J. Math. Sci. Univ. Tokyo
10 (2003), 421-454.

On the Precise Laplace Approximation
for Large Deviations of Markov Chain
The Nondegenerate Case*

By Song LIANG and Jingjun Liu

Abstract. Let L, be the empirical measure of a uniformly er-
godic nonreversible Markov chain on a compact metric space and ®
be a smooth functional. This paper gives a precise asymptotic evalua-
tion of the form E(exp(n®(L,))) up to order 1+ o(1), in the case the
Hessian of J — ® is nondegenerate, where J is the rate function of the
large deviations of empirical measure.

1. Introduction and Main Result

Let E be a compact metric space with Borel o-algebra £. Let C(FE)
denote the Banach space of continuous R-valued functions on FE, equipped
with supremum norm || f|jcc = sup,cp|f(z)|. Let M(E) denote the set
of signed measures on (E,£) with finite total variations, equipped with
the total variation norm || - ||var, and let M;(FE) and My(E) be the set
of probability measures on (F,&) and the set of all signed measures on
(E, &) with total measure 0, respectively. We also consider the weak*-
topology, sometimes. Note that M;(F) with the Prohorov metric dist(-,-)
is a compact space. Let N denote the set of non-negative integers.

Let Q = EN. For each n > 0, let X,, : Q — E be the map given by
X,, = w(n). Let F be the o-algebra on © generated by {X,}n>0, FJ de-
notes the sub-o-field generated by {X;}r<j<n. We denote F§ by Fj. Let
(Q, F,{Fn},{Xn}, Pz) be a homogeneous Markov chain on E with transi-
tion probability II(z, dy) that satisfies P,(Xo = ) = 1 for all x € E. The
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linear operator IT on C(E) is given by

I/ (x) = /E f)(z.dy), [ e C(E).

First, we assume the following,

A.1 There exists a Il-invariant measure p € My(E) with suppu = E,
and there exists a continuous positive function m : E x E — (0,00) such
that (z, dy) = m(z,y)u(dy).

Let L, : Q — M1(FE),n > 1, be the empirical measures,i.e.,

1 n—1
LTL = E ZéXka
k=0

where ¢, is the Dirac measure centered in x. Under our assumptions, the
following large deviation principle holds for the empirical measure L,,. (c.f.
Deuschel-Stroock [3]).

ProprosITION 1.1.

(1) limsup%long (Lp € FIXp-1=y) < —inf{J(v),v € F} for any
n—oo

x,y € E and any closed set F C My(E).

(2) 1inIIi)iOIéf%10ng (Lp € G| Xp—1 = y) > —inf{J(v),v € G} for any
x,y € E and any open set G C My (E).

Here the rate function J : M; — [0, 00] is given by
TTu
J(w)=supq— [ log—dv,ue C(E),u>1;, ve Mi(E).
E u

Let ® : M(E) — R be a bounded and three times continuously Fréchet
differentiable function with respect to norm || - ||var satisfying the following:

A.2 There exist functions ®1) e C(My(E) x E,R),®® ¢
C(Mi(E) x E x E,R), and ®®) € C(My(E) x E x E x E,R), such that
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for any v € My(E), R1, R2, R3 € M(E),
DO(W)(R) = /E &0 (v, 2) Ry (dz),
D20()(Ry, Ry) — /E [E 8@ (v, 2, ) R (dz) Raldy),

D36(v)(Ry, Ry, Ry) — /E [E /E 83 (v, 2, y, ) Ry (dx) Bo(dy) Rs(d2).

Then by Donsker-Varadhan [3], we have that

nlgrolo % log EF* [exp (n®(Ly,))] = sup{®(v) — J(v) : v € My(E)}
for any * € E. Write the constant in the right hand above as by, for
the sake of simplicity. In this paper, we give a more precise evaluation of
B [exp (n®(Ly))].

In the case of continuous time Markov processes, some precise evalua-
tions have been obtained by Kusuoka-Tamura [7] for symmetric case, and
by Bolthausen-Deuschel-Tamura [1] for a non-symmetric case, both under
some “Central Limit Theorem Assumption”, also, by Kusuoka-Liang [5]
without the“Central Limit Theorem Assumption”.

Define

Ke={ve My(E):®(v)—J(v)=bs}.

It is not difficult to prove that Kg is non-void and compact in M;(E),
since J(v) is a good convex rate function (c.f. Deuschel-Stroock [3, Theorem
4.1.43]). We also assume the following,

A.3 There exists a unique element in Ko, i.e., Ko = {1p}.
For any V € C(E), we define the operator 11V : C(FE) — C(E), by

(L1) Y f(x) = ¢V @ / M(z,dy)f(y). fe C(E).
E

Then we have the following simplified Feynman-Kac formula

()" f(a) = B

n—1
f(Xn) exp (Z V<Xk>>] ., fea().

k=0
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Let A(V) be the logarithmic spectral radius of IV, given by
1 n
A(V) = lim —log]|(ITV)" [op,

where | -||op denotes the operator norm of bounded linear operator in C'(E).
It is trivial that |A(V)| < ||V||co. For each n > 1, exp(A(V)n) is the spectral
radius of (ITV')". By Deuschel-Stroock [3, Corollary 4.1.36], it follows that

(1.2) A(V) = sup {/E V(z)v(de) — J(v) v e Ml(E)} :

and

J(v) = sup {/E V(x)w(dz) — A(V):V e C(E)} .

From the assumption A.1, IIV is a compact operator with positive kernel
function 7V (z,y) = @ x(z,y). By the Perron-Frobenius argument, we see
that there exists a positive bV € C(E) such that

e_A(V)HVhV — th
and it is uniquely determined up to a constant. Now, by Kolmogorov ex-

tension theorem, we can define a set of probability measures QY,z € E, on
(Q, F) such that

1% eV b 1% =
QY (A) = Wy [l (Xn)exp(Y V(X))
k=0

for all z € E,n € N and A € F,,. Let Q" be the corresponding bounded
linear operator on C(E), i.c., Q¥ f(z) = E9¥ [f(X1)], then QY has strictly

positive continuous transition density function GV with respect to W, given
by
e~ AV)
§ (z,y) = Viwv(x,y)hv(y) for any z,y € E.
h' (x)

Let (IIV)* be the L?(du)-adjoint operator of IIV in C(E). We see in
the same way as above that there exists a unique strictly positive [V €
C(E) such that (ITV)*1V = eAV)1V and [ 1Vdp = 1. Now, BV is uniquely
determined if we require [, IVhVdp = 1. Let du" = hY1Vdp. Then {QV}
is 1V -invariant.
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We are now ready to define a new Markov chain with invariant measure
vg. Let V0 = D®(vp) (6, — o) + P(1p). Let h denote the unique properly
normalized eigenfunction of IV, i.e. h = hV". We will show in Lemma
2.5 below that by = A(V*°) and 1y is an invariant measure of (QY °). Let
us denote (QY™) by Q., bV by h,etc., for the sake of simplicity.

