Malliavin Calculus Revisited

By Shigeo Kusuoka

Abstract. The author considers the regularity on diffusion semigroups, and shows a precise estimate under a certain assumption which is much weaker than hypoellipticity assumptions.

1. Introduction and Main Results

Let $W_0 = \{w \in C([0,\infty); \mathbf{R}^d); w(0) = 0\}, \mathcal{F}$ be the Borel algebra over W_0 and P be the Wiener measure on (W_0, \mathcal{F}) . Let $B^i : [0,\infty) \times W_0 \to \mathbf{R}$, $i = 1, \ldots, d$, be given by $B^i(t,w) = w^i(t), (t,w) \in [0,\infty) \times W_0$. Then $\{(B^1(t),\ldots, B^d(t)); t \in [0,\infty)\}$ is a d-dimensional Brownian motion under P(dw). Let $B^0(t) = t, t \in [0,\infty)$. Let $V_0, V_1, \ldots, V_d \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R}^N)$. Here $C_b^{\infty}(\mathbf{R}^N; \mathbf{R}^n)$ denotes the space of \mathbf{R}^n -valued smooth functions defined in \mathbf{R}^N whose derivatives of any order are bounded. We regard elements in $C_b^{\infty}(\mathbf{R}^N; \mathbf{R}^N)$ as vector fields on \mathbf{R}^N . For simplicity, we sometimes denote (i) by $i, i = 0, 1, \ldots, d$, and $C_b^{\infty}(\mathbf{R}^N; \mathbf{R})$ by $C_b^{\infty}(\mathbf{R}^N)$.

Now let $X(t, x), t \in [0, \infty), x \in \mathbf{R}^N$, be the solution to the Stratonovich stochastic integral equation

(1)
$$X(t,x) = x + \sum_{i=0}^{d} \int_{0}^{t} V_{i}(X(s,x)) \circ dB^{i}(s).$$

Then there is a unique solution to this equation. Moreover we may assume that X(t,x) is continuous in t and smooth in x and $X(t,\cdot) : \mathbf{R}^N \to \mathbf{R}^N$, $t \in [0,\infty)$, is a diffeomorphism with probability one.

Let $\mathcal{A} = \{\emptyset\} \cup \bigcup_{k=1}^{\infty} \{0, 1, \dots, d\}^k$. Then \mathcal{A} becomes a semigroup with a product * defined by $\alpha * \beta = (\alpha^1, \dots, \alpha^k, \beta^1, \dots, \beta^\ell)$ for $\alpha = (\alpha^1, \dots, \alpha^k) \in \mathcal{A}$ and $\beta = (\beta^1, \dots, \beta^\ell) \in \mathcal{A}$. For $\alpha \in \mathcal{A}$, let $|\alpha| = 0$ if $\alpha = \emptyset$, let $|\alpha| = k$ if $\alpha = (\alpha^1, \dots, \alpha^k) \in \{0, 1, \dots, d\}^k$, and let $|| \alpha || = |\alpha| + \operatorname{card}\{1 \le i \le |\alpha|; \alpha^i = 0\}$. Let \mathcal{A}_0 and \mathcal{A}_1 denote $\mathcal{A} \setminus \{\emptyset\}$ and $\mathcal{A} \setminus \{\emptyset, 0\}$, respectively. Also, for each $m \ge 1$, $\mathcal{A}(m)$, $\mathcal{A}_0(m)$ and $\mathcal{A}_1(m)$ denote $\{\alpha \in \mathcal{A}; || \alpha || \le m\}$, $\{\alpha \in \mathcal{A}_0; || \alpha || \le m\}$ and $\{\alpha \in \mathcal{A}_1; || \alpha || \le m\}$ respectively.

¹⁹⁹¹ Mathematics Subject Classification. 60H30, 35K65.

Shigeo Kusuoka

We define vector fields $V_{[\alpha]}$, $\alpha \in \mathcal{A}$, inductively by

$$V_{[\emptyset]} = 0,$$
 $V_{[i]} = V_i,$ $i = 0, 1, \dots, d,$
 $V_{[\alpha * i]} = [V_{[\alpha]}, V_i],$ $i = 0, 1, \dots, d.$

DEFINITION 1. We say that a system $\{V_i; i = 0, 1, \ldots, d\}$ of vector fields satisfies the condition (UFG), if there are an integer ℓ and $\varphi_{\alpha,\beta} \in C_b^{\infty}(\mathbf{R}^N)$, $\alpha \in \mathcal{A}_1$, $\beta \in \mathcal{A}_1(\ell)$, satisfying the following.

$$V_{[\alpha]} = \sum_{\beta \in \mathcal{A}_1(\ell)} \varphi_{\alpha,\beta} V_{[\beta]}, \qquad \alpha \in \mathcal{A}_1.$$

Let $c \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R})$ and let us define a semigroup of linear operators $\{P_t^c\}_{t \in [0,\infty)}$ by

$$(P_t^c f)(x) = E[\exp(\int_0^t c(X(s,x))ds)f(X(t,x))], \quad t \in [0,\infty), \ f \in C_b(\mathbf{R}^N).$$

Our main result is the following.

THEOREM 2. Suppose that $\{V_i; i = 0, 1, ..., d\}$ satisfies the (UFG) condition. Then for any $k, m \ge 0$ and $\alpha_1, ..., \alpha_{k+m} \in \mathcal{A}_1$, there is a constant C > 0 such that

$$\| V_{[\alpha_1]} \cdots V_{[\alpha_k]} P_t^c V_{[\alpha_{k+1}]} \cdots V_{[\alpha_{k+m}]} f \|_{L^p(dx)}$$

$$\leq C t^{-(\|\alpha_1\| + \dots + \|\alpha_{k+m}\|)/2} \| f \|_{L^p(dx)}$$

for any $f \in C_0(\mathbf{R}^N)$, $t \in (0, 1]$ and $p \in [1, \infty]$.

