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A Blow-up Problem Related to the Euler Equations of

Incompressible Inviscid Fluid Motion

By Xinfu Chen∗ and Hisashi Okamoto†

Abstract. We study the blow-up of a certain system of ODEs
which are coupled in such a way that the “total mass” is preserved.
The system of ODEs is a model proposed by the second author and
J. Zhu in order to demonstrate the importance of the convection term
in the Proudman-Johnson equation, which describes the motion of
incompressible fluid. In the present paper, we derive a necessary and
sufficient condition for blow-up of solutions, and we provide long time
or near blow-up time asymptotic behavior.

1. Introduction

We study the blow-up phenomena of the following problem, for u =

u(x, t),

{
u̇ = f(u) −

∫ 1
0 f(u(y, t)) dy, x ∈ [0, 1], t > 0,

u(x, 0) = u0(x), x ∈ [0, 1]
(1)

where ˙ = d
dt , and f : R → [0,∞) and u0 : [0, 1] → R satisfy the following:

(F) f(·) is continuously differentiable, even, and strictly convex; Further,

0 = f(0) < f(s) for s �= 0, sups>0
sf ′(s)
f(s) < ∞, and

∫∞
1

ds
f(s) < ∞.

(U) u0(x) is defined everywhere in [0, 1], bounded and measurable, and∫ 1
0 u0(x)dx = 0.
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Problem (1) arises from what is called the Proudman–Johnson equation,

which is written as

ftxx + ffxxx − fxfxx = νfxxxx (0 < x < 1),(2)

where ν is the viscosity of the fluid. This equation is derived from the

Navier-Stokes equations for incompressible viscous fluid, and its solution

represents an exact ( but unbounded ) solution of the Navier-Stokes equa-

tions. The well-posedness of the equation is known only partly, see [1, 2, 3,

4] and the references therein. By some reason stated in [4], the convection

term ffxxx does not seem to play an important role in the well-posedness.

So, an equation where the convection term is neglected were considered in [4]

and compared with (2). The equation then becomes: ftxx−fxfxx = νfxxxx,

which can be integrated once and we obtain

ut = νuxx + u2 − γ.

Here u = 1
2fx and γ depends only on t. Boundary conditions can be asso-

ciated in many ways but we assume here the periodic boundary condition,

by which we have
∫ 1
0 u(t, x)dx = 0. This constraint on u determines the

integral constant γ. We then have

ut = νuxx + u2 −
∫ 1

0
u(t, x)2dx.(3)

Some properties of the equation were studied in [4] but the case where

ν = 0, which is nothing but (1) with f(u) = u2, were examined only in

special cases.

The following proposition was proved in [4]:

Proposition 1. Assume that f(u) = u2 and that u0 is a piecewise

constant function with zero mean. Let Ω := {x ∈ [0, 1] | u0(x) = max u0}
and Ωc = [0, 1] \ Ω. Then the following (i) and (ii) hold true:

(i) If |Ω| < 1
2 , the solution to (1) blows up in finite time;

(ii) If |Ω| ≥ 1
2 , the solution to (1) exists globally in time and the solution

satisfies

lim
t→∞

u(x, t) =

{
0 if |Ω| > 1/2,

Q {IΩ(x) − IΩc(x)} if |Ω| = 1/2,
(4)
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where | | denotes the Lebesgue measure, Q is a positive constant, and

IA stands for the characteristic function of the set A.

They were unable to determine asymptotic behavior when general initial

data, not necessarily piecewise constant, were assumed. Also, there was

uncertainty in the case (i). In fact, based on numerical experiments, the

second author and J. Zhu made the following speculation [4]: a solution to

(1) with piecewise constant initial data blows up in such a way that the

maximum of u(·, t) tends to infinity while all non–maximum values of u(·, t)
becomes negative eventually.

The purpose of this paper is to prove the speculation under some as-

sumption, and to extend Proposition 1 to general initial data u0 and non-

linear f .

Remark 1.1. As for the set of the initial data, we take L∞(0, 1). It

should, however, be noted that we henceforth do not employ the usual

convention that two functions differing only on the set of zero measure

are regarded as identical. Even two initial data differing only at a point

give different solutions for (1). We therefore consider all the bounded

measurable function defined everywhere in [0, 1] and the norm is defined

‖f‖∞ = sup0≤x≤1 |f(x)|, where sup, not ess sup, is used. Even though we

follow this unusual rule, the following remark is important: it is enough to

consider one initial datum among those initial functions which differ from

one another on a set of measure zero. In fact, for two functions u0 and v0

differing only on a set of measure zero, it holds that {x ; u(x, t) �= v(x, t)} =

{x ; u0(x) �= v0(x)} for all t, where u and v denote solutions corresponding

to the initial data u0 and v0, respectively. Accordingly, once the solution

u̇ = f(u) −
∫ 1

0
f(u(y, t))dt & u(y, 0) = u0(y)

is known, we can compute v(x, t) since
∫ 1
0 f(u(x, t))dx ≡

∫ 1
0 f(v(x, t))dx.

