# Malliavin Calculus Revisited 

By Shigeo Kusuoka


#### Abstract

The author considers the regularity on diffusion semigroups, and shows a precise estimate under a certain assumption which is much weaker than hypoellipticity assumptions.


## 1. Introduction and Main Results

Let $W_{0}=\left\{w \in C\left([0, \infty) ; \mathbf{R}^{d}\right) ; w(0)=0\right\}, \mathcal{F}$ be the Borel algebra over $W_{0}$ and $P$ be the Wiener measure on $\left(W_{0}, \mathcal{F}\right)$. Let $B^{i}:[0, \infty) \times W_{0} \rightarrow \mathbf{R}$, $i=1, \ldots, d$, be given by $B^{i}(t, w)=w^{i}(t),(t, w) \in[0, \infty) \times W_{0}$. Then $\left\{\left(B^{1}(t), \ldots, B^{d}(t)\right) ; t \in[0, \infty)\right\}$ is a $d$-dimensional Brownian motion under $P(d w)$. Let $B^{0}(t)=t, t \in[0, \infty)$. Let $V_{0}, V_{1}, \ldots, V_{d} \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$. Here $C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{n}\right)$ denotes the space of $\mathbf{R}^{n}$-valued smooth functions defined in $\mathbf{R}^{N}$ whose derivatives of any order are bounded. We regard elements in $C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ as vector fields on $\mathbf{R}^{N}$. For simplicity, we sometimes denote (i) by $i, i=0,1, \ldots, d$, and $C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right)$ by $C_{b}^{\infty}\left(\mathbf{R}^{N}\right)$.

Now let $X(t, x), t \in[0, \infty), x \in \mathbf{R}^{N}$, be the solution to the Stratonovich stochastic integral equation

$$
\begin{equation*}
X(t, x)=x+\sum_{i=0}^{d} \int_{0}^{t} V_{i}(X(s, x)) \circ d B^{i}(s) \tag{1}
\end{equation*}
$$

Then there is a unique solution to this equation. Moreover we may assume that $X(t, x)$ is continuous in $t$ and smooth in $x$ and $X(t, \cdot): \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$, $t \in[0, \infty)$, is a diffeomorphism with probability one.

Let $\mathcal{A}=\{\emptyset\} \cup \bigcup_{k=1}^{\infty}\{0,1, \ldots, d\}^{k}$. Then $\mathcal{A}$ becomes a semigroup with a product $*$ defined by $\alpha * \beta=\left(\alpha^{1}, \ldots, \alpha^{k}, \beta^{1}, \ldots, \beta^{\ell}\right)$ for $\alpha=\left(\alpha^{1}, \ldots, \alpha^{k}\right)$ $\in \mathcal{A}$ and $\beta=\left(\beta^{1}, \ldots, \beta^{\ell}\right) \in \mathcal{A}$. For $\alpha \in \mathcal{A}$, let $|\alpha|=0$ if $\alpha=\emptyset$, let $|\alpha|=k$ if $\alpha=\left(\alpha^{1}, \ldots, \alpha^{k}\right) \in\{0,1, \ldots, d\}^{k}$, and let $\|\alpha\|=|\alpha|+\operatorname{card}\{1 \leq i \leq$ $\left.|\alpha| ; \alpha^{i}=0\right\}$. Let $\mathcal{A}_{0}$ and $\mathcal{A}_{1}$ denote $\mathcal{A} \backslash\{\emptyset\}$ and $\mathcal{A} \backslash\{\emptyset, 0\}$, respectively. Also, for each $m \geq 1, \mathcal{A}(m), \mathcal{A}_{0}(m)$ and $\mathcal{A}_{1}(m)$ denote $\{\alpha \in \mathcal{A} ;\|\alpha\| \leq m\}$, $\left\{\alpha \in \mathcal{A}_{0} ;\|\alpha\| \leq m\right\}$ and $\left\{\alpha \in \mathcal{A}_{1} ;\|\alpha\| \leq m\right\}$ respectively.

[^0]We define vector fields $V_{[\alpha]}, \alpha \in \mathcal{A}$, inductively by

$$
\begin{gathered}
V_{[\emptyset]}=0, \quad V_{[i]}=V_{i}, \quad i=0,1, \ldots, d, \\
V_{[\alpha * i]}=\left[V_{[\alpha]}, V_{i}\right], \quad i=0,1, \ldots, d .
\end{gathered}
$$

Definition 1. We say that a system $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ of vector fields satisfies the condition (UFG), if there are an integer $\ell$ and $\varphi_{\alpha, \beta} \in$ $C_{b}^{\infty}\left(\mathbf{R}^{N}\right), \alpha \in \mathcal{A}_{1}, \beta \in \mathcal{A}_{1}(\ell)$, satisfying the following.

$$
V_{[\alpha]}=\sum_{\beta \in \mathcal{A}_{1}(\ell)} \varphi_{\alpha, \beta} V_{[\beta]}, \quad \alpha \in \mathcal{A}_{1}
$$

Let $c \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right)$ and let us define a semigroup of linear operators $\left\{P_{t}^{c}\right\}_{t \in[0, \infty)}$ by
$\left(P_{t}^{c} f\right)(x)=E\left[\exp \left(\int_{0}^{t} c(X(s, x)) d s\right) f(X(t, x))\right], \quad t \in[0, \infty), f \in C_{b}\left(\mathbf{R}^{N}\right)$.
Our main result is the following.
THEOREM 2. Suppose that $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the (UFG) condition. Then for any $k, m \geq 0$ and $\alpha_{1}, \ldots, \alpha_{k+m} \in \mathcal{A}_{1}$, there is a constant $C>0$ such that

$$
\begin{gathered}
\left\|V_{\left[\alpha_{1}\right]} \cdots V_{\left[\alpha_{k}\right]} P_{t}^{c} V_{\left[\alpha_{k+1}\right]} \cdots V_{\left[\alpha_{k+m}\right]} f\right\|_{L^{p}(d x)} \\
\leq C t^{-\left(\left\|\alpha_{1}\right\|+\cdots+\left\|\alpha_{k+m}\right\|\right) / 2}\|f\|_{L^{p}(d x)}
\end{gathered}
$$

for any $f \in C_{0}\left(\mathbf{R}^{N}\right), t \in(0,1]$ and $p \in[1, \infty]$.
Definition 3. We say that a system $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the condition (UH), if there are an integer $\ell$ such that

$$
\inf \left\{\sum_{\alpha \in \mathcal{A}_{1}(\ell)}\left(V_{[\alpha]}(x), \xi\right)^{2} ; x, \xi \in \mathbf{R}^{N},|\xi|=1\right\}>0
$$

REmARK 4. (1) If a system $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ of vector fields satisfies the condition (UH), then it satisfies the condition (UFG).
(2) Theorem 2 is proved in Kusuoka-Stroock [4] under the assumption that $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the condition (UH).

