Birational Symmetries, Hirota Bilinear Forms and Special Solutions of the Garnier Systems in
 2-variables

By Teruhisa Tsuda

Abstract

Hirota bilinear forms of the Garnier system in 2-variables, $G(1,1,1,1,1)$, are given. By using Hirota bilinear forms we construct new birational symmetries of $G(1,1,1,1,1)$. We obtain special solutions of the Garnier system in n-variables, which are described in terms of solutions of the Garnier system in $(n-1)$-variables. We investigate also algebraic solutions for $n=2$.

Introduction

The Painlevé equations $P_{J}(J=I, \cdots, V I)$ are derived from the theory of monodromy preserving deformation of the linear differential equation of second order:

$$
\begin{equation*}
\left(L_{J}\right) \quad \frac{d^{2} y}{d x^{2}}+p_{1}(x) \frac{d y}{d x}+p_{2}(x) y=0 . \tag{0.1}
\end{equation*}
$$

R. Fuchs ([1]) had obtained the sixth Painlevé equation $P_{V I}$ by considering monodromy preserving deformation of (0.1). In fact, $P_{V I}$ is deduced from complete integrability conditions for an extended system of (0.1). For each of the other Painlevé equations $P_{J}(J=I, \cdots, V)$, such construction from integrability conditions was established firstly by R. Garnier ([2]) without any mention about monodromy property and later more precise consideration has been done by M. Jimbo, T. Miwa, K. Ueno ([4, 16]) and by K. Okamoto ([11]). In this paper we do not enter into details of the theory of monodromy preserving deformation; we give below the list of singularities

[^0]of linear equations $L_{J}(J=I I, \cdots, V I)$.

	Singularities of L_{J}
$P_{V I}$	$(1,1,1,1)$
P_{V}	$(1,1,2)$
$P_{I V}$	$(1,3)$
$P_{I I I}$	$(2,2)$
$P_{I I}$	(4)

In this table, $\left(r_{1}, r_{2}, \cdots, r_{m}\right)$ means that L_{J} has m singular points with the Poincaré ranks, $r_{1}-1, r_{2}-1, \cdots, r_{m}-1$, respectively. We can thus regard each Painlevé equation $P_{J}(J=I I, \cdots, V I)$ as corresponding to a partition of 4 through the monodromy preserving deformation. Note that the first Painlevé equation P_{I} contains no constant parameter and there is no correspondence to any partition of 4 .

A generalization of the sixth Painlevé equation $P_{V I}$ was also obtained by R. Garnier ([2]) from the viewpoint of the theory of monodromy preserving deformation. He considered the monodromy preserving deformation of the linear differential equation of second order of the form (0.1), with $n+3$ regular singularities and n apparent singularities $x=\lambda_{j}$, whose Riemannian scheme is given by
(0.3) $\quad\left(\begin{array}{ccccc}x=0 & x=1 & x=\infty & x=t_{i} & x=\lambda_{j} \\ 0 & 0 & \alpha & 0 & 0 \\ \kappa_{0} & \kappa_{1} & \alpha+\kappa_{\infty} & \theta_{i} & 2\end{array}\right), \quad i, j=1, \cdots, n$,
where

$$
\alpha=-\frac{1}{2}\left(\kappa_{0}+\kappa_{1}+\kappa_{\infty}+\sum_{i} \theta_{i}-1\right) .
$$

Then he obtained the system of nonlinear partial differential equations for $\lambda_{j}=\lambda_{j}(t)$, called the Garnier system in n-variables.

It is known $([3,7,12])$ that through a certain change of variables the Garnier system in n-variables is equivalent to the following Hamiltonian system:

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial s_{j}}=\frac{\partial H_{j}}{\partial p_{i}}, \quad \frac{\partial p_{i}}{\partial s_{j}}=-\frac{\partial H_{j}}{\partial q_{i}}, \quad(i, j=1, \cdots, n) \tag{0.4}
\end{equation*}
$$

with Hamiltonians:
(0.5) $\quad H_{i}=\frac{1}{s_{i}\left(s_{i}-1\right)}\left(\sum_{j, k} E_{j k}^{i}(s, q) p_{j} p_{k}-\sum_{j} F_{j}^{i}(s, q) p_{j}+\kappa q_{i}\right)$.

Here $E_{j k}^{i}=E_{k j}^{i}, F_{j}^{i} \in \mathbb{C}(s)[q]$ are given by
(0.6) $E_{j k}^{i}= \begin{cases}q_{i} q_{j} q_{k}, & \text { if } i \neq j \neq k \neq i, \\ q_{i} q_{j}\left(q_{j}-R_{j i}\right), & \text { if } i \neq j=k, \\ q_{i} q_{k}\left(q_{i}-R_{i k}\right), & \text { if } i=j \neq k, \\ q_{i}\left(q_{i}-1\right)\left(q_{i}-s_{i}\right)-\sum_{l(\neq i)} S_{i l} q_{i} q_{l}, & \text { if } i=j=k,\end{cases}$
$(0.7) \quad F_{j}^{i}= \begin{cases}A q_{i} q_{j}-\theta_{i} R_{i j} q_{j}-\theta_{j} R_{j i} q_{i}, & \text { if } \quad i \neq j, \\ \left(\kappa_{0}-1\right) q_{i}\left(q_{i}-1\right)+\kappa_{1} q_{i}\left(q_{i}-s_{i}\right) \\ +\theta_{i}\left(q_{i}-1\right)\left(q_{i}-s_{i}\right) \\ +\sum_{k(\neq i)}\left(\theta_{k} q_{i}\left(q_{i}-R_{i k}\right)-\theta_{i} S_{i k} q_{k}\right), & \text { if } \quad i=j,\end{cases}$
with

$$
\begin{gather*}
R_{i j}=\frac{s_{i}\left(s_{j}-1\right)}{s_{j}-s_{i}}, \quad S_{i j}=\frac{s_{i}\left(s_{i}-1\right)}{s_{i}-s_{j}} \tag{0.8}\\
A=\kappa_{0}+\kappa_{1}+\sum_{l} \theta_{l}-1, \quad \kappa=\frac{1}{4}\left(A^{2}-\kappa_{\infty}^{2}\right) \tag{0.9}
\end{gather*}
$$

In the same way as the Painlevé equations, we can regard the Garnier system in n-variables as corresponding to the partition $(1,1, \cdots, 1)$ of $n+3$.