Because of the fact stated in Remark 1.1, we assume without losing

generality that supu0 = esssupu0 and inf u0 = ess inf u0. Since the right

hand side of (1) is Lipschitz continuous mapping in L∞, (1) admits a local

(in time) solution for any bounded initial data u0. The solution can be

extended as long as it is bounded.



376 Xinfu Chen and Hisashi Okamoto

We now prepare the following symbols. We denote by [0, T ∗) the maxi-

mal existence interval of (1). We define

m0 = inf{u0(·)}, M0 = sup{u0(·)},(5)

Ω = {x ∈ [0, 1] | u0(x) = M0}, Ωc = [0, 1] \ Ω, µ∗ = |Ω|
|Ωc| ,(6)

m(t) = inf{u(·, t)}, M(t) = sup{u(·, t)} ∀ t ∈ [0, T ∗),(7)

q(t) =
∫ 1
0 f(u(y, t)) dy.(8)

Our result is summarized as follows:

Theorem A. Assume (F) and (U). Then

T ∗ = ∞ ⇐⇒ |Ω| ≥ 1
2 .

In addition, the following hold:

lim
t↗T ∗

u(x, t)

M(t)
= IΩ(x) − µ∗IΩc(x) ∀x ∈ [0, 1],(9)

lim
t→∞

1

t

∫ ∞

M(t)

ds

f(µ∗s) − f(s)
= |Ωc| if |Ω| > 1

2 ,(10)

lim
t→∞

M(t) = Q if |Ω| = 1
2 ,(11)

lim
t↗T ∗

1

t− T ∗

∫ ∞

M(t)

ds

f(µ∗s) − f(s)
= |Ωc| if |Ω| < 1

2 ,(12)

where Q is a non–negative constant, and Q = 0 ⇐⇒
∫
Ωc log(M0 −

u0(x)) dx = −∞.

Theorem B. If |Ω| = 0, (9) can be strengthened as follows:

(i) If
∫ T ∗

0
q(t)

|m(t)| dt < ∞, there exist a finite m∗ and a function u∗ : Ωc →
[m∗,∞) such that

lim
t↗T ∗

m(t) = m∗, lim
t↗T ∗

u(x, t) = u∗(x) ∀x ∈ Ωc,

∫ 1

0
u∗(x) dx = 0.

(ii) If
∫ T ∗

0
q(t)

|m(t)| dt = ∞, then limt↗T ∗ m(t) = −∞ and the following holds:
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(iia) if
∫ T ∗

0
f(m)
|m| dt = ∞, then limt↗T ∗(u(x, t)−m(t)) = 0 ∀x ∈ Ωc.

(iib) if
∫ T ∗

0
f(m)
|m| dt < ∞, then there exists v∗ : Ωc → [0,∞), such that

lim
t↗T ∗

(u(x, t) −m(t)) = v∗(x) > 0

∀x ∈ {y ∈ [0, 1] | m0 < u0(y) < M0}.

When f = u2, (10)–(12) can be written as

if |Ω| > 1
2 , lim

t→∞
tM(t) = |Ωc|

|Ω|−|Ωc| ;

if |Ω| = 1
2 , lim

t→∞
M(t) = 1

2 exp
{

2
∫
Ωc log(M0 − u0(y))dy

}
;

if |Ω| < 1
2 , lim

t↗T ∗
(t− T ∗)M(t) = |Ωc|

|Ω|−|Ωc| .

Also, when f = u2 and |Ω| = 0, we have∫ T ∗

0
q

|m|dt = ∞ ⇐⇒
∫ 1
0

dx
M0−u0(x) = ∞,∫ T ∗

0
f
|m|dt = ∞ ⇐⇒

∫ 1
0 log(M0 − u0(x)) = −∞,

u∗(x) =
{

1
M0−u0(x) −

∫ 1
0

dy
M0−u0(y)

}
exp

(
2
∫ 1
0 log(M0 − u0(y))dy

)
,

v∗(x) =
{

1
M0−u0(x) −

1
M0−m0

}
exp

(
2
∫ 1
0 log(M0 − u0(y))dy

)
.