Remark 5. Sussman [5] introduced a local version of the condition (UFG). By his argument, we see that if $V_{i}, i=0,1, \ldots, d$, are real analytic and periodic with the same period, then the system $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the condition (UFG).

## 2. Basic Relations

Form now on, we assume the assumption (UFG) throughout this paper. We define $\hat{B}^{\circ \alpha}(t), t \in[0, \infty), \alpha \in \mathcal{A}$, inductively by

$$
\begin{gathered}
\hat{B}^{\circ \emptyset}(t)=1 \\
\hat{B}^{\circ(i)}(t)=B^{i}(t), i=0,1, \ldots, d
\end{gathered}
$$

and

$$
\hat{B}^{\circ(i * \alpha)}(t)=\int_{0}^{t} \hat{B}^{\circ \alpha}(s) \circ d B^{i}(s) \quad i=0,1, \ldots, d
$$

Let $J_{i}^{j}(t, x)=\frac{\partial}{\partial x^{i}} X^{j}(t, x)$. Then for any $C_{b}^{\infty}$ vector field $W$ on $\mathbf{R}^{N}$, we see that

$$
\left(X(t)_{*} W\right)^{i}(X(t, x))=\sum_{j=1}^{N} J_{j}^{i}(t, x) W^{j}(x)
$$

where $X(t)_{*}$ is a push-forward operator with respect to the diffeomorphism $X(t, \cdot): \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$. Therefore we see that

$$
d\left(X(t)_{*}^{-1} W\right)(x)=-\sum_{i=0}^{d}\left(X(t)_{*}^{-1}\left[W, V_{i}\right]\right)(x) \circ d B^{i}(t)
$$

for any $C_{b}^{\infty}$ vector field $W$ on $\mathbf{R}^{N}$ (cf. [3]). So we have for $\alpha \in \mathcal{A}_{1}(\ell)$,

$$
d\left(X(t)_{*}^{-1} V_{[\alpha]}\right)(x)=\sum_{i=0}^{d} \sum_{\beta \in \mathcal{A}_{1}(\ell)} c_{\alpha, i}^{\beta}(X(t, x))\left(X(t)_{*}^{-1} V_{[\beta]}\right)(x) \circ d B^{i}(t)
$$

where

$$
c_{\alpha, i}^{\beta}(x)= \begin{cases}-1, & \text { if } \alpha * i \in \mathcal{A}_{1}(\ell) \text { and } \beta=\alpha * i \\ 0, & \text { if } \alpha * i \in \mathcal{A}_{1}(\ell) \text { and } \beta \neq \alpha * i \\ -\varphi_{\alpha * i, \beta}(x), & \text { otherwise }\end{cases}
$$

Note that $c_{\alpha, i}^{\beta} \in C_{b}^{\infty}\left(\mathbf{R}^{N}\right)$. Let $a_{\alpha}^{\beta}(t, x), \alpha, \beta \in \mathcal{A}_{1}(\ell)$, be the solution to the following SDE

$$
\begin{gathered}
d a_{\alpha}^{\beta}(t, x) \\
=\sum_{i=0}^{d} \sum_{\gamma \in \mathcal{A}_{1}(\ell)} c_{\alpha, i}^{\gamma}(X(t, x)) a_{\gamma}^{\beta}(t, x) d B^{i}(t)+\frac{1}{2} \sum_{i=1}^{d} \sum_{\gamma \in \mathcal{A}_{1}(\ell)}\left(V_{i} c_{\alpha, i}^{\gamma}\right)(X(t, x)) a_{\gamma}^{\beta} d t \\
+\frac{1}{2} \sum_{i=1}^{d} \sum_{\gamma \xi \in \mathcal{A}_{1}(\ell)}\left(c_{\alpha, i}^{\xi} c_{\xi, i}^{\gamma}\right)(X(t, x)) a_{\gamma}^{\beta}(t, x) d t \\
a_{\alpha}^{\beta}(0, x)=\delta_{\alpha}^{\beta}
\end{gathered}
$$

Here $\delta_{\alpha}^{\beta}$ is Kronecker's delta.
Such a solution exists uniquely, and moreover, we may assume that $a_{\alpha}^{\beta}(t, x)$ is smooth in $x$ with probability one and that

$$
\sup _{x \in \mathbf{R}^{N}} E^{P}\left[\sup _{t \in[0, T]}\left|\frac{\partial^{|\gamma|}}{\partial x^{\gamma}} a_{\alpha}^{\beta}(t, x)\right|^{p}\right]<\infty, \quad p \in[1, \infty), T>0
$$

for any multi-index $\gamma$. One can easily see that

$$
\begin{equation*}
d a_{\alpha}^{\beta}(t, x)=\sum_{i=0}^{d} \sum_{\gamma \in \mathcal{A}_{1}(\ell)}\left(c_{\alpha, i}^{\gamma}(X(t, x)) a_{\gamma}^{\beta}(t, x)\right) \circ d B^{i}(t) \tag{2}
\end{equation*}
$$

Then the uniqueness of SDE implies

$$
\left(X(t)_{*}^{-1} V_{[\alpha]}\right)(x)=\sum_{\beta \in \mathcal{A}_{1}(\ell)} a_{\alpha}^{\beta}(t, x) V_{[\beta]}(x), \alpha \in \mathcal{A}_{1}(\ell) .
$$

Similarly we see that there exists a unique solution $b_{\alpha}^{\beta}(t, x), \alpha, \beta \in \mathcal{A}_{1}(\ell)$, to the SDE

$$
\begin{equation*}
b_{\alpha}^{\beta}(t, x)=\delta_{\alpha}^{\beta}-\sum_{i=0}^{d} \sum_{\gamma \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} b_{\alpha}^{\gamma}(s, x) c_{\gamma, i}^{\beta}(X(s, x)) \circ d B^{i}(s) \tag{3}
\end{equation*}
$$

and we see that $b_{\alpha}^{\beta}(t, x)$ is smooth in $x$ with probability one,

$$
\sup _{x \in \mathbf{R}^{N}} E^{P}\left[\sup _{t \in[0, T]}\left|\frac{\partial^{|\gamma|}}{\partial x^{\gamma}} b_{\alpha}^{\beta}(t, x)\right|^{p}\right]<\infty, \quad p \in[1, \infty), T>0
$$

for any multi-index $\gamma$, and that

$$
V_{[\alpha]}(x)=\sum_{\beta \in \mathcal{A}_{1}(\ell)} b_{\alpha}^{\beta}(t, x)\left(X(t)_{*}^{-1} V_{[\beta]}\right)(x), \alpha \in \mathcal{A}_{1}(\ell) .
$$