It is well known that the confluence of singularities of L_{J} causes the step-by-step degeneration of the Painlevé equations P_{J} ([12]). In a way similar to the Painlevé equations, the degeneration of the Garnier system can be considered. Many degenerate Garnier systems are studied by several authors ([5, 6, 8, 9, 15]). Each of degenerate Garnier systems corresponds to a certain partition of natural number through the theory of monodromy preserving deformation. In this paper we denote by $G(\#)$ the Painlevé equation or the (degenerate) Garnier system corresponding to the partition (\#). For example, we refer by $G(1,1,1,1,1)$ the Garnier system in 2-variables, by $G(1,3)$ the fourth Painlevé equation $P_{I V}$ and so on; see Figure 1.

Painlevé equations
$(2,2)$

Garnier systems in 2-variables

Fig. 1. degeneration scheme

In this paper we study special solutions, Hirota bilinear forms, and birational symmetries of the Garnier system in 2-variables $G(1,1,1,1,1)$. Particular solutions of the system which are described in terms of hypergeometric functions in 2 -variables, are known ([14]), and we discuss in the present article other types of particular solutions; we consider special solutions of $G(1,1,1,1,1)$, given in terms of solutions of the sixth Painlevé equation $P_{V I}$; see Theorem 2.1. Moreover, we will see that for $(\#)=(1,1, \cdots, 1)$, the Garnier system $G(1, \#)$ has particular solutions given in terms of solutions of $G(\#)$. It is natural to make the following conjecture.

Conjecture. For any partition (\#) of an integer $n(\geq 4), G(1, \#)$ has a particular solution written in terms of solutions of $G(\#)$.

If the statement of the conjecture is true, we denote this fact simply by

$$
\begin{equation*}
G(1, \#) \supset G(\#) . \tag{0.10}
\end{equation*}
$$

For example, we obtain (0.10) for $(\#)=(1,1, \cdots, 1)$; see Theorem 6.1. Moreover we can verify (0.10) for $(1,1,2),(1,3)$, (4), (5); details will be discussed in forthcoming papers.

The second subject of the investigation concerns Hirota bilinear forms of the Garnier system $G(1,1,1,1,1)$, which plays very important roles in this paper. In fact, we study special solutions and birational symmetries by means of them.

Let us consider, for example, $P_{I I}$, which is equivalent to the following Hamiltonian system $\mathcal{H}(\alpha)$:

$$
\begin{equation*}
\frac{\mathrm{d} q}{\mathrm{~d} s}=\frac{\partial H}{\partial p}, \quad \frac{\mathrm{~d} p}{\mathrm{~d} s}=-\frac{\partial H}{\partial q} \tag{0.11}
\end{equation*}
$$

with the Hamiltonian $H=H(\alpha)$:

$$
\begin{equation*}
H=\frac{1}{2} p^{2}-\left(q^{2}+\frac{s}{2}\right) p-\left(\alpha+\frac{1}{2}\right) q \tag{0.12}
\end{equation*}
$$

By defining $\mathrm{d} \log \tau(\alpha)=H(\alpha) \mathrm{d} s$, Hirota bilinear forms of $P_{I I}$ are described as

$$
\begin{align*}
& \left(\mathcal{D}^{2}+\frac{s}{2}\right) g \cdot f=0 \tag{0.13}\\
& \left(\mathcal{D}^{3}+\frac{s}{2} \mathcal{D}-\alpha\right) g \cdot f=0 \tag{0.14}
\end{align*}
$$

where $f=\tau(\alpha), g=\tau(\alpha-1)$ and \mathcal{D} is the Hirota derivative with respect to $\mathrm{d} / \mathrm{d} s$. If we put $f=1$ and $\alpha=-1 / 2$, above bilinear forms reduce to the linear differential equation for g :

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}+\frac{s}{2}\right) g=0
$$

which is the Airy differential equation. This gives a classical solution of $P_{I I}$; see [15].

Return to bilinear forms (0.13)-(0.14), it is easy to see that these are invariant under the action $w:(f, g ; \alpha) \mapsto(g, f ;-\alpha)$. This trivial symmetry can be lifted to a birational canonical transformation of $\mathcal{H}(\alpha)$. And the fixed solution with respect to $w,(f, g ; \alpha)=\left(\exp \left(-s^{3} / 24\right), \exp \left(-s^{3} / 24\right) ; 0\right)$, gives a rational solution of $P_{I I},(q, p ; \alpha)=(0, s / 2 ; 0)$.

In the present article we study mainly the Garnier system in 2-variables $G(1,1,1,1,1)$. We will give particular solutions which are described in terms of solutions of $P_{V I}$ (Theorem 2.1), Hirota bilinear forms (Theorem 3.2), birational symmetries (Theorem 4.1, 4.3) and consider algebraic solutions. Finally we consider the Garnier system in n-variables, where we denote it by \mathcal{G}_{n}. We obtain particular solutions of \mathcal{G}_{n} given in terms of solutions of \mathcal{G}_{n-1} (Theorem 6.1).

1. Hamiltonian System of $G(1,1,1,1,1)$

The Garnier system $G(1,1,1,1,1)$ is equivalent to the Hamiltonian system

$$
\frac{\partial q_{i}}{\partial s_{j}}=\frac{\partial H_{j}}{\partial p_{i}}, \quad \frac{\partial p_{i}}{\partial s_{j}}=-\frac{\partial H_{j}}{\partial q_{i}}, \quad(i, j=1,2)
$$

with Hamiltonians:
(1.1) $s_{1}\left(s_{1}-1\right) H_{1}=\left(q_{1}\left(q_{1}-1\right)\left(q_{1}-s_{1}\right)-\frac{s_{1}\left(s_{1}-1\right)}{s_{1}-s_{2}} q_{1} q_{2}\right) p_{1}^{2}$

$$
+2 q_{1} q_{2}\left(q_{1}-\frac{s_{1}\left(s_{2}-1\right)}{s_{2}-s_{1}}\right) p_{1} p_{2}
$$

$$
+q_{1} q_{2}\left(q_{2}-\frac{s_{2}\left(s_{1}-1\right)}{s_{1}-s_{2}}\right) p_{2}^{2}
$$

$$
-\left\{\left(\kappa_{0}-1\right) q_{1}\left(q_{1}-1\right)+\kappa_{1} q_{1}\left(q_{1}-s_{1}\right)\right.
$$

