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Fourier Expansion of Holomorphic Siegel Modular

Forms of Genus n along the Minimal Parabolic

Subgroup

By Hiro-aki Narita

Abstract. The aim of this paper is to establish a theory of
Fourier expansion of holomorphic Siegel modular forms of genus n
along the minimal parabolic subgroup. There are two known Fourier
expansions of holomorphic Siegel modular forms, i.e. classical Fourier
expansion and Fourier-Jacobi expansion (cf. §6). We also give a com-
parison of our expansion with them.

0. Introduction

In this paper, we study a Fourier expansion of scalar-valued holomor-

phic Siegel modular forms of arbitrary genus with respect to the mini-

mal parabolic subgroup. In the theory of automorphic forms, the inves-

tigation of their Fourier expansions along various parabolic subgroups is

fundamental and gives us significant information on such theory. For ex-

ample, it gives a starting point for the construction of automorphic L-

functions (cf. A.N.Andrianov [1], W.Kohnen and N.P.Skoruppa [8]).

The Fourier expansions of holomorpic Siegel modular forms along the

maximal parabolic subgroups have already been studied. Up to conju-

gation, there are n maximal parabolic subgroups of the real symplectic

group Sp(n; R) of degree n. We have the unique maximal parabolic sub-

group whose unipotent radical is abelian. This should be called the Siegel

parabolic subgroup. The Fourier expansion along this parabolic subgroup is

the most classical one. Its detailed investigation was initiated by C.L.Siegel

(cf. [14]) in his theory of quadratic forms. The Fourier expansions along the

other maximal parabolic subgroups are called Fourier-Jacobi expansions (cf.

I.I.Piatetskii-Shapiro [12]). There are some detailed results [4], [17] etc. in

the literature. In this paper, we are interested in the Fourier expansion

along the minimal parabolic subgroup.
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Let us formulate our problem for a real semi-simple Lie group G of

Hermitian type, constructed from R-rational points of a simple Q-algebraic

group. The group Sp(n; R) gives an example of such a group. Additionally,

let K denote a maximal compact subgroup of G. The group G has unitary

representations called holomorphic discrete series and we can define holo-

morphic automorphic forms on G. Given some irreducible finite dimensional

representation (τ, Vτ ) of the complexification KC of K, let f be a Vτ -valued

holomorphic automorphic form on G with respect to an arithmetic subgroup

Γ. Let N be the unipotent radical of the minimal parabolic subgroup of G

and NΓ := N ∩ Γ. We regard f(xg) as a function in x ∈ N with a fixed

g ∈ G. From the Γ-invariance of f , we deduce f(xg) ∈ L2(NΓ\N) ⊗ Vτ ,
where L2(NΓ\N) denotes the space of square-integrable functions on the

quotient NΓ\N . Since NΓ\N is compact, the space L2(NΓ\N) decomposes

discretely into

L2(NΓ\N) �
⊕̃

(η,Hη)∈N̂
HomN (η, L2(NΓ\N))⊗Hη,

where
⊕̃

denotes the Hilbert space direct sum, N̂ the unitary dual of N and

note dimCHomN (η, L2(NΓ\N)) <∞. According to this decomposition, we

have

f(∗g) =
∑
Q

∑
η∈N̂

∑
1≤m≤m(η)

(Θm
η ⊗Wm

η,Q(g))⊗ vQ,

where Q runs through an index set for a basis {vQ} of Vτ , {Θm
η }1≤m≤m(η) is

a basis of HomN (η, L2(NΓ\N)) and Wm
η,Q(g) ∈ Hη the (η,m,Q)-component

of the decomposition. Via the evaluation map at x ∈ N , Θm
η ⊗ Wm

η,Q(g)

is identified with an element Θm
η (Wm

η,Q(g))(x) of L2(NΓ\N). Hence the

decomposition above can be rewritten as

f(xg) =
∑
Q

∑
η∈N̂

∑
1≤m≤m(η)

Θm
η (Wm

η,Q(g))(x) · vQ.

We call this decomposition the Fourier expansion of the form f along the

minimal parabolic subgroup. In this paper, we consider the case where G =

Sp(n; R) and dimCVτ = 1.

To investigate such an expansion, the following questions are fundamen-

tal;

(1) Determine Wm
η,Q explicitly;
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(2) Describe the multiplicity m(η) concretely and find a basis of

HomN (η, L2(NΓ\N)) for each η ∈ N̂ .

The function Wm
η =

∑
QW

m
η,Q · vQ is found to be a generalized Whittaker

function for holomorphic discrete series with K-type τ (for a definition, see

Definition 4.1, which treats the case of the one-dimensional K-type). An ex-

plicit formula of Wm
η is obtained by solving the differential equations arising

from the “Cauchy-Riemann condition” (for a definition, see the end of §4.1),

which characterizes the minimal K-type of holomorphic discrete series. The

results on the generalized Whittaker functions are given as Theorem 4.5,

Theorem 4.7, Theorem 4.12 and Theorem 4.13. These are solutions for the

problem (1). Here we state our explicit formula of generalized Whittaker

funcrions.

Theorem 0.1 (Theorem 4.7). Let πκ be a holomorphic discrete series

with the one-dimensional minimal K-type τκ � detκ (cf. §2). If there ex-

ists a non-zero gereralized Whittaker functions for πκ attached to ηl ∈ N̂

parametrized by l ∈ n∗ (for a detail on ηl, see §3), its explicit formula is

given as

Wκ,l(xLa) = C(a1a2 · · · an)κ exp(−2πTr(t(XLAn)Yn(l)(XLAn))),

where n∗ denotes the dual space of n := Lie(N), (xL, a) =((
XL

tXL
−1

)
,

(
An

A−1
n

))
∈ NL ×A with NL (resp. A) denoting the

subgroup of N , canonically isomorphic to the standard maximal unipotent

subgroup Un of GLn(R) (resp. split component of an Iwasawa decomposition

of G), Yn(l) is a certain symmetric matrix of degree n attached to l (cf. §3)

and C denotes an arbitrary constant.

By a result of L.Corwin and F.P.Greenleaf [2], we can describe the mul-

tiplicity m(η) in terms of the integral coadjoint orbit of a character inducing

η ∈ N̂ , and find a basis of the space of intertwining operators in the problem

(2) by using a notion of theta series on NΓ\N .

These solutions for the two problems (1) and (2) give our Fourier ex-

pansion, stated as Theorem 5.8 or equivalently as Theorem 5.10.

Theorem 0.2 (Theorem 5.8). Let (x, a) ∈ N ×A and let f be a holo-

morphic Siegel modular form on G of weight κ with respect to Sp(n; Z).
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Then a Fourier expansion of f along the minimal parabolic subgroup is writ-

ten as

f(xa) =
∑
l∈L̃

∑
l′∈M(l)

C l
l′Θl′(Wκ,l′(∗a))(x),

where Θl′(Wκ,l′(∗a))(x) :=∑
l′′∈Ad∗

S NL(Z)·l′
χl′′(xS)(a1a2 · · · an)κ exp(−2πTr(t(XLAn)Yn(l′′)(XLAn))).

Theorem 0.3 (Theorem 5.10). Let Ff be the holomorphic Siegel mod-

ular form on the Siegel upper half space Hn of degree n, constructed from the

form f on G (cf. §5). The Fourier expansion in Theorem 5.8 is rewritten

as

Ff (Z) =
∑

S∈ ˜Ωn,Z

∑
T∈Mn(S)

CS
T ΘT (Z),

where ΘT (Z) =
∑

R∈Ωn(T ) exp 2π
√
−1 Tr(RZ).

Here we explain the notations in the two theorems above. The set
˜Ωn,Z denotes the Un(Q)-equivalence classes of the set Ωn,Z of symmetric

positive semi-definite semi-integral matrices of degree n, with Un(Q) :=

Un ∩ GLn(Q). The sets L̃ is the quotient of L by co-adjoint NL(Q)-

action (denoted by Ad∗
S), where L is a lattice in a certain subspace n∗S (cf. §5)

of n∗, canonically bijective with Ωn,Z and where NL(Q) := NL ∩ Sp(n; Q).

These two sets ˜Ωn,Z and L̃ parametrize irreducible unitary representations

of N contributing to our Fourier expansion. For an S ∈ Ωn,Z (resp. l ∈ L),

Mn(S) (resp. M(l)) denotes the quotient of the Un(Q) (resp. NL(Q))-

equivalence class of S (resp. l) in ˜Ωn,Z (resp. L̃) by Un(Z) (resp. NL(Z))-

equivalence, where Un(Z) := Un ∩ GLn(Z) and NL(Z) := NL ∩ Sp(n; Z).

The cardinalities of two sets M(l) and Mn(S) are equal to the multi-

plicity m(ηl) when S corresponds to l via Ωn,Z � L. For a T ∈ Ωn,Z,

Ωn(T ) := {tuTu | u ∈ Un(Z)}. The theta series Θl′(Wκ,l′(∗a))(x) and

ΘT (Z) correspond to theta series Θm
η (Wm

η,Q(g))(x) in the formulation of our

Fourier expansion. The constants C l
l′ and CS

T denote the Fourier coefficients.

Here we give some remarks on our results. Generalized Whittaker func-

tions for admissible representations are of great interest in terms of rep-

resentation theory (cf. B.Kostant [9],H.Yamashita [16]). It is known that
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holomorphic discrete series on semi-simple Lie groups of Hermitian type

do not admit any Whittaker models attached to non-singular characters

(for a definition of “non-singular characters”, see [9],§2.3). For holomor-

phic discrete series of Sp(n; R) with one-dimensional K-type, our results,

Theorem 4.5, Theorem 4.7, Theorem 4.12 and Theorem 4.13 completely

describe Whittaker functions attached to all irreducible unitary represen-

tations of N . With regard to our theory of Fourier expansion, we have

already obtained such a Fourier expansion for vector valued holomorphic

Siegel modular forms of genus 2 and those of genus 3 (cf. [10],[11]). The

results in these previous papers are prototypes of our present study here.

Now we explain the contents of this paper. In §1, we introduce some

basic notations for the real symplectic group, its standard subgroups, the

associated Lie algebras, and the root systems for them. In §2, we give a

parametrization of holomorphic discrete series using Harish-Chandra’s the-

ory on discrete series of semi-simple Lie groups. In §3, we recall a classifica-

tion of irreducible unitary representations of N , using the “orbit method”

for nilpotent Lie groups, established by A.A.Kirillov. We also give a formula

for the infinitesimal actions of the representations of N . In §4, we obtain an

explicit formula for the generalized Whittaker function. To be more precise,

we first define the generalized Whittaker function in §4.1. In §4.2, we de-

duce the differential equations characterizing it from the Cauchy-Riemann

condition. In §4.3, we get an explicit formula for the generalized Whittaker

function by solving the differential equations. In §5, we express our Fourier

expansion using the generalized Whittaker functions obtained above and

the results of Corwin and Greenleaf [2]. In fact, this is accomplished by

constructing theta series from the generalized Whittaker functions. In §6,

we compare our expansion with the other two known Fourier expansions,

i.e. classical Fourier expansion and Fourier-Jacobi expansion. In §6,1, we

obtain a relation between Fourier coefficients of the classical expansion and

those of our expansion. The result is

Theorem 0.4 (Theorem 6.1). Let T ∈ Ωn,Z belong to Mn(S) with

some S ∈ Ωn,Z and CS
T (resp. CT ) denote the Fourier coefficient of our

Fourier expansion in Theorem 5.10 (resp. classical Fourier expansion).