We thus obtained a rather complete description of asymptotic behavior

of the solutions when (F) is assumed. However, for general f , we have

only partial results (not presented here) which are not enough to provide

necessary and sufficient conditions (in terms of initial data u0) relating

conclusions (i), (iia), and (iib).

2. Preliminary

For each α ∈ (−∞,M0], we define w(α, t) as the solution to the initial

value problem

ẇ = f(w) − q(t) for t ∈ [0, T ∗), w(α, 0) = α.(13)

The properties of the solution are summarized as follows:

Lemma 2.1. Let M0,m0,M , m, µ∗, and q be defined as in (5)–(8). We

then have
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(a) For all t ∈ [0, T ∗), m(t) = w(m0, t), M(t) = w(M0, t), and∫ 1
0 u(y, t) dy = 0.

(b) If α1 < α2 ≤ M0, then w(α1, t) < w(α2, t) for all t ∈ [0, T ∗). In

addition, if u �≡ 0, then that w(α, t̂) ≤ 0 for some t̂ ∈ [0, T ∗) implies

w(α, t) < 0 for all t ∈ (t̂, T ∗).

(c) If u0 = M0[IΩ − µ∗ IΩc ] for some M0 > 0, then u(x, t) = M(t)[IΩ −
µ∗ IΩc ], where

1. if µ∗ = 1, i.e., |Ω| = 1
2 , then M(t) ≡ M0,

2. if µ∗ > 1, i.e., |Ω| > 1
2 , then M(t) ≤ M0 and

∫ M0

M(t)

ds

f(µ∗s) − f(s)
= |Ωc| t, ∀t ∈ [0,∞).

3. if µ∗ < 1, i.e., |Ω| < 1
2 , then M(t) blows up in finite time and

∫ M(t)

M0

ds

f(s) − f(µ∗s)
= |Ωc| t, ∀t ∈ [0,∞).

The proof is straightforward and is omitted. Note that the case (c) is

known in [4] and that µ∗ < 1 implies f(s) − f(µ∗s) ≥ (1 − µ∗)f(s).

Suppose now that the initial data is different from the one in the case

(c) of the lemma above. In view of Remark 1.1, we may then assume that

the set {x ∈ [0, 1] |m0 < u0(x) < M0} has positive measure.

Lemma 2.2. Let

θ(x, t) = M(t)−u(x,t)
M(t)−m(t) , µ(t) = |m(t)|

M(t) .(14)

Then µ =
∫ 1
0 (1−θ)dx∫ 1

0 θdx
and for all x ∈ [0, 1] and t ∈ [0, T ∗),

θ̇ = 1
M−m

{
θf(m) + (1 − θ)f(M) − f(θm + (1 − θ)M)

}
.(15)

Consequently, the following holds:

(i) θ(x, ·) ≡ 0 if x ∈ Ω, θ(x, ·) ≡ 1 if u0(x) = m0, and θ(x, ·) ∈ (0, 1) and

θ̇(x, ·) > 0 if u0(x) ∈ (m0,M0);
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(ii) there exists θ∗ : [0, 1] → [0, 1] such that as t ↗ T ∗,

θ(x, t) ↗ θ∗(x) ∀x ∈ {y | m0 < u0(y) < M0},

µ(t) ↘ 1−
∫ 1
0 θ∗(y) dy∫ 1

0 θ∗(y)dy
≥ |Ω|

|Ωc| = µ∗.

Proof. The identity µ =
∫ 1
0 (1−θ)dx∫ 1

0 θdx
follows from u = θm + (1 − θ)M

and
∫ 1
0 u(y, t)dy = 0. The differential equation (15) follows by a direct

differentiation.

Since f is strictly convex and f(0) = 0 is the global minimum, one sees

that θf(m)+(1−θ)f(M)−f(θm+(1−θ)M) > 0 if θ ∈ (0, 1). The assertion

(i) and (ii) thus follows from (15). �

Lemma 2.3. Let θ and µ be defined as in (14). Then

θ̇ = θ(1 − θ)κ,(16)

min{1,µ}
1+µ

{
f(M)
M + f(m)

|m|

}
≤ κ ≤ f ′(M) + |f ′(m)|.(17)

Proof. Since u = θm+(1−θ)M , we have κ = f(m)−f(u)
u−m + f(M)−f(u)

M−u ≤
|f ′(m)|+ f ′(M) since f is convex and f(0) = 0 is the global minimum of f .