Note that

$$
\left.=\delta_{\alpha}^{\beta}+\sum_{i=0}^{d} \sum_{\alpha \in \mathcal{A}_{1}(\ell)} \int_{0}^{t}(t, x), ~ . ~ c c_{\alpha, i}^{\gamma}(X(s, x)) a_{\gamma}^{\beta}(s, x)\right) \circ d B^{i}(s) .
$$

So if $\|\alpha\| \leq \ell-2$,

$$
a_{\alpha}^{\beta}(t, x)=\delta_{\alpha}^{\beta}+\sum_{i=0}^{d} \int_{0}^{t}(-1) a_{\alpha * i}^{\beta}(s, x) \circ d B^{i}(s),
$$

and if $\|\alpha\|=\ell-1$,

$$
\begin{gathered}
a_{\alpha}^{\beta}(t, x) \\
=\delta_{\alpha}^{\beta}+\sum_{i=1}^{d} \int_{0}^{t}(-1) a_{\alpha * i}^{\beta}(s, x) \circ d B^{i}(s) \\
\\
\quad+\sum_{\gamma \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} c_{\alpha, 0}^{\gamma}(X(s, x)) a_{\gamma}^{\beta}(s, x) d s
\end{gathered}
$$

So we have for any $\alpha, \beta \in \mathcal{A}_{1}(\ell)$ with $\|\alpha\| \leq\|\beta\|$,

$$
\begin{equation*}
a_{\alpha}^{\beta}(t, x)=a_{\alpha}^{0, \beta}(t, x)+r_{\alpha}^{\beta}(t, x) \tag{4}
\end{equation*}
$$

where
(5) $\quad a_{\alpha}^{0, \beta}(t, x)= \begin{cases}(-1)^{|\gamma|} \hat{B}^{\circ \gamma}(t), & \text { if } \beta=\alpha * \gamma \text { for some } \gamma \in \mathcal{A}, \\ 0, & \text { otherwise },\end{cases}$
and

$$
\begin{gathered}
r_{\alpha}^{\beta}(t, x) \\
=\sum_{\gamma, j}^{\prime} \sum_{\delta \in \mathcal{A}_{1}(\ell)} \int_{0}^{t} \circ d B^{\gamma_{1}}\left(s_{1}\right)\left(\int _ { 0 } ^ { s _ { 1 } } \circ d B ^ { \gamma _ { 2 } } ( s _ { 2 } ) \ldots \left(\int_{0}^{s_{k-1}} \circ d B^{\gamma_{k}}\left(s_{k}\right)\right.\right. \\
\left.\quad\left(\int_{0}^{s_{k}} \circ d B^{j}\left(s_{k+1}\right)(-1)^{|\gamma|}\left(c_{\alpha * \gamma, j}^{0, \delta}\left(X\left(s_{k+1}, x\right)\right) a_{\delta}^{\beta}\left(X\left(s_{k+1}, x\right)\right)\right)\right) \ldots\right),
\end{gathered}
$$

where $\sum_{\gamma, j}^{\prime}$ is the summation taken for $\gamma \in \mathcal{A}$ and $j=0,1, \ldots, d$ such that $\|\gamma\| \leq \ell-\|\alpha\|$ and $\|\gamma * j\| \geq \ell+1-\|\alpha\|$. Therefore we have

$$
\begin{equation*}
\sup _{x \in \mathbf{R}^{N}} E\left[\left(\sup _{t \in(0,1]} t^{-(\ell+1-\|\alpha\|) / 2+1 / 4}\left|r_{\alpha}^{\beta}(t, x)\right|\right)^{p}\right]<\infty \tag{6}
\end{equation*}
$$

for any $p \in(1, \infty), \alpha, \beta \in \mathcal{A}_{1}(\ell)$ with $\|\alpha\| \leq\|\beta\|$.

## 3. Integration by Parts Formula

In this section, we use Malliavin calculus to analyze the operator $P_{t}^{c}$. We use the notation in [1] and [2]. Let $k^{\alpha}:[0, \infty) \times \mathbf{R}^{N} \times W_{0} \rightarrow H, \alpha \in \mathcal{A}_{1}(\ell)$, be given by

$$
k^{\alpha}(t, x)=\left(\int_{0}^{t \wedge \cdot} a_{i}^{\alpha}(s, x) d s\right)_{i=1, \ldots, d}, \quad(t, x) \in[0, \infty) \times \mathbf{R}^{N}
$$

Then we have by

$$
X(t)_{*}^{-1} D X(t, x)=\left(\int_{0}^{t \wedge \cdot}\left(X(s)_{*}^{-1} V_{i}\right)(x) d s\right)_{i=1, \ldots, d}=\sum_{\alpha \in \mathcal{A}_{1}(\ell)} k^{\alpha}(t, x) V_{[\alpha]}(x)
$$

for $(t, x) \in[0, \infty) \times \mathbf{R}^{N}$ (c.f.[3]). Then we have

$$
\begin{align*}
D(f(X(t, x)) & =T_{x}^{*}\left\langle\left(X(t)^{*} d f\right)(x), X(t)_{*}^{-1} D X(t, x)\right\rangle_{T_{x}}  \tag{7}\\
& =\sum_{\beta \in \mathcal{A}_{1}(\ell)} T_{x}^{*}\left\langle\left(X(t)^{*} d f\right)(x), V_{[\beta]}(x)\right\rangle_{T_{x}} k^{\beta}(t, x) \\
& =\sum_{\beta \in \mathcal{A}_{1}(\ell)}\left(V_{[\beta]} f\right)(X(t, x)) k^{\beta}(t, x) .
\end{align*}
$$

