semigroup {Q:}:>0 and use it to
prove Theorem 1.2.

Let E = Cy(R)'N. E is a Banach space with norm | ¢ |[g= 2V,
| gi llsos 9 = (90,91, +,gn) € E. For each ¢ € CL(RY), let

t

ME(t, 2) = expl /0 o(X(s,2))ds),  (t,x) € [0,00) x RY,

and Y5 : [0,00) x RV x W — R, i,j = 0,1,---, N, be such that

Yio(t,x) = M(t, x), Yii(t,z) =0,
Yi5(t,x) = V;M(t, x), Y5t x) =V, X;(t, ) Me(t, z),
Iiuj:]-a‘”?N‘
Let us define the operator Qf, t > 0, by
N
(Q59)i( Z MYt @) g (X (8, 2))], i=0,1,---,N, z € RV,

for g = (90,91, - +,9n) € E. In the case that ¢ = 0, we denote Qf by Qy,
and Y by Yj;. Since sup,cgw E“[|Yz§(t,x)|2] < 00, 4,j=0,1,---, N, and
X(t,z), Ylg(t, x), 4,7 =0,1,---, N, are continuous in x for p-a.s., we have
that Q7 is a bounded linear operator on E for each ¢t > 0.

Let af; € C@RNM),i,5=0,1,---, N, be given by
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and let A¢ be the bounded linear operator given by

N
=3~ at, () ()
j=0

i:(]al:"'aNa CL‘ERN, 92(907917"'79N)6E'

PROPOSITION 3.1. Let ¢ € CL(RY). Then we have the following.
(1) {Q¢; t > 0} is a semigroup
(2) For any f € CH{RY) and t >0, Pff € CLRYN) and
(

3.1)  (BANVUELS), - VN(ES)) = Qi((f, Vif, -, VN )

(3) For anyt >0 and g € F,

t
Qig = Qg +/0 Qf_ AQsg ds.

PrOOF. Notice that dM“(t,z) = (X (t,x))M(t, z)dt and
AVMe(t,x) = (c(X(t2)) VMt )
N
+ (3 VX (t, 2) (Vre) (X (8, 2))) ME(t, x))dt.
k=1

Let a;;, € CRN),i,5,k=0,1,---, N, be given by

aooo () = agor(x) = aioo0(x) = aor(x) = agjo(x) = agjr(x) =0,
aijo(r) = ViBi(x),  ayk(t,z) = Viaj(z),  i,5,k=1,---,N.

Then

N N
dYi(t,z) = ZZYZ (t,x)ane(X (¢, x))dwe(t)
k=0/¢=1

N
+ ) ViRt @) (argo(X (t,2)) + af; (X ((t,2)))dt,
k=0

YL;(O)-T) = 61]’ i7j:O71’.._7N.
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Define 6 : [0,00) x W — W by 0(s,w)(t) = w(t+s) —w(s), s,t € [0,00),
w € W. Then we have from the uniqueness of the solution of SDE that

(3.2) Yii(t+s,2,w) = Z i (t ,w)Yie (s, X (8 2, w), 0(t, w))
This implies assertion (1).
For any z,v € RN and f € C}(RY), we have
(PEf) (@ +v) = (P f)()
ZE”/ ot x+ sv) f(X(t,z + sv))ds]

+ Z E“/ YE(t 2+ s0)V; f(X (L, 3+ sv))ds].

t,j=1

Since 3=, ; sup, E[|Y5(t, 7)|?] < oo, this gives us assertion (2).

Let (Yij_»l(t, x))%’:o denote the inverse matrix of (Y] ( , )).J:O. Then
by Ito’s formula, d(3720 Vi (t, 2) Yy, (8, 2)) = ko Y;i(ty z)ag, (X (t, x)) x
ngl(t,x)dt. Therefore, by (3.2),

Yq(t x, W) —YQ(t z,w)

= Z / Y5 (s, z,w)af, (X (s, w))ng( s, X(s,z,w),0(s,w))ds.
k,4=0

This implies assertion (3). O

PROPOSITION 3.2. There ezist ¢;; € C*°((0,00) x RN x RY), i,j =
0,1,---, N, such that

QOjZOj:17"'7N7

(3.3) sup{] qzj(t z,9)]; z,y € RY with |y| <7} < oo

for anyt >0, r > 1 and multi-index v, and

(3.4) (Q9)i( Z/ qi (t, 2, )95 (y)dy,

t>0, g= (90,91, -,9n) € E.
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PROOF. The proof is similar to that of Kusuoka-Stroock [4, Theorem
4.5], so we give only a sketch.