To find the lower bound for κ, we notice that f(u)/u ≤ f(M)/M for

u ∈ (0,M ] and f(u)/|u| ≤ f(m)/|m| when u ∈ [m, 0). Replacing f(u) by

uf(M)/M when u ≥ 0 and by uf(m)/m when u ≤ 0 we then find that

κ ≥ min{1,µ}
1+µ (f(M)/M + f(m)/|m|). This completes the proof. �

Lemma 2.4.

∫ T ∗

0

f(M) + f(m)

M + |m| dt = ∞.

Proof. Integrating d
dt log(M −m) = f(M)−f(m)

M−m gives

M(t) + |m(t)| = (M0 + |m0|) exp
{∫ t

0

f(M) − f(m)

M + |m| dτ
}
.(18)

If the assertion of the lemma is not true, then both
∫ T ∗

0
f(M)
M+|m| and∫ T ∗

0
f(m)

M+|m| are finite, whence, by (18), there exist positive constants c1 and
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c2 such that c1 ≤ M + |m| ≤ c2 for all t ∈ [0, T ∗). In particular, T ∗ = ∞.

Since f(M)+f(m)
M+|m| ≥ 2

M+|m|f((M + |m|)/2) is bounded from below by a pos-

itive constant, the integral for f(M)+f(m)
M+|m| cannot be convergent. This is a

contradiction and we are done. �

Lemma 2.5. Let θ∗ be as in Lemma 2.2(ii). Then θ∗ = IΩc and hence

µ(t) ↘ µ∗ as t ↗ T ∗. In addition, when |Ω| �= 1
2 ,

lim
t↗T ∗

Ṁ

f(M) − f(−µ∗M)
= |Ωc|.(19)

Proof. Obviously θ∗(x) = 0 if x ∈ Ω. Suppose now that x ∈ Ωc. If

θ∗(x) < 1, then θ∗(z) ≤ θ∗(x) < 1 for all z ∈ {y ∈ [0, 1] | u0(y) ≥ u0(x)}.
It then follows that µ(0) ≥ µ(t) ≥ (1 − θ∗(x)) × measure{y ∈ [0, 1]|u0(y) ≥
u0(x)} > 0. (Here ess supu0 = supu0 is used.) Hence from Lemmas 2.3 and

2.4 we see that
∫ T ∗

0 κ dt = ∞. Since∫ θ(x,t)

θ(x,0)

dθ

θ(1 − θ)
=

∫ t

0
κ dt,

we have θ∗(x) = 1. Thus, θ∗(x) = 1 for all x ∈ Ωc.

Once we know θ∗, we obtain µ(t) ↘
∫ 1
0 (1− θ∗)dx/

∫ 1
0 θ∗dx = |Ω|/|Ωc| =

µ∗ as t ↗ T ∗.
As u = θm + (1 − θ)M = M [1 − θ − µθ] and q =

∫ 1
0 f(u) dx, we can

write, when µ∗ �= 1,

Ṁ

f(M) − f(−µ∗M)
= |Ωc| −

∫
Ωc

f(M [1 − θ − θµ]) − f(−µ∗M)

f(M) − f(−µ∗M)
dx .

The assertion of the Lemma then follows from Lebesgue’s dominated con-

vergence theorem and the fact that 1 − θ − µθ → −µ∗ as t ↗ T ∗ for all

x ∈ Ωc. Here we need the assumption that sups>0
sf ′(s)
f(s) < ∞, which implies

limη→1 sups>0
f(ηs)
f(s) = 1. �

3. Proof of Theorems A and B

We consider four different cases

|Ω| > 1
2 , |Ω| = 1

2 ,
1
2 > |Ω| > 0, |Ω| = 0.



Blow-up Problem Related to the Euler Equations 381

3.1. The case |Ω| ≥ 1
2

Lemma 3.1. Assume that |Ω| ≥ 1
2 . Then, M(t) is non-increasing,

m(t) is non-decreasing, and T ∗ = +∞. If |Ω| > 1
2 , then M(t) is strictly

decreasing and m(t) is strictly increasing.

Proof. From 0 =
∫ 1
0 u(y, t) dy ≥ M |Ω| + m|Ωc|, we have |m(t)| ≥

µ∗M(t). As µ∗ ≥ 1, q ≤ |Ω|f(M) + |Ωc|f(m) so that ṁ = f(m) − q ≥
{f(m) − f(M)}|Ω| ≥ 0 for all t ∈ [0, T ∗). Hence, M(t) < |m(t)| < m0 for

all t ∈ (0, T ∗) and T ∗ = ∞.

Since f is convex, 1
|Ωc|

∫
Ωc f(u) dy ≥ f( 1

|Ωc|
∫
Ωc u dy) = f(−µ∗M) =

f(M), so that Ṁ = |Ωc|f(M) −
∫
Ωc f(u) ≤ 0 for all t > 0.