Let $M^{\alpha, \beta}(t, x),(t, x) \in[0, \infty) \times \mathbf{R}^{N}, \alpha, \beta \in \mathcal{A}_{1}(\ell)$, be given by

$$
\begin{gather*}
M^{\alpha, \beta}(t, x)=t^{-(\|\alpha\|+\|\beta\|) / 2}\left(k^{\alpha}(t, x), k^{\beta}(t, x)\right)_{H}  \tag{8}\\
\quad=t^{-(\|\alpha\|+\|\beta\|) / 2} \sum_{i=1}^{d} \int_{0}^{t} a_{i}^{\alpha}(s, x) a_{i}^{\beta}(s, x) d s
\end{gather*}
$$

The following will be shown in the next section.
Lemma 6. For any $p \in(1, \infty)$,

$$
\sup _{t \in(0,1], x \in \mathbf{R}^{N}} E^{\mu}\left[\operatorname{det}\left(M^{\alpha, \beta}(t, x)\right)_{\alpha, \beta \in \mathcal{A}_{1}(\ell)}^{-p}\right]<\infty
$$

Let $E$ be a separable real Hilbert space and $r \in \mathbf{R}$. Let $\mathcal{K}_{r}(E)$ denote the set of $f:(0,1] \times \mathbf{R}^{N} \rightarrow \mathbf{D}_{\infty_{--}}^{\infty}(E)$ satisfying the following two conditions. (1) $f(t, x)$ is smooth in $x$ and $\frac{\partial^{\nu} f}{\partial x^{\nu}}(t, x)$ is continuous in $(t, x) \in(0,1] \times \mathbf{R}^{N}$ with probability one for any multi-index $\nu$.
(2) $\sup _{t \in(0,1], x \in \mathbf{R}^{N}} t^{-r / 2}\left\|\frac{\partial^{\nu} f}{\partial^{\nu} x}(t, x)\right\|_{\mathbf{D}_{p}^{s}(E)}<\infty$ for any $s \in \mathbf{R}$ and $p \in(1, \infty)$.

We denote $\mathcal{K}_{r}(\mathbf{R})$ by $\mathcal{K}_{r}$.
Then we have the following.
Lemma 7. (1) Suppose that $f \in \mathcal{K}_{r}(E), r \geq 0$, and let $g_{i}(t, x)=$ $\int_{0}^{t} f(s, x) d B^{i}(s), i=0,1, \ldots, d, t \in(0,1], x \in \mathbf{R}^{N}$. Then $g_{0} \in \mathcal{K}_{r+2}(E)$ and $g_{i} \in \mathcal{K}_{r+1}(E), i=1, \ldots, d$.
(2) $a_{\alpha}^{\beta}, b_{\alpha}^{\beta} \in \mathcal{K}_{(\|\beta\|-\|\alpha\|) \vee 0}$ for $\alpha, \beta \in \mathcal{A}_{1}(\ell)$.
(3) $k^{\alpha} \in \mathcal{K}_{\|\alpha\|}(H), \alpha \in \mathcal{A}_{1}(\ell)$.
(4) Let $\left\{M_{\alpha, \beta}^{-1}(t, x)\right\}_{\alpha, \beta \in \mathcal{A}_{1}(\ell)}$ be the inverse matrix of $\left\{M^{\alpha, \beta}(t, x)\right\}_{\alpha, \beta \in \mathcal{A}_{1}(\ell)}$. Then $M_{\alpha, \beta}^{-1} \in \mathcal{K}_{0}, \alpha, \beta \in \mathcal{A}_{1}(\ell)$.

Proof. Note that

$$
\begin{gathered}
D g_{0}(t, x)(h)=\int_{0}^{t} D f(s, x)(h) d B_{0}(t), \text { and } \\
D g_{i}(t, x)(h)=\int_{0}^{t} D f(s, x)(h) d B_{i}(t)+\int_{0}^{t} f(s, x) h_{i}(s) d s, \quad i=1, \ldots, d
\end{gathered}
$$

for any $h \in H$. This implies our assertion (1)(c.f.[4]).
We see that $f(X(t, x)), a_{\alpha}^{\beta}(t, x), b_{\alpha}^{\beta}(t, x) \in \mathcal{K}_{0}(\mathbf{R})$ for any $f \in$ $C_{b}^{\infty}\left(\mathbf{R}^{N}, \mathbf{R}\right)$ and $\alpha, \beta \in \mathcal{A}_{1}(\ell)$, since they are solutions to good stochastic differential equations (c.f. [3]). Then the assertion (2) follows from the assertion (1) and Equations (2), (3) and (4).

The assertion (3) follows from the definition of $k^{\alpha}(t, x)$ and the assertions (1) and (2). Then we see that $M^{\alpha, \beta}(t, x) \in \mathcal{K}_{0}(\mathbf{R}), \alpha, \beta \in \mathcal{A}_{1}(\ell)$, by the assertion (3). This fact and Lemma 6 imply the assertion (4). This completes the proof.

For each $\alpha \in \mathcal{A}_{1}(\ell)$, and $u \in \mathcal{K}_{r}(\mathbf{R}), r \in \mathbf{R}$, let

$$
\left(D^{(\alpha)} u\right)(t, x)=\left(D u(t, x), k^{\alpha}(t, x)\right)_{H}
$$

Then we have the following.
Lemma 8. (1) For any $\alpha \in \mathcal{A}_{1}(\ell)$, and $u \in \mathcal{K}_{r}, r \in \mathbf{R}, D^{(\alpha)} u \in \mathcal{K}_{r+\|\alpha\|}$.
(2) For any $f \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right), t \in(0,1]$, and $x \in \mathbf{R}^{N}$, we have

$$
\begin{gathered}
\left(V_{[\alpha]} f\right)(X(t, x)) \\
=t^{-\|\alpha\| / 2} \sum_{\beta \in \mathcal{A}_{1}(\ell)} t^{-\|\beta\| / 2} M_{\alpha \beta}^{-1}(t, x) D^{(\beta)}(f(X(t, x))) .
\end{gathered}
$$

