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On the Precise Laplace Approximation

for Large Deviations of Markov Chain

The Nondegenerate Case∗

By Song Liang and Jingjun Liu

Abstract. Let Ln be the empirical measure of a uniformly er-
godic nonreversible Markov chain on a compact metric space and Φ
be a smooth functional. This paper gives a precise asymptotic evalua-
tion of the form E(exp(nΦ(Ln))) up to order 1 + o(1), in the case the
Hessian of J −Φ is nondegenerate, where J is the rate function of the
large deviations of empirical measure.

1. Introduction and Main Result

Let E be a compact metric space with Borel σ-algebra E . Let C(E)

denote the Banach space of continuous R-valued functions on E, equipped

with supremum norm ‖f‖∞ = supx∈E |f(x)|. Let M(E) denote the set

of signed measures on (E, E) with finite total variations, equipped with

the total variation norm ‖ · ‖var, and let M1(E) and M0(E) be the set

of probability measures on (E, E) and the set of all signed measures on

(E, E) with total measure 0, respectively. We also consider the weak*-

topology, sometimes. Note that M1(E) with the Prohorov metric dist(·, ·)
is a compact space. Let N denote the set of non-negative integers.

Let Ω ≡ EN. For each n ≥ 0, let Xn : Ω → E be the map given by

Xn = ω(n). Let F be the σ-algebra on Ω generated by {Xn}n≥0, Fhk de-

notes the sub-σ-field generated by {Xj}k≤j≤h. We denote Fk0 by Fk. Let

(Ω,F , {Fn}, {Xn}, Px) be a homogeneous Markov chain on E with transi-

tion probability Π(x, dy) that satisfies Px(X0 = x) = 1 for all x ∈ E. The
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linear operator Π on C(E) is given by

Πf(x) =

∫
E
f(y)Π(x, dy), f ∈ C(E).

First, we assume the following,

A.1 There exists a Π-invariant measure µ ∈ M1(E) with suppµ = E,

and there exists a continuous positive function π : E × E → (0,∞) such

that Π(x, dy) = π(x, y)µ(dy).

Let Ln : Ω → M1(E), n ≥ 1, be the empirical measures,i.e.,

Ln =
1

n

n−1∑
k=0

δXk
,

where δx is the Dirac measure centered in x. Under our assumptions, the

following large deviation principle holds for the empirical measure Ln. (c.f.

Deuschel-Stroock [3]).

Proposition 1.1.

(1) lim sup
n→∞

1
n logPx (Ln ∈ F |Xn−1 = y) ≤ − inf{J(ν), ν ∈ F} for any

x, y ∈ E and any closed set F ⊂ M1(E).

(2) lim inf
n→∞

1
n logPx (Ln ∈ G|Xn−1 = y) ≥ − inf{J(ν), ν ∈ G} for any

x, y ∈ E and any open set G ⊂ M1(E).

Here the rate function J : M1 → [0,∞] is given by

J(ν) = sup

{
−
∫
E

log
Πu

u
dν, u ∈ C(E), u ≥ 1

}
, ν ∈ M1(E).

Let Φ : M(E) → R be a bounded and three times continuously Fréchet

differentiable function with respect to norm ‖ · ‖var satisfying the following:

A.2 There exist functions Φ(1) ∈ C(M1(E) × E,R),Φ(2) ∈
C(M1(E) × E × E,R), and Φ(3) ∈ C(M1(E) × E × E × E,R), such that
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for any ν ∈ M1(E), R1, R2, R3 ∈ M(E),

DΦ(ν)(R1) =

∫
E

Φ(1)(ν, x)R1(dx),

D2Φ(ν)(R1, R2) =

∫
E

∫
E

Φ(2)(ν, x, y)R1(dx)R2(dy),

D3Φ(ν)(R1, R2, R3) =

∫
E

∫
E

∫
E

Φ(3)(ν, x, y, z)R1(dx)R2(dy)R3(dz).

Then by Donsker-Varadhan [3], we have that

lim
n→∞

1

n
logEPx [exp (nΦ(Ln))] = sup{Φ(ν) − J(ν) : ν ∈ M1(E)}

for any x ∈ E. Write the constant in the right hand above as bΦ, for

the sake of simplicity. In this paper, we give a more precise evaluation of

EPx [exp (nΦ(Ln))].

In the case of continuous time Markov processes, some precise evalua-

tions have been obtained by Kusuoka-Tamura [7] for symmetric case, and

by Bolthausen-Deuschel-Tamura [1] for a non-symmetric case, both under

some “Central Limit Theorem Assumption”, also, by Kusuoka-Liang [5]

without the“Central Limit Theorem Assumption”.

Define

KΦ ≡ {ν ∈ M1(E) : Φ(ν) − J(ν) = bΦ}.

It is not difficult to prove that KΦ is non-void and compact in M1(E),

since J(ν) is a good convex rate function (c.f. Deuschel-Stroock [3, Theorem

4.1.43]). We also assume the following,

A.3 There exists a unique element in KΦ, i.e., KΦ = {ν0}.
For any V ∈ C(E), we define the operator ΠV : C(E) → C(E), by

ΠV f(x) = eV (x)

∫
E

Π(x, dy)f(y), f ∈ C(E).(1.1)

Then we have the following simplified Feynman-Kac formula

(ΠV )nf(x) = EPx

[
f(Xn) exp

(
n−1∑
k=0

V (Xk)

)]
, f ∈ C(E).
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Let Λ(V ) be the logarithmic spectral radius of ΠV , given by

Λ(V ) = lim
n→∞

1

n
log ‖(ΠV )n‖op,

where ‖·‖op denotes the operator norm of bounded linear operator in C(E).

It is trivial that |Λ(V )| ≤ ‖V ‖∞. For each n ≥ 1, exp(Λ(V )n) is the spectral

radius of (ΠV )n. By Deuschel-Stroock [3, Corollary 4.1.36], it follows that

Λ(V ) = sup

{∫
E
V (x)ν(dx) − J(ν) : ν ∈ M1(E)

}
,(1.2)

and

J(ν) = sup

{∫
E
V (x)ν(dx) − Λ(V ) : V ∈ C(E)

}
.

From the assumption A.1, ΠV is a compact operator with positive kernel

function πV (x, y) = eV (x)π(x, y). By the Perron-Frobenius argument, we see

that there exists a positive hV ∈ C(E) such that

e−Λ(V )ΠV hV = hV ,

and it is uniquely determined up to a constant. Now, by Kolmogorov ex-

tension theorem, we can define a set of probability measures QVx , x ∈ E, on

(Ω,F) such that

QVx (A) =
e−nΛ(V )

hV (x)
EPx

[
1Ah

V (Xn) exp(

n−1∑
k=0

V (Xk))

]

for all x ∈ E, n ∈ N and A ∈ Fn. Let QV be the corresponding bounded

linear operator on C(E), i.e., QV f(x) = EQ
V
x [f(X1)], then QV has strictly

positive continuous transition density function q̃V with respect to µ, given

by

q̃V (x, y) =
e−Λ(V )

hV (x)
πV (x, y)hV (y) for any x, y ∈ E.

Let (ΠV )∗ be the L2(dµ)-adjoint operator of ΠV in C(E). We see in

the same way as above that there exists a unique strictly positive lV ∈
C(E) such that (ΠV )∗lV = eΛ(V )lV and

∫
E l
V dµ = 1. Now, hV is uniquely

determined if we require
∫
E l
V hV dµ = 1. Let dµV = hV lV dµ. Then {QV }

is µV -invariant.
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We are now ready to define a new Markov chain with invariant measure

ν0. Let V ν0 = DΦ(ν0)(δx − ν0) + Φ(ν0). Let h denote the unique properly

normalized eigenfunction of ΠV
ν0 , i.e. h = hV

ν0 . We will show in Lemma

2.5 below that bΦ = Λ(V ν0) and ν0 is an invariant measure of (QV
ν0

x ). Let

us denote (QV
ν0

x ) by Qx, h
V ν0 by h,etc., for the sake of simplicity.

Let Q be the operator on C(E) corresponding to {Qx}x∈E . Then ν0
is an invariant measure of Q, Q has continuous strictly positive density

function q(x, y) with respect to ν0, and q(x, y) satisfies ‖qn(x, ·)− 1‖∞ → 0

exponentially fast as n → ∞ uniformly in x, where qn(x, y) is given by

q1(x, y) = q(x, y), qn+1(x, y) =
∫
q(x, z)qn(z, y)ν0(dz), n ≥ 1. Therefore we

can define a g(x, y) ∈ C(E × E) given by

g(x, y) =

∞∑
n=1

(qn(x, y) − 1) .