DEFINITION 3. We say that a system $\{V_i; i = 0, 1, ..., d\}$ satisfies the condition (UH), if there are an integer ℓ such that

$$\inf\{\sum_{\alpha\in\mathcal{A}_1(\ell)} (V_{[\alpha]}(x),\xi)^2; \ x,\xi\in\mathbf{R}^N, \ |\xi|=1\}>0.$$

REMARK 4. (1) If a system $\{V_i; i = 0, 1, ..., d\}$ of vector fields satisfies the condition (UH), then it satisfies the condition (UFG).

(2) Theorem 2 is proved in Kusuoka-Stroock [4] under the assumption that $\{V_i; i = 0, 1, \ldots, d\}$ satisfies the condition (UH).

REMARK 5. Sussman [5] introduced a local version of the condition (UFG). By his argument, we see that if V_i , i = 0, 1, ..., d, are real analytic and periodic with the same period, then the system $\{V_i; i = 0, 1, ..., d\}$ satisfies the condition (UFG).

2. Basic Relations

Form now on, we assume the assumption (UFG) throughout this paper. We define $\hat{B}^{\circ\alpha}(t), t \in [0, \infty), \alpha \in \mathcal{A}$, inductively by

$$\hat{B}^{\circ \emptyset}(t) = 1,$$
$$\hat{B}^{\circ (i)}(t) = B^i(t), \ i = 0, 1, \dots, d$$

and

$$\hat{B}^{\circ(i*\alpha)}(t) = \int_0^t \hat{B}^{\circ\alpha}(s) \circ dB^i(s) \qquad i = 0, 1, \dots, d.$$

Let $J_i^j(t,x) = \frac{\partial}{\partial x^i} X^j(t,x)$. Then for any C_b^∞ vector field W on \mathbf{R}^N , we see that

$$(X(t)_*W)^i(X(t,x)) = \sum_{j=1}^N J_j^i(t,x)W^j(x),$$

where $X(t)_*$ is a push-forward operator with respect to the diffeomorphism $X(t, \cdot) : \mathbf{R}^N \to \mathbf{R}^N$. Therefore we see that

$$d(X(t)_*^{-1}W)(x) = -\sum_{i=0}^d (X(t)_*^{-1}[W, V_i])(x) \circ dB^i(t)$$

for any C_b^{∞} vector field W on \mathbf{R}^N (cf. [3]). So we have for $\alpha \in \mathcal{A}_1(\ell)$,

$$d(X(t)_*^{-1}V_{[\alpha]})(x) = \sum_{i=0}^d \sum_{\beta \in \mathcal{A}_1(\ell)} c_{\alpha,i}^\beta(X(t,x))(X(t)_*^{-1}V_{[\beta]})(x) \circ dB^i(t),$$

where

$$c_{\alpha,i}^{\beta}(x) = \begin{cases} -1, & \text{if } \alpha * i \in \mathcal{A}_{1}(\ell) \text{ and } \beta = \alpha * i \\ 0, & \text{if } \alpha * i \in \mathcal{A}_{1}(\ell) \text{ and } \beta \neq \alpha * i \\ -\varphi_{\alpha * i, \beta}(x), & \text{otherwise.} \end{cases}$$

Note that $c_{\alpha,i}^{\beta} \in C_b^{\infty}(\mathbf{R}^N)$. Let $a_{\alpha}^{\beta}(t,x), \alpha, \beta \in \mathcal{A}_1(\ell)$, be the solution to the following SDE $da_{\alpha}^{\beta}(t,x)$

$$=\sum_{i=0}^{d}\sum_{\gamma\in\mathcal{A}_{1}(\ell)}c_{\alpha,i}^{\gamma}(X(t,x))a_{\gamma}^{\beta}(t,x)dB^{i}(t) + \frac{1}{2}\sum_{i=1}^{d}\sum_{\gamma\in\mathcal{A}_{1}(\ell)}(V_{i}c_{\alpha,i}^{\gamma})(X(t,x))a_{\gamma}^{\beta}dt + \frac{1}{2}\sum_{i=1}^{d}\sum_{\gamma\xi\in\mathcal{A}_{1}(\ell)}(c_{\alpha,i}^{\xi}c_{\xi,i}^{\gamma})(X(t,x))a_{\gamma}^{\beta}(t,x)dt, \\ a_{\alpha}^{\beta}(0,x) = \delta_{\alpha}^{\beta}.$$

Here δ^{β}_{α} is Kronecker's delta.

Such a solution exists uniquely, and moreover, we may assume that $a^{\beta}_{\alpha}(t,x)$ is smooth in x with probability one and that

$$\sup_{x \in \mathbf{R}^N} E^P[\sup_{t \in [0,T]} |\frac{\partial^{|\gamma|}}{\partial x^{\gamma}} a_{\alpha}^{\beta}(t,x)|^p] < \infty, \qquad p \in [1,\infty), \ T > 0$$

for any multi-index γ . One can easily see that

(2)
$$da^{\beta}_{\alpha}(t,x) = \sum_{i=0}^{d} \sum_{\gamma \in \mathcal{A}_1(\ell)} (c^{\gamma}_{\alpha,i}(X(t,x))a^{\beta}_{\gamma}(t,x)) \circ dB^i(t).$$

Then the uniqueness of SDE implies

$$(X(t)^{-1}_*V_{[\alpha]})(x) = \sum_{\beta \in \mathcal{A}_1(\ell)} a^\beta_\alpha(t, x) V_{[\beta]}(x), \ \alpha \in \mathcal{A}_1(\ell).$$

Similarly we see that there exists a unique solution $b_{\alpha}^{\beta}(t, x), \alpha, \beta \in \mathcal{A}_{1}(\ell)$, to the SDE