Then we have

CS
T = CT
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and, for every u ∈ Un(Z),

CtuTu = CS
T .

In §6.2, we study a relation between Fourier-Jacobi coefficients and theta

series appearing in our Fourier expansion. Our result is stated as

Theorem 0.5 (Theorem 6.4, Corollary 6.5). (1) Let φR1 be the

Fourier-Jacobi coefficients of Fourier-Jacobi expansion of f indexed by R1 ∈
Ωj,Z with 1 ≤ j ≤ n− 1. Then one has∑

T1∈Mj(S1)

∑
R1∈Ωj(T1)

φR1(Z2, Z3) exp(2π
√
−1 TrR1Z1)

=
∑

S∈ ˜ΩS1

∑
T∈Mn(S)

CS
T ΘT (Z),

where ΩS1 :=

{
S =

(
S1 S2
tS2 S3

)
∈ Ωn,Z

∣∣∣∣S2 ∈Mj,n−j(Q), S3 ∈Mj−n(Q)

}
and Ω̃S1 denotes the Un(Q)-equivalence classes of ΩS1.

(2) When j = 1, this formula becomes

φS1(Z2, Z3) exp 2π
√
−1 TrS1Z1 =

∑
T∈ ˜ΩS1

∑
S∈Mn(T )

CS
T ΘS(Z).

Theorem 0.4 and Theorem 0.5 tell us how the known two Fourier ex-

pansions and our Fourier expansion are related to each other. We hope that

these two theorems provide us some new information on the two known

expansions in terms of our theory of Fourier expansion.

Finally, the author would like to express his profound gratitude to Pro-

fessor Takayuki Oda for his suggestion of this problem and constant en-

couragement, and also to Professor Werner Hoffmann for various advice,

comments and reference to the paper [2].

1. Basic Notations

Let G = Sp(n; R) be the real symplectic group of degree n, defined by

{g ∈ GL2n(R) | tg Jng = Jn}
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with Jn =

(
0n −1n
1n 0n

)
. We often use the block notation g =

(
A B

C D

)
with A, B, C and D ∈Mn(R). Let θ denote the Cartan involution defined

by G � g �→ tg−1 and K := {g ∈ G | θ(g) = g}, which coincides with{(
A B

−B A

)
∈ G

}
. Then the group K is a maximal compact subgroup of

G, which is isomorphic to the unitary group U(n) of degree n under the

map

K �
(
A B

−B A

)
�→ A+

√
−1B.

Let g = sp(n; R) be the Lie algebra of G, which is given as

{X ∈M2n(R) | tX Jn + JnX = 02n}.

We denote also by θ the Cartan involution on g given by

X �→ − tX .

Let k = {X ∈ g | θ(X) = X} and p = {X ∈ g | θ(X) = −X}. Then k is the

Lie algebra of K and g admits a Cartan decomposition

g = k⊕ p.

Throughout the subsequent argument, Eij denotes the matrix unit

(δipδjq)1≤p,q≤N in the matrix algebra MN (either N = n or N = 2n). In or-

der to formulate the Iwasawa decomposition of g, we prepare the restricted

root system of it. Let a =
∑n

k=1 RHk with Hk = Ekk − Ek+n,k+n, which is

a maximal abelian subalgebra of p. We write A for

exp(a) =

{
a =

(
An

A−1
n

) ∣∣∣∣ An = diag(a1, a2, . . . , an), ai ∈ R+

}
.

The root system ∆(a, g) of (g, a) is of type Cn and given by

{±ei ± ej , ±2ek | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n},

where ei denotes the linear functional on a defined by ei(Hj) = δij . We

denote by Eα the root vector corresponding to a root α ∈ ∆(a, g), explicitly

given as

Eei+ej = Ei,j+n + Ej,i+n, Eei−ej = Eij − Ej+n,i+n,

E2ek = Ek,k+n, E−α = tEα .
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Let ∆+(a, g) = {ei ± ej , 2ek | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} be the standard

set of positive roots. Furthermore set n =
∑

α∈∆+(a,g) REα, which is the

nilradical of the minimal parabolic subalgebra. Then we have an Iwasawa

decomposition of g:

g = n⊕ a⊕ k.

With N := exp(n), the group G also has such decomposition

G = NAK.

Additionally, we introduce a compact Cartan subalgebra t given by

t = ⊕1≤k≤nRTk,

with Tk = Ek,k+n −Ek+n,k. Consider the root system ∆(tC, gC) of (gC, tC),

where gC and tC denote the complexifications of g and t respectively. This

root system is also of type Cn and given by {±fi ± fj , ±2fk | 1 ≤ i <

j ≤ n, 1 ≤ k ≤ n}, where fi denotes the linear functional on tC defined

by fi(Tj) =
√
−1δij . We denote by Fβ the root vector for β ∈ ∆(tC, gC),

explicitly given as

Ffi+fj = Eij + Eji − Ei+n,j+n − Ej+n,i+n

+
√
−1(Ei,j+n + Ej,i+n + Ei+n,j + Ej+n,i),

F2fk = Ekk − Ek+n,k+n +
√
−1(Ek,k+n + Ek+n,k),

Ffi−fj = Eij − Eji + Ei+n,j+n − Ej+n,i+n

−
√
−1(Ei+n,j + Ej+n,i − Ei,j+n − Ej,i+n),

F−β = F̄β.

The set ∆+ = {fi ± fj , 2fk | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} forms the

standard positive root system and ∆+
n = {fi + fj , 2fk | 1 ≤ i < j ≤ n, 1 ≤

k ≤ n} the set of non-compact positive roots. Put

p
+ = ⊕β∈∆+

n
CFβ, p

− = ⊕β∈∆+
n

CF−β = p+.

Then, in the complexification pC of p, these two spaces p+ and p− form

its holomorphic part and anti-holomorphic part respectively, and we have a

decomposition of gC:

gC = kC⊕ p
+ ⊕ p

−.
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In §4, we will consider the infinitesimal actions of the generators of p−. For

that purpose we introduce the Iwasawa decomposition of F−β for β ∈ ∆+
n ,

which is settled by direct computation.

Lemma 1.1. Let Ad a denote the adjoint action of a ∈ A on n. Then

we have the following decompositions:

F−fi−fj = 2aia
−1
j Ad(a−1)Eei−ej − 2aiaj

√
−1 Ad(a−1)Eei+ej − F−fi+fj ,

F−2fk = −2a2
k

√
−1 Ad(a−1)E2ek +Hk +

√
−1Tk.

2. Holomorphic Discrete Series of Sp(n; R)

We recall a notion of holomorphic discrete series representations of

Sp(n; R) in terms of Harish-Chandra’s parametrization of the discrete se-

ries representations of a semisimple Lie group (cf. [6],Chap.IX,§7,Theorem

9.20, Chap.XII,§5,Theorem 12.21). Consider an arbitrary continuous char-

acter on the compact Cartan subgroup T := exp(t), which is of the form:

T � exp(
∑

1≤i≤n

θiTi) �→ exp
√
−1(

∑
1≤i≤n

Λiθi) ∈ U(1) (θi ∈ R),

where (Λ1,Λ2, . . . ,Λn) ∈ Z⊕n and U(1) is the set of complex numbers of ab-

solute value 1. The vector (Λ1,Λ2, . . . ,Λn) is identified with a differential of

the above character and with a linear functional Λ = Λ1f1+Λ2f2+· · ·+Λnfn
on tC. Such Λ is called an analytically integral weight (cf. [6],Chap.IV,§5,

Proposition 4.13). The subset {fi − fj | 1 ≤ i < j ≤ n} of ∆(tC, gC) forms

a set of compact positive roots. We denote by ρ and ρc the half-sum of

positive roots and that of compact positive roots, respectively. Due to the

Harish-Chandra’s parametrization of discrete series, holomorphic discrete

series representations of Sp(n; R) can be parametrized by the following set

of analytically integral weights:

{Λ | ρ+ Λ is analytically integral and

Λ is regular dominant with respect to ∆+} �
{Λ = Λ1f1 + Λ2f2 + · · ·+ Λnfn | (Λ1,Λ2, . . . ,Λn) ∈ Z⊕n,

Λ1 > Λ2 > . . . > Λn > 0}
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(cf. [6],Chap.VI,§4,Theorem 6.6, Chap.IX,§7,Theorem 9.20,Remarks (1)).

Such Λ’s are called Harish-Chandra parameters for holomorphic discrete se-

ries. We denote by πΛ the holomorphic discrete series with Harish-Chandra

parameter Λ. The hightest weight of the minimal K-type of πΛ is given by

the special weight λ = Λ+ρ−2ρc = (Λ1+1)f1+(Λ2+2)f2+· · ·+(Λn+n)fn,

which is called the Blattner parameter.

Let the minimal K-type τλ of πΛ be one-dimensional. Then the Harish-

Chandra parameter Λ (resp. Blattner parameter λ) is given as (κ− 1)f1 +

(κ−2)f2+· · ·+(κ−n)fn (resp. κf1+κf2+· · ·κfn) with κ > n. The minimal

K-type τλ can be expressed as detκ on U(n) via the isomorphism K � U(n)

in §1. We denote this τλ by τκ and πκ by the holomorphic discrete series

with the minimal K-type τκ.

3. Classification of Unitary Representation of N

The group N = exp(n) is the standard maximal unipotent subgroup of

G. We want to describe the unitary dual N̂ of N using Kirillov’s construc-

tion of irreducible unitary representations of nilpotent Lie groups.

First we introduce some notations. The group N can be written as

NS �NL with

NS :=

{
xS =

(
1n XS

0n 1n

) ∣∣∣∣ XS ∈Mn(R), tXS = XS

}
,

NL :=

{
xL =

(
XL 0n
0n

tXL
−1

) ∣∣∣∣ XL ∈ Un

}
,

where Un denotes the standard maximal unipotent subgroup of GLn(R).

We denote the (i, j)-component of XS (resp. XL) by xij (resp. x′ij). Let nS

(resp. nL) be the Lie algebra of NS (resp. NL). Then these two Lie algebras

are given as

nS = ⊕1≤i≤j≤nREei+ej , nL = ⊕1≤i<j≤nREei−ej

and we have

n = nS ⊕ nL.

Let n∗ denote the dual space of n. We denote by {lij , lkk, l′ij}{1≤i<j≤n, 1≤k≤n}
the basis of n∗ dual to {Eei+ej , E2ek , Eei−ej}{1≤i<j≤n,1≤k≤n}. We write l ∈
n∗ as l =

∑
1≤i≤j≤n ξijlij +

∑
1≤i<j≤n ξ

′
ijl

′
ij with ξij and ξ′ij ∈ R.
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For l ∈ n∗, let m denote a polarization subalgebra with respect to an

inner product l([∗, ∗]) on n (for a definition, see [3],p27-p28), where [∗, ∗]
denotes the bracket product on n. Furthermore, set M := exp(m) and let

χl : M → U(1) be a character defined as χl(m) := exp(2π
√
−1l(log(m))) for

m ∈ M . Using these notations, we state the following theorem established

by A.A.Kirillov (cf. [3],Theorems 2.2.1-2.2.4).

Proposition 3.1. (1) Every η ∈ N̂ is unitarily equivalent to a repre-

sentation of the form

ηl := L2- Ind
N
Mχl

with some l ∈ n∗. Up to unitary equivalence, ηl does not depend on the

choice of M . Additionally, we remark that, if ηl is not a character, a rep-

resentation space Hηl of ηl is given as


h : measurable function on N

∣∣∣∣∣∣∣
h(mx) = χl(m)h(x)

for (m,x) ∈M ×N
‖h‖2l :=

∫
M\N h(x)h(x)dẋ <∞


 ,

where dẋ denotes an invariant measure on the quotient M\N .