Let us take an arbitrary r > 1 and fix it for a while. Choose a ' €
C°(RYN;RMN) such that 3'(x) = B(z) for any € RV with |z| <7+ 3. Let
X'(t,x) be the solution of the SDE

dX[(t,x) = YN o (X' (¢, 2))dw;(t) + B(X'(t,x))dt,  i=1,---,N,
X'(0,z) =z € RN,

By Theorem 1.1, we may and do assume that X'(¢,z) is smooth in z. Let
7'(w,z) = inf{t > 0; |X'(t,x)] = r 4+ 3}. By using the uniqueness of the
SDE’s for X (t,z) and V;X;(t,z), i,j =1,---, N, we have that X (¢,z,w) =
X'(t,z,w) and V;X;(t,z) = V; Xj(t,x), t < 7'(z,w), for any = € RY with

|z| <7+ 1. Define Y/, : [0,00) x RN x W — R, i,j = 0,1,---, N, by

Vii(t,x) = 6;5ifi = 0or j =0, and Y};(t,2) = V; X|(t,z) if i # 0 and j # 0.
Let @}, t > 0 be the bounded linear operator on F given by

(Ql9)i( ZE“ Y' t,x)g; (X' (t,z)),t < 7'(x)],

g = (90)917”'791\7) GE

Let B = {z € RY; |z| < R}, R > 0. By the same argument as in
Kusuoka-Stroock [4, Section 4], there exist q;;(t,z,-) € LY(RN,dx), i,j =

0,1,--+, N, such that g;;(¢,, -)‘B € C°(By42) for any (t,z) € (0,00) X
r+2
RY with |z| < r+1, (Q19)i(x) = ;\/:0 Jrw qgj (t,z,y)9;(y)dy for any g € E,

97
Sup{a—y,yq;](t7xay)7xuy S B’r‘+1} < 09, t > 07
and
ar, N
Sup{@qij(t,x,y); (t,z,y) € (0,T] x RY x B,
with |z] =7+ 1} < o0, T >0,

for any multi-index . Moreover, by definition, we have gj;(¢,z,-) = 0 if one
of the following holds: ¢ = 0,7 # 0 or i # 0,5 = 0. Now define 7,(z, w),
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n >0, and o, (z,w) n > 1, x € RV, inductively, by

To(z, w) = 0,
on(z,w) = inf{t > 71 (x,w); | X (¢, z,w)| <r+1},
To(z,w) = inf{t > op(x,w); | X (t,z,w)| > r+ 3}, n>1.

Then we see that for any g € Co(B,)'*N C E,

oo N
(@g)i(x) = D> B'[Yi(t,2)g;(X(t,));on(z) < t < 7(2)]

n=1 j—O

= ZZE“ (0 (), 2)( Q) ()9)i (X (0n(2),2)); 00 (@) < 1]

n=1j5=0

N
= Z / dygr(y)

ZZE ij(on(2), 2) (g1, (t — on(x), X (on(2), ), y);
n=175=0
on(z) < 1]).
This completes the proof. [

PROOF OF THEOREM 1.2. For any f € C$*(RY), we have by (3.1)
and (3.4) that

(@) = [ olt..) )y
N
0
(Vikf)a) = [ ol )y =3 Jow g 0T W)

This combined with (3.3) yields Theorem 1.2. [J
4. Proof of Theorem 1.3

We prove Theorem 1.3 in this section.
Let c7 = Zgjzl |vij(z)||%. By assumption, there exists an sy > 0 such

that
o0 ds
to = / _ ¥
50 80(5) —C7
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Let a(t) > so, t € (0,to], be given by

/OO ds y
a(t)y p(s) —cg

Let v(t,z) = E*[| X (t,2)|%], (t,7) € [0,00) x RY. Then by assumption and
Ito’s formula, we have

So(t,2) < er = BU(X (1, 2)P)] < o7 — p(olt, ).

