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Blow-up Solutions of the Constantin-Lax-Majda

Equation with a Generalized Viscosity Term

By Takashi SAKAJO

Abstract. A generalized one-dimensional model for the three-
dimensional vorticity equation of incompressible and viscous fluid is
considered. Its viscosity term is given by an arbitrary order of deriva-
tive of the vorticity. A formal solution of the equation is given explic-
itly by using the spectral method. We investigate convergence of the
solution and show that the solution blows up in finite time for suffi-
ciently small viscosity coefficient regardless of the order of derivative
of the viscosity term.

1. Introduction

The vorticity equation of three-dimensional inviscid and incompressible
fluids is given by

(1) — =w- Vo, reR3, t>0,

D
Dt
Since w =V x v and div v = 0, the velocity is recovered from the vorticity

by the Biot-Savart integral;

where = is the convective derivative, w is the vorticity and v is the velocity.

1 [(z-y)

2 v(x,t) = —— | ——= X w(y, t)dy.

@ (@) = =g [ 1wl )y

Constantin, Lax and Majda[l] rewrote the quadratic term w - Vv as an op-
erator form D(w)w by using (2), where D(w) is a strongly singular integral
operator acting on w. By considering some properties of the operator, they
proposed a one-dimensional model for the vorticity equation (1), which is
called Constantin-Lax-Majda (CLM) equation:

ow

EZWH(W)’ reR, t>0.
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The operator H is the Hilbert transform, which is a scalar one-dimensional
analogue of the operator D(w). The model described the 3-D Euler equa-
tions successfully. See [1] for the details.

Now, we consider the CLM equation with a generalized viscosity term:

Q % -
where a positive real constant v represents the viscosity coefficient and o €
R is order of derivative. This is a simple model of the 3-D Navier-Stokes
equations.

Schochet[4] gave an explicit solution of the equation when o = 2 by
using pole expansion method. He showed that the solution blowed up in
finite time and the velocity recovered from the solution also blowed up at
the same time. He concluded that the model with second-order viscosity
term was less successful than the CLM equation, since the vorticity and the
velocity never blowed up simultaneously in the 3-D Navier-Stokes equations.

Murthey[2] and Wegert & Murthy[5] proposed a non-local viscosity term,
vH(wy) instead of the diffusion. They obtained an explicit solution that
blowed up after the solution of the CLM equation blowed up. Thus, they
improved one of the drawbacks of Schochet’s model.

wH(w) —v(-A)2w, zeR, t>0,

However, it is still unknown what kind of the viscosity term is appro-
priate for the model of the 3-D Navier-Stokes equations. This is why we
consider the generalized equation. What we prove in the article is the follow-
ing interesting property: For an arbitrary «, there exists a small viscosity
coefficient vy such that solutions of the equation blow up in finite time for
0 < v < vg. This means the equation has a strong nonlinearity, since there
exists a blow-up solution whatever order of viscous diffusion it may has.

The paper consists of five sections. We reformulate the CLM equation
(3) by the spectral method and give a formal solution in §2. In §3, we
prove mathematically blow-up of the solution for initial data whose Fourier
coefficients are all non-negative. In §4, we give some numerical results that
show blow-up of the solution for other initial data. Final section is devoted
to conclusion.

2. The Spectral Method

In the present article, we consider the periodic boundary condition in x,
ie. w(x+ 27, t) = w(x,t). Hence, we can represent solutions of the CLM
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equation by
o0

(4) w(z,t) = Z wn(t)e™, w,(t) € C.

n=—0oo

Then, the Hilbert transform of (4) is expressed as follows][3].

o0
Hw)= 3 isgn(n)wn(t)e™,
n=—oo
where the function sgn(n) is
1 ifn>0,
sgn(n) = 0 ifn=0,
-1 ifn<0.

Hence, we represent the nonlinear term wH(w) by

()

wH(w) = <w0 + Z (wnemm + wne_l"’”)) X Z i (wnem‘r — w,ne_lm)
n=1

n=1

oo n—1 [e'e) '] )
S| P ST SRS yER A
1 k

n= =0 k=1 k=1

n—1 e’} e’}
(- Y W Wik — > WkWonk + Y wnkwk> e_mx}
k=0 k=1 k=1
[e%) n—1 ] n—1 )
— Z { (i Z wkwn_k> et — (i Z w_kw_n+k> elm} .
k=0 k=0

n=1

_l’_

Substituting (4) and (5) into (3) and equating coefficients of e”*, we obtain

ordinary differential equations for {wy,(t)}n>1, {w—n(t)}n>1 and wo(t):

dwn _ o ] n—1
E = —Un wp+1 Z WEWn—k,
dwo r=
6 — = —pw
( ) dr 0
dw,n _ o ) n—1
dt = —Un wW—np—1 Z W_W_n+k-

k=0
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Here, we assume that initial condition of w is given by
o0

(7) w(z,0) = Z Ay sinnz.
n=1

Then, it follows from the equations (6) that solutions are symmetric with
respect to the origin for all the time. That is to say,

(8) wn(t) +w_p(t) =0, for ¢ > 0.