Let @ be the operator on C(E) corresponding to {Qz}zcr. Then vy
is an invariant measure of (), () has continuous strictly positive density
function ¢(z,y) with respect to vy, and ¢(x,y) satisfies ||g,(z, ) — 1]jcc — O
exponentially fast as n — oo uniformly in x, where ¢,(z,y) is given by
a1(2,9) = q(2,9), gn1(2,y) = [ q(x,2)gn(2,y)vo(dz),n > 1. Therefore we
can define a g(z,y) € C(E x E) given by

[o.9]

g($ay) = Z (QH(xay) - 1) .

n=1

Define the linear operator G : C(E) — C(E) by Gf(x) =
[ 9(z.y)f(y)vo(dy). Let G* be the dual operator of G in L?(dwy), i.e.
G*f(z) = [, 9(y,2)f(y)ro(dy) for any f € C(E). Let G = P+ G + G*,
where P is defined by Pf(x) = f(x) — [ fdvo. We also need the following
operators. For f € C(E x E), let

(G®G)f)) (a1, 22) = f(a1,22)

+/E/E(g(x1,y1)+g(y1,$1))(g(wz,yz)+g(yz7w2))
x f(y1, y2)vo(dyr)vo(dyz)

+ [ (aterm) + g0 Flon,z2 ()

+ /E (91, y2) + 9(ya, 2)) f (21, y2)vo ().
Define G, =G ® I and G, =1 ® G by

(GeDf)(zy) = flz,y) + /E(g(:w) +9(z,2))f (2 y)n(dz),

(T&C)f)(,y) = f(z,9) + /E (9(2m) + 9w, 2)) (&, 2o (d2),

G}y Gu, Gy, Gy are defined similarly, where I is the identity operator.
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Let B(f,9) = [5 fGgdw, f,g € C(E). Note that B(f, f) > 0 for any
f € C(F). Actually, we have that

0< B9 {(x/ﬁ/Ef(x)(Ln—Vo)(dx)>2} — B(f,f) as n— oo

Let Vo = {f € C(E) : B(f, f) = 0} and C(E) = C(E)/Vy. Then B is
an inner product on C(E). Also let H be the completion of C(E) under
the Hilbert norm induced by B. Since C(E) < H, there is a natural map
T : C(E) — H. Let H be the dual space of H, and T* be the adjoint
operator of T" which is a mapping from H to M(E). We can easily show
that 7™ is one to one, then H can be regarded as a subset of M(FE) with
norm ||G fdwo||3; = [ fG fdvo.

We will prove that all of the eigenvalues of D?®(1)|gxm are less than
or equal to 1 in Section 2 (see Proposition 2.6). In this paper, we assume
the following nondegeneracy assumption.

A.4  All of the eigenvalues of D*®(1p) ‘ are smaller than 1.
HxH
In addition, we assume

A.5 For any 6 > 0, there exist a constant € > 0 and a symmetric
continuous function Ks: E X E — R such that sup, ,cp |Ks(x,y)| <6, and

|D3<I>(R)(1/ — Vv,V — g,V — 1/0 / / Ks(z,y)(v — vp)(dx) (v — vo)(dy)

for any R € My(FE) with dist(R,1y) < € and any v € My(E) with
dist(v,1p) < €.

Now, we can state our main theorem.

THEOREM 1.2. Under the assumptions A.1—A.5, we have that for any
z,y € E,

n—~oo

= M-exp (%/Eq)m)(yo,u,u)uo(du)

h(y)
# [ [ ot #n, o)

xdety (Irr — D2®(vp)) /2.

lim e "0 pl= [exp(nfb(Ln)) ‘ X1 = y}
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REMARK 1.1. The dety appeared in the Theorem above is the trans-
formed determinant defined by deto(I—A) = Hj(l—Aj)e_Aj, where {\; }ren
is the set of eigenvalues of A. This is well-defined as long as A is a Hilbert-
Schmidt operator. It is easy that D?®(vg) |y« g is a Hilbert-Schmidt opera-
tor. This fact and the assumption A.4 ensure that dety (I — D2<I>(1/0))_1/2
is well-defined.

The rest of this paper is organized as following. We give a precise form
of the nondegeneracy assumption A.4 in Section 2. In Section 3, we give a
forward-backward martingale decomposition. By means of it, we establish
the exponential integrability of related partial sums processes. The proof of
Theorem 1.2 is given in Section 4.

Acknowledgement. The Authors would like to express their deepest
gratitude to Professor S. Kusuoka for his helpful suggestions and encour-
agement.

2. Perturbations

In this section, we first use spectral theory for compact linear operators
(see Dunford-Schwartz [4] for the details) to find the asymptotic behavior of
A(V),hY 1V when V is close to 0, then use this to give the precise statement
of the nondegeneracy assumption. In this section, C'(F) denotes the space
of complex-valued functions defined on FE.

In the following, we assume that the Markov chain with semigroup II
satisfies the assumption A.1, and V € C(F) is a real-valued function and
satisfies [, Vdp = 0.

As stated in Section 1, by Perron-Frobenius argument, for ¢ € R, e
is the principal eigenvalue of both the operator II*¥ and its adjoint operator
(IT1V)*, and is a simple eigenvalue of both of them. So there exist a unique
positive function h¥V € C(E) and a probability measure ¥ on E such that

A(eV)

HEVhEV _ eA(EV)hEV, (HaV)*VEV _ eA(aV)VeV7 and / hsle/eV -1
E
Let
(2.1) Y (@) = N [V Oy (ay),
E
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then we see that ¢V € C(E),IfV > 0 and dv" = ¢V dp.
Also, the projection operator to the eigenspace corresponding to e
can be expressed as £V : C(F) — C(E),

A(eV)

B f(z) = b (x) / F@)EY () u(dy).
E

(So EFV1 = heY). As mentioned before, dus¥ = heVi*Vdu is the in-
variant probability measure of Q. For the sake of simplicity, we de-
note A(eV),heV 15V, E5V, 1V by A(e), h®,15, B¢, uf, respectively. Note
that A(0) = 0,hY = [ = 1, hence E° = (), and p’ = p. Define
[ee]
Go : C(E) — C(E) by Gof = >, (IIFf — (f),) and let G} be the adjoint
k=1
operator of Gg in L?(du).
Let F(w;z) = (2 — I*V)~ ! w,z € C. Then we have the following

Proposition.