Let 7(z) = inf{t > 0; v(t,z) < so}. Then

_W%U(tw) >1, 0<t<7(),

v(t,z) < s, t>7(x).
This implies that
v(0,z) ds
/ — >, for 0 <t < 7(x)Ato.
v(t,x) 90(3) —C7

Hence v(t,z) < a(t), 0 <t < 7(x) Atg. So
’U(t,JT) < a(t)a te (OatO]'

Therefore,

t
sup u(|X(t,z)] >r)§£2), r>0,t e (0,t)].
zeRN r

This completes the proof of Theorem 1.3.
5. Proof of Theorem 1.4
Throughout this section we assume (A-1) and (A-2).

PROPOSITION 5.1. (1) Pf is a compact operator on Cy(RN) for any
c€ Cp(RYN) and t > 0.
(2) Qf is a compact operator on E for any ¢ € CH(RN) and t > 0.

PROOF. Since the proofs are similar, we give only the proof of assertion
(2). By Proposition 3.1 (3), it is sufficient to prove that @ is compact on
E for any t > 0.
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Choose and fix ¢ € C§°(RY;[0,1]) with ¢(x) = 1 for |z| < 1. Let
on(z) = p(nx), z € RNV, n > 1. Let Qt,n be the linear operator on E given
by Qing = Qi(¢2g), g € E. First, we prove that Q;,, is compact on E for
any t > 0 and n > 1.

Fixt > 0 and n > 1 for a while. Let {g(™}2°_, be any bounded sequence
in E. Then the sequence {(1 — A)~!(0n,g™)}_, is relatively compact in
E. So by taking subsequence if necessary, we may and do assume that
{(1 = A) "M (png™)}¥o_, is convergent in E. Since

m=1
N
(@uag™)ila) =3 [ (1= 8)(n)ais(t.2,))(1 = 2)7 (ong ™) 0)d
j=0

we get by Proposition 3.2 that || Qung(m) — thg(m/) |lp— 0 as m,m' — co.
This finishes the proof of the fact that @), is compact on E for any ¢ > 0
and n > 1.

Notice that

| Qeng — Qeg lle

N

< 30 sup [EMYG(@)(1L = pn(X(62))%)g, (X (t2)
i,j=02Z€

N
(> sup BMV(t2))]?) sup p(|X (8, 2)] =)' | g e,
i7j:0x€RN xeRN

IN

for any g € E.

So Qtn — Q¢ (n — 00) as operators on Cy(E). Hence @ is also compact
on F. [

PROPOSITION 5.2. For ¢ € Cy(RY™) and t > 0, there exist an h €

Cy(RYN), a probability measure v in RN, and \g,C,e > 0 such that Pfh =
Moh, gy hdv = 1,inf{h(z);z € RV} > 0 and

IS = ([ A s CO= | s S € CRY).

PrOOF. Let ¢ € Cp(RY) and ¢ > 0 be given. We first prove the
following.
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Cramm 1. If f € Cy(RY) satisfies f > 0 and f # 0, then inf{(P¢f)(z);
re RN} >0.

PrROOF OF CLAIM 1. By virtue of support theorem (c.f. Stroock-
Varadhan [8]), we have that p(X(t/2,z) € U) > 0, z € R", for any
non-void open set U in RY. So (Paf)(@) >0, x € RM. By (A-2), we
see that there exists a r > 0 such that u(|X(¢/2,2z)] < r) > 1/2 for all
x € RN, Therefore,

inf{(Pff)(x);z € RN} = inf{ 172 (Prye(f)) ()2 € RV} > 0.
This implies Claim 1.