Define the linear operator G : C(E) → C(E) by Gf(x) =∫
E g(x, y)f(y)ν0(dy). Let G∗ be the dual operator of G in L2(dν0), i.e.

G∗f(x) =
∫
E g(y, x)f(y)ν0(dy) for any f ∈ C(E). Let G = P + G + G∗,

where P is defined by Pf(x) = f(x) −
∫
E fdν0. We also need the following

operators. For f ∈ C(E × E), let

((G⊗G)f))(x1, x2) = f(x1, x2)

+

∫
E

∫
E
(g(x1, y1) + g(y1, x1))(g(x2, y2) + g(y2, x2))

×f(y1, y2)ν0(dy1)ν0(dy2)

+

∫
E
(g(x1, y1) + g(y1, x1))f(y1, x2)ν0(dy1)

+

∫
E
(g(x1, y2) + g(y2, x2))f(x1, y2)ν0(dy2).

Define Gx ≡ G⊗ I and Gy ≡ I ⊗G by

((G⊗ I)f)(x, y) = f(x, y) +

∫
E
(g(x, z) + g(z, x))f(z, y)ν0(dz),

((I ⊗G)f)(x, y) = f(x, y) +

∫
E
(g(z, y) + g(y, z))f(x, z)ν0(dz),

G∗
x, Gx, Gy, G

∗
y are defined similarly, where I is the identity operator.



426 Song Liang and Jingjun Liu

Let B(f, g) ≡
∫
E fGgdν0, f, g ∈ C(E). Note that B(f, f) ≥ 0 for any

f ∈ C(E). Actually, we have that

0 ≤ EQν0

{(√
n

∫
E
f(x)(Ln − ν0)(dx)

)2
}

→ B(f, f) as n→ ∞.

Let V0 = {f ∈ C(E) : B(f, f) = 0} and C̃(E) = C(E)/V0. Then B is

an inner product on C̃(E). Also let H̃ be the completion of C̃(E) under

the Hilbert norm induced by B. Since C̃(E) ↪→ H̃, there is a natural map

T : C(E) → H̃. Let H be the dual space of H̃, and T ∗ be the adjoint

operator of T which is a mapping from H to M(E). We can easily show

that T ∗ is one to one, then H can be regarded as a subset of M(E) with

norm ‖Gfdν0‖2
H =

∫
E fGfdν0.

We will prove that all of the eigenvalues of D2Φ(ν0)|H×H are less than

or equal to 1 in Section 2 (see Proposition 2.6). In this paper, we assume

the following nondegeneracy assumption.

A.4 All of the eigenvalues of D2Φ(ν0)

∣∣∣∣
H×H

are smaller than 1.

In addition, we assume

A.5 For any δ > 0, there exist a constant ε > 0 and a symmetric

continuous function Kδ : E×E → R such that supx,y∈E |Kδ(x, y)| ≤ δ, and∣∣D3Φ(R)(ν − ν0, ν − ν0, ν − ν0)
∣∣ ≤ ∫

E

∫
E
Kδ(x, y)(ν − ν0)(dx)(ν − ν0)(dy)

for any R ∈ M1(E) with dist(R, ν0) < ε and any ν ∈ M1(E) with

dist(ν, ν0) < ε.

Now, we can state our main theorem.

Theorem 1.2. Under the assumptions A.1—A.5, we have that for any

x, y ∈ E,

lim
n→∞

e−nbΦEPx
[
exp(nΦ(Ln))

∣∣∣∣ Xn−1 = y

]
=

h(x)

h(y)
· exp

(
1

2

∫
E

Φ(2)(ν0, u, u)ν0(du)

+

∫
E

∫
E
g(u, v)Φ(2)(ν0, u, v)ν0(du)ν0(dv)

)
×det2

(
IH −D2Φ(ν0)

)−1/2
.
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Remark 1.1. The det2 appeared in the Theorem above is the trans-

formed determinant defined by det2(I−A) =
∏
j(1−λj)e−λj , where {λk}k∈N

is the set of eigenvalues of A. This is well-defined as long as A is a Hilbert-

Schmidt operator. It is easy that D2Φ(ν0) |H×H is a Hilbert-Schmidt opera-

tor. This fact and the assumption A.4 ensure that det2
(
IH −D2Φ(ν0)

)−1/2

is well-defined.

The rest of this paper is organized as following. We give a precise form

of the nondegeneracy assumption A.4 in Section 2. In Section 3, we give a

forward-backward martingale decomposition. By means of it, we establish

the exponential integrability of related partial sums processes. The proof of

Theorem 1.2 is given in Section 4.

Acknowledgement . The Authors would like to express their deepest

gratitude to Professor S. Kusuoka for his helpful suggestions and encour-

agement.

2. Perturbations

In this section, we first use spectral theory for compact linear operators

(see Dunford-Schwartz [4] for the details) to find the asymptotic behavior of

Λ(V ), hV , lV when V is close to 0, then use this to give the precise statement

of the nondegeneracy assumption. In this section, C(E) denotes the space

of complex-valued functions defined on E.

In the following, we assume that the Markov chain with semigroup Π

satisfies the assumption A.1, and V ∈ C(E) is a real-valued function and

satisfies
∫
E V dµ = 0.

As stated in Section 1, by Perron-Frobenius argument, for ε ∈ R, eΛ(εV )

is the principal eigenvalue of both the operator ΠεV and its adjoint operator

(ΠεV )∗, and is a simple eigenvalue of both of them. So there exist a unique

positive function hεV ∈ C(E) and a probability measure νεV on E such that

ΠεV hεV = eΛ(εV )hεV , (ΠεV )∗νεV = eΛ(εV )νεV , and

∫
E
hεV dνεV = 1.

Let

lεV (x) = e−Λ(εV )

∫
E
eεV (y)π(y, x)νεV (dy),(2.1)
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then we see that lεV ∈ C(E), lεV > 0 and dνεV = lεV dµ.

Also, the projection operator to the eigenspace corresponding to eΛ(εV )

can be expressed as EεV : C(E) → C(E),

EεV f(x) = hεV (x)

∫
E
f(y)lεV (y)µ(dy).

(So EεV 1 = hεV ). As mentioned before, dµεV = hεV lεV dµ is the in-

variant probability measure of QεV . For the sake of simplicity, we de-

note Λ(εV ), hεV , lεV , EεV , µεV by Λ(ε), hε, lε, Eε, µε, respectively. Note

that Λ(0) = 0, h0 = l0 = 1, hence E0 = 〈·〉µ and µ0 = µ. Define

G0 : C(E) → C(E) by G0f =
∞∑
k=1

(Πkf − 〈f〉µ) and let G∗
0 be the adjoint

operator of G0 in L2(dµ).

Let F (w; z) = (zI − ΠwV )−1, w, z ∈ C. Then we have the following

Proposition.

Proposition 2.1. There exist positive constants r > 0 and ε0 > 0

such that for any ε ∈ R, |ε| ≤ ε0, we have that σ(ΠεV )∩ {z : |z− 1| < r} =

{eΛ(ε)} and

Eε =
1

2πi

∮
|z−1|=r

F (ε; z)dz.

Proof. By Perron-Frobenius argument, there exists a constant r > 0

such that

σ(Π) \ {1} ⊂ {z; |z| < 1 − 3r}.
By Dunford-Schwartz ([4, p. 585, Lemma 3 and p. 587, Theorem 9]), we

see that for this r > 0, there exists a constant ε0 > 0 such that for any

ε ∈ R, |ε| ≤ ε0, we have that |eΛ(ε) − 1| < r and

σ(ΠεV ) \ {eΛ(ε)} ⊂ S(σ(Π) \ {1}, r) ⊂ {z; |z| < 1 − 2r}.

where S(σ(Π) \ {1}, r) means the r-neighborhood of σ(Π) \ {1}. Therefore,

let U = {z; |z − 1| < r}, then U is an open set with smooth boundary,

eΛ(ε) ∈ U , and
(
σ(ΠεV ) \ {eΛ(ε)}

)
∩ U = ∅. Therefore, by the definition of

the spectral projections, we have

Eε =
1

2πi

∮
∂U

(zI − ΠεV )−1dz =
1

2πi

∮
|z−1|=r

F (ε; z)dz. �
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Proposition 2.2. There exists a constant ε0 > 0 such that for any

w ∈ C, |w| ≤ ε0, there exist bounded operators R1(w; z) in C(E) satisfying

the following

F (w; z) = F (0; z) + wF1(0; z) +
w2

2
F2(0; z) +R1(w; z),

where

F1(0; z) = F (0; z)VΠF (0; z),

F2(0; z) = F (0; z)V 2ΠF (0; z) + 2F (0; z)VΠF (0; z)VΠF (0; z),

and supz:|z−1|=r ||R1(w; z)||op = O(|w|3) as |w| → 0.