PROPOSITION 2.1. There exist positive constants r > 0 and g > 0
such that for any e € R, |¢| < eo, we have that o(IIFV)N{z: |z —1| <r} =
{erMEY and

1

Ef=— F(g;2)dz.
27 |z—1|=r

Proor. By Perron-Frobenius argument, there exists a constant r» > 0
such that
o(I)\ {1} C {z:]2] < 1—3r}.

By Dunford-Schwartz ([4, p. 585, Lemma 3 and p. 587, Theorem 9]), we
see that for this r > 0, there exists a constant ¢y > 0 such that for any
e € R, |e| < g¢, we have that [eA®) — 1| < r and

o(IEV)\ {2 € S(o(M) \ {1},7) € {z:|2| < 1—2r}.

where S(o(II) \ {1}, 7) means the r-neighborhood of ¢(IT) \ {1}. Therefore,
let U = {z;|z — 1] < r}, then U is an open set with smooth boundary,
eMe) e U, and (o(mV)\ {eA(E)}) N U = (). Therefore, by the definition of
the spectral projections, we have

1 1
Ef = — (21 — 1V ldz = — F(g;2)dz. O
21 Jou 210 J )1 |=r
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PROPOSITION 2.2. There exists a constant €9 > 0 such that for any
w € C,|w| < eq, there exist bounded operators Ry(w;z) in C(E) satisfying
the following

2
F(w;z) = F(0;2) + wF1(0; 2) + %FQ(O; z) + Ri(w; 2),

where

>
—~
=
N
SN—
I

F(0; 2)VILF(0; 2),
Fy(0; 2) = F(0; 2)V2IIF(0; 2) + 2F(0; 2) VIIF(0; 2) VILF(0; 2),

and $p..1. 1|y |1R1 (13 2) lop = O(w]*) as [u] — 0.

PrOOF. By spectral theory, the resolvent function R(z;II) =
(2I — )™t = F(0,2) is analytic in p(II) D {z;]z — 1| = r} and so
SUP{;[5—1)=r} |[F(0; 2)||op < 00. Also, since V' is bounded,

2
eV _1=wV+ %V2 +ro(w) = wV 4 r3(w)

with r2(w), r3(w) € C(E) and [|r2(w)[|ec = O(Jw]?), [Ir3(w)][ec = O(w?) as
|w| — 0. Therefore, by spectral theory (c.f., Dunford-Schwartz [4, p.585,
Corollary 2]) for perturbations,

F(w;z) = R(ze"VT)=F(0;2) ) (" — DIIF(0;2))"
n=0
= F(0;2) + F(0;2)(wV + %QVQ + ro(w))IIF(0; 2)
+F(0; 2)(wV + r3(w))ILF(0; 2) (wV + r3(w))IIF(0; 2)
+Ry(w; 2),

with operators R4(w,z) on C(E) satisfying sup...._q—, |[[Ra(w;2)||op =
O(Jw|?) as |w| — 0. This gives us our assertion. [J

For any real valued function f € C(F) with [, fdu = 0, let JI be the
rate function corresponding to {Q/}, i.e., let II/ denote transition operator
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of Qf and let

J'(v) =supq — [ log Tdu;u eCE) ,u>1y, veMi(E).
E
We give the following proposition, which will be used later.

PROPOSITION 2.3. For any real-valued function f € C(E) with
Jg fdp =0 and any v € My(E),

Jf(u):J(z/)—/Efdz/JrA(f).

PrROOF. For any V € C(E;R), it is obvious by definition that for any
g€ C(FE) and any = € E,

(V) ]g(x) = E9

9(X,) exp (i vm)]

k=0

N
hi ()

n—1
x Bl [g(X,» oxp (Z(v + f)(Xk)) h <Xn)]
k=0

hVH (x) gh!
—nA(f) T\ VS
e ) I (hv+f)(x).

Therefore, the logarithmic spectral radius of V' corresponding to Q7 is

.1 ~Vin
A (V) = lim —log [|[(TL)"]"|lop = AV + f) = A(f)-
Therefore, by (1.2), we get that for any v € M;(FE),

/fdl/+A
_ sup{/EVdu—A(V)—/Efdu—irA(f);VeC(E,R)}
_ sup{/E?dy_A(vHHA(f);f/eC(E,R)}

— /E Vdy — M (V):V € C(E,R)}

= J/w).O
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Now, we are able to prove the following perturbation results.

PROPOSITION 2.4. For any V € C(FE), define A(e), h®, and p° as
before. Then there are r5(c) € C(E) with ||r5(¢)||ec = o(e) as e — 0,
satisfying the following,

(1) Ae) = GV, (I +2MGo)V), = O(?) as = — 0,
(2) h® =14eGoV + r5(e),
(3) J(1°) — GV, (I + 2MGo)V),, = o(=2) as e — 0,

Proor. By Proposition 2.1,
1

h® = E°1 = — F(g;z)1d
i fo (e;2)1dz,
SO 1
(h%)p = (E° 1), = i |z—1|:r<F(E;Z)1>NdZ7
and
1
AR, = (EVET), = — (Y F(g; 2)1) ud=
2me |z—1|=r
1
= 3= 2(F(e;2)1) ,dz.

|z—1|=r
We calculate the two integrations above, and the ratio will give us e,

A0) = 1, we have

From the property of spectral projections, since e
I-TI=(I-1)I - E°%.
It is easy that
Go(I —I)(I — E°) = (I —I)Go(I — E) =T — E°,

~ ~ 1
so if we let Go = Gy , then Gy  exists and is equal to (I —
Image(I—EO)
1) . Therefore,
Image(I—EO)

(21 —T) = (2 — DE® + Go (I + (2 — 1)Go)(I — EY).
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Since (I + (z — 1)Go)~! is holomorphic around z = 1, and Gp, E°, and II
are all commutative with each other,

F(0;2) = (21 —T1)7*
=(z—=1)"E"+ Go(I + (2 — 1)Go)*(I — E%)

(2.2) =(z—1)7'EY + Go(I — E%)
+ —1)"GgHH (I - EY).
n:l
Therefore, noting E°V = 0, we have F(0;2)1 = (2 — 1)7!, and

F1(0;2)1 = (2= )7 GV 4+ 320 (= 1) (2 — 1) LGV, where Fy(0; 2) is
as in Proposition 2.2. By residue theorem, this implies that

1
2.3 — F(0;:2)1dz =1
( ) 271 |z—1|=r (’Z) ® ’
and

1
2.4 — Fy(0; 2)1dz = GyV.
(24) swi ., Fill21d: = Go

Also, by (2.2) and the fact that (Go-), = 0, we have [, F(0,z)fdu =
(z—1)"1 [ fdu for any f € C(E). So we have

(F2(0,2) 1) = (2 — 1) 2(V),, +2(2 — 1) 2(VIIF(0,2)V),..
By (2.2) again, this implies that
1
— (F2(0;2)1) udz = —2(VIIGEV) ..