(3)
$$b_{\alpha}^{\beta}(t,x) = \delta_{\alpha}^{\beta} - \sum_{i=0}^{d} \sum_{\gamma \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} b_{\alpha}^{\gamma}(s,x) c_{\gamma,i}^{\beta}(X(s,x)) \circ dB^{i}(s).$$

and we see that $b_{\alpha}^{\beta}(t,x)$ is smooth in x with probability one ,

$$\sup_{x \in \mathbf{R}^N} E^P[\sup_{t \in [0,T]} |\frac{\partial^{|\gamma|}}{\partial x^{\gamma}} b_{\alpha}^{\beta}(t,x)|^p] < \infty, \qquad p \in [1,\infty), \ T > 0$$

for any multi-index $\gamma,$ and that

$$V_{[\alpha]}(x) = \sum_{\beta \in \mathcal{A}_1(\ell)} b_{\alpha}^{\beta}(t, x) (X(t)_*^{-1} V_{[\beta]})(x), \ \alpha \in \mathcal{A}_1(\ell).$$

Note that

$$a_{\alpha}^{\beta}(t,x)$$
$$= \delta_{\alpha}^{\beta} + \sum_{i=0}^{d} \sum_{\gamma \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} (c_{\alpha,i}^{\gamma}(X(s,x))a_{\gamma}^{\beta}(s,x)) \circ dB^{i}(s).$$

So if $\parallel \alpha \parallel \leq \ell - 2$,

$$a_{\alpha}^{\beta}(t,x) = \delta_{\alpha}^{\beta} + \sum_{i=0}^{d} \int_{0}^{t} (-1)a_{\alpha*i}^{\beta}(s,x) \circ dB^{i}(s),$$

and if $\parallel \alpha \parallel = \ell - 1$,

$$\begin{aligned} a_{\alpha}^{\beta}(t,x) \\ &= \delta_{\alpha}^{\beta} + \sum_{i=1}^{d} \int_{0}^{t} (-1) a_{\alpha*i}^{\beta}(s,x) \circ dB^{i}(s) \\ &+ \sum_{\gamma \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} c_{\alpha,0}^{\gamma}(X(s,x)) a_{\gamma}^{\beta}(s,x) ds. \end{aligned}$$

So we have for any $\alpha, \beta \in \mathcal{A}_1(\ell)$ with $\parallel \alpha \parallel \leq \parallel \beta \parallel$,

(4)
$$a_{\alpha}^{\beta}(t,x) = a_{\alpha}^{0,\beta}(t,x) + r_{\alpha}^{\beta}(t,x),$$

where

(5)
$$a_{\alpha}^{0,\beta}(t,x) = \begin{cases} (-1)^{|\gamma|} \hat{B}^{\circ\gamma}(t), & \text{if } \beta = \alpha * \gamma \text{ for some } \gamma \in \mathcal{A}, \\ 0, & \text{otherwise }, \end{cases}$$

and

$$\begin{aligned} r_{\alpha}^{\beta}(t,x) \\ = \sum_{\gamma,j} ' \sum_{\delta \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} \circ dB^{\gamma_{1}}(s_{1}) (\int_{0}^{s_{1}} \circ dB^{\gamma_{2}}(s_{2}) \dots (\int_{0}^{s_{k-1}} \circ dB^{\gamma_{k}}(s_{k}) \\ (\int_{0}^{s_{k}} \circ dB^{j}(s_{k+1})(-1)^{|\gamma|} (c_{\alpha*\gamma,j}^{0,\delta}(X(s_{k+1},x))a_{\delta}^{\beta}(X(s_{k+1},x)))) \dots), \end{aligned}$$

where $\sum_{\gamma,j}'$ is the summation taken for $\gamma \in \mathcal{A}$ and $j = 0, 1, \ldots, d$ such that $\| \gamma \| \leq \ell - \| \alpha \|$ and $\| \gamma * j \| \geq \ell + 1 - \| \alpha \|$. Therefore we have

(6)
$$\sup_{x \in \mathbf{R}^N} E[(\sup_{t \in (0,1]} t^{-(\ell+1-||\alpha||)/2+1/4} |r_{\alpha}^{\beta}(t,x)|)^p] < \infty$$

for any $p \in (1, \infty)$, $\alpha, \beta \in \mathcal{A}_1(\ell)$ with $\| \alpha \| \leq \| \beta \|$.

3. Integration by Parts Formula

In this section, we use Malliavin calculus to analyze the operator P_t^c . We use the notation in [1] and [2]. Let $k^{\alpha} : [0, \infty) \times \mathbf{R}^N \times W_0 \to H$, $\alpha \in \mathcal{A}_1(\ell)$, be given by

$$k^{\alpha}(t,x) = \left(\int_{0}^{t\wedge \cdot} a_{i}^{\alpha}(s,x)ds\right)_{i=1,\dots,d}, \qquad (t,x) \in [0,\infty) \times \mathbf{R}^{N}.$$

Then we have by

$$X(t)_*^{-1}DX(t,x) = \left(\int_0^{t\wedge \cdot} (X(s)_*^{-1}V_i)(x)ds\right)_{i=1,\dots,d} = \sum_{\alpha \in \mathcal{A}_1(\ell)} k^{\alpha}(t,x)V_{[\alpha]}(x)ds$$

for $(t,x)\in [0,\infty)\times {\bf R}^N$ (c.f.[3]). Then we have

(7)
$$D(f(X(t,x)) = T_x^* \langle (X(t)^* df)(x), X(t)_*^{-1} DX(t,x) \rangle_{T_x}$$

= $\sum_{\beta \in \mathcal{A}_1(\ell)} T_x^* \langle (X(t)^* df)(x), V_{[\beta]}(x) \rangle_{T_x} k^{\beta}(t,x)$
= $\sum_{\beta \in \mathcal{A}_1(\ell)} (V_{[\beta]}f)(X(t,x))k^{\beta}(t,x).$

Let $M^{\alpha,\beta}(t,x), (t,x) \in [0,\infty) \times \mathbf{R}^N, \alpha, \beta \in \mathcal{A}_1(\ell)$, be given by

(8)
$$M^{\alpha,\beta}(t,x) = t^{-(\|\alpha\| + \|\beta\|)/2} (k^{\alpha}(t,x), k^{\beta}(t,x))_{H}$$

$$= t^{-(\|\alpha\| + \|\beta\|)/2} \sum_{i=1}^{d} \int_{0}^{t} a_{i}^{\alpha}(s, x) a_{i}^{\beta}(s, x) ds$$

The following will be shown in the next section.