(3) For any $r \in \mathbf{R}, \Phi \in \mathcal{K}_{r}$, and $\alpha \in \mathcal{A}_{1}(\ell)$,

$$
E^{\mu}\left[\Phi(t, x)\left(V_{[\alpha]} f\right)(X(t, x))\right]=t^{-\|\alpha\| / 2} E^{\mu}\left[\Phi_{\alpha}(t, x) f(X(t, x))\right]
$$

where

$$
\begin{aligned}
& =\sum_{\beta \in \mathcal{A}_{1}(\ell)} \Phi_{\alpha}(t, x) \\
& \\
& \quad-\left(\sum_{\gamma_{1}, \gamma_{2} \in \mathcal{A}_{1}(\ell)} \Phi(t, x) M_{\alpha \gamma_{1}}^{-1}(t, x) D^{(\beta)} M^{\gamma_{1} \gamma_{2}}(t, x) M_{\gamma_{2} \beta}^{-1}(t, x)\right) \\
& \\
& \left.\quad \quad+\Phi(t, x) M_{\alpha \beta}^{-1}(t, x) D^{*} k^{\beta}(t, x)\right\}, \quad t>0, x \in \mathbf{R}^{N}
\end{aligned}
$$

In particular, $\Phi_{\alpha} \in \mathcal{K}_{r}$.
Proof. By Equation (7), we have

$$
D^{(\alpha)}\left(f(X(t, x))=\sum_{\beta \in \mathcal{A}_{1}(\ell)} t^{(\|\alpha\|+\|\beta\|) / 2} M^{\alpha \beta}(t, x)\left(V_{[\beta]} f\right)(X(t, x))\right.
$$

This implies our assertion.
For any $\Phi \in \mathcal{K}_{r}(\mathbf{R}), r \in \mathbf{R}$, let us define an operator $T_{\Phi}(t), t \in(0,1]$ in $C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right)$ by

$$
\left(T_{\Phi}(t) f\right)(x)=E^{\mu}[\Phi(t, x) f(X(t, x))], \quad x \in \mathbf{R}^{N}
$$

Corollary 9. Let $r \in \mathbf{R}$, and $\Phi \in \mathcal{K}_{r}$.
(1) There is a constant $C<\infty$ such that

$$
\left\|T_{\Phi}(t) f\right\|_{\infty} \leq \frac{C}{t^{r / 2}}\|f\|_{\infty}
$$

for any $t \in(0,1]$ and $f \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right)$.
(2) For any $\alpha \in \mathcal{A}_{1}(\ell)$ there are $\Phi_{\alpha, i} \in \mathcal{K}_{r-\|\alpha\|}, i=0,1$, such that

$$
T_{\Phi}(t) V_{[\alpha]}=T_{\Phi_{\alpha, 0}}(t) \quad \text { and } \quad V_{[\alpha]} T_{\Phi}(t)=T_{\Phi_{\alpha, 1}}(t)
$$

Proof. The assetion (1) is obvious. So we will prove the assertion (2). The existence of $\Phi_{\alpha, 0}(t, x)$ follows from Lemma 8(3). Let

$$
\Psi_{\alpha}^{\prime}(t, x)=\sum_{i=1}^{N} V_{[\alpha]}^{i}(x) \frac{\partial}{\partial x^{i}} \Phi(t, x)
$$

and

$$
\Psi_{\alpha, \beta}(t, x)=\Phi(t, x) b_{\alpha}^{\beta}(t, x), \quad \beta \in \mathcal{A}_{1}(\ell)
$$

Then we see that $\Psi^{\prime} \in \mathcal{K}_{r}$ and $\Psi_{\beta} \in \mathcal{K}_{r+\|\beta\|-\|\alpha\|}$. Also, we see that

$$
V_{[\alpha]} T_{\Phi}(t)=T_{\Psi_{\alpha}^{\prime}}(t)+\sum_{\beta \in \mathcal{A}_{1}(\ell)} T_{\Psi_{\alpha, \beta}}(t) V_{[\beta]} .
$$

So we see the existence of $\Phi_{\alpha, 1}(t, x)$ from Lemma 8(3).
Now let us prove Theorem 2. Let $\Phi(t, x)=\exp \left(\int_{0}^{t} c(X(s, x)) d s\right)$. Then we see that $\Phi \in \mathcal{K}_{0}$, and that $P_{t}^{c}=T_{\Phi}(t), t \in(0,1]$. So Corollary 9 implies the assertion for $p=\infty$.

Now let $g_{i} \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right), i=0, \ldots, d$, be given by

$$
g_{i}(x)=\sum_{j=1}^{d}\left(\frac{\partial}{\partial x^{j}} V_{i}^{j}\right)(x), \quad x \in \mathbf{R}^{N}
$$

Then we see that the formal self adjoint operator $V_{i}^{*}$ is $-V_{i}-g_{i}$. Let $\tilde{V}_{i}$ $\in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right), i=0, \ldots, d$, and $\tilde{c} \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}\right)$ be given by

$$
\tilde{V}_{0}=-V_{0}+\sum_{j=1}^{d} g_{j} V_{j}, \quad \tilde{V}_{i}=V_{i}, \quad i=1, \ldots, d
$$

and

$$
\tilde{c}=-g_{0}+\frac{1}{2} \sum_{j=1}^{d}\left(g_{j}^{2}+V_{j} g_{j}\right)
$$

Then we see that the system of vector fields $\left\{\tilde{V}_{i} ; i=0,1, \ldots,\right\}$ satisfies the condition (UFG). Let us think of the SDE

$$
\tilde{X}(t, x)=x+\sum_{i=0}^{d} \int_{0}^{t} \int_{0}^{d} \tilde{V}_{i}(\tilde{X}(s, x)) \circ d B_{i}(s) .
$$

and let $\tilde{P}_{t}, t \geq 0$, be a linear operator in $C_{b}^{\infty}\left(\mathbf{R}^{N}\right)$, given by

$$
\tilde{P}_{t}=E^{\mu}\left[\exp \left(\int_{0}^{t} \tilde{c}(\tilde{X}(t, x))\right) f(\tilde{X}(t, x))\right]
$$

Then we see (c.f. [3]) that

$$
\int_{\mathbf{R}^{N}}\left(P_{t}^{c} f\right)(x) g(x) d x=\int_{\mathbf{R}^{N}} f(x)\left(\tilde{P}_{t} g\right)(x) d x, \quad f, g \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)
$$

So we see that for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right)$

$$
\begin{gathered}
\left\|V_{\left[\alpha_{1}\right]} \cdots V_{\left[\alpha_{k}\right]} P_{t}^{c} V_{\left[\alpha_{k+1}\right]} \cdots V_{\left[\alpha_{k+m}\right]} f\right\|_{L^{1}(d x)} \\
\leq \sup \left\{\left|\int_{\mathbf{R}^{N}} f(x)\left(V_{\left[\alpha_{k+m}\right]}^{*} \cdots V_{\left[\alpha_{k+1}\right]}^{*} \tilde{P}_{t} V_{\left[\alpha_{k}\right]}^{*} \cdots V_{\left[\alpha_{1}\right]}^{*} g\right)(x) d x\right|\right. \\
\left.\quad g \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right),\|g\|_{\infty} \leq 1\right\}
\end{gathered}
$$

So we have our assertion for the case $p=1$. Then by the interpolation theory we have our assertion.