(2) Two representations ηl and ηl′ with l and l′ ∈ n∗ are unitarily equivalent

if and only if l = Ad∗ x · l′ with some x ∈ N . That is, we have a bijection

N̂ � n
∗/Ad∗N.

In order to find convenient choices of polarization subalgebras for our

argument, we state

Lemma 3.2. (1) This time, let n be a general m-dimensional nilpotent

Lie algebra with a chain of ideals

{0} ⊂ n1 ⊂ n2 ⊂ . . . ⊂ nm = n,

where dim ni = i. For l ∈ n∗, we set li := l|ni and

rni(li) := {X ∈ ni | li([X,Y ]) = 0 ∀Y ∈ ni}.
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Then
∑m

i=1 rni(li) forms a polarization subalgebra for l.

(2) Let n be our Lie algebra. It has a filtration of ideals satisfying the

condition in (1), given by

{0} ⊂ n11 ⊂ n12 ⊂ . . . . . . ⊂ n1n ⊂ n22 ⊂ . . . . . . ⊂ n2n ⊂ . . .

⊂ nii ⊂ . . . . . . . . . ⊂ nin ⊂ . . . . . . . . . . . . ⊂ nnn = nS

⊂ n
′
1n ⊂ n

′
1,n−1 ⊂ . . . ⊂ n

′
12 ⊂ n

′
2n ⊂ . . . . . . ⊂ n

′
23 ⊂ . . .

⊂ n
′
in ⊂ . . . . . . . . . . . . ⊂ n

′
i,i+1 ⊂ . . . . . . . . . ⊂ n

′
n−1,n = n.

Here

nij :=
⊕
u,v

s.t. u<i, v≥u

REeu+ev ⊕
⊕

i≤v≤j

REei+ev ⊂ nS for 1 ≤ i ≤ j ≤ n,

and

n
′
ij := nS ⊕

⊕
u,v

s.t. u<i v>u

REeu−ev ⊕
⊕
v≥j

REei−ev for 1 ≤ i < j ≤ n.

Proof. For a proof of (1), see [3], Theorem 1.3.5. Regarding (2), we

can check that each subspace in the filtration above forms an ideal of n by

direct computation. �

For each l, we can take a polarization subalgebra m so that it contains

nS . In fact, since rnnn(l|nnn) = nS , Lemma 3.2 implies that there exists such

a polarization subalgebra. In terms of Proposition 3.1 (1), there is no loss

of generality if we impose the following condition on m:

Assumption 1. From now on, we assume that the polarization subal-

gebra m for an l contains nS.

For l ∈ n∗, we set

Yn(l) :=




ξ11 ξ12/2 · · · ξ1n/2

ξ12/2 ξ22 · · · ξ2n/2
...

...
. . .

...

ξ1n/2 ξ2n/2 · · · ξnn


 .
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Consider the total set of indices [1, n] = {1, 2, . . . , n}. For l ∈ n∗, we define

a subset I(l) of indices by

I(l) :=



{i ∈ [1, n] | there exists j ∈ [1, n]

such that ξij �= 0 or ξji �= 0} if Yn(l) �= 0n;

{n} if Yn(l) = 0n.

We set r = <I(l) and write I(l) as {n1, n2, . . . , nr} with n1 < n2 < . . . < nr.

Proposition 3.3. Let l ∈ n∗ satisfy I(l) �= {n}.
(1) A polarization subalgebra m for l satisfies

Eenp−ej �∈ m for any (np, j) with np ∈ I(l) and j > np.

(2) We define an r × r symmetric matrix Y (l) by


ξn1n1 ξn1n2/2 · · · ξn1nr/2

ξn1n2/2 ξn2n2 · · · ξn2nr/2
...

...
. . .

...

ξn1nr/2 ξn2nr/2 · · · ξnrnr


 ,

and its minor matrices Y (l)s by


ξn1n1 ξn1n2/2 · · · ξn1ns/2

ξn1n2/2 ξn2n2 · · · ξn2ns/2
...

...
. . .

...

ξn1ns/2 ξn2ns/2 · · · ξnsns




for 1 ≤ s ≤ r. Moreover, we set

nl :=



⊕

i,j
s.t. i�∈I(l), j>i

REei−ej (I(l) �= [1, n]);

{0} (I(l) = [1, n]).

Assume that detY (l)s �= 0 for 1 ≤ s ≤ r (resp. 1 ≤ s ≤ r − 1) if nr �= n

(resp. nr = n) in I(l). Then a polarization subalgebra m satisfies

m ⊂ nS ⊕ nl.
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In particular, if l additionally satisfies l(nl) = {0}, then m = nS ⊕ nl.

Proof. (1) Let m contain an Eenp−ej for some (np, j) with np ∈ I(l)
and j > np. Then l([Eenp−ej , nS ]) = {0} has to hold since we assume

that m ⊃ nS . But there is a non-zero ξnpnq or ξnqnp with some nq ∈ I(l),
so that l([Eenp−ej , Eenq+ej ]) �= 0 or l([Eenp−ej , Eej+enq

]) �= 0. This is a

contradiction. Hence Eenp−ej �∈ m.

(2) Let X :=
∑

np∈I(l),j
s.t. j>np

anpjEenp−ej with anpj ∈ R belong to a subspace⊕
np∈I(l),j
s.t. j>np

REenp−ej , complementary to nS ⊕ nl in n. In order to prove (2),

it suffices to show the following claim:

l([X, nS ]) = {0} means X = 0.

If this is serttled, we obtain m ⊂ nS⊕nl. In fact, decompose Y ∈ n into Y =

YS,l+Y
′ with YS,l ∈ nS⊕nl and Y ′ in the complementary subspace. In order

that Y belongs to m, l([Y, nS ]) = {0} has to hold. Since l([nS⊕nl, nS ]) = {0},
l([Y ′, nS ]) = {0} is satisfied. Therefore we get Y ′ = 0 if the claim is proved.

Hence m ⊂ nS ⊕ nl. Moreover if l(nl) = {0}, m = nS ⊕ nl holds since

l([nS ⊕ nl, nS ⊕ nl]) = {0}.
We start proving the claim. Let l([X, nS ]) = {0}. By direct computa-

tion, we see that

l([X,Eenp+ej ]) =


∑
1≤s≤p−1 ξnsnpansj + 2ξnpnpanpj

+
∑

p+1≤s≤k(j) ξnpnsansj = 0 (j �∈ I(l), j > np);∑
1≤s≤p−1 ξnsnpansj + 2ξnpnpanpj

+
∑

p+1≤s≤k(j) ξnpnsansj

+
∑

1≤s≤p−1 ξnsjansnp = 0 (j ∈ I(l), j > np),

where we set k(j) := max{s | ns < j, ns ∈ I(l)}. From these formulas, we
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have

Y (l)k(j)




an1j

an2j
...

ank(j)j




=




0k(j) for j �∈ I(l) with j > n1;


0

− ξn1j

2 an1n2

...

−
∑

1≤t≤k(j)−1
ξntj

2 antnk(j)


 for j ∈ I(l) with j > n1,

where 0k(j) denotes the zero vector in Rk(j). From the assumption on the

minor matrices Y (l)k(j), we see that anpj = 0 for any (np, j) with np ∈ I(l)
and j > np. Therefore we obtain X = 0 and complete the proof. �

Let H∞
ηl

denote the space of C∞-vectors in Hηl . We calculate the in-

finitesimal actions of generators of n on H∞
ηl

via the differential dηl of ηl. For

that purpose, we denote by ξij(
tXL Yn(l)XL) the coefficient of 1

2(Eij +Eji)

in tXL Yn(l)XL for 1 ≤ i ≤ j ≤ n.

Proposition 3.4. (1) dηl(Eei+ej ) = 2π
√
−1ξij(

tXL Yn(l)XL) for 1 ≤
i ≤ j ≤ n.

(2) dηl(Eei−ej ) = d
dx′

ij
+
∑

1≤u<i x
′
ui

d
dx′

uj
for 1 ≤ i < j ≤ n.

Proof. Let h ∈ H∞
η . Then y = ySyL ∈ N with yS ∈ NS and yL ∈ NL

acts on H∞
η by right translation RN :

RN (y)h(x) = h(xSxLySyL) = h(xS(xLySx
−1
L )xLyL)

= χl(xS(xLySx
−1
L ))h(xLyL).

We compute dηl(X) = dRN (X) for each generator X ∈ n. To show the

formula (1), the following obvious equality is convenient.

Lemma 3.5. The matrix Yn(l) is characterized by the following prop-

erty:

l(log(xS)) = Tr(Yn(l)XS) with xS =

(
1n XS

1n

)
∈ NS .
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Noting this and a well-known formula Tr(XY ) = Tr(Y X) for two ma-

trices X and Y with the same degree, we have

dηl(Eei+ej ) = dχl(xLEei+ejx
−1
L ) = 2π

√
−1l(xLEei+ejx

−1
L )

= 2π
√
−1 Tr(Yn(l)XL(Eij + Eji)

tXL)

= 2π
√
−1 Tr((tXL Yn(l)XL)(Eij + Eji))

= 2π
√
−1ξij(

tXL Yn(l)XL)

for (i, j) with i < j. We can compute dηl(E2ek) similarly.

In order to obtain the formula (2), we note the equality

xL exp(tEei−ej ) = 12n + (x′ij + t)Eei−ej +
∑

1≤u<i

(x′uj + x′uit)Eeu−ej

+
∑

(u,v) �∈{(w,j)|1≤w≤i}
s.t u<v

x′uvEeu−ev ,

which can be checked by direct computation. Using this, compute the dif-

ferential d
dt

∣∣
t=0

h(xL exp(tEei−ej )). �

4. Generalized Whittaker Functions on G for Holomorphic Dis-

crete Series

4.1. Definition

Recall that πκ denotes the holomorphic discrete series representation of

G with the minimal K-type τκ (cf. §2).

Let ι : τκ → πκK be the inclusion map of τκ into the space πκK of

K-finite vectors in πκ. We simply denote πκK by πκ. Before giving the

definition of generalized Whittaker functions, we introduce the following

spaces:

C∞
ηl

(N\G) := {F : H∞
ηl

-valued C∞-function on G |
F (xg) = ηl(x)F (g) };

C∞
ηl

(N\G)K := {F ∈ C∞
ηl

(N\G) | F is K-finite};
C∞

ηl,τ∗κ
(N\G/K) := {W : H∞

ηl
-valued C∞-function on G |

W (xgk) = ηl(x)τ
∗
κ(k)−1W (g) = ηl(x)τκ(k)W (g)},
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where (x, g, k) ∈ N ×G×K, τ∗κ denotes the contragredient representation

of τκ. The two spaces πκ and C∞
ηl

(N\G)K form (gC,K)-modules respec-

tively (for a definition of a (gC,K)-module, see [15], Chap.0, §3, Definition

0.3.8).

Definition 4.1. Let ι∗ be a map defined as

ι∗ : Hom(gC,K)(πκ, C
∞
ηl

(N\G)K) � F �→ F · ι ∈ HomK(τκ, C
∞
ηl

(N\G)K).

An element of Im ι∗ is called a generalized Whittaker function on G for the

representation πκ with K-type τκ.

We have a canonical identification

HomK(τκ, C
∞
ηl

(N\G)K) � C∞
ηl,τ∗κ

(N\G/K).