2mi |z—1|=r

This and (2.3), (2.4), accompanied with Proposition 2.1 and Proposition
2.2, give us that
1

(2.5) (E°l), = gl (F(g;2)1),dz = 1 — e2(VIIGEV),, + O(£®).

In the same way, we have

1 (z = 1)(F(e;2)1) udz = e (<V2>u +2(VIIGoV),) + O(£?).

27 lz—1|=r 2
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Therefore,

1
— 7{z—1|:r(z —1)(F(e; 2)1) udz

27

(2.6) M(EFL), = (E°1),+
= (E°1),+ ? (V4 2(VIIGV) ) 4 O(?).
Divide (2.6) by (2.5), and we get
M) =14 % (V) +2(VIIGoV),) + O(e?),
which gives us our first assertion. Moreover, by (2.3) and (2.4),

h® = E°1 =14 eGoV +15(¢e)

with r5(e) € C(F) and ||r5(¢)|lec = o(e) as € — 0, which is our second
assertion.

By (2.2) and the definition of F} (0, 2), the coefficient of the term (z—1) !
in the expansion of F1(0,2) around z = 1 is E°VIIGo(I — E°) + Go(I —
EOVIIE? = E°VIIGy + GoVIIE®. So by Proposition 2.1 and Proposition
2.2,

1
Ef = — F(e;2)dz
2mi |z—1|=r
= EY+ ¢(EVIIG) + GoVIIEY) 4 Rg(e),

where Rg(e) are operators on C(E) satisfying ||Rg(¢)||op = o(€) as € — 0.
Therefore, for any f € C(E),

Bef = /E fdp+<( /E VIIGo fdp + /E FduGoV) + Rs(2)f
= (1+€GOV)/fdu—|—€/ VHGofdM+R8(€)f
FE E

= hE/Efdp+€/]EVHGofdM+R9(5)f7

where Rg(e) are operators on C(E) satisfying ||Rg(¢)||op = o(€) as € — 0.
Comparing this with

B f =k /  fdp,
FE
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we can get that [°dp = (1 + eGHIT*V)dp + re(e)dp, where rg(e)dp € C(E)*
with ||re(e)dpl|c(g)- = o(e) as € — 0.

Therefore, there exist r7(e) € C'(E) with ||r7(e)du||c(g)« = o(e) ase — 0
such that dp® = h®ledp = (1 4+ e(Go + G{II*)V + r7(e))dp.

Note that Gy = Gy + I — EY and (V'),, = 0. Therefore, by Proposition
2.3, we have

J(p) = (V) — Ale)
2
= e(V,e(I + 2G)V) + 7)), — %(V, (I + 2TGo)V) . + 0(&2)

2
- %w, (I +20Go)V), + 0(e2). O

Let ® : M;(E) — R be smooth in the sense of assumption A.2. For
v e Mi(E), the first derivative of ® at v is denoted by D®(v). Define

V¥(z) = DO(v)(6, — v) + O(v), x el

LEMMA 2.5. 4" =wg.i.e. Q is v -invariant, and by = A(V?0).

PrOOF. We use the method of Bolthausen-Deuschel-Tamura [2].

For any V € C(FE), let JV be the rate function corresponding to (Q"),
then by Proposition 2.3,

TV (o) = J (o) — / Vdvo + A(V).
E

It is well known that JV (o) = 0 if and only if vy = V.

Now, from the definition of vy, 1y maximizes & — J, so by the convexity
of J, we have that for any ¢ € (0,1) and any v € M (E),

S (vg) — J (o) O(tv + (1 —t)vy) — J(tv + (1 — t)wo)

>
> Bty + (1— b)) — tI(v) — (1= )T (vo).

therefore,
®(tv + (1 — t)ro) — (1)
t

S J(V) — J(I/O).
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The left hand side converges to D®(vp)(v — o) = [ V"dv — [ V™duy as
t — 0. So we have

@n 1) = I60) - [ Vi< a0) - [ vias =0V

for any v € My (E). Therefore, vy minimizes JV"°, and hence JV" (1) = 0.
This implies that vg = V.
Also, by the definition of bg, (2.7), and (1.2), we have that

bq> = / Vyodl/o — J(VQ)
E

. {/E VWdp — J(u), € Ml(E)} — A(V™). OO

Apply Proposition 2.4 to {Q,} = {QY™}, and we get the following
proposition.

PROPOSITION 2.6.
D*®(1)(G fdvo, Gfdvo) < (f,Gf)u,
for any f € C(E) with [y, fdvy = 0.

PROOF. Take any f € C(E) with [, fdvy = 0 and fix it for a while.
First, by Proposition 2.4 (3) applied to {Q,} = {QY™} with invariant
measure vy, we have

2.8) J" ! / f(I +2G) fdvy + o(e / fGfduy + o(e?).
Also, by the proof of Proposition 2.4 applied to vy,
(2.9) dvs’ = (1 +eGf + 74(e))dwo
with |7 (e)| = o(e).

Since vy maximizes ®(v) —J(v) = ®(v) —JV (v)+ [ VYody — A(V™) =
®(v) — D®(1rp)(v) — JV (v) — C,,, we have

o5 — DO(wo) (') — TV (7)) < () — DB(o) (o) — TV (o)
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for any € € R. That is,
(2.10) ) — (o) — DR(wo) (W5 — o) < TV T — TV (o)

for any ¢ € R. By (2.9), the left hand side is equal to %DQCD(VO)(adeO,
G fdvg)+o(e?) ase — 0. Also, the right hand side is equal to % [ [G fdvo+
0(¢?) by (2.8). This gives us our assertion. [

3. Lemmas

In this section, we prove the forward-backward martingale decomposi-
tion for partial sums processes and establish the exponential integrability
for the partial sums processes by means of it.