Proof. By spectral theory, the resolvent function R(z; Π) =

(zI − Π)−1 = F (0, z) is analytic in ρ(Π) ⊃ {z; |z − 1| = r} and so

sup{z;|z−1|=r} ||F (0; z)||op <∞. Also, since V is bounded,

ewV − 1 = wV +
w2

2
V 2 + r2(w) = wV + r3(w)

with r2(w), r3(w) ∈ C(E) and ||r2(w)||∞ = O(|w|3), ||r3(w)||∞ = O(w2) as

|w| → 0. Therefore, by spectral theory (c.f., Dunford-Schwartz [4, p.585,

Corollary 2]) for perturbations,

F (w; z) = R(z; ewVΠ) = F (0; z)

∞∑
n=0

((ewV − I)ΠF (0; z))n

= F (0; z) + F (0; z)(wV +
w2

2
V 2 + r2(w))ΠF (0; z)

+F (0; z)(wV + r3(w))ΠF (0; z)(wV + r3(w))ΠF (0; z)

+R4(w; z),

with operators R4(w, z) on C(E) satisfying supz:|z−1|=r ||R4(w; z)||op =

O(|w|3) as |w| → 0. This gives us our assertion. �

For any real valued function f ∈ C(E) with
∫
E fdµ = 0, let Jf be the

rate function corresponding to {Qf}, i.e., let Π̃f denote transition operator
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of Qf and let

Jf (ν) = sup

{
−
∫
E

log
Π̃fu

u
dν;u ∈ C(E), u ≥ 1

}
, ν ∈ M1(E).

We give the following proposition, which will be used later.

Proposition 2.3. For any real-valued function f ∈ C(E) with∫
E fdµ = 0 and any ν ∈ M1(E),

Jf (ν) = J(ν) −
∫
E
fdν + Λ(f).

Proof. For any V ∈ C(E;R), it is obvious by definition that for any

g ∈ C(E) and any x ∈ E,

[(Π̃f )V ]ng(x) = EQ
f
x

[
g(Xn) exp

(
n−1∑
k=0

V (Xk)

)]

= e−nΛ(f) 1

hf (x)

× EPx
[
g(Xn) exp

(
n−1∑
k=0

(V + f)(Xk)

)
hf (Xn)

]

= e−nΛ(f)h
V+f (x)

hf (x)
ΠV+f (

ghf

hV+f
)(x).

Therefore, the logarithmic spectral radius of V corresponding to Qf is

Λf (V ) = lim
n→∞

1

n
log ||[(Π̃f )V ]n||op = Λ(V + f) − Λ(f).

Therefore, by (1.2), we get that for any ν ∈ M1(E),

J(ν) −
∫
E
fdν + Λ(f)

= sup{
∫
E
V dν − Λ(V ) −

∫
E
fdν + Λ(f);V ∈ C(E,R)}

= sup{
∫
E
Ṽ dν − Λ(Ṽ + f) + Λ(f); Ṽ ∈ C(E,R)}

= sup{
∫
E
V dν − Λf (V );V ∈ C(E,R)}

= Jf (ν). �



Precise Estimation for the LDP of Markov Chain 431

Now, we are able to prove the following perturbation results.

Proposition 2.4. For any V ∈ C(E), define Λ(ε), hε, and µε as

before. Then there are r5(ε) ∈ C(E) with ‖r5(ε)‖∞ = o(ε) as ε → 0,

satisfying the following,

(1) Λ(ε) − ε
2

2 〈V, (I + 2ΠG0)V 〉µ = O(ε3) as ε→ 0,

(2) hε = 1 + εG0V + r5(ε),

(3) J(µε) − ε
2

2 〈V, (I + 2ΠG0)V 〉µ = o(ε2) as ε→ 0.

Proof. By Proposition 2.1,

hε = Eε1 =
1

2πi

∮
|z−1|=r

F (ε; z)1dz,

so

〈hε〉µ = 〈Eε1〉µ =
1

2πi

∮
|z−1|=r

〈F (ε; z)1〉µdz,

and

eΛ(ε)〈hε〉µ = 〈ΠεVEε1〉µ =
1

2πi

∮
|z−1|=r

〈ΠεV F (ε; z)1〉µdz

=
1

2πi

∮
|z−1|=r

z〈F (ε; z)1〉µdz.

We calculate the two integrations above, and the ratio will give us eΛ(ε).

From the property of spectral projections, since eΛ(0) = 1, we have

I − Π = (I − Π)(I − E0).

It is easy that

G0(I − Π)(I − E0) = (I − Π)G0(I − E0) = I − E0,

so if we let G̃0 = G0

∣∣∣
Image(I−E0)

, then G̃0
−1

exists and is equal to (I −

Π)
∣∣∣
Image(I−E0)

. Therefore,

(zI − Π) = (z − 1)E0 + G̃0
−1

(I + (z − 1)G̃0)(I − E0).
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Since (I + (z − 1)G̃0)
−1 is holomorphic around z = 1, and G̃0, E

0, and Π

are all commutative with each other,

F (0; z) = (zI − Π)−1

= (z − 1)−1E0 +G0(I + (z − 1)G0)
−1(I − E0)

= (z − 1)−1E0 +G0(I − E0)

+
∞∑
n=1

(−1)n(z − 1)nGn+1
0 (I − E0).

(2.2)

Therefore, noting E0V = 0, we have F (0; z)1 = (z − 1)−1, and

F1(0; z)1 = (z− 1)−1G0V +
∑∞
n=1(−1)n(z− 1)n−1Gn+1

0 V , where F1(0; z) is

as in Proposition 2.2. By residue theorem, this implies that

1

2πi

∮
|z−1|=r

F (0; z)1dz = 1,(2.3)

and

1

2πi

∮
|z−1|=r

F1(0; z)1dz = G0V.(2.4)

Also, by (2.2) and the fact that 〈G0·〉µ = 0, we have
∫
E F (0, z)fdµ =

(z − 1)−1
∫
E fdµ for any f ∈ C(E). So we have

〈F2(0, z)1〉µ = (z − 1)−2〈V 2〉µ + 2(z − 1)−2〈VΠF (0, z)V 〉µ.

By (2.2) again, this implies that

1

2πi

∮
|z−1|=r

〈F2(0; z)1〉µdz = −2〈VΠG2
0V 〉µ.

This and (2.3), (2.4), accompanied with Proposition 2.1 and Proposition

2.2, give us that

〈Eε1〉µ =
1

2πi

∮
|z−1|=r

〈F (ε; z)1〉µdz = 1 − ε2〈VΠG2
0V 〉µ +O(ε3).(2.5)

In the same way, we have

1

2πi

∮
|z−1|=r

(z − 1)〈F (ε; z)1〉µdz =
ε2

2

(
〈V 2〉µ + 2〈VΠG0V 〉µ

)
+O(ε3).
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Therefore,

eΛ(ε)〈Eε1〉µ = 〈Eε1〉µ +
1

2πi

∮
|z−1|=r

(z − 1)〈F (ε; z)1〉µdz(2.6)

= 〈Eε1〉µ +
ε2

2

(
〈V 2〉µ + 2〈VΠG0V 〉µ

)
+O(ε3).

Divide (2.6) by (2.5), and we get

eΛ(ε) = 1 +
ε2

2

(
〈V 2〉µ + 2〈VΠG0V 〉µ

)
+O(ε3),

which gives us our first assertion. Moreover, by (2.3) and (2.4),

hε = Eε1 = 1 + εG0V + r5(ε)

with r5(ε) ∈ C(E) and ||r5(ε)||∞ = o(ε) as ε → 0, which is our second

assertion.