LEMMA 6. For any $p \in (1, \infty)$, $\sup_{t \in (0,1], x \in \mathbf{R}^N} E^{\mu} [\det(M^{\alpha,\beta}(t,x))_{\alpha,\beta \in \mathcal{A}_1(\ell)}^{-p}] < \infty.$ Let E be a separable real Hilbert space and $r \in \mathbf{R}$. Let $\mathcal{K}_r(E)$ denote the set of $f: (0,1] \times \mathbf{R}^N \to \mathbf{D}_{\infty-}^{\infty}(E)$ satisfying the following two conditions. (1) f(t,x) is smooth in x and $\frac{\partial^{\nu} f}{\partial x^{\nu}}(t,x)$ is continuous in $(t,x) \in (0,1] \times \mathbf{R}^N$ with probability one for any multi-index ν .

(2) $\sup_{t \in (0,1], x \in \mathbf{R}^N} t^{-r/2} \parallel \frac{\partial^{\nu} f}{\partial^{\nu} x}(t, x) \parallel_{\mathbf{D}_p^s(E)} < \infty \text{ for any } s \in \mathbf{R} \text{ and } p \in (1, \infty).$

We denote $\mathcal{K}_r(\mathbf{R})$ by \mathcal{K}_r .

Then we have the following.

LEMMA 7. (1) Suppose that $f \in \mathcal{K}_r(E), r \geq 0$, and let $g_i(t,x) = \int_0^t f(s,x) dB^i(s), i = 0, 1, \dots, d, t \in (0,1], x \in \mathbf{R}^N$. Then $g_0 \in \mathcal{K}_{r+2}(E)$ and $g_i \in \mathcal{K}_{r+1}(E), i = 1, \dots, d$. (2) $a_{\alpha}^{\beta}, b_{\alpha}^{\beta} \in \mathcal{K}_{(\|\beta\| - \|\alpha\|) \vee 0}$ for $\alpha, \beta \in \mathcal{A}_1(\ell)$. (3) $k^{\alpha} \in \mathcal{K}_{\|\alpha\|}(H), \alpha \in \mathcal{A}_1(\ell)$. (4) Let $\{M_{\alpha,\beta}^{-1}(t,x)\}_{\alpha,\beta \in \mathcal{A}_1(\ell)}$ be the inverse matrix of $\{M^{\alpha,\beta}(t,x)\}_{\alpha,\beta \in \mathcal{A}_1(\ell)}$. Then $M_{\alpha,\beta}^{-1} \in \mathcal{K}_0, \alpha, \beta \in \mathcal{A}_1(\ell)$.

PROOF. Note that

$$Dg_0(t,x)(h) = \int_0^t Df(s,x)(h)dB_0(t)$$
, and

$$Dg_i(t,x)(h) = \int_0^t Df(s,x)(h) dB_i(t) + \int_0^t f(s,x)h_i(s) ds, \quad i = 1, \dots, d,$$

for any $h \in H$. This implies our assertion (1)(c.f.[4]).

We see that f(X(t,x)), $a_{\alpha}^{\beta}(t,x)$, $b_{\alpha}^{\beta}(t,x) \in \mathcal{K}_{0}(\mathbf{R})$ for any $f \in C_{b}^{\infty}(\mathbf{R}^{N},\mathbf{R})$ and $\alpha,\beta \in \mathcal{A}_{1}(\ell)$, since they are solutions to good stochastic differential equations (c.f. [3]). Then the assertion (2) follows from the assertion (1) and Equations (2), (3) and (4).

The assertion (3) follows from the definition of $k^{\alpha}(t,x)$ and the assertions (1) and (2). Then we see that $M^{\alpha,\beta}(t,x) \in \mathcal{K}_0(\mathbf{R}), \alpha, \beta \in \mathcal{A}_1(\ell)$, by the assertion (3). This fact and Lemma 6 imply the assertion (4). This completes the proof. \Box

For each $\alpha \in \mathcal{A}_1(\ell)$, and $u \in \mathcal{K}_r(\mathbf{R})$, $r \in \mathbf{R}$, let

$$(D^{(\alpha)}u)(t,x) = (Du(t,x), k^{\alpha}(t,x))_H.$$

Then we have the following.

LEMMA 8. (1) For any $\alpha \in \mathcal{A}_1(\ell)$, and $u \in \mathcal{K}_r$, $r \in \mathbf{R}$, $D^{(\alpha)}u \in \mathcal{K}_{r+||\alpha||}$. (2) For any $f \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R})$, $t \in (0, 1]$, and $x \in \mathbf{R}^N$, we have

$$(V_{[\alpha]}f)(X(t,x))$$

= $t^{-\|\alpha\|/2} \sum_{\beta \in \mathcal{A}_1(\ell)} t^{-\|\beta\|/2} M_{\alpha\beta}^{-1}(t,x) D^{(\beta)}(f(X(t,x))).$

(3) For any $r \in \mathbf{R}$, $\Phi \in \mathcal{K}_r$, and $\alpha \in \mathcal{A}_1(\ell)$,

$$E^{\mu}[\Phi(t,x)(V_{[\alpha]}f)(X(t,x))] = t^{-\|\alpha\|/2} E^{\mu}[\Phi_{\alpha}(t,x)f(X(t,x))],$$

where

$$= \sum_{\beta \in \mathcal{A}_{1}(\ell)} t^{-\|\beta\|/2} \{ -D^{(\beta)} \Phi(t, x) M_{\alpha\beta}^{-1}(t, x) \\ - (\sum_{\gamma_{1}, \gamma_{2} \in \mathcal{A}_{1}(\ell)} \Phi(t, x) M_{\alpha\gamma_{1}}^{-1}(t, x) D^{(\beta)} M^{\gamma_{1}\gamma_{2}}(t, x) M_{\gamma_{2}\beta}^{-1}(t, x)) \\ + \Phi(t, x) M_{\alpha\beta}^{-1}(t, x) D^{*} k^{\beta}(t, x) \}, \qquad t > 0, \ x \in \mathbf{R}^{N}.$$

In particular, $\Phi_{\alpha} \in \mathcal{K}_r$.