Now we introduce

Sηl,τ∗κ (N\G/K)

:=

{
W : C-valued C∞function on G

∣∣∣∣ W (gk) = τκ(k)W (g)

W (xg) ∈ H∞
ηl

}
,

where (g, k) ∈ G×K and we regard W (xg) as a function in x ∈ N with a

fixed g ∈ G. Here note that τ∗κ(k) = τκ(k)
−1. Then we have a bijection

C∞
ηl,τ∗κ

(N\G/K) � Sηl,τ∗κ (N\G/K)

via the evaluation map W (g)(∗) �→ W (g)(1) at 1 ∈ N , since W (g)(xx0) =

ηl(x0)W (g)(x) = W (x0g)(x) for x0, x ∈ N and g ∈ G.

The holomorphic discrete series πκ forms a highest weight module with

highest weight κ(f1 + f2 + · · · + fn) (cf. [16],Proposition 7.4). Due to this

and [16],Proposition 12.2, we obtain a bijection

Im ι∗ � {W ∈ Sηl,τ∗κ (N\G/K) | dRXW = 0 ∀X ∈ p
−}

by the method of highest weight module, where dR denotes the differential

of right regular representation R of G on the space of C∞-functions on G.

The condition

dRXW = 0 ∀X ∈ p
−

is called the Cauchy-Riemann condition.
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4.2. Explicit formulas for differential equations

From the Cauchy-Riemann condition, we obtain the differential equa-

tions characterizing the generalized Whittaker functions. Let Wκ,l denote

a generalized Whittaker function attached to πκ and ηl. It is determined

by its restriction to NA because of its K-equivariance. Furthermore re-

call that, for each l ∈ n∗, a polarization subalgebra m is assumed to be

taken so that m ⊃ nS (cf. §3, Assumption 1). Therefore we see that

Wκ,l(xSxLa) = χl(xS)Wκ,l(xLa) with (xS , xL, a) ∈ NS × NL × A. Hence

it suffices to consider the differential equations for the restriction of Wκ,l

to NLA. In order to simplify the equations, we introduce the Euler opera-

tors ∂k := ak
∂

∂ak
for 1 ≤ k ≤ n. Using the infinitesimal actions ∂k and dηl,

the Cauchy-Riemann condition can be rewritten as the following differential

equations:

Proposition 4.2. (1) The conditions dRF−ei−ej
Wκ,l = 0 with 1 ≤ i <

j ≤ n are equivalent to

aia
−1
j dηl(Eei−ej )Wκ,l −

√
−1aiajdηl(Eei+ej )Wκ,l = 0 (1 ≤ i < j ≤ n).

(2) The conditions dRF−2ek
Wκ,l = 0 with 1 ≤ k ≤ n are equivalent to

∂kWκ,l − 2
√
−1a2

kdηl(E2ek)Wκ,l − κWκ,l = 0 (1 ≤ k ≤ n).

Proof. Note that the infinitesimal actions of k via the differential dτκ
of τκ are given as follows;

dτκ(F±(fi−fj)) = 0 for 1 ≤ i < j ≤ n dτκ(Tk) =
√
−1κ for 1 ≤ k ≤ n.

The formulas in the assertion follow from the Iwasawa decompositions of

F−ei−ej and F−2ek in Lemma 1.1 and from the above formula of dτκ. �

Inserting the formulas in Proposition 3.4 into Proposition 4.2, we get

more explicit forms of the differential equations for Wκ,l.

Proposition 4.3. (1) The differential equations in Proposition 4.2 (1)

are rewritten as
 d

dx′ij
+
∑

1≤u<i

x′ui
d

dx′uj


Wκ,l(xLa) + 2πa2

jξij(
tXL Yn(l)XL)Wκ,l(xLa) = 0
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for 1 ≤ i < j ≤ n.

(2) The differential equations in Proposition 4.2 (2) are rewritten as

∂kWκ,l(xLa) + 4πa2
kξkk(

tXL Yn(l)XL)Wκ,l(xLa)− κWκ,l(xLa) = 0

for 1 ≤ k ≤ n.

4.3. Explicit formula of generalized Whittaker functions

In this subsection, we solve the differential equations in Proposition 4.3

and obtain explicit formulas of generalized Whittaker functions. To simplify

the equations, we need

Lemma 4.4. (1) For 1 ≤ i < j ≤ n, we have
 d

dx′ij
+
∑

1≤u<i

x′ui
d

dx′uj


 (Tr(t(XLAn)Yn(l)(XLAn)))

= a2
jξij(

tXL Yn(l)XL).

(2) For 1 ≤ k ≤ n, we have

∂k Tr(t(XLAn)Yn(l)(XLAn)) = 2a2
kξkk(

tXL Yn(l)XL).

For notations XL and An, see the definition of NL in §3 and the definition

of A in §1 respectively.

Proof. (1) The proof of Proposition 3.4 (2) implies that a C∞-func-

tion f on NL satisfies
 d

dx′ij
+
∑

1≤u<i

x′ui
d

dx′uj


 f(xL) =

d

dt

∣∣∣∣
t=0

f(xL exp(tEei−ej )).

Apply this to f(xL) := Tr(t(XLAn)Yn(l)(XLAn)) with a fixed An. Then

we have
 d

dx′ij
+
∑

1≤u<i

x′ui
d

dx′uj


Tr(t(XLAn)Yn(l)(XLAn))

=
d

dt

∣∣∣∣
t=0

Tr(t(XL(1n + tEij)An)Yn(l)(XL(1n + tEij)An))
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=
d

dt

∣∣∣∣
t=0

Tr(tXL Yn(l)XL((1n + tEij)An) t((1n + tEij)An))

= lim
t→0

(
(a2

i + a2
j t

2)− a2
i

t
ξii(

tXL Yn(l)XL) +
a2
j t

t
ξij(

tXL Yn(l)XL)

)

= a2
jξij(

tXL Yn(l)XL).

(2) This is settled by a calculation as follows;

∂k Tr(t(XLAn)Yn(l)(XLAn)) = ak
∂

∂ak
Tr(tXL Yn(l)XLA

2
n)

= 2a2
kξkk(

tXL Yn(l)XL). �

We first consider the generalized Whittaker functions attached to a rep-

resentation ηl in the following case:

Case 1. I(l) �= [1, n], and for some (i, j) with i �∈ I(l) and j > i, ξ′ij �= 0

and Eei−ej ∈ m holds, i.e. dχl(Eei−ej ) = 2π
√
−1ξ′ij �= 0.

Theorem 4.5. Let Wκ,l be a generalized Whittaker functions attached

to ηl in Case 1. Then we have Wκ,l ≡ 0.

Proof. We set i(l) := min{i �∈ I(l) | ξ′ij �= 0 and Eei−ej ∈ m for

some j} and j(l) := max{j | ξ′i(l)j �= 0 and Eei(l)−ej ∈ m} for l ∈ n∗. Fur-

thermore, we give the following order for the set I := {(i, j) ∈ [1, n]× [1, n] |
1 ≤ i < j ≤ n}:

(i, j) > (i′, j′) for any (j, j′) if i > i′

(i, j) > (i, j′) if j′ > j,

and define a subset Ii(l)j(l) of I by

Ii(l)j(l) := {(i, j) ∈ I | 1 ≤ i < i(l), j > i} ∪ {(i(l), j) ∈ I | j ≥ j(l)}.

We set

W ′
κ,l(xLa) := exp(2πTr(t(XLAn)Yn(l)(XLAn)))Wκ,l(xLa).
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Here we need

Lemma 4.6. (1) For l ∈ n∗, we have

Yn(Ad∗ x−1
L · l) = tXL Yn(l)XL

for xL =

(
XL

tXL
−1

)
∈ NL.

(2) The function W ′
κ,l(xLa) satisfies W ′

κ,l(mLxLa) = χl(mL)W ′
κ,l(xLa) for

mL ∈M ∩NL.

Proof. (1) By direct computation, one obtains

Ad∗ x−1
L · l

((
0n XS

0n 0n

))
= l

((
0n XLXS

tXL

0n 0n

))
= Tr(Yn(l)XLXS

tXL) = Tr(tXL Yn(l)XLXS).

Lemma 3.5 means Yn(Ad∗ x−1
L · l) = tXL Yn(l)XL.

(2) Since χl = χAd∗ m−1·l and χl|NS
= χAd∗ m−1·l|NS

for m ∈ M , we

have Yn(l) = Yn(Ad∗m−1 · l). This and the assertion (1) means that

exp(2πTr(t(XLAn)Yn(l)(XLAn))) is left M ∩ NL-invariant. Since

Wκ,l(mLxLa) = χl(mL)Wκ,l(xLa) for mL ∈ M ∩ NL, the assertion (2)

holds. �

Inserting Wκ,l(xLa) = exp(−2πTr(t(XLAn)Yn(l)(XLAn)))W ′
κ,l(xLa)

into the differerntial equations in Proposition 4.3 (1) and noting Lemma

4.4 (1), we get
 d

dx′ij
+
∑

1≤u<i

x′ui
d

dxx′
uj


W ′

λ,l(xLa) = 0 (1 ≤ i < j ≤ n).

From these differential equations for (i, j) ∈ Ii(l)j(l)\{(i(l), j(l))}, we observe

that
d

dx′ij
W ′

λ,l = 0 for any (i, j) ∈ Ii(l)j(l) \ {(i(l), j(l))},

by induction on the order of (i, j) ∈ I. The validity of this is assured by the

condition in Case 1, Lemma 4.6 (2) and Proposition 3.3 (1). In particular,
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Proposition 3.3 (1) implies that d
dx′

ij
for (i, j) with i ∈ I(l) and j > i is

the non-trivial derivation in a direction Eei−ej , transversal to m. Noting

the formulas just above and Lemma 4.6 (2), we observe that the differential

equation 
 d

dx′i(l)j(l)
+

∑
1≤u<i(l)

x′ui(l)
d

dxx′
uj(l)


W ′

λ,l(xLa) = 0

is equivalent to

d

dx′i(l)j(l)
W ′

λ,l(xLa) = 2π
√
−1ξ′i(l)j(l)W

′
λ,l = 0.

This implies Wκ,l ≡ 0. �

Now we consider the generalized Whittaker function attached to a rep-

resentation ηl not in Case 1. Namely we assume that ηl is in the following

case:

Case 2. ηl satisfies one of the following conditions:

(1) I(l) = [1, n];

(2) I(l) �= [1, n], and for any (i, j) with i �∈ I(l) and j > i, ξ′ij = 0 or

Eei−ej �∈ m holds.

Theorem 4.7. If ηl is in Case 2, we obtain the unique solution

Wκ,l(xLa) = C(a1a2 · · · an)κ exp(−2πTr(t(XLAn)Yn(l)(XLAn)))

of the differential equations in Proposition 4.3, up to an arbitrary constant

C.

Proof. Let W ′
κ,l(xLa) and the set I be as in the proof of Theorem

4.5. Inserting Wκ,l(xLa) = exp(−2πTr(t(XLAn)Yn(l)(XLAn)))W ′
κ,l(xLa)

into the differential equations (1) and (2) in Proposition 4.3 and noting

Lemma 4.4, we obtain

(1)


 d

dx′ij
+
∑

1≤u<i

x′ui
d

dx′uj


W ′

κ,l(xLa) = 0 (1 ≤ i < j ≤ n),

(2) ∂kW
′
κ,l(xLa)− κW ′

κ,l(xLa) = 0 (1 ≤ k ≤ n).
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From (1) and the two conditions in Case 2, we see that d
dx′

ij
W ′

κ,l(xLa) = 0

for any (i, j) ∈ I by induction on (i, j) with respect to the order of I given in

the proof of Theorem 4.5. That is, W ′
κ,l(xLa) does not depend on xL. From

(2), we see that W ′
κ,l(xLa) = C(a1a2 · · · an)κ with an arbitrary constant C.