We now have m0 ≤ m(t) < 0 < M(t) ≤ M0 for all t and T ∗ = +∞
follows. Statements in the case of |Ω| = 1

2 is obvious now. Also, when

|Ω| > 1/2, we have µ∗ > 1, so the previous derivation gives us ṁ > 0 > Ṁ . �

Theorem 3.1. Assume that |Ω| > 1
2 . Then T ∗ = ∞, M(t) < |m(t)|

for all t ≥ 0, m(t) ↗ 0 as t ↗ ∞, and

lim
t→∞

u(x, t)

M(t)
= IΩ(x) − µ∗ IΩc(x) ∀x ∈ [0, 1],(20)

lim
t→∞

1

t

∫ ∞

M(t)

ds

f(µ∗s) − f(s)
= |Ωc| .(21)

Proof. By the proceeding lemma, it is sufficient to prove (20) and

(21). Using Lemma 2.5, we obtain u/M = 1 − θ − θµ → 1 − θ∗ − θ∗µ∗ =

IΩ − µ∗IΩc as t → T ∗. This proves (20). The formula (21) follows from

L’Hospital’s rule and (19). �

Remark 3.1. To prove T ∗ = ∞, we only need f to be even and non–

decreasing in [0,∞).

3.2. The case |Ω| = 1
2

Theorem 3.2. Assume that |Ω| = 1
2 . Then T ∗ = ∞ and

lim
t→∞

u(x, t)

M(t)
= IΩ(x) − IΩc(x) ∀x ∈ [0, 1],(22)
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Also, there exists Q ∈ [0,M0] such that

m(t) ↗ −Q and M(t) ↘ Q as t ↗ ∞.(23)

In addition,

Q = 0 ⇐⇒
∫

Ωc

log(M0 − u0(y)) dy = −∞.(24)

In the special case that f(u) = u2, Q is explicitly given by

Q = 1
2 exp

(
2
∫
Ωc log[M0 − u0(y)] dy

)
.(25)

Proof. By Lemma 3.1, we know that T ∗ = ∞. The limit (22) is

proved as in (20). Lemma 3.1 shows that there exist a Q such that (23)

holds.

We next prove (24). First of all, since |m| = µM > µ∗M = M ,

− d

dt
log(M −m) =

f(m) − f(M)

M −m
=

f(|m|) − f(M)

|m| −M

|m| −M

M −m
.

As f is convex, f(|m|)−f(M)
|m|−M ≤ f ′(|m|). Also, as sups>0

sf ′(s)
f(s) ≤ p for some

p > 0, f(|m|)−f(M)
|m|−M ≥ f(|m|)

|m| ≥ 1
pf

′(|m|).
As |Ω| = |Ωc| = 1

2 , we derive from |Ω|M +
∫
Ωc udx = 0 and u = θm +

(1 − θ)M that |m|−M
M−m = 2

∫
Ωc(1 − θ) dx . Hence,

2

p
f ′(|m|)

∫
Ωc

(1 − θ)dx ≤ − d

dt
log(M −m) ≤ 2f ′(|m|)

∫
Ωc

(1 − θ) dx .

We now use Lemma 2.3 to estimate the integral. From (17) and the fact

that 1 = µ∗ < µ(t) ≤ µ(0) = |m0|/M0, we see that there exists a positive

constant C depending only on f and |m0|/M0 such that

|f ′(m)| ≤ Cκ ≤ C2|f ′(m)|.

Hence, integrating d
dt log θ = κ(1 − θ) over Ωc we obtain,

2
pC

∫
Ωc

d

dt
log θ dx ≤ − d

dt
log(M −m) ≤ 2C

∫
Ωc

d

dt
log θ dx.
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Integrating over [0, t] we then obtain

2
pC

∫
Ωc

log
θ(x, t)

θ(x, 0)
dx ≤ log

M0 −m0

M(t) −m(t)
≤ 2C

∫
Ωc

log
θ(x, t)

θ(x, 0)
dx .

Since as t ↗ ∞, θ(x, t) ↗ 1 for all x ∈ Ωc, (24) then follows by Fatou’s

lemma and Lebesgue’s dominated convergence theorem.

Finally, we consider the special case f(u) = u2. Then for x ∈ Ωc,
d
dt log(M − u) = M + u. Hence, integrating over t and x ∈ Ωc, we then

obtain ∫
Ωc

log
M(t) − u(y, t)

M0 − u0(y)
dy = 0 ∀t ∈ [0,∞) .