By (2.2) and the definition of F1(0, z), the coefficient of the term (z−1)−1

in the expansion of F1(0, z) around z = 1 is E0VΠG0(I − E0) + G0(I −
E0)VΠE0 = E0VΠG0 + G0VΠE0. So by Proposition 2.1 and Proposition

2.2,

Eε =
1

2πi

∮
|z−1|=r

F (ε; z)dz

= E0 + ε(E0VΠG0 +G0VΠE0) +R8(ε),

where R8(ε) are operators on C(E) satisfying ||R8(ε)||op = o(ε) as ε → 0.

Therefore, for any f ∈ C(E),

Eεf =

∫
E
fdµ+ ε(

∫
E
VΠG0fdµ+

∫
E
fdµG0V ) +R8(ε)f

= (1 + εG0V )

∫
E
fdµ+ ε

∫
E
VΠG0fdµ+R8(ε)f

= hε
∫
E
fdµ+ ε

∫
E
VΠG0fdµ+R9(ε)f,

where R9(ε) are operators on C(E) satisfying ||R9(ε)||op = o(ε) as ε → 0.

Comparing this with

Eεf = hε
∫
E
lεfdµ,
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we can get that lεdµ = (1 + εG∗
0Π

∗V )dµ+ r6(ε)dµ, where r6(ε)dµ ∈ C(E)∗

with ||r6(ε)dµ||C(E)∗ = o(ε) as ε→ 0.

Therefore, there exist r7(ε) ∈ C(E) with ||r7(ε)dµ||C(E)∗ = o(ε) as ε→ 0

such that dµε = hεlεdµ = (1 + ε(G0 +G∗
0Π

∗)V + r7(ε))dµ.

Note that G0 = ΠG0 + I −E0 and 〈V 〉µ = 0. Therefore, by Proposition

2.3, we have

J(µε) = ε〈V 〉µε − Λ(ε)

= ε〈V, ε(I + 2ΠG0)V ) + r7(ε)〉µ −
ε2

2
〈V, (I + 2ΠG0)V 〉µ + o(ε2)

=
ε2

2
〈V, (I + 2ΠG0)V 〉µ + o(ε2). �

Let Φ : M1(E) → R be smooth in the sense of assumption A.2. For

ν ∈ M1(E), the first derivative of Φ at ν is denoted by DΦ(ν). Define

V ν(x) = DΦ(ν)(δx − ν) + Φ(ν), x ∈ E.

Lemma 2.5. µV
ν0 = ν0.i.e. Q is ν0 -invariant, and bΦ = Λ(V ν0).

Proof. We use the method of Bolthausen-Deuschel-Tamura [2].

For any V ∈ C(E), let JV be the rate function corresponding to (QV ),

then by Proposition 2.3,

JV (ν0) = J(ν0) −
∫
E
V dν0 + Λ(V ).

It is well known that JV (ν0) = 0 if and only if ν0 = µV .

Now, from the definition of ν0, ν0 maximizes Φ− J , so by the convexity

of J , we have that for any t ∈ (0, 1) and any ν ∈ M1(E),

Φ(ν0) − J(ν0) ≥ Φ(tν + (1 − t)ν0) − J(tν + (1 − t)ν0)
≥ Φ(tν + (1 − t)ν0) − tJ(ν) − (1 − t)J(ν0),

therefore,
Φ(tν + (1 − t)ν0) − Φ(ν0)

t
≤ J(ν) − J(ν0).
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The left hand side converges to DΦ(ν0)(ν − ν0) =
∫
E V

ν0dν −
∫
E V

ν0dν0 as

t→ 0. So we have

JV
ν0

(ν0) = J(ν0) −
∫
E
V ν0dν0 ≤ J(ν) −

∫
E
V ν0dν = JV

ν0
(ν)(2.7)

for any ν ∈ M1(E). Therefore, ν0 minimizes JV
ν0 , and hence JV

ν0 (ν0) = 0.

This implies that ν0 = µV
ν0 .

Also, by the definition of bΦ, (2.7), and (1.2), we have that

bΦ =

∫
E
V ν0dν0 − J(ν0)

= sup

{∫
E
V ν0dµ− J(µ), µ ∈ M1(E)

}
= Λ(V ν0). �

Apply Proposition 2.4 to {Qx} = {QV ν0

x }, and we get the following

proposition.

Proposition 2.6.

D2Φ(ν0)(Gfdν0, Gfdν0) ≤ 〈f,Gf〉ν0

for any f ∈ C(E) with
∫
E fdν0 = 0.

Proof. Take any f ∈ C(E) with
∫
E fdν0 = 0 and fix it for a while.

First, by Proposition 2.4 (3) applied to {Qx} = {QV ν0

x } with invariant

measure ν0, we have

JV
ν0

(νεf0 ) =
ε2

2

∫
E
f(I + 2G)fdν0 + o(ε2) =

ε2

2

∫
E
fGfdν0 + o(ε2).(2.8)

Also, by the proof of Proposition 2.4 applied to ν0,

dνεf0 = (1 + εGf + r′7(ε))dν0(2.9)

with |r′7(ε)| = o(ε).

Since ν0 maximizes Φ(ν)−J(ν) = Φ(ν)−JV ν0 (ν)+
∫
V ν0dν−Λ(V ν0) =

Φ(ν) −DΦ(ν0)(ν) − JV
ν0 (ν) − Cν0 , we have

Φ(νεf0 ) −DΦ(ν0)(ν
εf
0 ) − JV ν0

(νεf0 ) ≤ Φ(ν0) −DΦ(ν0)(ν0) − JV
ν0

(ν0)
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for any ε ∈ R. That is,

Φ(νεf0 ) − Φ(ν0) −DΦ(ν0)(ν
εf
0 − ν0) ≤ JV

ν0
(νεf0 ) − JV ν0

(ν0)(2.10)

for any ε ∈ R. By (2.9), the left hand side is equal to ε2

2 D
2Φ(ν0)(Gfdν0,

Gfdν0)+o(ε
2) as ε→ 0. Also, the right hand side is equal to ε

2

2

∫
E fGfdν0+

o(ε2) by (2.8). This gives us our assertion. �

3. Lemmas

In this section, we prove the forward-backward martingale decomposi-

tion for partial sums processes and establish the exponential integrability

for the partial sums processes by means of it.

Before discuss the related partial sums process, let us first establish an

inequality for martingale differences.

Lemma 3.1. Let (Ω,A, P ) be a probability space, An be a sequence of

nondecreasing σ-sub-algebras of A. Let {dk,Ak; k ≥ 1} be a martingale

difference, and assume that supk ‖dk‖∞ ≤ C for some constant C > 0. For

any ε > 0 and λ ∈ R, if e|λ|C − 1 − |λ|C ≤ 1 + ε
2 C2λ2 is satisfied, then

E

[
exp

(
n∑
k=1

(
λdk −

(1 + ε)λ2

2
E[d2k|Ak−1]

))]
≤ 1(3.1)

holds for all n ∈ N .

Proof. From the assumptions, we have that

E [exp (λdk) |Ak−1] = E

[
1 + λdk +

∞∑
n=2

λndnk
n!

∣∣∣∣ Ak−1

]

≤ 1 +

∞∑
n=2

|λ|nCn−2

n!
E

[
d2k

∣∣∣∣ Ak−1

]
= 1 + C−2E

[
d2k|Ak−1

] (
e|λ|C − 1 − |λ|C

)
≤ 1 +

(1 + ε)λ2

2
E
[
d2k|Ak−1

]
≤ exp

(
(1 + ε)λ2

2
E[d2k|Ak−1]

)
, k ≥ 1.
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Thus, we have

E

[
exp

(
λdk −

(1 + ε)λ2

2
E[d2k|Ak−1]

) ∣∣∣∣ Ak−1

]
≤ 1.

Therefore

E

[
exp

(
n∑
k=1

(
λdk −

(1 + ε)λ2

2
E[d2k|Ak−1]

))]

= E

[
exp

(
n−1∑
k=1

(
λdk −

(1 + ε)λ2

2
E[d2k|Ak−1]

))

×E
[
exp

(
λdn −

(1 + ε)λ2

2
E[d2n|An−1]

) ∣∣∣∣ An−1

]]
≤ E

[
exp

(
n−1∑
k=1

(
λdk −

(1 + ε)λ2

2
E[d2k|Ak−1]

))
.