PROOF. By Equation (7), we have

$$D^{(\alpha)}(f(X(t,x)) = \sum_{\beta \in \mathcal{A}_1(\ell)} t^{(\|\alpha\| + \|\beta\|)/2} M^{\alpha\beta}(t,x) (V_{[\beta]}f)(X(t,x))$$

This implies our assertion. \Box

For any $\Phi \in \mathcal{K}_r(\mathbf{R}), r \in \mathbf{R}$, let us define an operator $T_{\Phi}(t), t \in (0, 1]$ in $C_b^{\infty}(\mathbf{R}^N; \mathbf{R})$ by

$$(T_{\Phi}(t)f)(x) = E^{\mu}[\Phi(t,x)f(X(t,x))], \qquad x \in \mathbf{R}^{N}.$$

COROLLARY 9. Let $r \in \mathbf{R}$, and $\Phi \in \mathcal{K}_r$. (1) There is a constant $C < \infty$ such that

$$\parallel T_{\Phi}(t)f \parallel_{\infty} \leq \frac{C}{t^{r/2}} \parallel f \parallel_{\infty}$$

for any $t \in (0,1]$ and $f \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R})$. (2) For any $\alpha \in \mathcal{A}_1(\ell)$ there are $\Phi_{\alpha,i} \in \mathcal{K}_{r-||\alpha||}, i = 0, 1$, such that

$$T_{\Phi}(t)V_{[\alpha]} = T_{\Phi_{\alpha,0}}(t) \qquad and \qquad V_{[\alpha]}T_{\Phi}(t) = T_{\Phi_{\alpha,1}}(t).$$

PROOF. The assertion (1) is obvious. So we will prove the assertion (2). The existence of $\Phi_{\alpha,0}(t,x)$ follows from Lemma 8(3). Let

$$\Psi_{\alpha}'(t,x) = \sum_{i=1}^{N} V_{[\alpha]}^{i}(x) \frac{\partial}{\partial x^{i}} \Phi(t,x)$$

and

$$\Psi_{\alpha,\beta}(t,x) = \Phi(t,x)b^{\beta}_{\alpha}(t,x), \qquad \beta \in \mathcal{A}_1(\ell).$$

Then we see that $\Psi' \in \mathcal{K}_r$ and $\Psi_\beta \in \mathcal{K}_{r+\|\beta\|-\|\alpha\|}$. Also, we see that

$$V_{[\alpha]}T_{\Phi}(t) = T_{\Psi_{\alpha}'}(t) + \sum_{\beta \in \mathcal{A}_1(\ell)} T_{\Psi_{\alpha,\beta}}(t) V_{[\beta]}.$$

So we see the existence of $\Phi_{\alpha,1}(t,x)$ from Lemma 8(3).

Now let us prove Theorem 2. Let $\Phi(t, x) = \exp(\int_0^t c(X(s, x))ds)$. Then we see that $\Phi \in \mathcal{K}_0$, and that $P_t^c = T_{\Phi}(t), t \in (0, 1]$. So Corollary 9 implies the assertion for $p = \infty$.

Now let $g_i \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R}), i = 0, \dots, d$, be given by

$$g_i(x) = \sum_{j=1}^d \left(\frac{\partial}{\partial x^j} V_i^j\right)(x), \quad x \in \mathbf{R}^N.$$

Then we see that the formal self adjoint operator V_i^* is $-V_i - g_i$. Let $\tilde{V}_i \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R}^N)$, $i = 0, \ldots, d$, and $\tilde{c} \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R})$ be given by

$$\tilde{V}_0 = -V_0 + \sum_{j=1}^d g_j V_j, \qquad \tilde{V}_i = V_i, \quad i = 1, \dots, d,$$

and

$$\tilde{c} = -g_0 + \frac{1}{2} \sum_{j=1}^{d} (g_j^2 + V_j g_j).$$

Then we see that the system of vector fields $\{\tilde{V}_i; i = 0, 1, \dots, \}$ satisfies the condition (UFG). Let us think of the SDE

$$\tilde{X}(t,x) = x + \sum_{i=0}^{d} \int_0^t \int_0^d \tilde{V}_i(\tilde{X}(s,x)) \circ dB_i(s).$$

and let $\tilde{P}_t, t \ge 0$, be a linear operator in $C_b^{\infty}(\mathbf{R}^N)$, given by

$$\tilde{P}_t = E^{\mu}[\exp(\int_0^t \tilde{c}(\tilde{X}(t,x)))f(\tilde{X}(t,x))].$$

Then we see (c.f. [3]) that

$$\int_{\mathbf{R}^N} (P_t^c f)(x)g(x)dx = \int_{\mathbf{R}^N} f(x)(\tilde{P}_t g)(x)dx, \quad f,g \in C_0^\infty(\mathbf{R}^N).$$

So we see that for any $f\in C_0^\infty({\bf R}^N)$

$$\parallel V_{[\alpha_1]} \cdots V_{[\alpha_k]} P_t^c V_{[\alpha_{k+1}]} \cdots V_{[\alpha_{k+m}]} f \parallel_{L^1(dx)}$$

$$\leq \sup\{|\int_{\mathbf{R}^{N}} f(x)(V_{[\alpha_{k+m}]}^{*}\cdots V_{[\alpha_{k+1}]}^{*}\tilde{P}_{t}V_{[\alpha_{k}]}^{*}\cdots V_{[\alpha_{1}]}^{*}g)(x)dx|;\ g \in C_{0}^{\infty}(\mathbf{R}^{N}), \parallel g \parallel_{\infty} \leq 1\}.$$

So we have our assertion for the case p = 1. Then by the interpolation theory we have our assertion.