Hence, we have wp(t) = 0 for all . Furthermore, the equations (6) are
reduced to equations only for {wy,(t)}n>1,

d n—1
(9) % = —I/nawn‘{‘iZu}kwn_k, n = 1727.,,'
k=1

Due to (7), initial conditions for wy,(t) are given by

An

(10) wn(0) = 57

It is possible to solve the equations (9) and (10) recursively:

A —v
(11)  wi(t) = 2716 3
An —n*vt —n“vt ¢ n*vs: =
(12)  wy(t) = 5 ¢ +e /e 1Zwk(s)wn,k(s)d8.
0 k=1

Note that the solution of the equation (3) for the initial condition (7) is
represented formally by

e}

(13) w(z, t) = Z 2iwy, (t) sin nx.

n=1
For the rest of this section, we consider a solution of the equation without
viscosity (i.e. v =0) for A; # 0 and A, =0, (n > 2).

PROPOSITION 1. When v = 0, the solutions (11) and (12) for A1 # 0
and A, = 0,(n > 2) are expressed by

(14) iwn (1) = (Al>nt"1.
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PrROOF. We prove it by the mathematical induction. It follows from
(11) that iwy (¢) is equivalent to (14). If the solutions iwy(t) for k =1,---,n—
1 are represented by (14), then iw,(t) becomes

e - LEE {5
- () e[

= — =0
(2)t

Since the solution w(x,t) is given by

[e'e] -1 .
A \" 4A;sinz
w(z,?) el ! < 2 > S 4 —4Ajtcosz + A2

A
for ‘7115

< 1, it blows up like % ast — A%.

REMARK. Inthe paper[l], Constantin, Lax and Majda gave an example
of a blow-up solution whose initial condition was w(z,0) = sinz. They
showed that the solution blowed up at t = 2. Since their initial condition
corresponds to A; = 1 in the present analysis, the blow-up time agrees with
their result.

3. Blow-up of Solutions for Non-negative Initial Coefficients

In this section, we assume that all the Fourier coefficients of the initial
data (7) are non-negative, i.e. A, > 0. First of all, we consider the equation
(9) with the following special initial condition:

Ay 1
- —, n=
(15) wn(0) =4 2i° ’
0, otherwise.

Let @, (t) be the solutions of the equation (9), which are given by

Ai‘le—l’t

(16) @) = Fe
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(17)  on(t) = efna”t/ ””51Zwk $)Wn—k(s)ds, (n>2).

Then, we try to find a lower comparison function of i@, (¢). Finally, we show
blow-up of the solution (13) for general initial conditions with non-negative
Fourier coefficients by using the following comparison.

PROPOSITION 2. Formn >1 andt >0, iw,(t) > iw,(t) > 0.
ProOOF. This is easily proved by the mathematical induction. For n =

1, iwy (t) = i1 (t) > 0. If iwg(t) > iwg(t) > 0 holds for k =1,---,n—1, then
we have

A « «
iwp(t) = ?nefn vEp e Vt/ " ”SZwk 8)iwn,—k(s)ds
A —n%y —ny v
> 7"6 nivt | g t/ e SZwk )iy —(s)ds
A

— T”e—”"”t + i, (t) > 0.

Since A4,, > 0, we obtain iwy,(t) > iw,(t) > 0. O
3.1. First order viscosity term

We consider the equation (3) when the viscosity term is given by the
first derivative of w, i.e. a = 1. Then, it is possible to express the solutions
iwy, (t) explicitly.

LEMMA 3. When o = 1, the solutions (16) and (17) are represented
by

(18) i (t) = % <%e—”t>n.

Proor. For n = 1, (18) is nothing but (16). If we assume that the
functions iwg(t) for k =1,---,n — 1 are represented by (18), then it follows
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from (17) that i@, (t) becomes

A Flf1/A -k
j(]}n(t) = *nl/t/ nvs Z{ < 15 ys) }{S (21‘Seu5> }dS
o A1 —ut t n—2 o 1 Alt —ut n
= <7e ) (n—l)/os ds;(Te > .d
It follows from Parseval’s equality and Proposition 2 that

lw(@, Dl f2prmy = 7> {2iwa(®)}
n=1

o0 9 ) . Alt . n—1 2
> i, (t)} = Aje ™ | —e™ .
> W;{w()} 71'7;{ 1€ <2e > }
Now, we define a function r(t) by Alt Y. When |r(t)| < 1, the last infi-

2
nite summation is represented by WL%) Since the function r(¢) has the

maximum value 7L AL gt t = , there exists a finite time 77 (v) > 0 such that
r(Ty(v)=1,if 0 <v < %. Thus we prove the following theorem.