$$
+\theta_{1}\left(q_{1}-1\right)\left(q_{1}-s_{1}\right)
$$

$$
\left.+\theta_{2} q_{1}\left(q_{1}-\frac{s_{1}\left(s_{2}-1\right)}{s_{2}-s_{1}}\right)-\theta_{1} \frac{s_{1}\left(s_{1}-1\right)}{s_{1}-s_{2}} q_{2}\right\} p_{1}
$$

$$
-\left\{\theta q_{1} q_{2}-\theta_{2} q_{1} \frac{s_{2}\left(s_{1}-1\right)}{s_{1}-s_{2}}-\theta_{1} q_{2} \frac{s_{1}\left(s_{2}-1\right)}{s_{2}-s_{1}}\right\} p_{2}
$$

$$
+\kappa q_{1}
$$

and H_{2} is of the form obtained by the replacement

$$
\left\{q_{1} \leftrightarrow q_{2}, p_{1} \leftrightarrow p_{2}, s_{1} \leftrightarrow s_{2}, \theta_{1} \leftrightarrow \theta_{2}\right\}
$$

in H_{1}. Here we consider $\vec{\kappa}=\left(\kappa_{0}, \kappa_{1}, \kappa_{\infty}, \theta_{1}, \theta_{2}\right) \in \mathbb{C}^{5}$ as parameters and put $\kappa=\left(\theta-\kappa_{\infty}\right)\left(\theta+\kappa_{\infty}\right) / 4, \theta=\kappa_{0}+\kappa_{1}+\theta_{1}+\theta_{2}-1$.

2. Particular Solutions

It is known ([14]) that $G(1,1,1,1,1)$ with certain special values of parameters admits a particular solution expressed in terms of Appell's hypergeometric function $F_{1}\left(\alpha, \beta, \beta^{\prime}, \gamma ; x, y\right)$. In this section we show that $G(1,1,1,1,1)$ admits a particular solution expressed in terms of the sixth Painlevé transcendent; in fact we have the

THEOREM 2.1. If $\theta_{2}=0$, then $G(1,1,1,1,1)$ has a particular solution of the form:

$$
q_{2}=0, \quad \frac{\partial q_{1}}{\partial s_{2}}=\frac{\partial p_{1}}{\partial s_{2}}=0
$$

Moreover $\left(q_{1}, p_{1}\right)$ satisfy

$$
\begin{aligned}
s_{1}\left(s_{1}-1\right) \frac{\partial q_{1}}{\partial s_{1}}= & 2 q_{1}\left(q_{1}-1\right)\left(q_{1}-s_{1}\right) p_{1} \\
& -\left\{\left(\kappa_{0}-1\right) q_{1}\left(q_{1}-1\right)+\kappa_{1} q_{1}\left(q_{1}-s_{1}\right)\right. \\
& \left.+\theta_{1}\left(q_{1}-1\right)\left(q_{1}-s_{1}\right)\right\} \\
s_{1}\left(s_{1}-1\right) \frac{\partial p_{1}}{\partial s_{1}}= & -\left\{3 q_{1}^{2}-2\left(s_{1}+1\right) q_{1}+s_{1}\right\} p_{1}^{2} \\
& +\left\{\left(\kappa_{0}-1\right)\left(2 q_{1}-1\right)+\kappa_{1}\left(2 q_{1}-s_{1}\right)\right. \\
& \left.+\theta_{1}\left(2 q_{1}-s_{1}-1\right)\right\} p_{1}-\kappa
\end{aligned}
$$

which is equivalent to the sixth Painlevé equation $P_{V I}$. And p_{2} satisfies Riccati type equations whose coefficients are polynomials in $\left(q_{1}, p_{1}\right)$.

Proof. Consider the case $\theta_{2}=0$. Take $q_{2}=0$ then

$$
\begin{aligned}
s_{1}\left(s_{1}-1\right) H_{1}= & q_{1}\left(q_{1}-1\right)\left(q_{1}-s_{1}\right) p_{1}^{2} \\
& -\left(\left(\kappa_{0}-1\right) q_{1}\left(q_{1}-1\right)+\kappa_{1} q_{1}\left(q_{1}-s_{1}\right)\right. \\
& \left.\quad+\theta_{1}\left(q_{1}-1\right)\left(q_{1}-s_{1}\right)\right) p_{1}+\kappa q_{1} .
\end{aligned}
$$

This is nothing but the Hamiltonian of $P_{V I}$. And it can be verified by computations,

$$
\frac{\partial q_{1}}{\partial s_{2}}=\frac{\partial H_{2}}{\partial p_{1}}=0, \quad \frac{\partial p_{1}}{\partial s_{2}}=-\frac{\partial H_{2}}{\partial q_{1}}=0
$$

Thus $q_{1}\left(s_{1}\right), p_{1}\left(s_{1}\right)$ are solved by the solutions of $P_{V I}$. Also it can be seen easily that $p_{2}\left(s_{1}, s_{2}\right)$ satisfies Riccati type equations:

$$
\begin{aligned}
s_{1}\left(s_{1}-1\right) \frac{\partial p_{2}}{\partial s_{1}}= & \frac{s_{2}\left(s_{1}-1\right)}{s_{1}-s_{2}} q_{1} p_{2}^{2} \\
& -\left\{\left(2 q_{1} p_{1}-\theta\right) q_{1}+\frac{s_{1}\left(s_{2}-1\right)}{s_{2}-s_{1}}\left(2 q_{1} p_{1}-\theta_{1}\right)\right\} p_{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{s_{1}\left(s_{1}-1\right)}{s_{1}-s_{2}}\left(q_{1} p_{1}-\theta_{1}\right) p_{1} \\
s_{2}\left(s_{2}-1\right) \frac{\partial p_{2}}{\partial s_{2}}= & \left(\frac{s_{2}\left(s_{2}-1\right)}{s_{2}-s_{1}} q_{1}-s_{2}\right) p_{2}^{2} \\
& +\left\{\frac{s_{2}\left(s_{1}-1\right)}{s_{1}-s_{2}}\left(2 q_{1} p_{1}-\theta_{1}\right)+1-\kappa_{0}-\kappa_{1} s_{2}\right\} p_{2} \\
& -\left(q_{1} p_{1}-\theta\right) q_{1} p_{1}+\frac{s_{1}\left(s_{2}-1\right)}{s_{2}-s_{1}}\left(q_{1} p_{1}-\theta_{1}\right) p_{1}-\kappa
\end{aligned}
$$

As is shown by Theorem 2.1, we have $G(1,1,1,1,1) \supset G(1,1,1,1)$; the sixth Painlevé equation $P_{V I}$ is contained in the two dimensional Garnier system, $G(1,1,1,1,1)$.