Eventually, we get the solution in the assertion. �

We consider a necessary and sufficient condition for the above solution

to give the non-zero generalized Whittaker function. For that purpose, we

state some lemmas:

Lemma 4.8. (1) Let Wκ,l(∗a) with a fixed a ∈ A denote a function on

N defined by N � x �→ Wκ,l(xa). Consider the restriction Wκ,l|NL
(∗a) of

Wκ,l(∗a) to NL, explicitly given in Theorem 4.5, 4.7. It satisfies

Wκ,l|NL
(mLxLa) = Wκ,l|NL

(xLa)

for any mL ∈ M ∩NL, i.e. Wκ,l|NL
(∗a) defines a well-defined function on

M ∩NL\NL.

(2) If there is a non-zero generalized Whittaker function Wκ,l for ηl, the

character χl inducing ηl has to satisfy χl(M ∩NL) = {1}.

Proof. The first assertion follows from the left M ∩NL-invariance of

exp(2πTr(t(XLAn)Yn(l)(XLAn))), stated in the proof for Lemma 4.6 (2).

The second assertion is an immediate consequence of the first. �

Lemma 4.9. Every l ∈ n∗ with the non-zero Yn(l) is Ad∗NL-equivalent

to a linear form l′ such that detY (l′) �= 0.

Proof. Let X(i, j; c) := 1n + cEij for 1 ≤ i < j ≤ n and c ∈ R.

With a suitable choice of a product X0 of some X(i, j; c)’s, we can delete

all non-zero linearly dependent column vectors and row vectors in Yn(l) by

considering tX0 Yn(l)X0. By Lemma 4.6 (1),

tX0 Yn(l)X0 = Yn(Ad∗ x−1
0 · l)

with x0 =

(
X0

tX0
−1

)
∈ NL. Therefore detY (Ad∗ x−1

0 · l) �= 0. We can

take Ad∗ x−1
0 · l as l′ in the assertion. �
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Lemma 4.10. For all the assertions, assume that l has a polarization

subalgebra m such that l(m ∩ nL) = {0}. For the assertions (1) and (2),

additionally assume that l ∈ n∗ satisfies I(l) �= {n}.
(1) Let l ∈ n∗ with nr �= n (resp. nr = n) in I(l) and the positive definite

Y (l) (resp. Y (l)r−1). Then m is equal to nS ⊕ nl.

(2) Let l ∈ n∗ be Ad∗NL-equivalent to l′ ∈ n∗ with nr �= n (resp. nr = n) in

I(l′) and the positive definite Y (l′) (resp. Y (l′)r−1). Then, for any x′L ∈ NL

such that Ad∗ x′L · l = l′, we have m = Adx′−1
L · (nS ⊕ nl′).

(3) The condition I(l) = {n} holds for l if and only if l = ξnnlnn. For such

an l, m is equal to n.

Proof. (1) We prove l(nl) = {0}. Then m = nS ⊕ nl holds by Propo-

sition 3.3 (2). When I(l) = [1, n], there is nothing to prove since nl = {0}.
We assume I(l) �= [1, n]. We prove ξ′ij = 0 for any (i, j) with i �∈ I(l)

and j > i, which means l(nl) = {0}. Let ξ′ij �= 0 for some (i, j) with

i �∈ I(l) and j > i. Set i(l)′ := min{i �∈ I(l) | ξ′ij �= 0 for some j} and

j(l)′ := max{j | ξ′i(l)′j �= 0}. Since l(m ∩ nL) = {0} by the assumption,

Eei(l)′−ej(l)′ �∈ m. We can check that l([Eei(l)′−ej(l)′ , nS ⊕ nl]) = {0} by di-

rect computation, and Proposition 3.3 (2) says that m ⊂ nS ⊕ nl. Hence

m⊕REei(l)′−ej(l)′ forms an isotropic subspace with respect to an inner prod-

uct l([∗, ∗]). But this contradicts the maximality of m as an isotropic sub-

space. Therefore ξ′ij = 0 for any (i, j) with i �∈ I(l) and j > i.

(2) Let x′L ∈ NL be in the assertion (2) and a pair (l,m) satisfy the condi-

tion in the assertion (2). Then (Ad∗ x′L · l,Adx′L · (m)) forms a pair with

the condition in the assertion (1). Hence we have

Adx′L · (m) = nS ⊕ nAd∗ x′
L·l

that is,

m = Adx′L
−1 · (nS ⊕ nl′).

(3) If l = ξnnlnn, clearly I(l) = {n} holds. Conversely, assume that l satisfies

I(l) = {n}. We prove ξ′ij = 0 for 1 ≤ i < j ≤ n. Then we get l = ξnnlnn.

Let some ξ′ij �= 0. Set i(l)′′ := min{i ∈ [1, n] | ξ′ij �= 0 for some j > i} and

j(l)′′ := max{j ∈ [1, n] | ξ′i(l)′′j �= 0}. The assumption l(m∩nL) = {0}means

Eei(l)′′−ej(l)′′ �∈ m. We check l([Eei(l)′′−ej(l)′′ , nL]) = 0 by direct calculation,

and l([Eei(l)′′−ej(l)′′ , nS ]) = {0} by the assumption I(l) = {n}. Therefore

m ⊕ REei(l)′′−ej(l)′′ forms an isotropic subspace with respect to an inner
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product l([∗, ∗]). But this contradicts the maximality of m as an isotropic

subspace. Hence any ξ′ij = 0. For a linear form l = ξnnlnn, we check that

l([n, n]) = {0} by direct computation. Hence m = n. �

Lemma 4.11. Let (l,m) be a pair of a linear form l and a polarization

subalgebra m, satisfying I(l) �= {n} and l(m ∩ nL) = {0}. For n1 < i ≤ n,

we define k(i) := max{p | np ∈ I(l), np < i} and introduce a coordinate

xi := (x′n1,i
, x′n2,i

, . . . , x′nk(i),i
) of Rk(i).

(1) Let X(xi) := x′n1i
En1i + x′n2i

En2i + · · · + x′nk(i)i
Enk(i)i with xi ∈ Rk(i).

If l satisfies nr �= n (resp. nr = n) in I(l) and detY (l)s �= 0 for 1 ≤ s ≤ r

(resp. 1 ≤ s ≤ r − 1), the set{(
1n +

∑
n1<i≤nX(xi)

t(1n +
∑

n1<i≤nX(xi))
−1

)
∈ NL

∣∣∣∣ xi ∈ Rk(i)

}

is bijective with the quotient M∩NL\NL �M\N . Hence an invariant mea-

sure dẋ on M\N can be written as
∏

np∈I(l),j
s.t.j>np

dx′npj
up to constant multiple.

In particular, this assertion holds if l satisfies nr �= n (resp. nr = n) in I(l)

and the positive-definiteness Y (l) (resp. Y (l)r−1).

(2) Each diagonal entry of t(XLAn)Yn(l)(XLAn) is given by


0 (i < n1);

a2
n1
ξn1n1 (i = n1);

a2
np

(xnp , 1)Y (l)p
t(xnp , 1)

= a2
np

(xnpY (l)p−1
txnp +2yp−1

txnp +ξnpnp) (i = np ∈ I(l) \ {n1});
a2
ixiY (l)k(i)

txi (i �∈ I(l), i > n1),

where we write Y (l)p =

(
Y (l)p−1

typ−1

yp−1 ξnpnp

)
with yp−1 = (ξn1np/2, ξn2np/2,

. . . , ξnp−1np/2). The explicit formula of Wκ,l(xLa) can be written as

(a1a2 · · · an)κ exp(−2πa2
n1
ξn1n1)

×
∏

np∈I(l)\{n1}
exp(−2πa2

np
(xnp , 1)Y (l)p

t(xnp , 1))

×
∏

i�∈I(l)
s.t.i>n1

exp(−2πa2
ixiY (l)k(i)

txi),
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up to constant multiple.

(3) If Wκ,l|NL
(∗a) is square-integrable on M ∩ NL\NL, Y (l)k(i) has to be

positive semi-definite for n1 < i ≤ n.

Proof. The assertion (1) follows from Proposition 3.3 (2), and the

assertion (2) is obtained by direct computation. We prove the assertion (3).

The square-integrability of Wκ,l|NL
(∗a) means that, for any n1 < i ≤ n,

xiY (l)k(i)
txi has to be non-negative, i.e. Y (l)k(i) is positive semi-definite.

In fact, otherwise, there exists a non-zero x0
i ∈ Rk(i) such that x0

iY (l)k(i)
t
x0
i

is negative for some n1 < i ≤ n. Noting the formula of the diagonal entries

of t(XLAn)Yn(l)(XLAn) and the formula of Wκ,l(xLa) in the assertion (2),

we see that Wκ,l|NL
(∗a) is neither trivial nor square-integrable on{(

1n +X(xi)
t(1n +X(xi))

−1

) ∣∣∣∣ xi ∈ R · x0
i

}
⊂ NL.

Therefore we obtain the assertion (3). �

Theorem 4.5 and 4.7 tell us that dimCHom(gC,K)(πκ, C
∞
ηl

(N\G)K) ≤ 1.

To be more precise, we have

Theorem 4.12. dimCHom(gC,K)(πκ, C
∞
ηl

(N\G)K) = 1 holds if and

only if ηl satisfies one of the following conditions:

(a) ηl = χl and χl(M ∩NL) = {1}, i.e. l = ξnnlnn.

(b) ηl �= χl, χl(M ∩ NL) = {1} and l is Ad∗NL-equivalent to l′ ∈ n∗ such

that nr �= n in I(l′) and Y (l′) is positive definite, or to l′ ∈ n∗ such that

nr = n in I(l′) and Y (l′)r−1 is positive definite.

For the condition (a), remark that ηl = χl means m = n and that ηl = χl

if and only if non-zero is at least one of the parameters ξnn and ξ′i,i+1 of l

with 1 ≤ i < n, which correspond to the simple roots of the restricted root

system ∆(a, g). We see that ηl = χl and χl(NL ∩M) = {1} if and only if

l = ξnnlnn.

Proof. By virtue of Lemma 4.8 (2), it suffices to consider only the case

where ηl satisfies χl(M ∩NL) = {1}. Therefore we assume this throughout

our proof. Here remark that dimCHom(gC,K)(πΛ, C
∞
ηl

(N\G)K) = 1 if and

only if Wκ,l(∗a) ∈ H∞
ηl

for any fixed a ∈ A. Hence, under the condition

χl(M ∩NL) = {1}, it suffices to prove
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The condition (a) or (b) on ηl in the assertion holds if and only

if Wκ,l(∗a) ∈ H∞
ηl

for any fixed a ∈ A.

Here recall that Wκ,l(∗a) denotes a function on N defined by N � x �→
Wκ,l(xa) (cf. Lemma 4.8 (1)).

For any ηl = χl with χl(M ∩NL) = {1}, Wκ,l(∗a) with any fixed a ∈ A
belongs to H∞

ηl
� C as its explicit formula

C(a1a2 . . . an)κ exp(−2πa2
nξnn)

of Wκ,l|NL
(∗a) in Theorem 4.7 indicates. Therefore dimCHom(gC,K)(πΛ,

C∞
ηl

(N\G)) = 1 for such ηl = χl.