This gives us our assertion by induction. �

Remark 3.1. Let g(y) = supx∈(0,y] x
−2(ex − 1 − x), y > 0, g(0) = 1/2.

For ε > 0, define

γ(ε) = 1 ∧ sup

{
y ∈ [0, 1] : g(y) ≤ 1 + ε

2

}
> 0.

If λ ∈ R and C > 0 satisfy |λ|C ≤ γ(ε), then (3.1) holds.

The following Lemma is a consequence of simple integration, we omit

its proof.

Lemma 3.2. Let X be a random variable, A ∈ F , and 0 < α < 1/2 ,

suppose that E(exp(ξX), A) ≤ eαξ2 for all ξ ∈ R. Then

E

[
exp(

1

2
X2), A

]
≤
(

1

1 − 2α

)1/2

.

From now on, let Q and {Qx}x∈E be as defined in Section 1. By Lemma

2.5, we have that ν0 is the unique {Qx}-invariant probability measure.
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Lemma 3.3. Let f ∈ C(E) with
∫
E f(x)ν0(dx) = 0 and let u = Gf +

f . Then we have (I − Q)u = f . Let {Xk, k ≥ 1} be the Markov chain

corresponding to Qx. Let dk = u(Xk) − Qu(Xk−1), then {dk, k ≥ 1} is a

martingale difference and we have the following forward decomposition

n−1∑
k=0

f(Xk) = u(X0) − u(Xn) +

n∑
k=1

dk.(3.2)

Proof. The first assertion is easy, actually,

(I −Q)u = (I −Q)f + (I −Q)Gf

= (I −Q)f + lim
n→∞

n∑
k=1

(Qkf −Qk+1f)

= (I −Q)f +Qf − lim
n→∞

Qn+1f = f.

With this in hand, by the definition of dk, we have that

u(Xn) = u(X0) +
n∑
k=1

(
u(Xk) −Qu(Xk−1)

)

+
n∑
k=1

(
Qu(Xk−1) − u(Xk−1)

)

= u(X0) +

n∑
k=1

dk −
n−1∑
k=0

f(Xk).

The fact that {dk}k≥1 is a martingale difference is trivial, since by Markov

property, we have E[u(Xk)−Qu(Xk−1)|Fk−1] = 0. This completes the proof

of our Lemma. �

In the remainder of this paper, let Aε = {dist(Ln, ν0) ≤ ε} for any ε > 0.

Lemma 3.4. Let f ∈ C(E) with
∫
E fdν0 = 0 and ‖f‖H∗ ≤ 1. Then

for any α < 1, there exists an ε0 > 0 such that for any 0 < ε < ε0,

sup
x,y∈E

sup
n≥1
EQx

exp

 α
2n

(
n−1∑
k=0

f(Xk)

)2
 , Aε

∣∣∣∣∣ Xn−1 = y

 <∞.
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Proof. Since

1

n

∣∣∣∣∣∣
(
n−1∑
k=0

f(Xk)

)2

−
(
n−2∑
k=1

f(Xk)

)2
∣∣∣∣∣∣ ≤ 4n− 4

n
‖f‖2

∞ ≤ 4‖f‖2
∞,

we have that for any x, y ∈ E,

EQx

exp

 α
2n

(
n−1∑
k=0

f(Xk)

)2
 , Aε

∣∣∣∣∣ Xn−1 = y


≤ qn(x, y)

−1Ce8‖f‖
2
∞EQν0

exp

 α
2n

(
n−1∑
k=0

f(Xk)

)2
 , Aε


where C ≡ supx,y,x′,y′{q(x, x′)q(y′, y)} <∞.

By (3.2), we have that

1

n

(
n∑
k=1

f(Xk)

)2

≤ 2‖u‖∞
n

+
2

n

(
u(Xn) − u(X0)

)
·
n∑
k=1

dk +
1

n

(
n∑
k=1

dk

)2

.

From the boundedness of u and dk, it is sufficient to prove

sup
n≥1
EQν0

exp

 α
2n

(
n∑
k=1

dk

)2
 , Aε

 <∞.(3.3)

Since α < 1, we can find an ε1 > 0 such that α′ ≡ α(1 + ε1) < 1. Let

C ′ = (1 + ‖Q‖op)‖u‖, then ‖dk‖ ≤ C ′ for all k ≥ 1. By Remark 3.1, there

exists a constant λ0 = λ0(ε1, C
′) > 0 such that for all |λ| ≤ λ0,

EQν0

[
exp

(
λ
n∑
k=1

dk −
(1 + ε1)λ

2

2

n∑
k=1

EQν0 [d2k|Fk−1]

)]
≤ 1.(3.4)

Take δ ∈ (0, ( 1
α′ − 1) ∧ ( λ04α)) and n0 > [4‖u‖∞/δ]. Then there exists a

constant ε2 > 0 such that for any n ≥ n0,∣∣∣∣∣ 1n
n∑
k=1

dk

∣∣∣∣∣ ≤ 2‖u‖∞
n

+

∣∣∣∣∣ 1n
n∑
k=1

f(Xk)

∣∣∣∣∣ ≤ δ on Aε2 .
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Let g = Q(u2) − (Qu)2, by Markov property, we have

g(Xk−1) = EQν0

[
d2k

∣∣∣∣ Fk−1

]
, k ≥ 1.

On the other hand, since Q is ν0-invariant, we get by Lemma 3.3 that∫
E
gdν0 = (u, u)L2(dν0) − (Qu,Qu)L2(dν0)

= 2(u, (I −Q)u)L2(dν0) − ((I −Q)u, (I −Q)u)L2(dν0)

= 2(f +Gf, f)L2(dν0) − (f, f)L2(dν0) = (f,Gf)L2(dν0)

= ‖f‖2
H∗ ≤ 1.

Since g is bounded, there exists an ε3 ∈ (0, ε2) such that∣∣∣∣∣ 1n
n−1∑
k=0

g(Xk) −
∫
E
gdν0

∣∣∣∣∣ < δ on Aε3 .

So ∣∣∣∣∣
n∑
k=1

EQν0

[
d2k

∣∣∣∣ Fk−1

]∣∣∣∣∣ ≤ n(1 + δ) on Aε3 .

This accompanied with (3.4) gives us that for any |ξ| ≤
√
n
αλ0,

EQν0

[
exp

(
ξ

√
α

n

n∑
k=1

dk

)
, Aε3

]
≤ exp

(
ξ2

(1 + δ)α′

2

)
, n ≥ 1.

Also, if |ξ| ≥
√
n
αλ0, then

EQν0

[
exp

(
ξ

√
α

n

n∑
k=1

dk

)
, Aε3

]
≤ exp

{
|ξ|
√
n

α
δn

}
≤ exp

{
ξ2αδ/λ0

}
≤ eξ2/4.

Therefore, we have our assertion by Lemma 3.2. �

For δ > 0, let Vδ be the collection of all symmetric, bilinear functions

V (x, y) ∈ C(E2,R) satisfying the following two conditions,
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(1)
∫
E V (x, y)ν0(dy) = 0 for any x ∈ E,

(2) supx,y |V (x, y)| ≤ δ.

Lemma 3.5. There exists a δ0 ∈ (0, 1) such that

sup
V ∈Vδ0

sup
x,y∈E

sup
n≥0
EQx

[
exp

(
n

∫
E

∫
E
V (x, y)Ln(dx)Ln(dy)

) ∣∣∣∣ Xn−1 = y

]
= C0 <∞.

Proof. Notice that∣∣∣∣∣∣ 1n
n−1∑
k=0

n−1∑
j=0

V (Xk, Xj) −
1

n

n−2∑
k=1

n−2∑
j=1

V (Xk, Xj)

∣∣∣∣∣∣ ≤ 4n− 4

n
‖V ‖∞ ≤ 4‖V ‖∞.