3. τ-functions and Hirota Bilinear Forms

We can verify that, for the Hamiltonians of the Garnier system,

$$
\begin{aligned}
\frac{\partial H_{i}}{\partial s_{j}} & =\sum_{k=1,2}\left(\frac{\partial H_{i}}{\partial q_{k}} \frac{\partial q_{k}}{\partial s_{j}}+\frac{\partial H_{i}}{\partial p_{k}} \frac{\partial p_{k}}{\partial s_{j}}\right)+\left(\frac{\partial}{\partial s_{j}}\right) H_{i} \\
& =\sum_{k=1,2}\left(\frac{\partial H_{i}}{\partial q_{k}} \frac{\partial H_{j}}{\partial p_{k}}-\frac{\partial H_{i}}{\partial p_{k}} \frac{\partial H_{j}}{\partial q_{k}}\right)+\left(\frac{\partial}{\partial s_{j}}\right) H_{i} \\
& =\left(\frac{\partial}{\partial s_{j}}\right) H_{i}
\end{aligned}
$$

where $\left(\partial / \partial s_{j}\right)$ denotes differentiation with respect to s_{j} such that (q, p) are viewed to be independent of s. By the use of (1.1), we have

$$
\begin{equation*}
\frac{\partial H_{1}}{\partial s_{2}}=\frac{\partial H_{2}}{\partial s_{1}}=\frac{A(q, p, s)}{\left(s_{1}-s_{2}\right)^{2}} \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
A(q, p, s)= & q_{1} q_{2} p_{1}^{2}-2 q_{1} q_{2} p_{1} p_{2}+q_{1} q_{2} p_{2}^{2} \tag{3.2}\\
& +\left(\theta_{2} q_{1}-\theta_{1} q_{2}\right) p_{1}+\left(\theta_{1} q_{2}-\theta_{2} q_{1}\right) p_{2}
\end{align*}
$$

It is not difficult to show the
Proposition $3.1([7])$. The 1 -form $\omega \equiv H_{1} \mathrm{~d} s_{1}+H_{2} \mathrm{~d} s_{2}$ is closed.

Then we can define, up to multiplicative constants, the τ-function, $\tau=$ $\tau(\vec{\kappa})$, related to $G(1,1,1,1,1)$ as follows:

$$
\begin{equation*}
\omega=\mathrm{d} \log \tau \tag{3.3}
\end{equation*}
$$

Now we set a pair of τ-functions (f, g) as

$$
\begin{align*}
\mathrm{d} \log f & =H_{1} \mathrm{~d} s_{1}+H_{2} \mathrm{~d} s_{2} \tag{3.4}\\
\mathrm{~d} \log g & =\bar{H}_{1} \mathrm{~d} s_{1}+\bar{H}_{2} \mathrm{~d} s_{2} \tag{3.5}
\end{align*}
$$

where

$$
\begin{equation*}
s_{i} \bar{H}_{i}=s_{i} H_{i}+x_{i}, \quad x_{i}=-q_{i} p_{i}, \quad(i=1,2) \tag{3.6}
\end{equation*}
$$

Remark. (i) Existence of the function $g=g\left(s_{1}, s_{2}\right)$ satisfying (3.5) is assured by means of the equation:

$$
s_{2} \frac{\partial x_{1}}{\partial s_{2}}=s_{1} \frac{\partial x_{2}}{\partial s_{1}}
$$

(ii) If we write as $f=\tau(\vec{\kappa})$, then we will see later that $g=\tau(\rho(\vec{\kappa}))=$ $\tau\left(R_{\tau}(\vec{\kappa})\right)$, where $\rho(\vec{\kappa})=\left(\kappa_{0}+1, \kappa_{1}-1, \kappa_{\infty}, \theta_{1}, \theta_{2}\right)$ and $R_{\tau}(\vec{\kappa})=\left(-\kappa_{0}+\right.$ $\left.1,-\kappa_{1}+1,-\kappa_{\infty},-\theta_{1},-\theta_{2}\right)$.

Now we recall the definition of Hirota derivatives (in 2-variables):

$$
\begin{equation*}
P\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right) g \cdot f=\left.P\left(D_{1}, D_{2}\right)(g(s+t) g(s-t))\right|_{t_{1}=t_{2}=0} \tag{3.7}
\end{equation*}
$$

where $P\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right)$ is a polynomial in $\left(\mathcal{D}_{1}, \mathcal{D}_{2}\right)$ and D_{i} is a derivation. In this paper we deal with

$$
\begin{equation*}
D_{i}=s_{i} \frac{\partial}{\partial s_{i}} \tag{3.8}
\end{equation*}
$$

By definition we have

$$
\begin{align*}
\mathcal{D}_{i} g \cdot f= & \left(D_{i} g\right) f-g\left(D_{i} f\right) \tag{3.9}\\
\mathcal{D}_{i} \mathcal{D}_{j} g \cdot f= & \left(D_{i} D_{j} g\right) f-\left(D_{i} g\right)\left(D_{j} f\right)-\left(D_{j} g\right)\left(D_{i} f\right) \\
& +g\left(D_{i} D_{j} f\right)
\end{align*}
$$

for $i, j=1,2$. It is easy to verify the following identities:

$$
\begin{align*}
D_{i} \log \frac{g}{f}= & \frac{\mathcal{D}_{i} g \cdot f}{g \cdot f}, \tag{3.11}\\
D_{i} D_{j} \log g f= & \frac{\mathcal{D}_{i} \mathcal{D}_{j} g \cdot f}{g \cdot f}-\frac{\mathcal{D}_{i} g \cdot f}{g \cdot f} \frac{\mathcal{D}_{j} g \cdot f}{g \cdot f}, \tag{3.12}\\
D_{i}^{2} D_{j} \log \frac{g}{f}= & \frac{\mathcal{D}_{i}^{2} \mathcal{D}_{j} g \cdot f}{g \cdot f}-\frac{\mathcal{D}_{i}^{2} g \cdot f}{g \cdot f} \frac{\mathcal{D}_{j} g \cdot f}{g \cdot f} \tag{3.13}\\
& -2 \frac{\mathcal{D}_{i} \mathcal{D}_{j} g \cdot f}{g \cdot f} \frac{\mathcal{D}_{i} g \cdot f}{g \cdot f}+2\left(\frac{\mathcal{D}_{i} g \cdot f}{g \cdot f}\right)^{2} \frac{\mathcal{D}_{j} g \cdot f}{g \cdot f},
\end{align*}
$$