Let ηl �= χl. This means I(l) �= {n} under our assumption χl(M∩NL) =

{1}. In fact, ηl = χl and χl(NL ∩M) = {1} if and only if l = ξnnlnn as is

remarked in the assertion, and we see from this and Lemma 4.10 (3) that

ηl = χl if and only if I(l) = {n} under the assumption χl(NL ∩M) = {1}.
For any fixed a ∈ A, Wκ,l(∗a) ∈ H∞

ηl
holds if and only if Wκ,l|NL

(∗a) is a

square-integrable function on the quotient M ∩NL\NL. We prove that such

square-integrability condition on Wκ,l|NL
(∗a) is equivalent to the condition

(b) in the assertion.

First we assume that detY (l) �= 0. We prove that the square-integra-

bility condition on Wκ,l|NL
(∗a) holds if and only if{

Y (l) is positive definite when nr �= n in I(l),

Y (l)r−1 is positive definite when nr = n in I(l).

Let nr �= n in I(l) and detY (l) �= 0. If Y (l) is positive definite, we

see from Lemma 4.11 (1), (2) that Wκ,l|NL
(∗a) is square-integrable on M ∩

NL\NL. Conversely, if such square-integrability condition on Wκ,l|NL
(∗a)

holds, Lemms 4.11 (3) and the assumption detY (l) �= 0 means that Y (l) is

positive definite.

Let nr = n in I(l) and detY (l) �= 0. Assume that Wκ,l|NL
(∗a) is square-

integrable on M ∩ NL\NL. Here recall the formula of the n-th diagonal

entry of t(XLA)Yn(l)(XLAn) in Lemma 4.11 (2):

a2
nr

(xnrY (l)r−1
txnr +2yr−1

txnr +ξnrnr).

By this formula, we check that Y (l)r−1 is positive definite. In fact, the

square-integrability condition on Wκ,l|NL
(∗a) and Lemma 4.11 (3) means
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that Y (l)r−1 is positive semi-definite. Let detY (l)r−1 = 0. Then there exists

a non-zero x0
nr
∈ Rr−1 such that x0

nr
Y (l)r−1 = (0, . . . , 0). If yr−1

t
x0
nr

= 0,

this contradicts the assumption detY (l) �= 0. If yr−1
t
x0
nr
�= 0, we see that

Wκ,l|NL
(∗a) is neither trivial nor square-integrable on{(

1n +X(xnr)
t(1n +X(xnr))

−1

)∣∣∣∣ xnr ∈ R · x0
nr

}
⊂ NL,

by noting the above formula of the n-th diagonal entry and the formula of

Wκ,l(xLa) in Lemma 4.11 (2). Therefore detY (l)r−1 �= 0, hence Y (l)r−1 is

positive definite.

Conversely, let Y (l)r−1 be positive definite. Then Lemma 4.11 (1) is

valid. By the formula of Wκ,l(xLa) in Lemma 4.11 (2), we check that

Wκ,l|NL
(∗a) is square-integrable with respect to xi for n1 < i < n. For

xn = xnr , note that the n-th diagonal entry is written as

a2
nr

((xnr + y′
r−1)Y (l)r−1

t
(xnr + y′

r−1) +(−y′
r−1, 1)Y (l)r−1

t
(−y′

r−1, 1)),

where y′
r−1 := yr−1Y (l)−1

r−1. This is checked by direct calculation. From the

positive-definiteness of Y (l)r−1, we see that Wκ,l|NL
(∗a) is square-integrable

with respect to xnr , which means that it is square-integrable with respect

to all xi. Therefore Wκ,l|NL
(∗a) is square-integrable on M ∩NL\NL.

Next assume that ηl �= χl and detY (l) = 0. Remark that Yn(l) �= 0n
since ηl �= χl means I(l) �= {n} as is noted above. By Lemma 4.9, we can

take an x′L ∈ NL so that detY (Ad∗ x′L · l) �= 0. Set l′ := Ad∗ x′L · l. Since

Wκ,l(xLa) = Wκ,l′(x
′
LxLa), the argument for the case detY (l) �= 0 means

that, when nr �= n (resp. nr = n) in I(l′), Wκ,l is a generalized Whittaker

function if and only if Y (l′) (resp. Y (l′)r−1) is positive definite. This implies

the assertion for this case. As a result, we complete the proof. �

Recall that ‖ ∗ ‖l denote the norm on Hηl (cf. Proposition 3.1 (1)),

and let ‖ ∗ ‖ denote the norm on the matrix algebra M2n(R) defined by

‖Y ‖ := Tr tY Y . Moreover, let U(gC) be the universal envelopping algebra of

gC. Now we consider the space Aηl(N\G) of all F ∈ C∞
ηl

(N\G)K satisfying

the moderate growth condition, i.e.

‖X · F (g)‖l < C‖g‖m for any g ∈ G and any X ∈ U(gC),

where a constant C and an integer m depend only on F and X. This forms

a (gC,K)-submodule of C∞(N\G)K .
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Theorem 4.13. dimCHom(gC,K)(πκ,Aηl(N\G)) = 1 if and only if ηl
satisfies the condition that Yn(l) is positive semi-definite and that χl(M ∩
NL) = {1}.

Proof. As we remarked in the beginning of the proof of Theorem 4.12,

it suffices to consider the case where ηl satisfies χl(M ∩ NL) = {1}. Note

that, under this condition, dimCHom(gC,K)(πκ,Aηl(N\G)) = 1 is equivalent

to the moderate growth condition of Wκ,l in the following sense:

X ·Wκ,l(∗a) ∈ H∞
ηl
, ‖X ·Wκ,l(∗a)‖l < C‖a‖m

for any a ∈ A and any X ∈ U(gC), where a constant C and an integer m

depend only on Wκ,l and X. Assuming the condition χl(M ∩NL) = {1} on

ηl, we prove that this moderate growth condition of Wκ,l(∗a) holds if and

only if ηl satisfies the condition that Yn(l) is positive semi-definite.

Let ηl = χl. Then the explicit formula of Wκ,l|NL
(∗a) implies that the

moderate growth condition holds if and only if ξnn ≥ 0, i.e. Yn(l) is positive

semi-definite.

Let ηl �= χl. Recall that this implies I(l) �= {n} as we remarked in the 3-

rd paragraph of the proof of Theorem 4.12. First assuming detY (l) �= 0, we

prove that the moderate growth condition of Wκ,l holds if and only if Y (l)

is positive definite. If Y (l) is positive definite, we can express Wκ,l(xLa) as

(a1a2 . . . an)κ exp(−2πa2
n1
ξn1n1)

×
∏

np∈I(l)\{n1}
exp(−2πa2

np
(−y′

p−1, 1)Y (l)p
t
(−y′

p−1, 1))

×
∏

np∈I(l)\{n1}
exp(−2πa2

np
(xnp + y′

p−1)Y (l)p−1
t
(xnp + y′

p−1))

×
∏

i�∈I(l)
s.t. i > n1

exp(−2πa2
ixiY (l)k(i)

txi)

up to constant multiple. Here see Lemma 4.11 for the notation k(i) and we

set y′
p−1 := yp−1Y (l)−1

p−1. In fact, this also holds for l such that nr = n in

I(l) and Y (l)r−1 is positive definite. From the positive-definiteness of Y (l),

we see that Lemma 4.11 (1) holds and that the exponential part ofWκ,l(xLa)

is constant on {(a1, a2, . . . , an1−1) ∈ R
n1−1
+ } but defines a Schwartz function
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on (M ∩ NL\NL) × {(an1 , an1+1, . . . , an) ∈ R
n−n1+1
+ }. We can check that

Wκ,l satisfies the moderate growth condition.

Conversely, if the moderate growth condition is satisfied, Wκ,l(∗a) ∈
H∞

ηl
and ‖Wκ,l(∗a)‖l < C‖a‖m hold with a constant C and an integer m

depending only on Wκ,l. Theorem 4.12 and Wκ,l(∗a) ∈ H∞
ηl

means that Y (l)

(resp. Y (l)r−1) is positive definite if l satisfies nr �= n (resp. nr = n) in I(l).

Hence it suffices to consider the case where l satisfies nr = n in I(l) and

the positive-definiteness of Y (l)r−1. For such an l, Lemma 4.11 (1) and the

expression of Wκ,l(xLa) in the preceding paragraph are valid. Here note the

formula

a2
nr

((xnr + y′
r−1)Y (l)r−1

t
(xnr + y′

r−1) +(−y′
r−1, 1)Y (l)r−1

t
(−y′

r−1, 1))

of the n-th diagonal entry of t(XLAn)Yn(l)(XLAn), which is also stated in

the 7-th paragraph of the proof of Theorem 4.12. The positive-definiteness

of Y (l)r−1 means the non-negativity of (xnr + y′
r−1)Y (l)r−1

t(xnr + y′
r−1),

and the condition ‖Wκ,l(∗a)‖l < C‖a‖m the non-negativity of

(−y′
r−1, 1)Y (l)r−1

t(−y′
r−1, 1). Hence the n-th diagonal entry has to be

non-negative. It tells us that txY (l)x ≥ 0 for a column vector x with r en-

tries and with non-zero r-th component. By this condition and the positive

definiteness of Y (l)r−1, we check that Y (l) is positive definite.

For ηl �= χl with detY (l) = 0, we see that the problem is reduced to the

previous case by the same reasoning as in the last paragraph of the proof of

Theorem 4.12. Indeed, l ∈ n∗ has the non-zero positive semi-definite Yn(l)

if and only if l is Ad∗
S NL-equivalent to l′ ∈ n∗ with the positive definite

Y (l′). Hence we obtain the result. �

Remark 4.14. Theorem 4.13 corresponds to the “Koecher principle”

for holomorphic Siegel modular forms (cf. [7], Satz 1, Satz 2).

By reviewing the proof of Theorem 4.13, we have

Corollary 4.15. Assume χl(M ∩ NL) = {1}. Then ηl satisfies the

positive-semi-definiteness of Yn(l) if and only if

Wκ,l(∗a) ∈ H∞
ηl
, ‖Wκ,l(∗a)‖l < C‖a‖m

with the constant C and the integer m depending only on Wκ,l.
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5. Construction of the Fourier Expansion

From now on, let Γ := Sp(n; Z), NZ := N ∩ Γ, NS(Z) := NS ∩ Γ and

NL(Z) := NL ∩ Γ. Furthermore let NQ and NL(Q) denote the groups of

Q-rational points in N and in NL, respectively. We recall a definition of

C-valued holomorphic Siegel modular form with respect to Γ.

Definition 5.1. Let κ > n be an integer. A C∞-function f : G → C

is called a holomorphic Siegel modular form of weight κ with respect to Γ

if it satisfies

(1) f(γgk) = det(A+
√
−1B)κf(g) for any (γ, g, k) ∈ Γ×G×K, where we

denote k by

(
A B

−B A

)
.

(2) f satisfies the Cauchy-Riemann condition, i.e.

dRXf = 0 for any X ∈ p
−,

where dR denotes the differential of right regular representation R of G on

the space of C∞-functions on G.

Here remark that the weight κ satisfies κn ≡ 0 mod 2 since −12n ∈
Γ ∩ K and that, if n = 1, we have to add the moderate growth condition

(for a definition, see the remark just before Lemma 5.7) of f to the definition

above.