This completes the proof of Theorem 2.

## 4. Proof of Lemma 6

First note the following theorem due to [3].
Theorem 10. For any $m \geq 0$ and $p \in(1, \infty)$, we have

$$
E\left[\inf \left\{\int_{0}^{1}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t)\right)^{2} d t ; \sum_{\alpha \in \mathcal{A}(m)} a_{\alpha}^{2}=1\right\}^{-p}\right]=C_{m, p}<\infty
$$

Note that for any $m \geq 0, p \in(1, \infty)$ and $T, s>0$,

$$
E\left[\inf \left\{\int_{0}^{T}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t)\right)^{2} d t ; \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_{\alpha}^{2} \geq s\right\}^{-p}\right]=C_{m, p} s^{-p}
$$

Then we have the following.
Lemma 11. Let $m \geq 0$, and $f_{\alpha}:[0,1] \times \Omega \rightarrow \mathbf{R}, \alpha \in \mathcal{A}(m)$, be continuous processes. If

$$
A_{p}=\sup _{T \in(0,1]} E\left[\left(T^{-(m / 2+3 / 4)}\left(\sum_{\alpha \in \mathcal{A}(m)} \int_{0}^{T} f_{\alpha}(t)^{2} d t\right)^{1 / 2}\right)^{p}\right]<\infty, \quad p \in[1, \infty)
$$

then

$$
\begin{gathered}
P\left(\inf \left\{\left(\int_{0}^{T}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha}\left(\hat{B}^{\alpha}(t)+f_{\alpha}(t)\right)\right)^{2} d t\right)^{1 / 2} ; \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_{\alpha}^{2}=1\right\} \leq z^{-1}\right) \\
\leq\left(4^{p} C_{m, p}+A_{2 p}\right) z^{-p \gamma}
\end{gathered}
$$

for any $T \in(0,1]$ and $z \geq 1$. Here $\gamma=(4 m+5)^{-1}$.
Proof. Note that for $T \in(0,1]$, and $y \geq 1$

$$
\begin{gathered}
\left(\int_{0}^{T}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha}\left(\hat{B}^{\alpha}(t)+f_{\alpha}(t)\right)\right)^{2} d t\right)^{1 / 2} \\
\geq\left(\int_{0}^{T / y}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha}\left(\hat{B}^{\alpha}(t)+f_{\alpha}(t)\right)\right)^{2} d t\right)^{1 / 2} \\
\geq\left(\int_{0}^{T / y}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t)\right)^{2} d t\right)^{1 / 2} \\
-\left(\sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_{\alpha}^{2}\right)^{1 / 2}\left(\sum_{\alpha \in \mathcal{A}(m)} T^{-(m+1)} \int_{0}^{T / y} f_{\alpha}(t)^{2} d t\right)^{1 / 2} .
\end{gathered}
$$

Then we have for any $T \in(0,1], y \geq 1$, and $z=y^{m / 2+5 / 8}$, we have
$P\left(\inf \left\{\left(\int_{0}^{T}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha}\left(\hat{B}^{\alpha}(t)+f_{\alpha}(t)\right)\right)^{2} d t\right)^{1 / 2} ; \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_{\alpha}^{2}=1\right\} \leq z^{-1}\right)$

$$
\begin{aligned}
& \leq P\left(\inf \left\{\left(\int_{0}^{T / y}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t)\right)^{2} d t\right)^{1 / 2} ; \sum_{\alpha \in \mathcal{A}(m)} T^{\|\alpha\|+1} a_{\alpha}^{2}=1\right\} \leq 2 z^{-1}\right) \\
& +P\left(T^{-(m+1) / 2}\left(\sum_{\alpha \in \mathcal{A}(m)} \int_{0}^{T / y} f_{\alpha}(t)^{2} d t\right)^{1 / 2} \geq z^{-1}\right) \\
& \leq P\left(\operatorname { i n f } \left\{\int_{0}^{T / y}\left(\sum_{\alpha \in \mathcal{A}(m)} a_{\alpha} \hat{B}^{\alpha}(t)\right)^{2} d t\right.\right. \\
& \left.\left.\sum_{\alpha \in \mathcal{A}(m)}(T / y)^{\|\alpha\|+1} a_{\alpha}^{2} \geq y^{-(m+1)}\right\} \leq 4 z^{-2}\right) \\
& \quad+P\left((T / y)^{-(m / 2+3 / 4)} \sum_{\alpha \in \mathcal{A}(m)}\left(\int_{0}^{T / y} f_{\alpha}(t)^{2} d t\right)^{1 / 2} \geq y^{m / 2+3 / 4} z^{-1}\right) \\
& \leq\left(4 z^{-2} y^{(m+1)}\right)^{p} C_{m, p}+\left(y^{-(m / 2+3 / 4)} z\right)^{2 p} A_{2 p} \leq\left(4^{p} C_{m, p}+A_{2 p}\right) y^{-p / 8}
\end{aligned}
$$

Thus we have our assertion.
Applying Lemma 11 for $m=\ell-1$, we have the following from Equations (4),(5) and (6).

Corollary 12. For any $p \in(1, \infty)$, there is a constant $C>0$ such that
$P\left(\inf \left\{\sum_{\alpha, \beta \in \mathcal{A}_{1}(\ell)} \xi_{\alpha} \xi_{\beta} M^{\alpha, \beta}(t, x) ; \xi \in \mathbf{R}^{\mathcal{A}_{1}(\ell)}, \sum_{\alpha \in \mathcal{A}_{1}(\ell)}\left|\xi_{\alpha}\right|^{2}=1\right\} \leq \frac{1}{n}\right) \leq C n^{-p}$
for any $n \geq 1, t \in(0,1]$, and $x \in \mathbf{R}^{N}$.
Now Lemma 6 is an easy consequence of Corollary 12.
This completes the proof of Lemma 6.