Let C = supx,y,x′,y′{q(x, x′)q(y′, y)}, then for any x, y ∈ E,

EQx

exp

 1

n

n−1∑
k=0

n−1∑
j=0

V (Xk, Xj)

 ∣∣∣∣ Xn−1 = y


≤ qn(x, y)

−1EQν0

×

q(x,X1)q(Xn−2, y) exp

 1

n

n−2∑
k=1

n−2∑
j=1

V (Xk, Xj) + 4‖V ‖∞


≤ qn(x, y)

−1Ce8‖V ‖∞EQν0

exp

 1

n

n−1∑
k=0

n−1∑
j=0

V (Xk, Xj)

 .
Since

∫
E V (x, y)ν0(dy) = 0 for any x ∈ E, by Lemma 3.3, there exists a

U1(x, y) ∈ C(E2,R) such that

((I −Qx)U1)(x, y) = V (x, y).

Let dk =
k−1∑
j=0

(
U1(Xk, Xj) − (QxU1)(Xk−1, Xj)

)
, then {dk,Fk, k ≥ 1} is a

martingale difference and we have the following decomposition

n−1∑
j=0

n−1∑
k=j

V (Xk, Xj) =
n−1∑
j=0

(
U1(Xj , Xj) − U1(Xn, Xj)

)
+

n∑
k=1

dk.(3.5)
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On the other hand, there exists a function U(x, y) ∈ C(E2,R) satisfying∫
E U(x, y)ν0(dy) = 0 for any x ∈ E such that

((I −Q∗
y)U)(x, y) = U1(x, y),

where Q∗
y is the adjoint operator of Qy in L2(dν0).

As in Lemma 3.3, we have the following backward decomposition

U(Xk, X0) − U(Xk, Xk) =
k∑
j=1

(
U(Xk, Xj−1) − (Q∗

yU)(Xk, Xj)
)

+
k∑
j=1

U1(Xk, Xj),

and

(QxU)(Xk−1, X0) − (QxU)(Xk−1, Xk)

=

k∑
j=1

(
(QxU)(Xk−1, Xj−1) − (Q∗

yQxU)(Xk−1, Xj)
)

+

k∑
j=1

(QxU1)(Xk−1, Xj).

For 1 ≤ j ≤ k, let

d
(k)
j =

[(
U(Xk, Xj−1) − (Q∗

yU)(Xk, Xj)

)

−
(

(QxU)(Xk−1, Xj−1) − (Q∗
yQxU)(Xk−1, Xj)

)]
,

(3.6)

and

Zk =

k∑
j=1

d
(k)
j .

Then we have that

dk + Zk =U(Xk, X0) − U(Xk, Xk)

− ((QxU)(Xk−1, X0) − (QxU)(Xk−1, Xk)).
(3.7)
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Let C1 = (1+‖Q∗‖op)(1+‖Q‖op), C2 = ‖I+G∗‖op‖I+G‖op, and choose

2δ0 = (32C1C2)
−1∧γ(1)(128C1C2)

−1∧γ(1)((1+‖Q‖op)(‖I+G‖op))−1, where

γ(1) is defined as in Remark 3.1.

Since V ∈ Vδ0 , we get from (3.5) that∣∣∣∣∣∣
n−1∑
k=0

n−1∑
j=0

V (Xk, Xj) − 2

n∑
k=1

dk

∣∣∣∣∣∣ ≤ 2C1δ0n.

Therefore, it is sufficient to prove that

sup
V ∈V2δ0

sup
n≥1
EQv0

[
exp

(
1

2n

2n∑
k=1

dk

)]
<∞.

By our assumptions and the definition of dk, we have that

sup1≤k≤n

∥∥∥dkn ∥∥∥ ≤ (1 + ‖Q‖op)(‖I + G‖op)δ. By Remark 3.1, since (1 +

‖Q‖op)(‖I +G‖op)δ ≤ γ(1), we have that

EQν0

[
exp

(
1

n

n∑
k=1

dk −
1

n2

n∑
k=1

EQν0 [d2k|Fk−1)

)]
≤ 1,

therefore, by Schwartz inequality, we have that

EQν0

[
exp

(
1

2n

n∑
k=1

dk

)]
≤ EQν0

[
exp

(
1

n2

n∑
k=1

EQν0 [d2k|Fk−1]

)]1/2

.

Since U and QxU are bounded, by (3.7), it is sufficient to prove that

sup
V ∈V2δ0

sup
n≥1
EQν0

[
exp

(
1

n2

n∑
k=1

EQν0

[
Z2
k

∣∣∣∣ Fk−1

])]
<∞.(3.8)

By virtue of Jensen’s inequality, we get

EQν0

[
exp

(
1

n2

n∑
k=1

EQν0

[
Z2
k

∣∣∣∣ Fk−1

])]

≤ 1

n

n∑
k=1

EQν0

(
exp

(
1

n
EQν0

(
Z2
k

∣∣∣∣∣ Fk−1

)))

≤ 1

n

n∑
k=1

EQν0

[
exp

(
1

n
Z2
k

)]
.
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By Remark 3.1, we have that

EQν0
[
exp
(
λZk − λ2EQν0 [Z2

k |Fnj ]
)]

≤ 1(3.9)

holds for any |λ| ≤ γ(1)
32 . From the definition of d

(k)
j , we have that

max1≤j≤k ‖d(k)j ‖∞ ≤ C1C2δ0, hence

EQν0 [Z2
k |Fnj ] ≤ n(C1C2δ)

2 ≤ n

322 ,

therefore,

EQν0

[
exp

(
ξ

√
2

n
Zk

)]
≤ exp

(
2ξ2

322

)
for any |ξ| < γ(1)

√
n

32
.

On the other hand, if |ξ| ≥ γ(1)
√
n

32 , from the fact that

∣∣∣∣√ 2
nZk

∣∣∣∣ ≤
√
nC1C2δ0, we have

EQν0

[
exp

(
ξ

√
2

n
Zk

)]
≤ EQν0

[
exp

(
ξ2

16C1C2δ0
γ(1)

)]
≤ eξ2/4.

Now, our assertion follows from Lemma 3.2. �

Lemma 3.6. Let V ∈ C(E × E,R). Assume that V is symmetric and

satisfies
∫
E V (x, y)ν0(dy) = 0 for any x ∈ E. Then for any ε > 0, there

exist N ∈ N, fn, gn ∈ C(E), n = 1, 2, · · · , N , such that∫
E
fk(x)ν0(dx) = 0,

∫
E
gk(y)ν0(dy) = 0,

and

V (x, y) =

N∑
k=1

{fk(x)gk(y) + fk(y)gk(x)} + V ′(x, y)(3.10)

where V ′(x, y) ∈ C(E×E,R) is symmetric and satisfies
∫
E V

′(x, y)ν0(dy) =

0 for any x ∈ E and supx,y |V ′(x, y)| ≤ ε.
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Proof. By Stone-Weierstrass theorem, there exist an N ∈ N and

functions f̃k, g̃k ∈ C(E), k = 1, 2, · · · , N , and Ṽ (x, y) ∈ C(E×E) such that

|Ṽ (x, y)| < ε/8 and

V (x, y) = 2

(
N∑
k=1

f̃k(x)g̃k(y) + Ṽ (x, y)

)
.

Replacing f̃k, g̃k by fk = f̃k −
∫
E f̃kdν0, gk = g̃k −

∫
E g̃kdν0, we have

V (x, y) = 2

(
N∑
k=1

(fk(x)gk(y) +
˜̃
V (x, y)

)

where
˜̃
V (·, ·) is given by

˜̃
V (x, y)

= Ṽ (x, y) +

N∑
k=1

f̃k(x)

∫
E
g̃k(z)ν0(dz)

+

N∑
k=1

g̃k(y)

∫
E
f̃k(z)ν0(dz) −

N∑
k=1

∫
E
f̃(z)ν0(dz)

∫
E
g̃(z)ν0(dz)

= Ṽ (x, y) −
∫
E
Ṽ (x, z)ν0(dz) −

∫
E
Ṽ (z, y)ν0(dz)

−
∫
E

∫
E
Ṽ (z, w)ν0(dz)ν0(dw),

hence

∣∣∣∣ ˜̃V (x, y)

∣∣∣∣ ≤ ε/2.
Therefore, since V (·, ·) is symmetric, we have that

V (x, y) =
n∑
k=1

{fk(x)gk(y) + fk(y)gk(x)} + V ′(x, y)

where V ′(x, y) =
˜̃
V (x, y) +

˜̃
V (y, x). This completes the proof of our

Lemma. �

Lemma 3.7. Let fi(x) ∈ C(E), i = 1, 2, · · · ,m, let {aij}i,j=1,2,··· ,m be

a symmetric matrix, and let V (x, y) =
∑m
i,j=1 aijfi(x)fj(y). Define the
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symmetric bilinear continuous function AV : M(E) ×M(E) → R by

AV (R1, R2) =

∫
E

∫
E
V (x, y)R1(dx)R2(dy).