This completes the proof of Theorem 2.

4. Proof of Lemma 6

First note the following theorem due to [3].

THEOREM 10. For any $m \ge 0$ and $p \in (1, \infty)$, we have

$$E[\inf\{\int_{0}^{1} (\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t))^{2} dt; \sum_{\alpha \in \mathcal{A}(m)} a_{\alpha}^{2} = 1\}^{-p}] = C_{m,p} < \infty.$$

Note that for any $m \ge 0, p \in (1, \infty)$ and T, s > 0,

$$E[\inf\{\int_0^T (\sum_{\alpha \in \mathcal{A}(m)} a_\alpha \hat{B}^\alpha(t))^2 dt; \ \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_\alpha^2 \ge s\}^{-p}] = C_{m,p} s^{-p}.$$

Then we have the following.

LEMMA 11. Let $m \ge 0$, and $f_{\alpha} : [0,1] \times \Omega \to \mathbf{R}$, $\alpha \in \mathcal{A}(m)$, be continuous processes. If

$$A_p = \sup_{T \in (0,1]} E[(T^{-(m/2+3/4)}(\sum_{\alpha \in \mathcal{A}(m)} \int_0^T f_\alpha(t)^2 dt)^{1/2})^p] < \infty, \qquad p \in [1,\infty),$$

then

$$P(\inf\{(\int_0^T (\sum_{\alpha \in \mathcal{A}(m)} a_\alpha (\hat{B}^\alpha(t) + f_\alpha(t)))^2 dt)^{1/2}; \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\| + 1} a_\alpha^2 = 1\} \le z^{-1})$$
$$\le (4^p C_{m,p} + A_{2p}) z^{-p\gamma}$$

for any $T \in (0,1]$ and $z \ge 1$. Here $\gamma = (4m + 5)^{-1}$.

PROOF. Note that for $T \in (0, 1]$, and $y \ge 1$

$$(\int_{0}^{T} (\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} (\hat{B}^{\alpha}(t) + f_{\alpha}(t)))^{2} dt)^{1/2}$$

$$\geq (\int_{0}^{T/y} (\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} (\hat{B}^{\alpha}(t) + f_{\alpha}(t)))^{2} dt)^{1/2}$$

$$\geq (\int_{0}^{T/y} (\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t))^{2} dt)^{1/2}$$

$$-(\sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_{\alpha}^{2})^{1/2} (\sum_{\alpha \in \mathcal{A}(m)} T^{-(m+1)} \int_{0}^{T/y} f_{\alpha}(t)^{2} dt)^{1/2}.$$

Then we have for any $T \in (0, 1]$, $y \ge 1$, and $z = y^{m/2+5/8}$, we have

$$P(\inf\{(\int_0^T (\sum_{\alpha \in \mathcal{A}(m)} a_\alpha(\hat{B}^\alpha(t) + f_\alpha(t)))^2 dt)^{1/2}; \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\| + 1} a_\alpha^2 = 1\} \le z^{-1})$$

$$\leq P(\inf\{\{(\int_{0}^{T/y}(\sum_{\alpha\in\mathcal{A}(m)}a_{\alpha}\hat{B}^{\alpha}(t))^{2}dt)^{1/2}; \sum_{\alpha\in\mathcal{A}(m)}T^{\|\alpha\|+1}a_{\alpha}^{2}=1\} \leq 2z^{-1})$$

$$+ P(T^{-(m+1)/2}(\sum_{\alpha\in\mathcal{A}(m)}\int_{0}^{T/y}f_{\alpha}(t)^{2}dt)^{1/2} \geq z^{-1})$$

$$\leq P(\inf\{\int_{0}^{T/y}(\sum_{\alpha\in\mathcal{A}(m)}a_{\alpha}\hat{B}^{\alpha}(t))^{2}dt;$$

$$\sum_{\alpha\in\mathcal{A}(m)}(T/y)^{\|\alpha\|+1}a_{\alpha}^{2} \geq y^{-(m+1)}\} \leq 4z^{-2})$$

$$+ P((T/y)^{-(m/2+3/4)}\sum_{\alpha\in\mathcal{A}(m)}(\int_{0}^{T/y}f_{\alpha}(t)^{2}dt)^{1/2} \geq y^{m/2+3/4}z^{-1})$$

$$\leq (4z^{-2}y^{(m+1)})^{p}C_{m,p} + (y^{-(m/2+3/4)}z)^{2p}A_{2p} \leq (4^{p}C_{m,p} + A_{2p})y^{-p/8}.$$

Thus we have our assertion. \Box

Applying Lemma 11 for $m = \ell - 1$, we have the following from Equations (4),(5) and (6).

COROLLARY 12. For any $p \in (1, \infty)$, there is a constant C > 0 such that

$$P(\inf\{\sum_{\alpha,\beta\in\mathcal{A}_1(\ell)}\xi_\alpha\xi_\beta M^{\alpha,\beta}(t,x);\ \xi\in\mathbf{R}^{\mathcal{A}_1(\ell)},\sum_{\alpha\in\mathcal{A}_1(\ell)}|\xi_\alpha|^2=1\}\leq\frac{1}{n})\leq Cn^{-p}$$

for any $n \ge 1$, $t \in (0, 1]$, and $x \in \mathbf{R}^N$.

Now Lemma 6 is an easy consequence of Corollary 12. This completes the proof of Lemma 6.