for $i, j=1,2$.
For the pair of τ-functions (f, g), we have the
TheOrem 3.2. The pair of τ-functions (f, g) satisfies bilinear equations of the forms:

$$
\begin{align*}
& B_{1}(g, f ; \vec{\kappa})+s_{1}\left(s_{2}-1\right) B_{2}(g, f ; \vec{\kappa})=0, \tag{3.14}\\
& \frac{s_{1}-1}{s_{1}} B_{3}(g, f ; \vec{\kappa})+\frac{\left(s_{1}-1\right)^{2}}{s_{1}} B_{4}(g, f ; \vec{\kappa})+\frac{s_{1}^{2}-s_{2}}{s_{1} s_{2}} B_{5}(g, f ; \vec{\kappa}) \tag{3.15}\\
& \quad+2\left(\kappa_{0}-\kappa_{1}\right)\left(s_{1}-s_{2}\right) B_{2}(g, f ; \vec{\kappa})+B_{6}(g, f ; \vec{\kappa})=0,
\end{align*}
$$

and satisfies also the equations obtained by the replacement $\left\{s_{1} \leftrightarrow s_{2}, \theta_{1} \leftrightarrow\right.$ $\left.\theta_{2}\right\}$ in (3.14), (3.15). Here \mathcal{D}_{i} is the Hirota derivative and $B_{i}(g, f ; \vec{\kappa})$ are given by:

$$
\begin{align*}
B_{1}(g, f ; \vec{\kappa})= & \left(s_{1}-1\right) \mathcal{D}_{1}^{2} g \cdot f \tag{3.16}\\
& +\left\{\left(\kappa_{1}+\theta_{1}\right) s_{1}-\left(\kappa_{0}+\theta_{1}-1\right)\right\} \mathcal{D}_{1} g \cdot f \\
& +\left(s_{1}+1\right) g \cdot D_{1} f, \\
B_{2}(g, f ; \vec{\kappa})= & \frac{1}{s_{1}+s_{2}}\left(2 \mathcal{D}_{1} \mathcal{D}_{2} g \cdot f+\theta_{2} \mathcal{D}_{1} g \cdot f+\theta_{1} \mathcal{D}_{2} g \cdot f\right), \tag{3.17}\\
B_{3}(g, f ; \vec{\kappa})= & \left(s_{1}-1\right) \mathcal{D}_{1}^{3} g \cdot f \tag{3.18}\\
& +\left\{\left(\kappa_{1}+\theta_{1}\right) s_{1}-\left(\kappa_{0}+\theta_{1}-1\right)\right\} \mathcal{D}_{1}^{2} g \cdot f \\
& +\left(s_{1}+1\right) \mathcal{D}_{1} g \cdot D_{1} f \\
& +\frac{s_{1}}{s_{1}-1}\left(\left\{\left(\kappa_{0}-\kappa_{1}-\kappa_{\infty}\right)\left(\kappa_{0}-\kappa_{1}+\kappa_{\infty}\right)\right.\right. \\
& \left.+\theta_{1}\left(2 \kappa_{0}+2 \kappa_{1}+\theta_{1}-2\right)\right\} \mathcal{D}_{1} g \cdot f
\end{align*}
$$

$$
\left.+\left(\kappa_{1}-\kappa_{0}\right)\left(g \cdot D_{1} f+D_{1} g \cdot f\right)+2 \theta_{1} \kappa g \cdot f\right)
$$

$$
\begin{align*}
B_{4}(g, f ; \vec{\kappa})= & 2 \mathcal{D}_{1}^{2} \mathcal{D}_{2} g \cdot f+\theta_{2} \mathcal{D}_{1}^{2} g \cdot f+\theta_{1} \mathcal{D}_{1} \mathcal{D}_{2} g \cdot f \tag{3.19}\\
B_{5}(g, f ; \vec{\kappa})= & \left(s_{2}-1\right) \mathcal{D}_{1} \mathcal{D}_{2}^{2} g \cdot f \tag{3.20}\\
& +\left\{\left(\kappa_{1}+\theta_{2}\right) s_{2}-\left(\kappa_{0}+\theta_{2}-1\right)\right\} \mathcal{D}_{1} \mathcal{D}_{2} g \cdot f \\
& +\left(s_{2}+1\right) \mathcal{D}_{1} g \cdot D_{2} f
\end{align*}
$$

$$
\begin{equation*}
B_{6}(g, f ; \vec{\kappa})=\theta_{2}\left(2 \theta_{1}+\theta_{2}\right) \mathcal{D}_{1} g \cdot f+2 \theta_{1}\left(\kappa_{0}+\kappa_{1}-1\right) \mathcal{D}_{2} g \cdot f \tag{3.21}
\end{equation*}
$$

REmARK. (i) If we put $\theta_{2}=0, \frac{\partial g}{\partial s_{2}}=\frac{\partial f}{\partial s_{2}}=0$, then above bilinear forms (3.14)-(3.15) reduce to the following:

$$
\begin{align*}
& \left(s_{1}-1\right) \mathcal{D}_{1}^{2} g \cdot f+\left\{\left(\kappa_{1}+\theta_{1}\right) s_{1}-\left(\kappa_{0}+\theta_{1}-1\right)\right\} \mathcal{D}_{1} g \cdot f \tag{3.22}\\
& +\left(s_{1}+1\right) g \cdot D_{1} f=0 \\
& \left(s_{1}-1\right) \mathcal{D}_{1}^{3} g \cdot f+\left\{\left(\kappa_{1}+\theta_{1}\right) s_{1}-\left(\kappa_{0}+\theta_{1}-1\right)\right\} \mathcal{D}_{1}^{2} g \cdot f \tag{3.23}\\
& +\left(s_{1}+1\right) \mathcal{D}_{1} g \cdot D_{1} f \\
& +\frac{s_{1}}{s_{1}-1}\left(\left\{\left(\kappa_{0}-\kappa_{1}-\kappa_{\infty}\right)\left(\kappa_{0}-\kappa_{1}+\kappa_{\infty}\right)\right.\right. \\
& \left.\quad+\theta_{1}\left(2 \kappa_{0}+2 \kappa_{1}+\theta_{1}-2\right)\right\} \mathcal{D}_{1} g \cdot f \\
& \left.\quad+\left(\kappa_{1}-\kappa_{0}\right)\left(g \cdot D_{1} f+D_{1} g \cdot f\right)+2 \theta_{1} \kappa g \cdot f\right)=0
\end{align*}
$$

These are equivalent to the bilinear forms of $P_{V I}$ ([15]).
(ii) If we put $\kappa=0, f=1$, then the bilinear forms of $G(1,1,1,1,1)$ reduce to the system of linear partial differential equations for g, which is equivalent to Appell's hypergeometric differential equation.