Before discuss the related partial sums process, let us first establish an
inequality for martingale differences.

LEMMA 3.1. Let (2, A, P) be a probability space, A, be a sequence of
nondecreasing o-sub-algebras of A. Let {dy, Ax;k > 1} be a martingale
difference, and assume that supy, ||di|lecoc < C for some constant C' > 0. For
anye >0 and X € R, if NC —1 — |)\|C < %6’2)\2 is satisfied, then

exp (Z (Adk - @E[dﬂflkl]))

k=1

(3.1) E <1

holds for alln € N.

ProOOF. From the assumptions, we have that
o
A"dy
1+ Ady, + 2; —
n—

o A ncn—Z
< 14> |TE {dz

n=2

Elexp (Adg) |[Ap—1] = E

Ak—l]

-Ak—1:|

= 1+ C2E @] Api] (ewc 1- |)\|C)

2
< 1+ @E [d2] A1)
2
< exp (ﬂE[dilAk_lo , k>1.

2
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Thus, we have

2
E [exp (Adk — @E[di\«%-l]) ‘ Ak—1} <1
Therefore
n 2
E |exp (Z ()\dk - @E[diwkq]))]
k=1
nd (14 )\
= F |exp (Z <)\dk — TE[dzLAk_l]))
k=1

xE [ex ()\dn - %E[di%ﬂ) ' AMH

p
n—1 2
exp (Z ()\dk - @E[dik‘lk—ﬂ)) :

This gives us our assertion by induction. [

REMARK 3.1. Let g(y) = supec(oy z72(e® — 1 — 1),y > 0,g(0) = 1/2.
For € > 0, define

1
10 =1hsp{ye D gl < 55| >0
If X € R and C > 0 satisfy [A|C < v(¢), then (3.1) holds.

The following Lemma is a consequence of simple integration, we omit
its proof.

LEMMA 3.2. Let X be a random variable, A € F, and 0 < v < 1/2
suppose that E(exp((X), A) < et for all ¢ € R. Then

E[exp(%Xz),A]§< ! >1/2.

1 -2«

From now on, let @ and {Q;}.cr be as defined in Section 1. By Lemma
2.5, we have that v is the unique {Q, }-invariant probability measure.
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LEMMA 3.3. Let f € C(E) with [ f(x)vo(dz) =0 and let u = Gf +
f. Then we have (I — Q)u = f. Let {Xx,k > 1} be the Markov chain
corresponding to Q.. Let di = u(Xy) — Qu(Xg_1), then {dx,k > 1} is a
martingale difference and we have the following forward decomposition

n—1 n
(3.2) D F(Xk) = u(Xo) = u(Xn) + ) d.
k=0 k=1

PRrROOF. The first assertion is easy, actually,

I-Qu = (I-Q)f+U-QGf

= (I-Q)f+ lim > (Q"f — Q")

k=1

= (I-Qf+Qf - lm Q"' f =1

With this in hand, by the definition of di, we have that

u(X,) = u(X0)+Z<u(Xk)—Qu(Xk_1))
k=1

+ i (Qu(Xk_l) - U(Xk—1)>

k=1
n n—1
= u(Xo)+ Y dr— Y f(Xp).
k=1 k=0

The fact that {dy}r>1 is a martingale difference is trivial, since by Markov
property, we have E[u(Xj)—Qu(Xk—1)|Fr—1] = 0. This completes the proof
of our Lemma. []

In the remainder of this paper, let A, = {dist(Ly,vp) < €} for any ¢ > 0.

LEMMA 3.4. Let f € C(E) with [ fdvg = 0 and || f||g- < 1. Then
for any o < 1, there exists an €o > 0 such that for any 0 < € < &g,

Xn—1=9y| <o0.

n—1 2
(6]
sup sup B9 |exp %<Zf(Xk)> , Ae
k=0

z,yeEn>1
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PRrROOF. Since

n—1 2 n—2
- <Z f(Xk>> - (Z f(Xk)) < TSR < 413
k=0 k=1
we have that for any z,y € F,
n—1 2
EQ= exp % <Z f(Xk)> VA | X1 =y
k=0

n—1 2
_ 2 a
< golz,y) " CEVI= B0 | exp %<§ f(Xk)> s Ae
k=0

where C' = Sup%y@gy/{Q(%x’)Q(y/ay)} < 0.
By (3.2), we have that

%(Zf()@) §%+%<U(X —uX0> Zdﬁ (Z ) .
k=1

From the boundedness of © and dy, it is sufficient to prove

n>1

2
n
Qv a3
(3.3) sup E®"0 |exp o (;dk> ,Ag | < 0.

Since @ < 1, we can find an ; > 0 such that o/ = (1 +¢1) < 1. Let
C" = (14 ||Qllop)|lu|, then ||dg|| < C” for all k > 1. By Remark 3.1, there
exists a constant Ao = \g(e1,C”) > 0 such that for all |\| < A,

- 1+e)A &
exp (A > dy - % > E [di’fklo
k=1

k=1

(3.4) E@ <1.

Take & € (0,(& — 1) A (i‘—g)) and ng > [4]|ul|so/6]. Then there exists a
constant €9 > 0 such that for any n > ny,

1 n n
PILE > fX

k=1

2Hu|!oo

<6 on A.,.

S
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Let g = Q(u?) — (Qu)?, by Markov property, we have

g(Xp_1) = E@ [di

fk_1:| , k>1.
On the other hand, since @ is vp-invariant, we get by Lemma 3.3 that

/Engo = (U, u)12(dvy) — (Qus QU) £2(4up)
= 2(u, (I = Q)u)r2(ay) — (I = Q)u, (I — Q)u) 124wy
= (f + G, f)L2 (dvo) (f7 f)L2(dl/0) (fa Gf) 2(dvo)
= |flIFH <1

Since g is bounded, there exists an €3 € (0, e2) such that

n—1

=3 a(x) ~ [ g

k=0

<6 on A

i E% [di

k=1

fk_l] <n(l+9) on A

This accompanied with (3.4) gives us that for any |¢] < /& Ao,

exp (q/%de) Asy| < exp (52(1%‘5)0‘/) Szl
k=1

Also, if |¢] > \/@0, then
a n
exp (5\/; > dk> Ae,
k=1

Therefore, we have our assertion by Lemma 3.2. [

E@

E®v

< eXp{lﬁl\/gfm}

< exp {§2a6/)\0} < £/4,

For 6 > 0, let Vs be the collection of all symmetric, bilinear functions
V(z,y) € C(E? R) satisfying the following two conditions,
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(1) JzV( vo(dy) =0 for any x € E,
(2) sup,, !V(w,y)l < 6.