5. Hypoelliptic Part

In this section, we assume that the system $\{V_i; i = 0, 1, \ldots, d\}$ satisfies the condition (UFG) and let ℓ be as in Definition 1. Let $A \in C_b^{\infty}(\mathbf{R}^N; \mathbf{R}^N \otimes \mathbf{R}^N)$ be given by

$$A(x) = \sum_{\alpha \in \mathcal{A}_1(\ell)} V_{[\alpha]}(x) \otimes V_{[\alpha]}(x), \qquad x \in \mathbf{R}^N,$$

and $\lambda_0 : \mathbf{R}^N \to [0, \infty)$ be a continuous function given by

$$\lambda_0(x) = \inf\{(A(x)\xi,\xi); \xi \in \mathbf{R}^N, |\xi| = 1\}, \qquad x \in \mathbf{R}^N.$$

Then we have the following.

PROPOSITION 13. For any $p \in (1, \infty)$ there are constants C_0, C_1 such that

$$C_0\lambda_0(x)^{-1} \le E[\lambda_0(X(t,x))^{-p}]^{1/p} \le C_1\lambda_0(x)^{-1}, \qquad x \in \mathbf{R}^N.$$

PROOF. Let $J(t,x) = \{\frac{\partial}{\partial x^j} X^i(t,x)\}_{i,j=1}^N$. Then we have $(A(X(t,x))\xi,\xi) = \sum_{\alpha \in \mathcal{A}_1(\ell)} (V_{[\alpha]}(X(t,x)),\xi)^2$ $= \sum_{\alpha \in \mathcal{A}_1(\ell)} (\sum_{\beta \in \mathcal{A}_1(\ell)} a_{\alpha}^{\beta}(t,x)(V_{[\beta]}(x),J(t,x)^*\xi))^2$ $\leq (\sum_{\alpha \in \mathcal{A}_1(\ell)} \sum_{\beta \in \mathcal{A}_1(\ell)} a_{\alpha}^{\beta}(t,x)^2)(\sum_{\beta \in \mathcal{A}_1(\ell)} (V_{[\beta]}(x),J(t,x)^*\xi))^2)$

So we have

$$\lambda_0(X(t,x)) \le \left(\sum_{\alpha \in \mathcal{A}_1(\ell)} \sum_{\beta \in \mathcal{A}_1(\ell)} a_{\alpha}^{\beta}(t,x)^2\right) \parallel J(t,x) \parallel^2 \lambda_0(x).$$

This implies that

$$\lambda_0(X(t,x))^{-1} \le (\sum_{\alpha \in \mathcal{A}_1(\ell)} \sum_{\beta \in \mathcal{A}_1(\ell)} a_{\alpha}^{\beta}(t,x)^2) \parallel J(t,x) \parallel^2 \lambda_0(x)^{-1}.$$

Similarly we have

$$\lambda_0(x)^{-1} \le \left(\sum_{\alpha \in \mathcal{A}_1(\ell)} \sum_{\beta \in \mathcal{A}_1(\ell)} b_{\alpha}^{\beta}(t,x)^2\right) \parallel J(t,x)^{-1} \parallel^2 \lambda_0(X(t,x))^{-1}.$$

These imply our assertion. \Box

Also, let $\lambda : \mathbf{R}^N \to [0, \infty)$ be given by

$$\lambda(x) = \begin{cases} (trace A(x)^{-1})^{-1}, & \text{if } \lambda_0(x) > 0, \\ 0, & \text{if } \lambda_0(x) = 0. \end{cases}$$

Shigeo KUSUOKA

Then we can easily see that

$$N^{-1}\lambda_0(x) \le \lambda(x) \le \lambda_0(x), \qquad x \in \mathbf{R}^N,$$

and so we see that λ is continuous.

Let $G_0 = \{x \in \mathbf{R}^N; \lambda_0(x) > 0\}$, and $e_i = \{\delta_{ji}\}_{j=1}^N \in \mathbf{R}^N$, $i = 1, \dots, N$, and let $c_{\alpha,i}: G_0 \to \mathbf{R}, \alpha \in \mathcal{A}_1(\ell), i = 1, \dots, N$, be given by

$$c_{\alpha,i}(x) = (e_i, A(x)^{-1}V_{[\alpha]}(x)), \qquad x \in G_0.$$

Then we see that

$$\frac{\partial}{\partial x^i} = \sum_{\alpha \in \mathcal{A}_1(\ell)} c_{\alpha,i} V_{[\alpha]}, \quad \text{on } G_0.$$

Since we have

$$\frac{\partial}{\partial x^i}(A(x)^{-1}) = -A(x)^{-1}(\frac{\partial}{\partial x^i}A(x))A(x)^{-1},$$

we see that for any $n \ge 1$ and $i_1, \ldots, i_n \in \{1, \ldots, N\}$, there is a C > 0 such that

$$\begin{aligned} |\frac{\partial^n}{\partial x^{i_1}\cdots\partial x^{i_n}}trace(A(x)^{-1})| &\leq C\lambda(x)^{-(n+1)}, \qquad x \in \mathbf{R}^N, \\ |\frac{\partial^n}{\partial x^{i_1}\cdots\partial x^{i_n}}\lambda(x)| &\leq C\lambda(x)^{-(n-1)}, \qquad x \in \mathbf{R}^N, \end{aligned}$$

and

$$\frac{\partial^n}{\partial x^{i_1} \cdots \partial x^{i_n}} c_{\alpha,i}(x) | \le C\lambda(x)^{-(n+1)}, \qquad x \in \mathbf{R}^N$$

for all $\alpha \in \mathcal{A}_1(\ell), i = 1, \ldots, N$.

Combining these facts and Theorem 2, we have the following.