THEOREM 4. When a =1, for0 <v <
Ty (v) such that ||w(z,t)||f2 — o0 ast — T} (v

2—1 there exists a finite time
).

REMARK. All the theorems given in the article are stated in terms
of blow-up of L? norm of the solution. However, in the present prob-
lem, not only the L? norm but also the maximum of the solution, M(t) =

sup |w(z,t)], blows up at the same time, since we have
x€[—m,7)

o@Dl = [ ol 0lds < 2mM2(0)
due to the periodic boundary condition.

3.2. Higher order viscosity term

We consider the equation (3) and (7) when a > 1, which contains a
model for the Navier-Stokes equations. What we are going to prove is the
following theorem.
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THEOREM 5. When a > 1, for0 <v < %6*30‘*1, there exists a finite
time Ty (v) such that ||w(x,t)||2 — o0 ast — Ty (v).

The first step to prove the theorem is to define a sequence {pgla)} -
n>

recursively by
(0) L% @ (@
pla :17 pga):n_azpkapnoik forn:2737”"
k=1

We give a lower bound for p%“) .

LEMMA 6. Fora > 1, let D, be a constant such that a23® < D, < e3¢,

Then, the sequence p%a) s bounded as follows:

(19) e 3an < Danozflef?;an <p(a)‘

n

PRrOOF. Forn =1, since D,y < e3¥, Doe ™3 <1 = pga). To obtain the

estimate for pff‘) (n > 2), we show the following inequality.

1 n—1 k a—1 k a—1 ”Z_—Tbl . .
20) =53 (2 1-Z 2 a=1(] _ g)o-
(20 k; (n> ( n) > /0 221 = 2)*da
1

2/4 N1 —2)2 e (n>2)
0

1
/3 a—1
> 2 / — d
0 (496) !
2 3a—1
o 420—1°
See Figure 1 for the first inequality. The third inequality comes from
z(1—z) > %x for0<z < %. Since D, > a23®, we obtain

D, n—1 k a—1 k a—1 23a3a—1 3 a—1
n 2:31 <n> ( n) T (2) g

k

AV

Hence, for n > 2 and a > 1, we obtain

D n—1
(21) ﬁ ];1 ka_l(n - k’)a_l > na_l.
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n=4 (even) n=5 (odd)

® (n-1)/2n

im 120 | e | m 1/n Un 1/n

Fig. 1. Schematic figures to show how the inequality (20) holds true. The summation in
the left hand side of (20) equals to area of boxes, which is greater than double of the

integral of function z®(1 — z)® from 0 to Z=1.

Suppose that the estimate (19) holds for k = 1,---,n— 1. Then multiplying
both sides of the inequality (21) by D,e™3%", we obtain

1
D a—1_—3an 1 S
N e o

i (Dak.a—le—&yk) (Da(n _ k)a—le—?,a(n_k))

Z pnk

= pgf‘). d

Next lemma gives a lower estimate for iw, (t).

LEMMA 7. Let functions f,(La) (t) be defined by
(22) (1) = vl (e ) £
v

Then, for 0 < vt <1, the functions f,SO‘) (t) satisfy

(23) MO0 =
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PRrROOF. Since fl(a) = 1, the statement (23) holds true for n = 1.
Substituting (22) into (17), we obtain a recursive definition of the functions

f,sa) for n > 2;

t
pq(la)fﬁa) (t) — ve —(n*—n)vt Zp a)pn )k/ e(n —n)I/Sf]EO‘) (S)fr(;i)k(s)ds

k=1

Suppose that the functions f,ga) (t) have the lower estimate (23) for k =
1,---,n—1and 0 <wt <1, then we have

t
1) > Zpk P et [l s 2
n =1 0
« t (23
_ Vn—lnoce—(n —n)l/t/ e(n —n)l/ssn—ZdS.
0
Now, let functions F}(¢) and Fy(t) be defined by

t
Fl(t) — na/ e(na_n)ussn—2d8 and Fg(t) — tn_le(na_n)yt.
0

Then, for n > 2, « > 1 and 0 < vt < 1, we obtain Fi(t) > F»(t), since
Fl(O) = FQ(O) and

Fi(t) = B5t) = " 2=t (@ — 41 — (n® — n)wt) > 0.
Hence, féa) t)>@wt)y" tfor0<wvt<1.0
We finally prove Theorem 5 by using these lemmas.