We formulate the Fourier expansion of a modular form f along the

minimal parabolic subgroup. For a fixed g, we can regard f(xg) as a function

in x ∈ N . Note f(xg) ∈ L2(NZ\N), where L2(NZ\N) denotes the space of

square-integrable functions on the quotient NZ\N . Since NZ\N is compact,

we have

Proposition 5.2. The space L2(NZ\N) decomposes discretely into

L2(NZ\N) �
⊕̃

(η,Hη)∈N̂
m(η)Hη �

⊕̃
(η,Hη)∈N̂

HomN (η, L2(NZ\N))⊗Hη,

where Hη denotes a representation space of η,
⊕̃

the Hilbert space direct

sum and m(η) = dimCHomN (η, L2(NZ\N)) <∞

For a proof, see [5],Chap I,§2.3.
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Let {Θη
m}1≤m≤m(η) be a basis of HomN (η, L2(NZ\N)). According to the

decomposition above, f(xg) decomposes into

f(xg) =
∑
η∈N̂

∑
1≤m≤m(η)

Θη
m(W f

η,m(g))(x),

where W f
η,m(g) ∈ Hη denotes the (η,m)-component of f(xg) and we regard

Θη
m(W f

η,m(g)) as a function on N . For two x1, x2 ∈ N , we deduce

Θη
m(W f

η,m(g))(x1x2) = Θη
m(η(x2)W

f
η,m(g))(x1)

from the N -equivariance of Θη
m, and

Θη
m(W f

η,m(g))(x1x2) = Θη
m(W f

η,m(x2g))(x1)

from the trivial formula f(x1x2 · g) = f(x1 · x2g). Therefore we obtain

W f
η,m(xg) = η(x)W f

η,m(g)

for any x ∈ N . From the right-K-equivariance of f and the holomorphy

of f , we find W f
η,m(g) a generalized Whittaker function for holomorphic

discrete series πκ with K-type τκ (for the notations πκ and τκ, see §2). We

have already obtained the explicit formula of W f
η,m.

Our remaining work is to determine the dimension m(η) and a basis

of the space HomN (η, L2(NΓ\N)). For such determination, we recall some

results established by L.Corwin and F.P.Greenleaf [2]. The paper treats a

spectral decomposition of L2-IndN
NΓ

ρ, where this time N is a general simply

connected nilpotent Lie group with some Q-rational structure and ρ denotes

a character on a uniform discrete subgroup NΓ in N . There is another result

by L.Richardson [13], which treats only the special case where ρ is trivial.

We first state their result on m(η).

Proposition 5.3. In this assertion, we do not assume the assumption

1 (cf. §3) for the polarization subalgebras m and m0.

(1) If ηl occurs in L2(NZ\N), a coadjoint orbit Ad∗N · l contains a Q-

rational l′ ∈ n∗, i.e. l′(log(NZ)) ⊂ Q.

(2) We define, by Ad∗ x · (χ0,M0) := (χ0(x
−1 ∗ x), xM0x

−1) with x ∈ N ,

the action Ad∗ of N on the set of pairs (χ0,M0), where M0 := exp(m0)
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with a polarrization subalgebra m0 for some linear form in n∗, and χ0 is a

character on M0.

Let l ∈ n∗ be Q-rational and M := exp(m) with a Q-rational polarization

subalgebra m for l, i.e. m ∩ nQ forms a Q-sructure of m with nQ := Q-span

of {log(NZ)} (the existence of such an m is proved in [3], Proposition 5.2.6).

Let ηl be induced from (χl,M) with l and M above and O(ηl)Z :=

{(χl′ ,M
′) ∈ Ad∗NQ · (χl,M) | χl′(NZ ∩ M ′) = {1}}. Then the repre-

sentation ηl occurs in L2(NZ\N) if and only if O(ηl)Z is non-empty. The

multiplicity m(ηl) of the representation ηl in L2(NZ\N) is equal to the car-

dinality of M(ηl) := O(ηl)Z/Ad∗NZ.

For a proof, see Theorem 5.1 in [2].

Let n∗S := {l ∈ n∗ | l(nL) = {0}}. Let Ad∗
S denote the coadjoint action

of N on n∗S and also denote the action of N on the set of pairs (l,M) with

l ∈ n∗S and an associated polarization subgroup M := exp(m), defined by

Ad∗
S x · (l,M) := (Ad∗

S x · l, xMx−1)

with x ∈ N . Remark that both actions satisfy the triviality of Ad∗
S |NS

.

Theorem 4.12 and Proposition 5.3 implies that a representation ηl oc-

curing in the Fourier expansion is attached to (l,m) in (1), (2) or (3) of

Lemma 4.10 with a Q-rational l. There is no loss of generality if we assume

l ∈ n∗S . In fact, we check that, under the assumption 1, the polarization

subalgebra m for l in Lemma 4.10 (1), (2) or (3) such that l(m ∩ nL) = {0}
coincides with the polarization subalgebra for l′ ∈ n∗S with Yn(l′) = Yn(l),

which implies ηl = ηl′ . From now on, we assume

Assumption 2. l is in n∗S, Q-rational and satisfies the condition in

Lemma 4.10 (1), (2) or (3).

For a Q-rational l ∈ n∗S with the condition in Lemma 4.10 (1) (resp.

Lemma 4.10 (3)), the polarization subalgebra m is Q-rational as its explicit

form m = nS ⊕ nl (resp. m = n) indicates. For a Q-rational l ∈ n∗S with the

condition in Lemma 4.10 (2), the polarization subalgebra m is of the form

Ad∗
S x

′
L
−1 · (nS ⊕ nl′), where x′L ∈ NL(Q) and l′ ∈ n∗S with the condition in

Lemma 4.10 (1). Hence m is Q-rational.
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Proposition 5.4. Let l ∈ n∗S satisfy the assumption 2. Then we have

the following identifications:

O(ηl)Z � O(l)Z := {l′ ∈ Ad∗
S NL(Q) · l | l′(log(NS(Z))) ⊂ Z};

M(ηl) �M(l) := O(l)Z/Ad∗
S NL(Z).

Proof. Characters χl for l ∈ n∗S are determined by its restriction to

NS . The set of characters on NS is in bijection with n∗S . Therefore, in the

expression of O(ηl)Z in Proposition 5.3 (2), we may replace χl′ and χl by

l′ and l respectively. Since the action of N on χl via Ad∗ is identical with

the action of it on l ∈ n∗S via Ad∗
S , we can replace Ad∗ by Ad∗

S . Under such

replacement, we have a bijection

O(ηl)Z � {(l′,M ′) ∈ Ad∗
S NL(Q) · (l,M) | l′(log(M ∩NZ)) ⊂ Z}.

In order to deduce the bijection O(ηl)Z � O(l)Z, we insert

Lemma 5.5. For a pair (l,m) with l ∈ n∗S, x ∈ N satisfies Ad∗
S x · l = l

if and only if x ∈M . This also holds for any (l,m) with l ∈ n∗S not satisfying

the assumption 2.

Proof. It suffices to prove that, for xL ∈ NL, Ad∗
S xL · l = l if and

only if xL ∈M . Let xL = exp(X) with X ∈ nL. Since l is trivial on nL, we

see that Ad∗
S xL · l = l if and only if l([X,YS ]) = 0 for any YS ∈ nS . But the

condition l([X, nS ]) = {0} is equivalent to X ∈ m∩ nL. In fact, X ∈ m∩ nL

clearly satisfies l([X, nS ]) = {0}. Conversely, assume that l([X, nS ]) = {0}
holds butX �∈ m∩nL. Then m⊕RX forms an isotropic subspace for an inner

product l([∗, ∗]), but this contradicts the maximality of m as an isotropic

subspace. Hence X ∈ m ∩ nL. As a result, we obtain the assertion. �

We return to the proof of the proposition. The condition l′(log(M ∩
NZ)) ⊂ Z can be replaced by the condition l′(log(NS(Z))) ⊂ Z. Since

Lemma 5.5 means that for an xL ∈ NL, Ad∗
S xL · (l,M) = (l,M) if and only

if Ad∗
S xL · l = l, the bijection O(ηl)Z � O(l)Z is obtained by deleting M

and M ′ in the set on the right hand side of the bijection just before Lemma

5.5. The bijection on M(ηl) follows immediately from that on O(ηl)Z. �
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We recall the construction of a basis of HomN (ηl, L
2(NZ\N)) stated in

[2]. For each l′ ∈M(l), we define Θl′ ∈ HomN (ηl′ , L
2(NZ\N)) by

Θl′(h)(x) :=
∑

γ∈NZ∩M ′\NZ

h(γx),

where M ′ = exp(m′) with the polarization subalgebra m′ for l′ ∈M(l). Here

remark that Θl′ may depend on the choice of m′ but that thanks to Lemma

4.10 m′ is uniquely determined by l′. We obtain

Proposition 5.6. The space
⊕̃

l′∈M(l)Θl′(Hηl′ ) forms the ηl-isotypic

component of L2(NZ\N), where recall that
⊕̃

denotes the Hilbert space

direct sum.

For a proof, see [2],§6.

By virtue of Proposition 5.6, the ηl-component of our Fourier expansion

is given as∑
l′∈M(l)

C l
l′Θl′(Wκ,l′(∗a))(x) =

∑
l′∈M(l)

C l
l′

∑
γ∈M ′∩NZ\NZ

Wκ,l′(γxa),

where C l
l′ denotes the constant factor of the Whittaker function Wκ,l′ with

the boundary condition Wκ,l′(1) = 1. An element γ ∈ NZ can be de-

composed into γ = γSγL with γS ∈ NS(Z) and γL ∈ NL(Z) since NZ =

NS(Z) �NL(Z). Noting this, the Whittaker function Wκ,l′(γxa) twisted by

γ ∈ NZ can be written as

Wκ,l′(γxa) = Wκ,l′(γSγLxSxLa) = χAd∗
S γ−1

L ·l′(xS)Wκ,l′(γLxLa)

= χAd∗
S γ−1

L ·l′(xS)Wκ,Ad∗
S γ−1

L ·l′(xLa) = Wκ,Ad∗
S γ−1

L ·l′(xa),

where we use Lemma 4.6 (1) in order to deduce the third equation. Lemma

5.5 yields a bijection:

M ′ ∩NZ\NZ �M ′ ∩NL(Z)\NL(Z) � Ad∗
S NL(Z) · l′.

Therefore the ηl-component of the Fourier expansion can be written as∑
l′∈M(l)

C l
l′Θl′(Wκ,l′(∗a))(x) =

∑
l′∈M(l)

C l
l′

∑
l′′∈Ad∗

S NL(Z)·l′
Wκ,l′′(xa),
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Due to the Koecher principle (cf. [7], Satz 1, Satz 2), a holomorphic

Siegel modular form f satisfies the moderate growth condition as follows:

|f(g)| < Cf‖g‖mf for any g ∈ G,

with some constant Cf and integer mf , where | ∗ | denotes the norm on C

defined as |z| := z̄ · z. In fact, we can check this by observing the relation

between modular forms on G and those on the Siegel upper half space, which

will be referred to just after Definition 5.9. Here we insert

Lemma 5.7. (1) A theta series Θl(Wκ,l(∗a)) contributing to the

Fourier expansion of a holomorphic Siegel modular form f satisfies the mod-

erate growth condition in the following sense:

‖Θl(Wκ,l(∗a))(x)‖L2 < C ′‖a‖m′
,

where ‖ ∗ ‖L2 denotes the L2-norm on L2(NZ\N), and C ′ and m′ are a

constant and an integer not dependent on a ∈ A respectively.

(2) The moderate growth condition for Θl(Wκ,l(∗a)) stated in (1) holds if

and only if Yn(l) is positive semi-definite.

Proof. (1) For a fixed g ∈ G, we regard f(xg) as a function in x ∈ N .

It belongs to L2(NZ\N) as we remarked in the formulation of the Fourier

expansion.