LEMMA 3.5. There exists a &y € (0,1) such that

sup sup supEQ“” [exp( / / (,y)Ly(dz) Ly (dy ) 'Xn 1= y}
V€V50 z,yeEn>0

= (Cp < .

Proor. Notice that

1 n—1n—1 1 n—2n—2 4 4
S S v x) - L S v x) < P < g
k=0 j=0 k=1 j=1

Let C = sup, ,, v ,1q(%,2")q(y',y)}, then for any x,y € E,

nlnl

9= |exp ZZVle 'Xn 1=y
k 0 5=0
< gula,y) B9

n2n2

X | q(x, X1)q(Xn—2,y) exp ZZV Xy Xj) + 4Vl oo
k 1j5=1

n—1n—1

1
< =17 8[[V]lco Qv -
=~ Qn(ﬂ’%y) Ce E*v0 lexp nZZV(kaX )
k=0 =0
Since [, V(z,y)ro(dy) = 0 for any x € E, by Lemma 3.3, there exists a
Ui(z,y) € C(E? R) such that

(I = Qz)U)(2,y) = V(z,y).

k-1

Let dk = Z <U1(Xk, ) (Q$Ul)(Xk1,Xj)>, then {dk,fk,k > 1} is a
§=0

martingale difference and we have the following decomposition

n—1n—1 —

(35) YD V(Xip X Z <U1 X, X;) — U(Xn, X; >+de

=0 k=3 =0
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On the other hand, there exists a function U (z,y) € C(E?, R) satisfying
J5 Uz, y)vo(dy) = 0 for any = € E such that

((I - QZ)U)(QU,Z/) = Ul(l',y),

where @)} is the adjoint operator of @, in L?(dvp).
As in Lemma 3.3, we have the following backward decomposition

Mw

U(Xg, Xo) — U(Xg, Xi) U(Xk, Xj1) — (Q3U)( Xy, X))

J:1
k

+ Z Ul(X]ij)v

j=1

and

(QzU)(Xg—1, Xo) — (QzU)(Xg—1, Xi)

k
Z U)(Xg-1,Xj-1) — (Q,QU )(Xk-1, X))

]:

—_

k
+Z Q:U1)(Xk—1, X;).

7j=1

For 1 <j <k, let

i = (03,0 - (QZU)(kaXj)>

(3.6)
— <(Qac )(Xk—1, Xj-1) — (Q,QU )(Xklan)>]a

and i
Zp="_dV.
j=1
Then we have that

di + Zr, =U(Xy, Xo) — U(Xp, Xi)

(3.7)
- ((QZU)(Xk—hXO) - (QxU)(Xk—th))'
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Let C1 = (1+[[Q"[lop) (1 +[|Qllop) C2 = I +G"[|opl|L +G[op, and choose
260 = (32C1C2) ' Ay(1)(128C1Ca) 1/\7( ) (141 Qllop) (IH+Gllop)) ™, where
v(1) is defined as in Remark 3.1.

Since V' € Vs, we get from (3.5) that

n—1n—1

ZZV(Xk, 2de < 2C160n.

k=0 j=0 k=1

Therefore, it is sufficient to prove that

1 2n
exp <% ;dk>

By our assumptions and the definition of di, we have that

supreen | ] < (14 1QUop) (1T + Gllop)é. By Remark 3.1, since (1 +

1Qllop) (I + Gllop)d < ¥(1), we have that

o (13- h Y st )| <

therefore, by Schwartz inequality, we have that

n n 1/2
1 1
exp (ﬁ kg_l dk)] < E@o [exp (ﬁ E E% wi,fk_l])] :

k=1

sup sup E®vo < 0.

V€V260 n>1

EQVO

EQDO

Since U and Q.U are bounded, by (3.7), it is sufficient to prove that
1 n

exp (—2 ZEQ”O [Z,% _ })] < 0.
L

By virtue of Jensen’s inequality, we get

exp (% i E®%
o)

(3.8)  sup sup E%o
VEVQ(SO n>1

E@v 7}

k=1
1 — 1

— ZEQ”O (exp (—EQ”O (Z,?
n —1 n

1 — 1

— ZEQ”O [exp (—Z,%)] .

n n

k=1

IN

IN
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By Remark 3.1, we have that
(3.9) E9%0 [exp (AZx — N E9[ZF|F7))] <1

holds for any [\ < % From the definition of d( ), we have that

maxj)<;j<k ||d§k)||OO < C1C56p, hence

E@%0[ZF|F] < n(C1Ca6)? < —322,
therefore,
2 2¢* 1(D)vn
QV —_ < >
E%»0 |exp <§\/;Zk) < exp <322> for any [¢| < 35

On the other hand, if |{] > y(L)vn )\/_ from the fact that ’\/%Zk <

\/5010250, we have

o (e22)

Now, our assertion follows from Lemma 3.2. [J

EQVO

S EQVO |:exp <€2w>:| S 662/4-
(1)

LEMMA 3.6. LetV € C(E x E,R). Assume that V is symmetric and
satisfies [ V(z,y)vo(dy) = 0 for any v € E. Then for any € > 0, there
exist N € N, fn,gn € C(E),n=1,2,--- | N, such that

/ fe(@)vo(dz) = 0, / gk (u)vo(dy) = 0,
E FE

and

(3.10) Z{fk y) + fe@)ge(@)} + V' (2,y)

where V' (xz,y) € C(ExE,R) is symmetric and satisfies [, V'(x,y)vo(dy) =
0 for any x € E and sup,, |V'(z,y)| < e.
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PROOF; By Stone-Weierstrass theorem, ~there exist an N € N and
functions fi,gr € C(E),k=1,2,--- ,N, and V(z,y) € C(E x E) such that
|V (z,y)| < /8 and

N
a:y—2<2 +V(a:y)>
k=1
Replacing fi, g by fu = fr — [i fedvo, gk = G — [5 grdvo, we have
N =
V(z,y) =2 (Z(fk(:v)gk(y) + V(w,y)>

k=1

where 17(, -) is given by

Vi(z,y)
~ N ~ -
= V(:c,y)+;fk($)/E£/k(Z)Vo(dz)
N
> a0 [ Amiaz) > [ Femla) [ goma)
= V(m y) — / V(a: 2)vp(dz) / (z,y)ro(dz)

/ / z,w)vy(dz)v(dw),

V(w,y )‘ <e/2.