Note that the integral is convergent since | log M(t)−u(y,t)
M0−u0(y) | = |

∫ t
0 [M(τ) +

u(y, τ)] dτ | ≤ 2
∫ t
0 |m(τ)| dτ . Sending t → ∞, we then obtain by Fatou’s

Lemma that

lim
t→∞

logM(t) = lim
t→∞

∫
Ωc

2 log
M0 − u0(y)

1 − u(y, t)/M(t)
dy

= 2

∫
Ωc

log
M0 − u0(y)

2
dy .

This proves (25). �

3.3. The case 0 < |Ω| < 1
2

Theorem 3.3. Assume that 0 ≤ |Ω| < 1
2 . Then T ∗ < ∞, and

lim
t↗T ∗

u(x, t)

M(t)
= IΩ(x) − µ∗ IΩc(x) ∀x ∈ [0, 1],(26)

lim
t↗T ∗

1

T ∗ − t

∫ ∞

M(t)

ds

f(s) − f(−µ∗s)
= |Ωc| .(27)

Proof. From (19), there exists t̂ ∈ (0, T ∗) such that for all t ∈ (t̂, T ∗),
Ṁ > 1

2 |Ωc|(f(M) − f(µ∗M)) ≥ 1
2 |Ωc|(1 − µ∗)f(M) = (1

2 − |Ω|)f(M) > 0

since f(ηz) ≤ ηf(z) for all η ∈ [0, 1] and |z| > 0. It then follows that

T ∗ − t̂ ≤
∫ ∞

M(t̂)

ds

(1
2 − |Ω|)f(s)

< ∞.
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The limit (26) follows from Lemmas 2.2 and 2.5, and the relation u/M =

1−θ−θµ, whereas the limit (27) follows from L’ Hospital’s rule and (19). �

When |Ω| = 0, (26) only give us limt↗T ∗ u
M = 0 in Ωc. More details will

be given later.

3.4. The case |Ω| = 0

Theorem 3.4. Assume that |Ω| = 0. Then T ∗ < ∞ and

lim
t↗T ∗

1

T ∗ − t

∫ ∞

M(t)

1

f(s)
ds = 1,(28)

lim
t↗T ∗

u(x, t)

M(t)
= µ∗ = 0 ∀x ∈ Ωc.(29)

In addition, the following holds:

(i) If
∫ T ∗

0 q(t)dt = ∞, then

lim
t↗T ∗

m(t) = −∞, lim
t↗T ∗

u(x, t)

m(x, t)
= 1 ∀x ∈ Ωc.

(ii) If
∫ T ∗

0 q(t)dt < ∞, then there exists m∗ ∈ (−∞, 0) and u∗(x) : Ωc →
[m∗,∞) such that

lim
t↗T ∗

m(t) = m∗, lim
t↗T ∗

u(x, t) = u∗(x) ∀x ∈ Ωc,

∫ 1

0
u∗(x) dx = 0.

Proof. Because of Theorem 3.3, we need only prove the in addition

part.

First we show that

lim sup
t↗T ∗

u(x, t) < ∞ ∀x ∈ Ωc.(30)

Note that if u(x, ·) is non–positive at some t̂ ∈ [0, T ∗), then u is negative

for all t ∈ (t̂, T ∗). Hence, if u0(x) > 0, there exists T (x) ∈ (0, T ∗] such that
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u(x, ·) > 0 in [0, T (x)) and u(·, t) < 0 in (T (x), T ∗). For all t ∈ [0, T (x)),

we can integrate u̇/f(u) − Ṁ/f(M) = q/f(M) − q/f(u) to obtain

∫ u(x,t)

u0(x)

ds

f(s)
−

∫ M(t)

M0

ds

f(s)
=

∫ t

0

q(τ)[f(u(x, τ)) − f(M(τ)]

f(M(τ))f(u(x, τ))
dτ < 0.

It then follows that u(x, t) ≤ v(x) where v(x) is defined by

∫ v(x)

u0(x)

ds

f(s)
=

∫ ∞

M0

ds

f(s)
∀x ∈ {y ∈ [0, 1] | M0 > u0(y) > 0}.

Therefore, (30) holds.

Integrating ṁ/f(m) = 1 − q/f(m), we obtain

∫ m(t)

m0

ds

f(s)
= t−

∫ t

0

q(τ)

f(m(τ))
dτ → T ∗ −

∫ T ∗

0

q(τ)

f(m(τ))
ds as t ↗ T ∗.

Hence, m∗ := limt↗T ∗ m(t) exists, and m∗ ∈ [−∞, 0).