Then, for any a ∈ A, we have

‖ClΘl(Wκ,l(∗a))‖L2 < ‖f(∗a)‖L2

for a theta series Θl(Wκ,l(∗a)) contributing to the Fourier expansion of f ,

where Cl denotes the coefficient of Θl(Wκ,l(∗a)) in f .

There exists an xmax ∈ N such that |f(xmaxa)| is the maximal value of

|f(∗a)| since xmax is determined modulo NZ and NZ\N is compact. Then

we obtain

‖f(∗a)‖2L2 ≤ vol(NZ\N)|f(xmaxa)|2,

where vol(NZ\N) denotes the volume ofNZ\N . Note that xmax may depend

on a ∈ A. But the moderate growth condition of f implies

|f(xmaxa)| < C ′
f‖a‖m

′
f
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with a constant C ′
f and an integer m′

f depending only on f . Hence

Θl(Wκ,l(∗a)) satisfies the moderate growth condition in the assertion.

(2) Theorem 4.12 and Corollary 4.15 mean that, under the assumption 2,

Yn(l) is positive semi-definite if and only if

‖Wκ,l(∗a)‖l < C‖a‖m

for any a ∈ A, with a constant C and an integer m depending only on Wκ,l.

In fact, Theorem 4.12 means that Wκ,l(∗a) ∈ H∞
ηl

automatically holds under

the assumption 2.

By the definition of Θl given before Proposition 5.6, we have

‖Θl(Wκ,l(∗a))‖L2 = vol(NZ∩M\M)‖Wκ,l(∗a)‖l,

where M denotes the polarization subgroup for l and vol(NZ∩M\M) is the

volume of NZ∩M\M . Hence Yn(l) is positive semi-definite if and only if

‖Θl(Wκ,l(∗a))‖L2 < C vol(NZ∩M\M)‖a‖m

with C and m as above. This means the assertion (2). �

In order to express our Fourier expansion, we introduce the following

sets:

Ωn,Z := {T ∈Mn(Q) |
T is symmetric positive semi-definite semi-integral},

L := {l ∈ n
∗
S | Yn(l) ∈ Ωn,Z}, L̃ := L/Ad∗

S NL(Q).

Here remark that the map L � l �→ Yn(l) ∈ Ωn,Z gives a bijection L � Ωn,Z.

By virtue of Proposition 5.3 (2), Proposition 5.4 and Lemma 5.7, we see

that the totallity of elements in N̂ occurring in our Fourier expansion is in

bijection with the set L̃. Therefore we can write our Fourier expansion of a

modular form f as follows;

Theorem 5.8. Let f be a holomorphic Siegel modular form of weight

κ with respect to Γ. Its Fourier expansion along the minimal parabolic sub-

group can be written as

f(xa) =
∑
l∈L̃

∑
l′∈M(l)

C l
l′Θl′(Wκ,l′(∗a))(x),
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where Θl′(Wκ,l′(∗a))(x) :=

∑
l′′∈Ad∗

S NL(Z)·l′
χl′′(xS)(a1a2 · · · an)κ exp(−2πTr(t(XLAn)Yn(l′′)(XLAn))).

Definition 5.9. We call the constants C l
l′ Fourier coefficients of f .

Let Hn be the Siegel upper half space of degree n, defined by

{Z = tZ ∈Mn(C) | ImZ is positive definite},

where ImZ denotes the imaginary part of Z. The group G acts on this via

the linear fractional transformation

Hn � Z �→ g · Z := (AZ +B)(CZ +D)−1 ∈ Hn

with g =

(
A B

C D

)
∈ G. For a Z ∈ Hn, let gZ be an element of G such that

gZ ·
√
−11n = Z. Since the stabilizer of

√
−11n in G is the maximal compact

subgroup K, gZ is uniquely determined modulo K. For a holomorphic

modular form f on G, we define a function on Hn by

Ff (Z) := det(C
√
−11n +D)κf(gZ),

where we write gZ =

(
∗ ∗
C D

)
. The map f �→ Ff provides a bijection

between the space of holomorphic Siegel modular forms on G and the space

of holomorphic Siegel modular forms on Hn. We want to rewrite our Fourier

expasnion for Ff . For that purpose, we introduce some symbols.

Let ˜Ωn,Z be the quotient of Ωn,Z by an equivalence relation:

S ∼ S′ ⇔ there exists a u ∈ Un(Q) such that tuSu = S′,

where Un(Q) = Un ∩GLn(Q). For a S ∈ Ωn,Z, we define the set Mn(S) as

a quotient of the set {T ∈ Ωn,Z | tuTu = S ∃u ∈ Un(Q)} by an equivalence

relation

T ∼ T ′ ⇔ there exists a u ∈ Un(Z) such that tuTu = T ′,
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where Un(Z) = Un∩GLn(Z). For S ∈ Ωn,Z, let lS ∈ n∗S such that Yn(lS) = S.

Lemma 4.6 (1) means that the sets ˜Ωn,Z and Mn(S) are bijective with

the sets L̃ and M(lS), respectively. Furthermore, for an T ∈ Ωn,Z, set

Ωn(T ) := {tuTu | u ∈ Un(Z)}. This is in bijection with Ad∗
S NL(Z) · lT .

The map f �→ Ff sends the ηl-component
∑

l′∈M(l)C
l
l′Θl′(Wκ,l′(∗a))(x) of

the Fourier expansion of f to

∑
T∈Mn(S)

CS
T ΘT (Z),

where l, l′ ∈ L correspond to S, T ∈ Ωn,Z respectively, and we rewrite C l
l′ as

CS
T and set ΘT (Z) :=

∑
R∈Ωn(T ) exp 2π

√
−1 Tr(RZ). As a result, we obtain

our Fourier expansion for Ff .

Theorem 5.10.

Ff (Z) =
∑

S∈ ˜Ωn,Z

∑
T∈Mn(S)

CS
T ΘT (Z).

Remark 5.11. Let Ω := {Y ∈ Mn(R) | Y :symmetric positive-

definite}. The theta series ΘT (Z) defines a holomorphic function on Hn.

In fact, since Ω � NLA via the linear functional transformation, the uni-

form convergence of the absolute value of ΘT (Z) on any compact subset of

Hn is equivalent to that of Θl(Wκ,l(∗a))(x) on any compact subset of NLA,

with l ∈ L such that Yn(l) = T . The latter condition is justified by Lemma

5.7 (2).

6. Comparison with the Other Two Fourier Expansions

In this section, we compare our Fourier expansion with the other two

known Fourier expansions, i.e. classical Fourier expansion and Fourier-

Jacobi expansion. This section consists of two subsections §6.1 and §6.2.

In §6.1 (resp. §6.2), we consider the comparison with the classical expan-

sion (resp. Fourier-Jacobi expansion).
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6.1. Comparison with the classical Fourier expansion

Let Ff be as in the previous section. As is well-known, the classical

Fourier expansion of Ff can be written as

Ff (Z) =
∑

T∈Ωn,Z

CT exp 2π
√
−1 TrTZ,

where CT denotes the Fourier coefficient indexed by T . Compare this clas-

sical expansion with our expansion in Theorem 5.10. Then we obtain a re-

lation between the Fourier coefficients of the classical expansion and those

of our expasnion.

Theorem 6.1. Let T ∈ Ωn,Z belong to Mn(S) with some S ∈ Ωn,Z

and CS
T denote the Fourier coefficient of our Fourier expansion in Theorem

5.10. Then we have

CS
T = CT

and, for every u ∈ Un(Z),

CtuTu = CS
T .

Remark 6.2. This relation of Fourier coefficients is compatible with a

well-known formula

Ctγ Tγ = CT

for any γ ∈ SLn(Z). Noting this relation, we can deduce our Fourier

expansion in Theorem 5.10 from the classical expansion since∑
R∈Ωn(T )CR exp 2π

√
−1 Tr(RZ) = CTΘT (Z).

6.2. Comparison with the Fourier-Jacobi expansion

For a field F , Mm,n(F ) denotes the set of matrices with their size m×n
and coefficients in F . If m = n, it is nothing but Mn(F ).

Let Z =

(
Z1 Z2
tZ2 Z3

)
∈ Hn with Z1 ∈ Mj(C), Z2 ∈ Mj,n−j(C) and

Z3 ∈ Mn−j(C), where 1 ≤ j ≤ n − 1. The Fourier-Jacobi expansion of a

holomorphic form Ff on Hn is written as

Ff (Z) =
∑

T1∈Ωj,Z

φT1(Z2, Z3) exp 2π
√
−1 TrT1Z1,
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where

φT1(Z2, Z3) :=
∑

T∈ΩT1

CT exp 2π
√
−1(Tr(2 tT2 Z2 + T3Z3)),

with ΩT1 :=

{
T =

(
T1 T2
tT2 T3

)
∈ Ωn,Z

∣∣∣∣T2 ∈Mj,n−j(Q), T3 ∈Mj−n(Q)

}
.

As is well-known, φT1 is a Jacobi form of weight κ and index T1 (for a

definition, see [17], Definition 1.3).

For an S1 ∈ Ωj,Z, let Ω̃S1 denote the quotient of ΩS1 by an equivalence

relation

S ∼ S′ ⇔ tuSu = S′ ∃u ∈ Un(Q).

For our purpose, we need

Lemma 6.3. ⋃
T1∈Mj(S1)

⋃
R1∈Ωj(T1)

ΩR1 =
⋃

S∈ ˜ΩS1

⋃
T∈Mn(S)

Ωn(T ).

Proof. The unions appearing in the both sides of the equation above

are all disjoint. It suffices to prove that each ΩR1 (resp. Ωn(T )) is contained

in the right hand side (resp. left hand side). The upper-left j×j component

of each element in Ωn(T ) is in
⋃

T1∈Mj(S1) Ωj(T1). Hence Ωn(T ) forms a

subset of the set on the left hand side. The set ΩR1 can be written as

Ωtu1 S1u1
=

(
tu1

1n−j

)
ΩS1

(
u1

1n−j

)
with some u1 ∈ Uj(Q). So we

see that ΩR1 is contained in the right hand side. Therefore the assertion is

verified. �

From this lemma, we deduce a relation between the Fourier-Jacobi co-

efficients and theta series ΘT , stated as

Theorem 6.4.∑
T1∈Mj(S1)

∑
R1∈Ωj(T1)

φR1(Z2, Z3) exp(2π
√
−1 TrR1Z1)

=
∑

S∈ ˜ΩS1

∑
T∈Mn(S)

CS
T ΘT (Z).
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Proof. Lemma 6.3 means that the equation above formally holds.

The convergence of the infinite sums on both sides is justified since the

Fourier series of f in the sence of clasical Fourier expansion, which uniformly

absolutely converges on Γ\Hn, is a majorant of them. �

Consider the case j = 1. Then the formula in Lemma 6.3 is rewritten as

ΩS1 =
⋃

S∈ ˜ΩS1

⋃
T∈Mn(S)

Ωn(T )

since U1 = {1}. This means

Corollary 6.5. When j = 1, one obtains

φS1(Z2, Z3) exp 2π
√
−1 TrS1Z1 =

∑
S∈ ˜ΩS1

∑
T∈Mn(S)

CS
T ΘT (Z).

Remark 6.6. Our Fourier expansion along the minimal parabolic sub-

group, stated as Theorem 5.8 and Theorem 5.10, is the most coarse one. In

this paper, we give a comparison of the Fourier expansions along the ex-

tremal parabolic subgroups, i.e. the maximal parabolic subgroups and the

minimal parabolic subgroup, in terms of Fourier coefficients and theta series

appearing in the expansions. We think that such comparison seems to be

also possible for Fourier expansions along arbitrary parabolic subgroups.
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