## 5. Hypoelliptic Part

In this section, we assume that the system $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the condition (UFG) and let $\ell$ be as in Definition 1. Let $A \in C_{b}^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{N} \otimes\right.$ $\mathbf{R}^{N}$ ) be given by

$$
A(x)=\sum_{\alpha \in \mathcal{A}_{1}(\ell)} V_{[\alpha]}(x) \otimes V_{[\alpha]}(x), \quad x \in \mathbf{R}^{N}
$$

and $\lambda_{0}: \mathbf{R}^{N} \rightarrow[0, \infty)$ be a continuous function given by

$$
\lambda_{0}(x)=\inf \left\{(A(x) \xi, \xi) ; \xi \in \mathbf{R}^{N},|\xi|=1\right\}, \quad x \in \mathbf{R}^{N}
$$

Then we have the following.
Proposition 13. For any $p \in(1, \infty)$ there are constants $C_{0}, C_{1}$ such that

$$
C_{0} \lambda_{0}(x)^{-1} \leq E\left[\lambda_{0}(X(t, x))^{-p}\right]^{1 / p} \leq C_{1} \lambda_{0}(x)^{-1}, \quad x \in \mathbf{R}^{N}
$$

Proof. Let $J(t, x)=\left\{\frac{\partial}{\partial x^{j}} X^{i}(t, x)\right\}_{i, j=1}^{N}$. Then we have

$$
\begin{gathered}
(A(X(t, x)) \xi, \xi)=\sum_{\alpha \in \mathcal{A}_{1}(\ell)}\left(V_{[\alpha]}(X(t, x)), \xi\right)^{2} \\
=\sum_{\alpha \in \mathcal{A}_{1}(\ell)}\left(\sum_{\beta \in \mathcal{A}_{1}(\ell)} a_{\alpha}^{\beta}(t, x)\left(V_{[\beta]}(x), J(t, x)^{*} \xi\right)\right)^{2} \\
\left.\leq\left(\sum_{\alpha \in \mathcal{A}_{1}(\ell)} \sum_{\beta \in \mathcal{A}_{1}(\ell)} a_{\alpha}^{\beta}(t, x)^{2}\right)\left(\sum_{\beta \in \mathcal{A}_{1}(\ell)}\left(V_{[\beta]}(x), J(t, x)^{*} \xi\right)\right)^{2}\right)
\end{gathered}
$$

So we have

$$
\lambda_{0}(X(t, x)) \leq\left(\sum_{\alpha \in \mathcal{A}_{1}(\ell)} \sum_{\beta \in \mathcal{A}_{1}(\ell)} a_{\alpha}^{\beta}(t, x)^{2}\right)\|J(t, x)\|^{2} \lambda_{0}(x)
$$

This implies that

$$
\lambda_{0}(X(t, x))^{-1} \leq\left(\sum_{\alpha \in \mathcal{A}_{1}(\ell)} \sum_{\beta \in \mathcal{A}_{1}(\ell)} a_{\alpha}^{\beta}(t, x)^{2}\right)\|J(t, x)\|^{2} \lambda_{0}(x)^{-1}
$$

Similarly we have

$$
\lambda_{0}(x)^{-1} \leq\left(\sum_{\alpha \in \mathcal{A}_{1}(\ell)} \sum_{\beta \in \mathcal{A}_{1}(\ell)} b_{\alpha}^{\beta}(t, x)^{2}\right)\left\|J(t, x)^{-1}\right\|^{2} \lambda_{0}(X(t, x))^{-1}
$$

These imply our assertion.
Also, let $\lambda: \mathbf{R}^{N} \rightarrow[0, \infty)$ be given by

$$
\lambda(x)= \begin{cases}\left(\operatorname{trace} A(x)^{-1}\right)^{-1}, & \text { if } \lambda_{0}(x)>0 \\ 0, & \text { if } \lambda_{0}(x)=0\end{cases}
$$

Then we can easily see that

$$
N^{-1} \lambda_{0}(x) \leq \lambda(x) \leq \lambda_{0}(x), \quad x \in \mathbf{R}^{N},
$$

and so we see that $\lambda$ is continuous.
Let $G_{0}=\left\{x \in \mathbf{R}^{N} ; \lambda_{0}(x)>0\right\}$, and $e_{i}=\left\{\delta_{j i}\right\}_{j=1}^{N} \in \mathbf{R}^{N}, i=1, \ldots, N$, and let $c_{\alpha, i}: G_{0} \rightarrow \mathbf{R}, \alpha \in \mathcal{A}_{1}(\ell), i=1, \ldots, N$, be given by

$$
c_{\alpha, i}(x)=\left(e_{i}, A(x)^{-1} V_{[\alpha]}(x)\right), \quad x \in G_{0} .
$$

Then we see that

$$
\frac{\partial}{\partial x^{i}}=\sum_{\alpha \in \mathcal{A}_{1}(\ell)} c_{\alpha, i} V_{[\alpha]}, \quad \text { on } G_{0}
$$

Since we have

$$
\frac{\partial}{\partial x^{i}}\left(A(x)^{-1}\right)=-A(x)^{-1}\left(\frac{\partial}{\partial x^{i}} A(x)\right) A(x)^{-1}
$$

we see that for any $n \geq 1$ and $i_{1}, \ldots, i_{n} \in\{1, \ldots, N\}$, there is a $C>0$ such that

$$
\begin{gathered}
\left|\frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} \operatorname{trace}\left(A(x)^{-1}\right)\right| \leq C \lambda(x)^{-(n+1)}, \quad x \in \mathbf{R}^{N}, \\
\left|\frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} \lambda(x)\right| \leq C \lambda(x)^{-(n-1)}, \quad x \in \mathbf{R}^{N}
\end{gathered}
$$

and

$$
\left|\frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} c_{\alpha, i}(x)\right| \leq C \lambda(x)^{-(n+1)}, \quad x \in \mathbf{R}^{N}
$$

for all $\alpha \in \mathcal{A}_{1}(\ell), i=1, \ldots, N$.
Combining these facts and Theorem 2, we have the following.
Proposition 14. Suppose that $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the (UFG) condition. Then for any $n \geq 1$ and $i_{1}, \ldots, i_{n} \in\{1, \ldots, N\}$, there is a $C>0$ such that

$$
\left\|\lambda^{n} \frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} P_{t}^{c} f\right\|_{L^{p}(d x)} \leq C t^{-n \ell / 2}\|f\|_{L^{p}(d x)}
$$

for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right), t \in(0,1]$ and $p \in[1, \infty]$.

Also we have the following by using dual argument as in the proof of Theorem 2.