Let B be the complex Banach space given by B = Cg(RY;C) with
norm || f ||p= sup,ern |f(z)|, f € B. Then B is the complex extension of
Cy»(RN). So the bounded linear operator Pf can be extended to a bounded
linear operator on B. We denote this by the same symbol Pf. Pf is a
compact linear operator on B, and the spectrum o(Pf) of Pf has no cluster
point except 0. Let Ao = max{|\|; A € o(Ff)}.

CLAIM 2. Suppose that A\ € o(Pf) with |A\| = Ao and f € B satisfies
f#0and PFf = Af. Then A = )\p and there exists an a € C such that

f=alfl.

PrROOF OF CrLAIM 2. It is obviuos that PF(|f]) — |A||f] > 0. So it
is sufficient to prove PF(|f]) = |M|f|. Let h = P£(|f]) € Co(RYN). Then
Pfh — Xoh > 0, and inf{h(z);z € RN} > 0 by Claim 1. Suppose that
Pfh — Aoh # 0. Then by Claim 1, there exists a 6 > 0 such that Pf(Pfh) >
(Ao-+6)Pfh. Therefore we have limsup,,_,, 2 log || (Pf)"h || 5> log(Ao+96).
This contradicts the fact that lim,,_ % log || (PF)" ||operator=10g Ag. So we
have Pfh = Aph. This and Claim 1 imply PF(|f|) = |A||f|, which completes
the proof of Claim 2.

By Claims 1 and 2, we see that Ao € o(Pf) and there exists an h €
Cy(RYN) such that Pfh = \oh and inf cga h(z) > 0. Let E(X\) = E(\o, PY)
be the projection operator as in Dunford-Schwartz [1, Chapter VII].

CLAIM 3. The dimension of the image of E()) is one.
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Proor orF CralM 3. Suppose not. Then we have by Claim 2 that
there exists an f € B such that \;" || (Pf)"f ||[p— oo as n — oo. On the
other hand, since inf g~ h(x) > 0, there exists a constant ¢ > 0 such that
|f| < cgh, hence limsup,, . A\g™ || (PF)"f [|BS ¢t || b ||oc- This makes a
contradiction.

By Claim 2, we have that sup{|A|; A € o(Pf) \ {\o}} < Ao. Combining
this with Claim 3, we get that there exist a bounded linear operator S :
B — C and C, e > 0 such that

A (B f = S(Hhls<CA—e)" [ fls,  feB.

We can easily see that S(h) = 1 and S(f) > 0 for any f € Cy(RY,R").
Moreover S(A\g'Pff) = S(f) for f € B. For n > 1, let @u(z) = ((n —
|z]) A1) V0, z € RY. Then by Riesz’s theorem, there exist finite measures
vnp on RY such that S(¢,f) = [ fdv, for f € Co(RY) and n € N. We
have by (A-2) that (Pf(onf))(x) T (Pff)(x) as n — oo for x € RN and
f € C(RN,RT). Since Pf is compact, we have that S(p,f) — S(f) in B
as n — oo for f € Cy(RY). So there exists a finite measure v on RY such
that S(f) = [ fdv for f € Cy(RY). Re-normalize v and h if necessary, and
we get Proposition 5.2. [

PROPOSITION 5.3. Let ¢ € Cy(RY). Then there exist an h € Cy(RY),
a probability measure v on RN and n € R, C,e > 0 (different from before)
such that Pth = exp(nt)h, t > 0, [gn hdv = 1,inf{h(z);z € RN} > 0 and

lesp(-ntPes = ([ Lanhlle < Coxp-et) | 1 1,
t>0, feCyRM).

PROOF. By Proposition 5.2, for each n > 0 there exist a h, € Cy(RN),
a A, > 0 and a probability measure v,, on RY such that Py hp = Aphyp,
Jry hndv, = 1, inf{h,(z);x € RN} > 0, and )\ N
(Jar Ldvn)hn in Co(RY) as k — oo for f € Co(RN). So vy = 10, hn = ho
and A, = A\27" for n > 1. Let n = log \g. Since (P¢ho)(z) — (Pfho)(x) as
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s — t for each z € RN, we get that Pfhg = exp(nt)hg for t > 0. Also,

| exp(—nt) Py f / —duo ho ||
< exp2 o) 10570 = ([ Lo |1

for t € [n,n + 1] and f € Cy(RYN). These imply our Proposition. [J

Proposition 5.3 implies (1) of Theorem 1.4. Next, we prove (2) of The-
orem 1.4.