Now we consider the case where
∫ T ∗

0 q(t) = ∞. In this case we must

have m∗ = −∞, since otherwise, integrating ṁ ≤ f(m∗) − q over [0, T ∗)

we would have m∗ ≤ m0 + f(m∗)T ∗ −
∫ T ∗

0 q dt = −∞. Integrating u̇ =

f(u) − q gives u(x, t) = u0(x) +
∫ t
0 f(u(s, τ)) dτ −

∫ t
0 q(τ) dτ . Since u(x, t)

is uniformly bounded from above, we see that, for each x ∈ Ωc, there exists

T (x) ∈ [0, T ∗) such that u(x, T (x)) ≤ 0. Now in [T (x), T ∗), we have d
dt(m−

u) = f(m) − f(u) ≥ 0, so that 0 ≥ m − u ≥ m(T (x)) − u(x, T (x)), i.e.,

0 ≤ 1 − u(x,t)
m(t) ≤ m(T (x))−u(x,T (x))

m(t) for all t ≥ T (x). Sending t ↗ T ∗ we then

conclude that limt↗T ∗
u(x,t)
m(t) = 1. This proves (i).

Next we consider the case where
∫ T ∗

0 q(t) dt < ∞. In this case, we have

ṁ = f(m)−q > −q, so that m∗ ≥ m0−
∫ T ∗

0 q(τ) dτ > −∞. Thus, for every

x ∈ Ωc, u(x, ·) is bounded in [0, T ∗), so that u(x, t) = u0(x) +
∫ t
0 (f(u) −

q) dτ → u0(x) +
∫ T ∗

0 (f(u(x, t)) − q(t)) dt =: u∗(x), as t ↗ T ∗.

Finally, we prove that
∫ 1
0 u∗(x) dx = 0. Since u is bounded from be-

low, by Fatou’s lemma,
∫ 1
0 u∗(x) dx ≤ limt↗T ∗

∫ 1
0 u(x, t)dx = 0. Secondly,

for each x ∈ [0, 1], u∗(x) ≥ u(x, t) −
∫ T ∗

t q(τ) dτ . Hence,
∫ 1
0 u∗(x) dx ≥

−
∫ T ∗

t q(τ) dτ . Sending t ↗ T ∗ we then conclude that
∫ 1
0 u∗(x) dx ≥ 0.

This completes the proof. �
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Theorem 3.5. Assume that |Ω| = 0 and denote m∗ = limt↗T ∗ m(t).

Then ∫ T ∗

0
q(τ) dτ = ∞ ⇐⇒ m∗ = −∞ ⇐⇒

∫ T ∗

0

q(t)

|m(t)|dt = ∞.(31)

In addition, when m∗ = −∞, the following holds:

(a) If
∫ T ∗

0
f(m)
|m| dt = ∞, then limt↗T ∗(u(x, t) −m(t)) = 0 ∀x ∈ Ωc.

(b) If
∫ T ∗

0
f(m)
|m| dt < ∞, then there exists v∗(x) : Ωc → [0,∞) such that

lim
t↗T ∗

(u(x, t) −m(t)) = v∗(x) > 0

∀x ∈ {y ∈ [0, 1] | m0 < u0(y) < M0}.

Proof. From
∫m
m0

ds
f(s) ≤ t < T ∗ we see that there is a positive constant

c0 such that m(t) ≤ −c0. Also, integrating d
dt log |m| = f

m − q
m ≤ q

|m| yields

log m
m0

≤
∫ t
0

q
|m| dτ . Hence,

∫ T ∗

0

q

|m| dt = ∞ =⇒
∫ T ∗

0
q dt = ∞ =⇒ m∗ = −∞

=⇒
∫ T ∗

0

q

|m|dt = ∞,

which proves (31).

For any x ∈ Ωc satisfying u0(x) > m0, let − d
dt log(u−m) = f(m)−f(u)

u−m =:

K(x, t), so that

u(x, t) −m(t) = {u0(x) −m0} exp
{
−

∫ t

0
K(x, τ) dτ

}
.(32)

Theorem 3.4 defines T (x) ∈ [0, T ∗) as the smallest of those t such that

u(x, T (x)) ≤ 0. Then, in (T (x), T ∗), u(x, t) < 0 so that, as f is even and

convex and sups>0
sf ′(s)
f(s) ≤ p, f(m)

|m| ≤ K ≤ |f ′(m)| ≤ pf(m)
|m| . The assertions

(a) and (b) then follow from (32). This completes the proof. �

Finally, we provide an example that all (i), (ii)(a), and (ii)(b) can hap-

pen.
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Theorem 3.6. Assume that f(u) = u2 and that |Ω| = 0. The following

holds.