Proof of Theorem 3.2. Recall the definitions of τ-functions (f, g) :

$$
\begin{equation*}
s_{i} H_{i}=D_{i} \log f, \quad s_{i} \bar{H}_{i}=D_{i} \log g \tag{3.24}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{i} \bar{H}_{i}=s_{i} H_{i}+x_{i}, \quad x_{i}=-q_{i} p_{i} \tag{3.25}
\end{equation*}
$$

for $i=1,2$. Using the formulae (3.11)-(3.13), we have expressions of Hirota derivatives of (f, g), in terms of x_{i} and H_{i}, as follows:

$$
\begin{equation*}
\frac{\mathcal{D}_{i} g \cdot f}{g \cdot f}=x_{i} \tag{3.26}
\end{equation*}
$$

$$
\begin{align*}
\frac{\mathcal{D}_{i} \mathcal{D}_{j} g \cdot f}{g \cdot f}= & 2 D_{j}\left(s_{i} H_{i}\right)+D_{j} x_{i}+x_{i} x_{j} \tag{3.27}\\
\frac{\mathcal{D}_{i}^{2} \mathcal{D}_{j} g \cdot f}{g \cdot f}= & D_{i}^{2} x_{j}-\left(2 D_{i}\left(s_{i} H_{i}\right)+D_{i} x_{i}+x_{i}^{2}\right) x_{j} \tag{3.28}\\
& -2\left(2 D_{j}\left(s_{i} H_{i}\right)+D_{j} x_{i}+x_{i} x_{j}\right) x_{i}+2 x_{i}^{2} x_{j}
\end{align*}
$$

Put these into $B_{i}(g, f ; \vec{\kappa})$, we can verify the bilinear relations (3.14) and (3.15) by computations.

4. Birational Symmetries

In this section we consider birational symmetries of $G(1,1,1,1,1)$. The Hamiltonians $H_{i}(i=1,2)$ are invariant under the action: $\kappa_{\infty} \mapsto-\kappa_{\infty}$. This trivial symmetry can be lifted to a birational canonical transformation of $G(1,1,1,1,1)$.

On the other hand, from the viewpoint of monodromy preserving deformations, H. Kimura constructed birational symmetries of $G(1,1,1,1,1)$ which act on the parameters as permutations; see [3].

Then combining the above results, we obtain the following theorem.
THEOREM 4.1. There exist birational canonical transformations

$$
\mathcal{H}(\vec{\kappa}) \rightarrow \mathcal{H}\left(R_{\Delta}(\vec{\kappa})\right)
$$

of $G(1,1,1,1,1)$, where $\mathcal{H}(\vec{\kappa})=(q(\vec{\kappa}), p(\vec{\kappa}), H(\vec{\kappa}), s)$. Here the transformations $R_{\Delta}:(q, p) \mapsto(Q, P)$ are given as follows:

R_{Δ}	action on $\vec{\kappa}$	$Q_{i} \quad(i=1,2)$	$P_{i} \quad(i=1,2)$
$R_{\kappa_{\infty}}$	$\kappa_{\infty} \mapsto-\kappa_{\infty}$	$Q_{i}=q_{i}$	$P_{i}=p_{i}$
$R_{\kappa_{1}}$	$\kappa_{1} \mapsto-\kappa_{1}$	$Q_{i}=q_{i}$	$P_{i}=p_{i}-\frac{\kappa_{1}}{q_{1}+q_{2}-1}$
$R_{\kappa_{0}}$	$\kappa_{0} \mapsto-\kappa_{0}$	$Q_{i}=q_{i}$	$P_{i}=p_{i}-\frac{\kappa_{0}}{s_{i}\left(q_{1} / s_{1}+q_{2} / s_{2}-1\right)}$
$R_{\theta_{1}}$	$\theta_{1} \mapsto-\theta_{1}$	$Q_{i}=q_{i}$	$P_{1}=p_{1}-\theta_{1} / q_{1}, \quad P_{2}=p_{2}$
$R_{\theta_{2}}$	$\theta_{2} \mapsto-\theta_{2}$	$Q_{i}=q_{i}$	$P_{1}=p_{1}, \quad P_{2}=p_{2}-\theta_{2} / q_{2}$

Furthermore, another birational symmetry can be derived from the Hirota bilinear forms.

Proposition 4.2. Hirota bilinear forms of $G(1,1,1,1,1)$ are invariant under the action

$$
R_{\tau}:(f, g ; \vec{\kappa}) \mapsto\left(g, f ; R_{\tau}(\vec{\kappa})\right)
$$

where $R_{\tau}(\vec{\kappa})=\left(-\kappa_{0}+1,-\kappa_{1}+1,-\kappa_{\infty},-\theta_{1},-\theta_{2}\right)$.
Proof. If $P(\mathcal{D})$ is a monomial, then we have:

$$
\begin{array}{ll}
P(\mathcal{D}) g \cdot f=-P(\mathcal{D}) f \cdot g & (P: \text { odd }) \\
P(\mathcal{D}) g \cdot f=P(\mathcal{D}) f \cdot g & (P: \text { even })
\end{array}
$$

and it is easy to verify that

$$
\begin{aligned}
g \cdot D_{1} f & =\mathcal{D}_{1} f \cdot g+f \cdot D_{1} g \\
\mathcal{D}_{1} g \cdot D_{1} f & =-\mathcal{D}_{1}^{2} f \cdot g-\mathcal{D}_{1} f \cdot D_{1} g \\
\mathcal{D}_{1} g \cdot D_{2} f & =-\mathcal{D}_{1} \mathcal{D}_{2} f \cdot g-\mathcal{D}_{1} f \cdot D_{2} g
\end{aligned}
$$