Suppose that all of the eigenvalues of AV |H×H are smaller than 1. Then

there exists a constant ε0 > 0 such that for any x ∈ E and any ε ≤ ε0,

sup
x,y∈E

sup
n≥1
EQx

[
exp

(
n

2

∫
E

∫
E
V (x, y)Ln(dx)Ln(dy)

)
, Aε

∣∣∣∣ Xn−1 = y

]
<∞.

Proof. Let U be the linear space spanned by {f1, · · · , fm} and let d

be the dimension of U . Denote Ũ ≡ {Gfdν0, f ∈ U}, which is a subset of

H. Then there exists a C.O.N.S. {e1, · · · , ed} of U such that

〈Geidν0, Gejdν0〉H = 〈ei, Gej〉ν0 = δij , AV (Geidν0, Gejdν0) = aiδij ,

and

V (x, y) =

d∑
i,j

cijei(x)ej(x),

where {cij}i,j=1,2,··· ,d is a symmetric matrix. On the other hand,

AV (Geidν0, Gejdν0) =

∫
E

∫
E
V (x, y)Geiν0(dx)Gejν0(dy) = cij = aiδij .

Therefore

V (x, y) =
d∑
i=1

aiei(x)ei(y).

By our assumption, there exists a constant ε ∈ (0, 1) such that ai ≤ 1 − ε,
i = 1, · · · , d. Therefore

n−1∑
k=0

n−1∑
m=0

V (Xk, Xm) ≤ (1 − ε)
d∑
i=1

(
n−1∑
k=0

ei(Xk)

)2

.

Since
{
x ∈ Rd : ‖x‖ ≤ (1 + ε)−1/2

}
=
⋂{{

x ∈ Rd : (x, ξ) ≤ (1 + ε)−1/2
}

:

ξ ∈ Rd, ‖ξ‖ = 1
}
, there exist an N ∈ N and ξi = (ξ1i , · · · , ξdi ), i = 1, 2, · · · ,

N , with ‖ξi‖Rd = 1 such that

N⋂
i=1

{
x ∈ Rd; (x, ξi) ≤

1

(1 + ε)1/2

}
⊂ {x ∈ Rd : ‖x‖ ≤ 1}.
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This implies that

‖x‖2 ≤ (1 + ε) max
1≤i≤N

(x, ξi)
2, x ∈ Rd.

Define

ẽi =

d∑
j=1

ξji ej , i = 1, 2, · · · , N,

then we have

(ẽiGẽi)L2(dν0) = 1, 〈ẽi〉ν0 = 0, i = 1, 2, · · · , N.

On the other hand,

d∑
j=1

(∫
ej(x)dLn(dx)

)2

≤ (1 + ε) max
1≤i≤N

d∑
j=1

(∫
E
ej(x)Ln(dx) · ξij

)2

= (1 + ε) max
1≤i≤N

(∫
E
ẽiLn(dx)

)2

,

i.e.,
d∑
j=1

(
n−1∑
k=0

ej(Xk)

)2

≤ (1 + ε) max
1≤i≤N

(
n−1∑
k=0

ẽi(Xk)

)2

.

Therefore, we get by Lemma 3.4 that

sup
n≥1
EQν0

[
exp

(
n

2

∫
E

∫
E
V (x, y)Ln(dx)Ln(dy)

)
, Aε

∣∣∣∣ Xn−1 = y

]

≤ N × sup
n≥1

max
1≤i≤N

EQν0

exp

1 − ε2
2n

(
n−1∑
k=0

ẽi(Xk)

)2
 , Aε ∣∣∣∣ Xn−1 = y


<∞. �

Lemma 3.8. For any continuous symmetric function V ∈ C(E×E,R)

satisfying
∫
E V (x, y)ν0(dy) = 0 for any x ∈ E, define the symmetric bilinear

and continuous function AV : M(E) ×M(E) → R by

AV (R1, R2) =

∫
E

∫
E
V (x, y)R1(dx)R2(dy).
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Assume that all of the eigenvalues of AV |H×H are smaller than 1, then there

exists a constant ε0 > 0 such that for any x ∈ E and any ε ≤ ε0,

sup
x,y∈E

sup
n≥1
EQx

[
exp

(
n

2

∫
E

∫
E
V (x, y)Ln(dx)Ln(dy)

)
, Aε

∣∣∣∣ Xn−1 = y

]
<∞.

Proof. Let a0 be the maximum eigenvalue of A|H×H , which is smaller

than 1 by our assumption. For any δ > 0 there exist a N ∈ N and

{fk, gk; k = 1, 2, · · · , N} ⊂ C(E) such that

V (x, y) =

N∑
k=1

{fk(x)gk(y) + fk(y)gk(x)} + V ′(x, y)

= V1(x, y) + V ′(x, y)

where |V ′(x, y)| < δ and V1(x, y) =
∑N
k=1 {fk(x)gk(y) + fk(y)gk(x)}.

For any δ > 0, it is easy that the operator norm of AV ′

∣∣∣
H×H

is also

smaller than C̃2δ2. Now, AV1 = AV − AV ′ , and all of the eigenvalues of

AV

∣∣∣
H×H

are smaller than 1 uniformly by our assumption. Therefore, by

the continuity of spectral theory (c.f., Dunford-Schwartz [4]), we have that

there exists a δ1 > 0 such that all of the eigenvalues of AV1

∣∣∣
H×H

are also

smaller than 1 uniformly as long as δ < δ1. Write the maximum as ηδ < 1

(ηδ → a0 as δ → 0).

Choose constants p > 1 and δ > 0 such that pηδ < 1 and δ · q < δ0,
where q stands for the dual number of p and δ0 is as in Lemma 3.5. By

Hölder inequality,

EQx

[
exp

(
n

2

∫
E

∫
E
V (x, y)Ln(dx)Ln(dy)

)
, Aε

∣∣∣∣ Xn−1 = y

]
≤ EQx

[
exp

(
n

2

∫
E

∫
E
pV1(x, y)Ln(dx)Ln(dy)

)
, Aε

∣∣∣∣ Xn−1 = y

]1/p
×EQx

[
exp

(
n

2

∫
E

∫
E
qV ′(x, y)Ln(dx)Ln(dy)

)
, Aε

∣∣∣∣ Xn−1 = y

]1/q
.

This accompanied with Lemma 3.5 and Lemma 3.7 gives us our asser-

tion. �
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4. Proof of the Main Theorem

We give the proof of Theorem 1.2 in this section. Let

Φ̃(ν) ≡ Φ(ν) −
∫
E
φν0(y)ν(dy)

= Φ(ν) − Φ(ν0) −DΦ(ν0)(ν − ν0).

Note that

e−λnEPx [exp (nΦ(Ln)) , A | Xn = y]

=
h(x)

h(y)
EQx

[
exp
(
nΦ̃(Ln)

)
, A | Xn = y

](4.1)

for any A ∈ Fn.

Lemma 4.1. For any x, y ∈ E and any ε > 0,

lim sup
n→∞

1

n
logEQx

[
exp
(
nΦ̃(Ln)

)
, Acε

∣∣∣∣ Xn−1 = y

]
< 0(4.2)

Proof. By the assumption A.3, Proposition 1.1 and Deuschel-Stroock

[3, Exercise 2.1.24], we have

(LHS of 4.2) = lim sup
n→∞

log(exp(−nbΦ)EPx [exp(nΦ(Ln));A
c
ε]

= −(Φ(ν0) − J(ν0)) + lim sup
n→∞

EPx [exp(nΦ(Ln));A
c
ε]

= −(Φ(ν0) − J(ν0)) + sup{Φ(ν) − J(ν); ν ∈ Acε} < 0,

which implies our assertion. �

Lemma 4.2. There exist constants p > 1 and ε > 0 such that

sup
x,y∈E

sup
n≥1
EQx

[
epnΦ̃(Ln), Aε

∣∣∣∣ Xn−1 = y

]
<∞.(4.3)

Proof. By the assumption A.4, the maximum a0 of the eigenvalue of

D2Φ(ν0)|H×H is less than 1, so we can find a p > 1 such that a0 · p < 1. For
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this p, there exists a r > 1 such that a0 · p · r < 1. Let s be the dual number

of r, i.e., 1
r + 1

s = 1. By Hölder inequality,

EQx

[
epnΦ̃(Ln), Aε

∣∣∣∣ Xn−1 = y

]
= EQx

[
exp
{
p
n

2
D2Φ(ν0)(Ln − ν0, Ln − ν0) + pnR(ν0, Ln − ν0)

}
,

Aε|Xn−1 = y
]

≤ EQx

[
exp
{
pr
n

2
D2Φ(Ln − ν0, Ln − ν0)

}
, Aε

∣∣∣∣ Xn−1 = y

]1/r
(4.4)

× EQx

[
exp
{
ps
n

2
R(ν0, Ln − ν0)

}
, Aε

∣∣∣∣ Xn−1 = y

]1/s
,(4.5)

where R(ν0, ·) is the 3rd remainder of the Taylor expansion of Φ at ν0, i.e.