Let EC = Cy(RY; C). Then E€ is a complex extension of the real
Banach space E. Let ¢ € C}H(RY) and fix it in the rest of this section.
Then for every ¢t > 0, f can be extended to a compact linear operator
on EC. We use the same symbol Qf to denote this. Let R, denote the
linear operator Q5_, on E€, n > 0. The spectrum o(R,) has no cluster
points except zero. Let E(\; Ry,), A # 0, denotes the spectral projection, i.e.,
E(X;Ry,) = F(R,,), where F is a function such that F' = 1 in a neighborhood
of A and F' = 0 in a neighborhood of o(R,) \ {A\} (c.f. Dunford-Schwartz
[1, Chapter VII]). Since R, = R2_,, we have by [1] the following:

PROPOSITION 5.4.
(1) o(R,) = { ;) € 0(Rps1)}, n > 0.

(2) E(\%, Ra) = E(\Ruy1) + E(=A, Ray1) For any A € C\ {0} and
n > 0.

Proor or THEOREM 1.4. Let h, v and n be as in Proposition 5.3,
Sp = {X € a(Ry); [N > exp(27"(n — 2))}, and #(S,) the number of
elements of S,,. Then by Proposition 5.4, we have S, = {\?; A\ € S,.1},
n > 0. Hence #(S,,) is non-decreasing in n. Also,

> E(\Ro)= ) E(\Rn)

)\ESO AESTL
So #(Sy) is dominated by the dimension of Im (}ycg, E(X; Ro)). Thus
there exist ngp > 1 and M > 1 such that #(S,) = M for any n > ng. So
there exist A\, ;, n > ng, i =1,2,---, M, suchthat S, = {\,;; i =1,---, M}
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and A\p; = Apg14, ¢ = 1,---, M, n > ng. Therefore, E; = E(\;; Rn),
1=1,2,---, M, is independent of n > ng. By the same argument as in the
proof of Proposition 5.3, we have QfE; = E;Qf for i =1,---, M, and there
exists a C > 0 such that

M

| QF — ZQ?EZ [operator < C'exp((n — 1)1), t>0.
i=1

Let Ri, t > 0,i=1,---, M, be the restriction of Q¢ on Im(E;). Then
{Ri; t > 0} is a continuous semigroup of linear operators on Im(E;). More-
over, A, ; is the unique eigenvalue of R!_,. So there exists an 7; € C such
that exp(n;t) is the unique eigenvalue of R, i =1,---, M.

Now let f € C{(RY). Then we have by Proposition 3.1 (2)that

/., dalen(a zv i) (P £) () de
/RN dz(o(z), -+, YN (2)) - (QE(f, Vif, -+, VN)) (@)

for any ; € C(‘{O(RN) and i =0,1,---, N. Therefore,
exp(- / de(o(z). - b () - (RIES(£.V1 .o VNP (@)

/ da (o val as t — oo,

So

f
exp(- 1) ;Rt (Ve T ) = ([ 4 d) (0 Tah, - V)

in the sense of Schwartz’ distribution. Since Im(F;), ¢ = 1,---, M, are of
finite dimensions and are linearly independent, we get that

exp( ) Z( (favlfv va)) _>07 lfnz#Tb
exp(—nt)R ( i(f, Vlf VN f))
fRN hdl/ (h,Vlh, . ',VNh) if n =n.
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These imply that

Ei(fvvlff"vaf):Ov 1f77@7é773ndRe(771)277»
E’L(fuvlf?ava)
= (Jax fav)(h,Vih, -, Vnh), i =1.

So h € C}H(RY) and there exist C,§ > 0 such that

| exp(-Qi( V1T Tu) = ([ )b Vit Vot s
< Cexp(—6t)
forany ¢t > 0and f € C’,} (RY). This completes the proof of Theorem 1.4. []
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