which we use in the following.
Consider the exchange of τ-functions $f \leftrightarrow g$ in Hirota bilinear forms of $G(1,1,1,1,1),(3.14)-(3.15)$, then we obtain again Hirota bilinear forms of $G(1,1,1,1,1)$ with parameters $R_{\tau}(\vec{\kappa})=\left(-\kappa_{0}+1,-\kappa_{1}+1,-\kappa_{\infty},-\theta_{1},-\theta_{2}\right)$. For example we compute:

$$
\begin{align*}
B_{1}(g, f ; \vec{\kappa})= & \left(s_{1}-1\right) \mathcal{D}_{1}^{2} g \cdot f \tag{4.2}\\
& +\left\{\left(\kappa_{1}+\theta_{1}\right) s_{1}-\left(\kappa_{0}+\theta_{1}-1\right)\right\} \mathcal{D}_{1} g \cdot f \\
& +\left(s_{1}+1\right) g \cdot D_{1} f \\
= & \left(s_{1}-1\right) \mathcal{D}_{1}^{2} f \cdot g \\
& +\left\{\left(-\kappa_{1}-\theta_{1}+1\right) s_{1}-\left(-\kappa_{0}-\theta_{1}\right)\right\} \mathcal{D}_{1} f \cdot g \\
& +\left(s_{1}+1\right) f \cdot D_{1} g \\
= & B_{1}\left(f, g ; R_{\tau}(\vec{\kappa})\right),
\end{align*}
$$

similarly we have $B_{2}(g, f ; \vec{\kappa})=B_{2}\left(f, g ; R_{\tau}(\vec{\kappa})\right)$ and $B_{i}(g, f ; \vec{\kappa})=$ $-B_{i}\left(f, g ; R_{\tau}(\vec{\kappa})\right)$ for $i=3,4,5,6$. We obtain thus Hirota bilinear forms of $G(1,1,1,1,1)$ with parameters $R_{\tau}(\vec{\kappa})$.

This symmetry of τ-functions can be lifted to a birational canonical transformation of $G(1,1,1,1,1)$.

THEOREM 4.3. There exists a birational canonical transformation

$$
R_{\tau}: \mathcal{H}\left(q_{i}, p_{i} ; \vec{\kappa}\right) \rightarrow \mathcal{H}\left(Q_{i}, P_{i} ; R_{\tau}(\vec{\kappa})\right)
$$

of $G(1,1,1,1,1)$ where $R_{\tau}(\vec{\kappa})=\left(-\kappa_{0}+1,-\kappa_{1}+1,-\kappa_{\infty},-\theta_{1},-\theta_{2}\right)$ described as

$$
\begin{align*}
Q_{i} & =\frac{s_{i} p_{i}\left(q_{i} p_{i}-\theta_{i}\right)}{\left(\alpha+q_{1} p_{1}+q_{2} p_{2}\right)\left(\alpha+\kappa_{\infty}+q_{1} p_{1}+q_{2} p_{2}\right)} \tag{4.3}\\
Q_{i} P_{i} & =-q_{i} p_{i} \tag{4.4}
\end{align*}
$$

for $i=1,2$ with $\alpha=-\left(\theta+\kappa_{\infty}\right) / 2$.
Proof. The transposition of τ-functions $R_{\tau}: f \leftrightarrow g$ yields the transposition of Hamiltonians $H_{i} \leftrightarrow \bar{H}_{i}$; we have (4.4) from (3.6). On the other hand, since $g=\tau\left(R_{\tau}(\vec{\kappa})\right)$, the following relation holds:

$$
\begin{equation*}
H_{i}\left(Q, P, s, R_{\tau}(\vec{\kappa})\right)=\bar{H}_{i}=H_{i}(q, p, s, \vec{\kappa})-\frac{q_{i} p_{i}}{s_{i}} \tag{4.5}
\end{equation*}
$$

Using this and (4.4), we obtain (4.3).
Remark. We can construct a birational canonical transformation for $G(1,1,1,1,1)$, called a contiguity relation, which realizes the action on the space of parameters as translation. Put

$$
\begin{equation*}
\rho=R_{\kappa_{1}} \circ R_{\tau} \circ R_{\theta_{1}} \circ R_{\theta_{2}} \circ R_{\kappa_{\infty}} \circ R_{\kappa_{0}} \tag{4.6}
\end{equation*}
$$

then we have a birational canonical transformation

$$
\rho: \mathcal{H}(\vec{\kappa}) \rightarrow \mathcal{H}(\rho(\vec{\kappa})),
$$

where $\rho(\vec{\kappa})=\left(\kappa_{0}+1, \kappa_{1}-1, \kappa_{\infty}, \theta_{1}, \theta_{2}\right)$. The relation between the Hamiltonians is

$$
\begin{equation*}
\rho\left(H_{i}\right)=H_{i}-\frac{q_{i} p_{i}}{s_{i}}, \quad(i=1,2) \tag{4.7}
\end{equation*}
$$

hence we have

$$
\begin{equation*}
\bar{H}_{i}=\rho\left(H_{i}\right)=R_{\tau}\left(H_{i}\right), \quad(i=1,2) \tag{4.8}
\end{equation*}
$$

i.e., $g=\tau(\rho(\vec{\kappa}))=\tau\left(R_{\tau}(\vec{\kappa})\right)$.

5. Algebraic Solutions

Now consider the birational canonical transformation, $w=R_{\tau} \circ R_{\theta_{1}} \circ$ $R_{\theta_{2}} \circ R_{\kappa_{\infty}}:$

$$
w: \mathcal{H}\left(q_{i}, p_{i} ; \vec{\kappa}\right) \rightarrow \mathcal{H}\left(Q_{i}, P_{i} ; w(\vec{\kappa})\right) ;
$$

we have $w(\vec{\kappa})=\left(-\kappa_{0}+1,-\kappa_{1}+1, \kappa_{\infty}, \theta_{1}, \theta_{2}\right)$ and

$$
\begin{align*}
Q_{i} & =\frac{s_{i} p_{i}\left(q_{i} p_{i}-\theta_{i}\right)}{\left(\alpha+q_{1} p_{1}+q_{2} p_{2}\right)\left(\alpha+\kappa_{\infty}+q_{1} p_{1}+q_{2} p_{2}\right)} \tag{5.1}\\
Q_{i} P_{i} & =-q_{i} p_{i}+\theta_{i} \tag{5.2}
\end{align*}
$$

for $i=1,2$.
Put $\kappa_{0}=\kappa_{1}=1 / 2$, then there is a fixed point with respect to the action w :

$$
\begin{equation*}
\left(q_{i}, p_{i}\right)= \pm\left(\frac{\theta_{i} \sqrt{s_{i}}}{\kappa_{\infty}}, \frac{\kappa_{\infty}}{2 \sqrt{s_{i}}}\right) \quad i=1,2 . \tag{5.3}
\end{equation*}
$$