R(ν0, ν − ν0) = Φ̃(ν0) − 1
2D

2Φ(ν0)(ν − ν0, ν − ν0).
For U(x, y) ∈ C(E × E), define

U(x, y) = U(x, y) −
∫
E
U(x, y)ν0(dy) −

∫
E
U(x, y)ν0(dx)

+

∫
E

∫
E
U(x, y)ν0(dx)ν0(dy)

and

Ũ(R1, R2) =

∫
E

∫
E
U(x, y)R1(dx)R2(dy).

Then Ũ(R1, R2) = Ũ(R1, R2) for any R1, R2 ∈ M(E). Therefore,

nD2Φ(ν0)(Ln − ν0, Ln − ν0) =
1

n

n−1∑
k=0

n−1∑
k=0

Φ(2)(ν0, ·, ·)(Xk, Xj)

and all of the conditions of Lemma 3.8 are satisfied for this Φ(2)(ν0; ·, ·).
Therefore, (4.4) is bounded for n > 0 if ε > 0 is small enough.

As for (4.5), choose δ ∈ (0, 1/2ps), by the assumption A.5, for this δ,

there exist a constant ε′ > 0 and a function Kδ such that Kδ satisfies all of
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the conditions of Lemma 3.8, and

n |R(ν0, Ln − ν0)| ≤ n

∫
E

∫
E
Kδ(x, y)(Ln − ν0)(dx)(Ln − ν0)(dy)

=
1

n

n−1∑
k=0

n−1∑
j=0

Kδ(Xk, Xj), on Aε′ .

By Lemma 3.8 again, we get that (4.5) is bounded for all n > 0 if ε is small

enough. This completes the proof of our Lemma. �

Lemma 4.3. There exists an ε0 > 0 such that for any ε ≤ ε0 and any

x, y ∈ E,

lim
n→∞

EQx

[
exp
(
nΦ̃(Ln)

)
, Aε

∣∣∣∣ Xn−1 = y

]
= exp

(
1

2

∫
E
GxΦ

(2)(ν0, ·, ·)
∣∣∣∣
(u,u)

ν0(du)

)
× det2(I −D2Φ(ν0))

−1/2.

Proof. By the strong mixing property of Qn−1,y
0,x , Xn and

√
n(Ln−ν0)

are asymptotically independent as n → ∞ under Qn−1,y
0,x for any x, y ∈ E.

Also,

EQ
n−1,y
0,x

[
exp

(√
−1

√
n

∫
E
u(x)(Ln − ν0)(dx)

)]
→ exp

(
−1

2
〈u,Gu〉ν0

)
as n→ ∞ for any u ∈ C(E).

Take a separable Hilbert space H1 such that the set

{Gudν0|
∫
E uGudν0 < ∞} is a dense linear subspace of H1 and the in-

clusion map is a Hilbert-Schmidt operator. Let W be an H1-valued random

variable such that

E
[
exp(

√
−1(u,W ))

]
= exp

(
−1

2
〈u,Gu〉ν0

)
for any u ∈ H∗

1 . Write the distribution of W as γ.
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From the central limit theorem for Hilbert space random variables, the

law of
√
n(Ln − ν0) under Qn−1,y

0,x converges weakly to γ as n→ ∞ on H1.

As shown before, D2Φ(ν0)(·, ·)
∣∣∣∣
H×H

is a Hilbert-Schmidt function. Let

λm and Gemdν0,m = 1, 2, · · · , be the eigenvalues and the corresponding

eigenvectors ofD2Φ(ν0)(·, ·)
∣∣∣∣
H×H

. By the central limit theorem and ergodic

theorem,

n

∫
E

∫
E

N∑
m=1

λmem(x)em(y)Ln(dx)Ln(dy) −
∫
E

N∑
m=1

λmem(x)Gem(x)Ln(dx)

converges to
N∑
m=1

λm((em,W )2 − 1) in distribution under Qx for any N ∈ N

and any x ∈ E. Also,

EQx

([{
n

∫
E

∫
E

Φ(2)(ν0, x, y)Ln(dx)Ln(dy)

−
∫
E
GxΦ

(2)(ν0, ·, ·)
∣∣∣∣
(x,x)

Ln(dx)

}

−
{
n

∫
E

∫
E

N∑
k=1

λmem(x)em(y)Ln(dx)Ln(dy)

−
∫
E

N∑
k=1

λmem(x)Gem(x)Ln(dx)

}]2
→ 0

as N → ∞ uniformly for n ∈ N. Therefore, let : D2Φ(ν0)(W,W ) :

be the L2(dγ)-limit of
N∑
m=1

λm((em,W )2 − 1), which is well-defined since

D2Φ(ν0)(·, ·)|H×H is a Hilbert-Schmidt type function, then

n

∫
E

∫
E

Φ(2)(ν0, x, y)Ln(dx)Ln(dy) −
∫
E
GxΦ

(2)(ν0, ·, ·)|(u,u)Ln(du)

converges to : D2Φ(ν0)(W,W ) : under Qn−1,y
0,x as n→ ∞. It is easy that∫

E
GxΦ

(2)(ν0, ·, ·)|(u,u)Ln(du) →
∫
E
GxΦ

(2)(ν0, ·, ·)|(u,u)ν0(du) Qn−1,y
0,x −a.s.
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as n→ ∞.

Also, as in the proof of Lemma 4.2, we have by the assumption (A.5)

and Lemma 3.5 that for any δ > 0,

EQ
n−1,y
0,x

[
δ0
δ
n |R(ν0, Ln − ν0)|

]
≤ EQ

n−1,y
0,x

(
n
δ0
δ

∫
E

∫
E
Kδ(x, y)(Ln − ν0)(dx)(Ln − ν0)(dy)

)
≤ EQ

n−1,y
0,x

(
exp

(
δ0
δ
n

∫
E

∫
E
Kδ(x, y)(Ln − ν0)(dx)(Ln − ν0)(dy)

))
+EQ

n−1,y
0,x

(
exp

(
δ0
δ
n

∫
E

∫
E
−Kδ(x, y)(Ln − ν0)(dx)(Ln − ν0)(dy)

))
≤ 2C0,

which implies that

nR(ν0, Ln − ν0) → 0

in law under Qn−1,y
0,x as n→ ∞.

Therefore, by the definition of Φ̃, we get that

nΦ̃(Ln) →
1

2

(
: D2Φ(ν0)(W,W ) : +

∫
E
GxΦ

(2)(ν0, ·, ·)|(u,u)ν0(du)
)

(4.6)

in distribution under Qn−1,y
0,x as n→ ∞.

This together with Lemma 4.2 imply that for any x ∈ E,

lim
n→∞

EQx

[
exp
(
nΦ̃(Ln)

)
, Aε

∣∣∣∣ Xn−1 = y

]
= E

[
exp

(
1

2
: D2Φ(ν0)(W,W ) : +

1

2

∫
E
GxΦ

(2)(ν0, ·, ·)|(u,u)ν0(du)
)]

= E

[
exp(

1

2
: D2Φ(ν0)(W,W ) :)

]
× exp

(
1

2

∫
E
GxΦ

(2)(ν0, ·, ·)|(u,u)ν0(du)
)

= det2(IH −D2Φ(ν0))
−1/2 × exp

(
1

2

∫
E
GxΦ

(2)(ν0, ·, ·)|(u,u)ν0(du)
)
,

which is just what we need. �
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