Therefore, since V(+,-) is symmetric, we have that

_l’_

] =

hence

Z{fk y) + fr(y)gr(x)} + V'(z,y)

where V'(z,y) = V(x,y) + V(y,2). This completes the proof of our
Lemma. []

LEMMA 3.7. Let fi(x) € C(E),i = 1,2,--- ,m, let {a;j}ij=1,2,..m be
a symmetric matriz, and let V(x,y) = 321" aijfi(z)fj(y). Define the
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symmetric bilinear continuous function Ay : M(E) x M(E) — R by

Ay (Ry, Ry) = /E /E V (2, y) Ra(dz) Ra(dy).

Suppose that all of the eigenvalues of Ay |pxm are smaller than 1. Then
there exists a constant g > 0 such that for any x € E and any € < &,

sup sup B9 [exp <g /E /E V(m,y)Ln(dx)Ln(dy)> LA,

z,yeEn>1

Xp_1= y] < 00.

PROOF. Let U be the linear space spanned by {fi,--, fi} and let d
be the dimension of . Denote U = {G fdvy, f € U}, which is a subset of
H. Then there exists a C.O.N.S. {e1,---,eq} of U such that

<56idl/o,a€jdl/o>[{ = <€i,a€j>,,0 = 6ija Av(aeidyo,aejdllo) = aiéij,

and
d

Vi(z,y) = Zcz‘jei(ﬂf)ej(l‘),
i?j
where {c;j}i j=12.. 4 is a symmetric matrix. On the other hand,

AV(@eiduo,aejdyo) = / / V(ac,y)@eiuo(dx)@ejyo(dy) = cij = a;0;j.
EJE
Therefore

d
Vi(z,y) = Z aiei(z)ei(y).
i=1

By our assumption, there exists a constant ¢ € (0, 1) such that a; <1 — ¢,
i=1,---,d. Therefore

n—1n—1 d n—1 2
>N V(X Xp)<(1—2)> (Z ei(Xk)> :

k=0 m=0 i=1 \k=0
Since {zx € R?: [|z]| < (1+¢)7V2} = N{{z e R?: (z,¢) < (1 +¢)7V/2}:
EcRY €| = 1}, there exist an N € N and & = (¢}, - - D i=1,2,
N, with ||&]|ge = 1 such that

N

N {:c e R% (a,6) <

i=1

1

m} C {I‘ S Rdt ||l‘|| < 1}
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This implies that

2 - N2 d

]| < (1+¢) @%(fc,&) , reR
Define
d .
éz:Z@je]v 2‘21)27"'7N7
j=1
then we have
(éiaéi>L2(dl/0) = 17 <éi>l/o = 07 1= 17 27 te 7N'

On the other hand,

= (1+e¢) max, ([EéiLn(dx))Q,

d /n-1 2 n—1 2
Z (Z ej(Xk)) <(1+¢) max, <Z éi(Xk)> .

j=1 \k=0

Therefore, we get by Lemma 3.4 that

ilgEQ”o [exp (g /E /E V(x,y)Ln(dz)Ln(dy)) AL

2
1— 62 n—1
Qu e
< N x itgilrgnzz%}](vE o lexp o™ (g éi(Xk) , Ae

k=0

anl = y:|

Xpno1= Yy

< o0o.

LEMMA 3.8.  For any continuous symmetric function V€ C(E x E,R)
satisfying [V (x,y)vo(dy) = 0 for any x € E, define the symmetric bilinear
and continuous function Ay : M(E) x M(E) — R by

Av(Rl,Rz):/E/EV(SC,y)Rl(dSL‘)RQ(dy).
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Assume that all of the eigenvalues of Ay |« g are smaller than 1, then there
exists a constant g > 0 such that for any r € E and any € < €g,

sup sup B9 [exp (g /E [E V(:v,y)Ln(dx)Ln(dy)) AL

z,yeE n>1

Xp_1= y] < 0.

PROOF. Let ag be the maximum eigenvalue of A|px rr, which is smaller
than 1 by our assumption. For any 6 > 0 there exist a N € N and
{frsgr;k=1,2,--- |N} C C(F) such that

N
Viz,y) = > {f@)g®) + fr@)gr(z)} + V'(z,y)
k=1
= Vi(z,y)+ V'(x,y)

where [V'(z,y)| < 6 and Vi(z,y) = Sn; {fu(@)gx(y) + fr(y)gr(2)}.

For any 6 > 0, it is easy that the operator norm of Ay~ is also
HxH

smaller than C262. Now, Ay, = Ay — Ay, and all of the eigenvalues of
Ay - are smaller than 1 uniformly by our assumption. Therefore, by
X

the continuity of spectral theory (c.f., Dunford-Schwartz [4]), we have that

are also

there exists a 61 > 0 such that all of the eigenvalues of Ay, i
smaller than 1 uniformly as long as § < 6;. Write the maximum as ns < 1
(ns — ap as 6 — 0).

Choose constants p > 1 and § > 0 such that pns < 1 and 6 - ¢ < do,
where g stands for the dual number of p and &y is as in Lemma 3.5. By
Hoélder inequality,

E@ [exp <g /E /E V(a:,y)Ln(da:)Ln(dy)> LA,
< 5% ow (5 [ [ ntaLia) A

Xn—l = y:|

1/p
Xn—l = y:|

<59 [exp (g ) qv'<x,y>Ln<dm>Ln<dy>),Ag Xn_lzy]l/q.

This accompanied with Lemma 3.5 and Lemma 3.7 gives us our asser-
tion. U
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4. Proof of the Main Theorem

We give the proof of Theorem 1.2 in this section. Let

®(v)

B(v)— [ 0wty
= O(v)— P(vy) — DP(v) (v — 1p).

Note that
e~ P lexp (n®(Ly)), A | X, =y
(4.1) hz) q. o =
- @EQ [exp (n@(%)) A Xn = y]

for any A € F,.

LEMMA 4.1. For any x,y € E and any € > 0,

n—oo

1 ~
(4.2) lim sup — log E%= [exp (nq)(Ln)) , AL

Xn-1 :y] <0

PrOOF. By the assumption A.3, Proposition 1.1 and Deuschel-Stroock
[3, Exercise 2.1.24], we have

(LHS of 4.2) = limsuplog(exp(—nbg)ET* [exp(n®(L,)); A9

n—oo
= —(®(rg) — J(vp)) + limsup B [exp(n®(L,)); A
= —(®(v0) — J(n)) +sup{®(v) — J(v);v € AT} <0,
which implies our assertion. []

LEMMA 4.2. There exist constants p > 1 and € > 0 such that

(4.3) sup sup E9* [e’”"‘}(L”),AE
r,yeEn>1

Xn_1= y} < 00.