Theorem 15. Suppose that $\left\{V_{i} ; i=0,1, \ldots, d\right\}$ satisfies the (UFG) condition. Then for any $n, m \geq 0$ and $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m} \in\{1, \ldots, N\}$, there is a $C>0$ such that

$$
\left\|\lambda^{n} \frac{\partial^{n}}{\partial x^{i_{1}} \cdots \partial x^{i_{n}}} P_{t}^{c} \frac{\partial^{m}}{\partial x^{j_{1}} \cdots \partial x^{j_{m}}} \lambda^{m} f\right\|_{L^{p}(d x)} \leq C t^{-(n+m) \ell / 2}\|f\|_{L^{p}(d x)}
$$

for any $f \in C_{0}^{\infty}\left(\mathbf{R}^{N}\right), t \in(0,1]$ and $p \in[1, \infty]$.

## 6. Examples

Example 1. Let $d=1$ and $N=2$. Let $n \geq 2$, and $V_{0}, V_{1} \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}^{2}\right)$ be given by

$$
V_{0}\left(x^{1}, x^{2}\right)=\left(2+\left(\sin x^{1}\right)^{n}\right) \frac{\partial}{\partial x^{2}}, \quad V_{1}\left(x^{1}, x^{2}\right)=\frac{\partial}{\partial x^{1}}
$$

Then the condition (UH) is satisfied for $\ell=n+2$. Let $X(t, x)$ be the solution to (1) and $P_{t}, t>0$, be a linear operator in $C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}\right)$ given by

$$
P_{t} f(x)=E[f(X(t, x))], \quad f \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}\right), x \in \mathbf{R}^{2}
$$

Then we have the following.
Proposition 16. (1) There is a constant $C_{1}>0$ such that

$$
\left\|V_{0} P_{t} f\right\|_{\infty} \leq C_{1} t^{-(n+2) / 2}\|f\|_{\infty}, \quad f \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}\right), t \in(0,1]
$$

(2) There is a constant $C_{2}>0$ such that
$\sup \left\{\left\|V_{0} P_{t} f\right\|_{\infty} ; f \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}\right),\|f\|_{\infty} \leq 1\right\} \geq C_{2} t^{-(n+2) / 2}, \quad t \in(0,1]$.

Proof. The assertion (1) is an easy consequence of Theorem 2. So we prove the assertion (2). We can easy to see that the solution $X(t, x)=$ $\left(X\left(t,\left(x^{1}, x^{2}\right), X^{2}\left(t,\left(x^{1}, x^{2}\right)\right)\right)\right.$ is given by

$$
X^{1}\left(t,\left(x^{1}, x^{2}\right)\right)=x^{1}+B^{1}(t)
$$

$$
X^{2}\left(t,\left(x^{1}, x^{2}\right)\right)=x^{2}+2 t+\int_{0}^{t} \sin \left(x^{1}+B^{1}(s)\right)^{n} d s
$$

Then we see that

$$
\frac{\partial}{\partial x^{2}}\left(P_{t} f\right)(x)=E\left[\frac{\partial f}{\partial x^{2}}(X(t, x))\right], \quad f \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}\right)
$$

Note that

$$
E\left[\left|\int_{0}^{t} \sin \left(B^{1}(s)\right)^{n} d s\right|\right] \leq E\left[\int_{0}^{t}\left|B^{1}(s)\right|^{n} d s\right]=A_{n} t^{(n+2) / 2}
$$

where $A_{n}=E\left[\int_{0}^{1}\left|B^{1}(s)\right|^{n} d s\right]$. So we see that $P\left(\left|\int_{0}^{t} \sin \left(B^{1}(s)\right)^{n} d s\right| \geq\right.$ $\left.2 A_{n} t^{(n+2) / 2}\right) \leq 1 / 2$.

Let us take a $g \in C_{b}^{\infty}(\mathbf{R} ; \mathbf{R})$ such that $g^{\prime}(z) \geq 1, z \in[-1,1]$ and $g^{\prime}(z) \geq 0, z \in \mathbf{R}$. Let $f^{(t)} \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}\right), t>0$, be given by

$$
f^{(t)}\left(x^{1}, x^{2}\right)=g\left(\left(2 A_{n} t^{(n+2) / 2}\right)^{-1}\left(x^{2}-2 t\right)\right), \quad\left(x^{1}, x^{2}\right) \in \mathbf{R}^{2}
$$

Then we see that $\left\|f^{(t)}\right\|_{\infty}=\|g\|_{\infty}$ and that

$$
\begin{gathered}
\frac{\partial}{\partial x^{2}}\left(P_{t} f^{(t)}\right)(0)=\left(2 A_{n} t^{(n+2) / 2}\right)^{-1} E\left[g^{\prime}\left(\left(2 A_{n} t^{(n+2) / 2}\right)^{-1}\left(\int_{0}^{t} \sin \left(B^{1}(s)\right)^{n} d s\right)\right)\right] \\
\geq\left(4 A_{n} t^{(n+2) / 2}\right)^{-1}
\end{gathered}
$$

This implies our assertion (2).
Example 2. Let $d=1$ and $N=2$. Let $V_{0}, V_{1} \in C_{b}^{\infty}\left(\mathbf{R}^{2} ; \mathbf{R}^{2}\right)$ be given by

$$
V_{0}\left(x^{1}, x^{2}\right)=\sin x^{1} \frac{\partial}{\partial x^{2}}, \quad V_{1}\left(x^{1}, x^{2}\right)=\sin x^{1} \frac{\partial}{\partial x^{1}}
$$

Then the condition (UH) is not satisfied. But (UFG) is satisfied for $\ell=4$.

## References

[1] Kusuoka, S., Analysis on Wiener spaces, I. Nonlinear maps, J. Funct. Anal. 98 (1991), 122-168.
[2] Kusuoka, S., Approximation of expectation of diffusion processes and mathematical finance, Taniguchi Conf. on Math. Nara '98, Advanced Studies in Pure Mathematics 31, Japan Math. Soc. Tokyo, 2001, pp. 147-165.
[3] Kusuoka, S. and D. W. Stroock, Applications of Malliavin Calculus II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), 1-76.
[4] Kusuoka, S. and D. W. Stroock, Applications of Malliavin Calculus III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 391-442.
[5] Sussmann, H. J., Orbits of family of vector firelds and integrability of distributions, Trans. A.M.S. 180 (1973), 171-188.
(Received June 11, 2002)

> Graduate School of Mathematical Sciences The University of Tokyo Japan


[^0]:    1991 Mathematics Subject Classification. 60H30, 35K65.