(i)
∫ T ∗

0
q

|m| dt = ∞ ⇐⇒
∫ 1
0

dx
M0−u0(x) = ∞;

In addition, if
∫ 1
0

dx
M0−u0(x) < ∞, then for all x ∈ Ωc,

lim
t↗T ∗

u(x, t) =
{

1
M0−u0(x) −

∫ 1
0

dy
M0−u0(y)

}
(33)

× exp
(
2
∫ 1
0 log(M0 − u0(y))dy

)
.

If
∫ 1
0

dx
M0−u0(x) = ∞, then limt↗T ∗ m(t) = −∞ and limt↗T ∗

u(x,t)
m(t) = 1

for all x ∈ Ωc.

(ii)
∫ T ∗

0
f(m)
|m| dt = ∞ ⇐⇒

∫ 1
0 log(M0 − u0(x))dx = −∞. More precisely,

(iia) if
∫ 1
0 log(M0 − u0(x))dx = −∞, then limt↗T ∗(u(x, t) −m(t)) = 0

for all x ∈ Ωc;

(iib) if
∫ 1
0 log(M0 − u0(y))dy > −∞, then

lim
t↗T ∗

(u(x, t) −m(t)) =
{

1
M0−u0(x) −

1
M0−m0

}
(34)

× exp
(
2
∫ 1
0 log(M0 − u0(y))dy

)
.

Proof. Set θ = M−u
M−m . We have d

dt log θ = u −m so that, after inte-

gration first in t and then in x, we have∫
Ωc

log
θ(x, t)

θ(x, 0)
dx = −

∫ t

0
m(τ) dτ.

For any x1 and x2 with u0(x1) < u0(x2), we have, denoting ui = u(xi, t)

and θi = θ(xi, t),
d
dt log(u2 − u1) = u1 + u2 = (u1 − m) + (u2 − m) +

2m = d
dt log(θ1θ2) + 2m. After integrating in t, we then obtain, denoting

u0i = u0(xi) and θ0i = θ(xi, 0),

log
u1 − u2

u01 − u02
= log

θ1θ2

θ01θ02
− 2

∫
Ωc

log
θ

θ0
dx.

That is, for any x, y ∈ Ωc,

u(x, t) − u(y, t) =
{

θ(x,t)θ(y,t)
M0−u0(x) − θ(x,t)θ(y,t)

M0−u0(y)

}
(35)

× exp
(
2
∫
Ωc log (M0−u0(z))

θ(z,t) dz
)
.
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(i) Assume that
∫ 1
0

dy
M0−u0(y) < ∞. Then integrating (35) over y ∈ Ωc

gives

u(x, t) =

∫
Ωc

θ(x, t)θ(y, t)
{

1
M0−u0(x) −

1
M0−u0(y)

}
dy

× exp
(
2
∫
Ωc log (M0−u0(z))

θ(z,t) dy
)
.

Sending t ↗ T ∗ and recalling that θ ↗ 1 pointwise in Ωc, we then obtain

(33).

If
∫ T ∗

0
q

|m|dt < ∞, then m∗ > −∞. Hence, we derive from (35) that

u∗(x) = m∗ +{ 1
M0−u0(x) −

1
M0−m0

} exp{2
∫ 1
0 log(M0−u0(z))dz}. As m∗ < 0

and
∫ 1
0 u∗(x)dx = 0, we must have

∫ 1
0

dx
M−u0(x) < ∞. This proves the

assertion (i).

(iia) Assume that
∫ 1
0 log(M0 − u0(x)) dx = −∞. We see from (35) that

limt↗T ∗(u(x, t) −m(t)) = 0.

(iib) Assume that
∫ 1
0 log(M0 − u0(x))dx > −∞. Sending t ↗ T ∗ we

obtain (34) from (35). This completes the proof. �

4. Conclusion

The dynamical system (1) ( considered in L∞(0, 1) ) has the following

property. It has infinite number of steady-states, which are characterized

by |u0(x)| = constant. If u0 ∈ L∞ is a steady-state, then, for all λ ∈ R, λu0

is a steady-state, too. All the steady-states are unstable. In fact, Theorems

A and B shows that any neighborhood of a steady-state contains blow-up

solutions.

(1) can be written as

u̇ = P (f(u)) ,

where P = L2(0, 1) → L2(0, 1)/R is the orthogonal projection. Without the

projection, all the solution except for the trivial one u ≡ 0 blows up in finite

time. We may say that an infinite number of global solutions including

steady-states are created by the projection, although almost all solutions

blow up in finite time even in the presence of the projection — the set of

all the global solutions are of first category.
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