This gives an algebraic solution of $G(1,1,1,1,1)$. By using birational symmetries, we can construct many other algebraic solutions. For example, when $\kappa_{0}=1 / 2, \kappa_{1}=-1 / 2$, we have

$$
\begin{align*}
q_{i} & =\frac{\theta_{i} \sqrt{s_{i}}}{\kappa_{\infty}} \tag{5.4}\\
p_{i} & =\frac{\kappa_{\infty}}{2 \sqrt{s_{i}}} \cdot \frac{\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}-\sqrt{s_{i}}}{\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}} \tag{5.5}
\end{align*}
$$

For $\kappa_{0}=1 / 2, \kappa_{1}=3 / 2$, we have
(5.6) $q_{i}=\frac{\theta_{i} \sqrt{s_{i}}}{\kappa_{\infty}} \cdot \frac{\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}\right)^{2}-s_{i}}{\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}\right)^{2}-1}$,
(5.7) $p_{i}=\frac{\kappa_{\infty}}{2 \sqrt{s_{i}}} \cdot \frac{\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}\right)^{2}-1}{\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}\right)\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}-\sqrt{s_{i}}\right)}$.

For $\kappa_{0}=\kappa_{1}=-1 / 2$, we have
(5.8) $q_{i}=\frac{\theta_{i} \sqrt{s_{i}}}{\kappa_{\infty}}$,
(5.9) $p_{i}=\frac{\kappa_{\infty}}{2 \sqrt{s_{i}}}$

$$
\cdot \frac{\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}-\sqrt{s_{i}}\right)\left(\frac{\theta_{1}}{\sqrt{s_{1}}}+\frac{\theta_{2}}{\sqrt{s_{2}}}-\kappa_{\infty}-\frac{1}{\sqrt{s_{i}}}\right)-1}{\left(\theta_{1} \sqrt{s_{1}}+\theta_{2} \sqrt{s_{2}}-\kappa_{\infty}\right)\left(\frac{\theta_{1}}{\sqrt{s_{1}}}+\frac{\theta_{2}}{\sqrt{s_{2}}}-\kappa_{\infty}\right)} .
$$

6. Particular Solutions of the Garnier System in n-variables

ThEOREM 6.1. For special values of parameters, the Garnier system in n-variables \mathcal{G}_{n} admits a particular solution expressed in terms of solutions of \mathcal{G}_{n-1}.

Proof. If $\theta_{n}=0, \mathcal{G}_{n}$ admits a particular solution as $q_{n}=0$. Take $q_{n}=0$, we obtain

$$
\frac{\partial q_{i}}{\partial s_{n}}=\frac{\partial H_{n}}{\partial p_{i}}=0, \quad \frac{\partial p_{i}}{\partial s_{n}}=-\frac{\partial H_{n}}{\partial q_{i}}=0
$$

for $1 \leq i \leq n-1$, i.e., $\left(q_{i}, p_{i}\right)$ do not depend on s_{n}. Put $\theta_{n}=0, q_{n}=0$ into the Hamiltonians $H_{i}(0.5)$ for $1 \leq i \leq n-1$, then we obtain the Hamiltonians for \mathcal{G}_{n-1}. We do not enter into detail of computation.

Remark. In her paper [10], M. Mazzocco obtains the same type of particular solutions, by considering the monodromy preserving deformation of a linear differential equations such that some monodromy matrices are reduced to $\pm I$.

Acknowledgement. The author would like to thank Professor K. Okamoto for useful advice.

References

[1] Fuchs, R., Über lineare homogene Differentialgleichhungen zweiter ordnung mit drei im Endlich gelegene wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321.
[2] Garnier, R., Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur un classe d'équations nouvelles d'order supérieur dont l'intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup (3) 29 (1912), 1-126.
[3] Iwasaki, K., Kimura, H., Shimomura, S. and M. Yoshida, From Gauss to Painlevé: a modern theory of special functions (Vieweg Verlag, Braunschweig, 1991).
[4] Jimbo, M., Miwa, T. and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, Physica 2D (1981), 306-352.
[5] Kawamuko, H., On the holonomic deformation of linear differential equations, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 152-154.
[6] Kawamuko, H., On the polynomial Hamiltonian structure associated with the $L(1, g+2 ; g)$ type, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 155157.
[7] Kimura, H. and K. Okamoto, On the polynomial Hamiltonian structure of the Garnier system, J. Math. Pures et Appl. 63 (1984), 129-146.
[8] Kimura, H., The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Math. Pura Appl. 155 (1989), 25-74.
[9] Liu, D., Holonomic deformation of linear differential equations of A_{g} type and polynomial Hamiltonian structure, Thesis, Univ. Tokyo. 1997.
[10] Mazzocco, M., The geometry of the classical solutions of the Garnier systems, Int. Math. Res. Not. 12 (2002), 613-646.
[11] Okamoto, K., Déformation d'une équation différentielle linéaire avec une singularité irrégulière sur un tore, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 26 (1979), 501-518.
[12] Okamoto, K., Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 33 (1986), 575-618.
[13] Okamoto, K., Studies on the Painlevé equations, I. Ann. Math. Pura Appl. 146 (1987), 337-381; II. Japan. J. Math. 13 (1987), 47-76; III. Math. Ann. 275 (1986), 221-255; IV. Funkcial. Ekvac. Ser. Int. 30 (1987), 305-332.
[14] Okamoto, K. and H. Kimura, On particular solutions of the Garnier systems and the hypergeometric functions of several variables, Quarterly J. Math. 37 (1986), 61-80.
[15] Okamoto, K., The Hamiltonians associated with the Painlevé equations, The Painlevé Property: One Century Later, eds. R.Conte (Springer,1999).
[16] Ueno, K., Monodromy preserving deformation of linear ordinary differential equations with irregular singular points, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 97-102.
(Received May 27, 2002)
(Revised November 29, 2002)
Graduate School of Mathematical Sciences The University of Tokyo
Komaba, Tokyo 153-8914, Japan

[^0]: 2000 Mathematics Subject Classification. Primary 34M55; Secondary 33E17.
 The author is supported by a fellowship of the Japan Society for the Promotion of Science (JSPS).