PROPOSITION 14. Suppose that $\{V_i; i = 0, 1, ..., d\}$ satisfies the (UFG) condition. Then for any $n \ge 1$ and $i_1, ..., i_n \in \{1, ..., N\}$, there is a C > 0 such that

$$\|\lambda^{n} \frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} P_{t}^{c} f \|_{L^{p}(dx)} \leq C t^{-n\ell/2} \| f \|_{L^{p}(dx)}$$

for any $f \in C_0^{\infty}(\mathbf{R}^N)$, $t \in (0,1]$ and $p \in [1,\infty]$.

Also we have the following by using dual argument as in the proof of Theorem 2.

THEOREM 15. Suppose that $\{V_i; i = 0, 1, ..., d\}$ satisfies the (UFG) condition. Then for any $n, m \ge 0$ and $i_1, ..., i_n, j_1, ..., j_m \in \{1, ..., N\}$, there is a C > 0 such that

$$\|\lambda^{n} \frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} P_{t}^{c} \frac{\partial^{m}}{\partial x^{j_{1}} \cdots \partial x^{j_{m}}} \lambda^{m} f \|_{L^{p}(dx)} \leq Ct^{-(n+m)\ell/2} \|f\|_{L^{p}(dx)}$$

for any $f \in C_0^{\infty}(\mathbf{R}^N)$, $t \in (0,1]$ and $p \in [1,\infty]$.

6. Examples

Example 1. Let d = 1 and N = 2. Let $n \ge 2$, and $V_0, V_1 \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}^2)$ be given by

$$V_0(x^1, x^2) = (2 + (\sin x^1)^n) \frac{\partial}{\partial x^2}, \qquad V_1(x^1, x^2) = \frac{\partial}{\partial x^1}$$

Then the condition (UH) is satisfied for $\ell = n+2$. Let X(t, x) be the solution to (1) and P_t , t > 0, be a linear operator in $C_b^{\infty}(\mathbf{R}^2; \mathbf{R})$ given by

$$P_t f(x) = E[f(X(t,x))], \qquad f \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}), \ x \in \mathbf{R}^2.$$

Then we have the following.

PROPOSITION 16. (1) There is a constant $C_1 > 0$ such that

$$|| V_0 P_t f ||_{\infty} \le C_1 t^{-(n+2)/2} || f ||_{\infty}, \qquad f \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}), \ t \in (0, 1].$$

(2) There is a constant $C_2 > 0$ such that

$$\sup\{\|V_0P_tf\|_{\infty}; f \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}), \|f\|_{\infty} \le 1\} \ge C_2 t^{-(n+2)/2}, \quad t \in (0, 1]$$

PROOF. The assertion (1) is an easy consequence of Theorem 2. So we prove the assertion (2). We can easy to see that the solution $X(t,x) = (X(t,(x^1,x^2),X^2(t,(x^1,x^2))))$ is given by

$$X^{1}(t, (x^{1}, x^{2})) = x^{1} + B^{1}(t),$$

Shigeo Kusuoka

$$X^{2}(t, (x^{1}, x^{2})) = x^{2} + 2t + \int_{0}^{t} \sin(x^{1} + B^{1}(s))^{n} ds.$$

Then we see that

$$\frac{\partial}{\partial x^2}(P_t f)(x) = E[\frac{\partial f}{\partial x^2}(X(t,x))], \qquad f \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}).$$

Note that

$$E[|\int_0^t \sin(B^1(s))^n ds|] \le E[\int_0^t |B^1(s)|^n ds] = A_n t^{(n+2)/2},$$

where $A_n = E[\int_0^1 |B^1(s)|^n ds]$. So we see that $P(|\int_0^t \sin(B^1(s))^n ds| \ge 2A_n t^{(n+2)/2}) \le 1/2$.

Let us take a $g \in C_b^{\infty}(\mathbf{R}; \mathbf{R})$ such that $g'(z) \ge 1, z \in [-1, 1]$ and $g'(z) \ge 0, z \in \mathbf{R}$. Let $f^{(t)} \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}), t > 0$, be given by

$$f^{(t)}(x^1, x^2) = g((2A_n t^{(n+2)/2})^{-1}(x^2 - 2t)), \qquad (x^1, x^2) \in \mathbf{R}^2.$$

Then we see that $|| f^{(t)} ||_{\infty} = || g ||_{\infty}$ and that

$$\frac{\partial}{\partial x^2} (P_t f^{(t)})(0) = (2A_n t^{(n+2)/2})^{-1} E[g'((2A_n t^{(n+2)/2})^{-1} (\int_0^t \sin(B^1(s))^n ds))]$$

$$\ge (4A_n t^{(n+2)/2})^{-1}.$$

This implies our assertion (2). \Box

Example 2. Let d = 1 and N = 2. Let $V_0, V_1 \in C_b^{\infty}(\mathbf{R}^2; \mathbf{R}^2)$ be given by

$$V_0(x^1, x^2) = \sin x^1 \frac{\partial}{\partial x^2}, \qquad V_1(x^1, x^2) = \sin x^1 \frac{\partial}{\partial x^1}.$$

Then the condition (UH) is not satisfied. But (UFG) is satisfied for $\ell = 4$.

References

- Kusuoka, S., Analysis on Wiener spaces, I. Nonlinear maps, J. Funct. Anal. 98 (1991), 122–168.
- [2] Kusuoka, S., Approximation of expectation of diffusion processes and mathematical finance, Taniguchi Conf. on Math. Nara '98, Advanced Studies in Pure Mathematics 31, Japan Math. Soc. Tokyo, 2001, pp. 147–165.

- [3] Kusuoka, S. and D. W. Stroock, Applications of Malliavin Calculus II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 1–76.
- Kusuoka, S. and D. W. Stroock, Applications of Malliavin Calculus III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 391–442.
- [5] Sussmann, H. J., Orbits of family of vector firelds and integrability of distributions, Trans. A.M.S. 180 (1973), 171–188.

(Received June 11, 2002)

Graduate School of Mathematical Sciences The University of Tokyo Japan