PrOOF. By the assumption A.4, the maximum ag of the eigenvalue of
D?®(vg)|gxm is less than 1, so we can find a p > 1 such that ag-p < 1. For
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this p, there exists a r > 1 such that ag-p-r < 1. Let s be the dual number
of r, i.e., % + % = 1. By Hoélder inequality,

FQ= [epn@@n)’ A,

Xpn-1= y:|

n
= FE9 {exp {p§D2(I)(l/0)(Ln — o, Ly, — vp) + pnR(vy, Ly, — 1/0)} ,

As’Xn—l = y}
1/r
(4.4) < E@ [exp {prgDQ(I)(Ln — v, Ly — yo)} AL X, = y]
1/s
(4.5) x EQ [exp {png(Z/g, L, — 1/0)} VA | X = y] ,

where R(v, ) is the 3rd remainder of the Taylor expansion of ® at vy, i.e.
R(vo,v — v0) = ®(v0) — $D*®(w0) (v — 0, v — ).
For U(z,y) € C(E x E), define

Uey) = Uy~ [ Ulemmln) = [ Utgnda)
+ /E /E Uz, y)vo(de)vo(dy)
and
U(Ry, Ro) = /E /E Uz, y) R (de) Ra(dy).
Then U(R1, R2) = U(Ry, Ry) for any Ry, Rs € M(E). Therefore,
nD*®(v0)(Lyp — 1o, L — 1) = %ggmak,xj)

and all of the conditions of Lemma 3.8 are satisfied for this ®2)(1y;-,-).
Therefore, (4.4) is bounded for n > 0 if € > 0 is small enough.

As for (4.5), choose ¢ € (0,1/2ps), by the assumption A.5, for this ¢,
there exist a constant ¢/ > 0 and a function Ky such that Ky satisfies all of
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the conditions of Lemma 3.8, and

0| R(o, Ln — )] < n /E /E Ko, y)(Ln — v0)(d)(Ln — 0)(dy)

= %ZZF&(Xk,X]), on AEI.

k=0 j=0

By Lemma 3.8 again, we get that (4.5) is bounded for all n > 0 if € is small
enough. This completes the proof of our Lemma. [

LEMMA 4.3. There exists an €y > 0 such that for any € < g9 and any
z,y € E,

lim E9= [exp (né(Ln)) ,Ac

1 [ _
~exp <§ [ @a®,)

PROOF. By the strong mixing property of Qg’;l’y, X, and v/n(L, — 1)

Xpo1= y:|

Uo(du)> x dety(I — D*®(vg)) /2,
(u,u)

are asymptotically independent as n — oo under Q&;l’y for any =,y € E.
Also,

n—1,y

9 {exp (mﬁ [ wla)r - m)(d@ﬂ

1
— exp (—5 (u, Gu>yo>

as n — oo for any u € C(E).

Take a separable Hilbert space H; such that the set
{Guduy| I} 5 uGudyy < oo} is a dense linear subspace of H; and the in-
clusion map is a Hilbert-Schmidt operator. Let W be an Hj-valued random
variable such that

E [exp(\/—_l(u, W))] = exp <—%<U,EU>VO>

for any v € Hy. Write the distribution of W as ~.
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From the central limit theorem for Hilbert space random variables, the
law of \/n(Ly,, — vy) under Q&;l’y converges weakly to v as n — oo on Hj.

As shown before, D?®(1)(, ) is a Hilbert-Schmidt function. Let

HxH
Am and Ge,,dvg,m = 1,2,--- | be the eigenvalues and the corresponding
eigenvectors of D2®(1p)(-, ) . By the central limit theorem and ergodic

HxH
theorem,

N N B
n /E /E mglAmem(x)em(y)Ln(dx)Ln(dy)— /E ;Amem(x)cem(x)%(dx)

converges to Z A ((€m, W)? — 1) in distribution under Q, for any N € N
and any = € E. Also

Q- ([{n /E /E @ (vg, 2, y) Lo (dr) Lo (dy)

- /E G0 (1p, ) . Ln(dx)}
. {n [/ iAmem@)em(y)Ln(dw)Ln(dy)
/EZAmem )Gem(z)L n(da:)}r ~0

k=1

as N — oo uniformly for n € N. Therefore, let : D?*®(vp)(W, W) :
N
be the L?(dy)-limit of > A\yn((em, W)? — 1), which is well-defined since

m=1

D2® (1) (-, )| gxn is a Hilbert-Schmidt type function, then
w [ [ 9 0.2.9) () L) - / G @ (10, )]0 Ln(du)
E

converges to : D?®(vp)(W, W) : under Qo .Y as n — oo. It is easy that

/ ézq)@)(yo’ * )|(u,u)Ln(du) - / qu)@)(’/oa * )|(u,u)7/0(du) Qg;Ly*a-S-
E E
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as n — oQ.

Also, as in the proof of Lemma 4.2, we have by the assumption (A.5)
and Lemma 3.5 that for any ¢ > 0,

n—1 5
EQ Y |:gon |R(I/(], Ln — 7/())|:|

< g (n%o [/ K5<x,y><Ln—m)(da:)u:n—uo)(dy))

< 59" (exp (20 [ [ Kot (2~ ) (@)L~ m(a)) )
+EL (eXp< // —Ks(2,y)(Ly — vo)(dx)(Ly, —Vo)(dy)>)

< 2005

which implies that
nR(vy, L, — 1p) — 0

n—1
in law under Qg7 ¥ as n — oo.

Therefore, by the definition of <T>, we get that

(4.6) n®(Ly) — % <: D?® (o) (W, W) : + /E @xq)(z)(uo,-,~)|(u7u)uo(du)>

in distribution under Qg L asn — .
This together with Lemma 4.2 imply that for any = € F,

n—oo

lim E% {exp (n;IVD(Ln)> , Ac

= 5 [oxn (3 D000 4] [ Tt anlan))
:E[exp(Q D2 (1) (W, W) :)}

X exp (% | Ga® . ->\<u,u)uo<du>>
— dets(Isy — D*D(vy)) V2 x exp @ /E@W)(w), § -)\(%u)uo(du)) ,

which is just what we need. [1
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