ProOOF OoF THEOREM 5. From Parseval’s equality and Proposition 2,
we have

lw@, Ol e rm = 7Y {2iwn(0)}

vV
3
1
—~—
N
&
3
=
[——;

- {2ypga> (%evt)n Fle) (t)}2.
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0.1 T
0.01
0.001 ‘
0.0001

le-05

relative error

le-06

le-07

1e-08 | B

le-09 L
1000 10000

Fig. 2. Relative approximation errors between numerical coefficients iw) and exact
coefficients iwy (tn), that are given in Theorem 4, for n = 10, 50, 100, 200 and 300.
Computational parameters are o = 1 and v = 0.25. These errors decreases at O(N ~2).

It follows from Lemma 6 and Lemma 7 that for 0 < vt <1,
0 Al n 2
oy (A1 ut) or }
3 {2l (o) 490
2
> At n-l
> Z {Ale—yte—i’)an <21e—ut) }

n=1

A2 —2ut —6a Z (Alt —vt> 2n=1)
2€3a :

Therefore, if R(t) = 2‘2%,3 e Y! is less than one, we obtain

o0
n—1
(24) lw(z,t)l}: > mAfete=b 3" {R2(1)}
n=1
A%efﬁztef&l
1R
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0.2

time

0.04 |- B

002 | | | | |
50 100 150 200 250 300
mode

Fig. 3. Estimated time t™ when iw, (t(")) > 1 for n = 1,---,300. It approaches
asymptotically to some finite value, which is an estimated blow-up time of the solution.

Since R(t) is monotonically increasing for 0 < vt < 1, there exists a time
Ty (v) € [0, 1] such that R (T3 (v)) = 1, if the viscosity coefficient satisfies

1 Ay
R(,) = gy =

Hence, it follows from (24) that if 0 < v < %e_‘%‘_l, ||lw(z,t)||2 blows up
ast — T5(v). O

3.3. Lower order viscosity term
We consider blow-up of the solution (13) when the order of viscosity
term is less than one (o < 1). We prove the following lemma.

LEMMA 8. Fora<1l,n>1andt >0,

Aq

(25) iy (t) > (2)n et
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~
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|
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time

Fig. 4. Numerical solutions iw) for n = 1,---,10 and j = 0,---,5500. The initial

conditions are A; = 2e, A2 = f% and v = 0.05. The target time T is 0.55.

Proor. It follows from (16) that (25) holds for n = 1. If iwg(t) for
k=1,---,n— 1 are bounded by (25), then for i, (t) we obtain

apt [ noys = (A1\"
I(Dn(t) > e z/t/ e VSZ <) Sn—2e—nz/sd8
0 N 2
n t
— <é) efn‘lut/ e(n”‘fn)VS(n o 1)8”72d8.
2 0
Suppose that functions G1(t) and Ga(t) are defined by
t
Gi(t) =t""1  and  Ga(t) = e_("a_n)”t/ e =S (n _ 1)s"2(s,

0

then for < 1, n > 2 and t > 0, we have G1(t) < Go(t). This is because
Gl(O) = GQ(O) and

t
GH(t) — Gi(t) = (n —n*)(n — l)l/e_(”a_”)”t/ e mms =246 > 0,
0
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0.6

05 | 4

0.4 4

03 |- B

time

01 B

0 | | | | | | | | |
50 100 150 200 250 300 350 400 450 500
mode

Fig. 5. Estimated time t™ when iwn, (t(")) > 1 for n = 1,---,500. Initial data are

Ay = 2e, Ay = —%, v = 0.05 and o = 2. The time approaches asymptotically to
some finite value near 0.55. This is blow-up time of the solution.

Hence, we obtain

A n
i@, () > (;) "l O

Proof of blow-up is now easy.

THEOREM 9. When a < 1, for0 < v < ‘;‘—el, there exists a finite time
Ty (v) such that ||w(z,t)||f2 — o0 ast — T (v).

PROOF. In the same way as the proof of Theorem 5,

o, OllF: > 7> {20 ()}
n=1

00 n 2
e a3 o () o)
n=1
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12 - T

10 | / N 0.535 -~

iw_n(t)

g ey it S I I

150 200 250 300 350 400 450 500
mode

Fig. 6. Numerical solutions iwy, () vs. n from ¢ = 0.515 to 0.54. Range of modes which
exceed 1 expands rapidly as time approaches 0.54, at which all the coefficients are
greater than 1.

= Al i {Tz(t)}n_l ,
n=1

where the function r(¢) is the same function defined in the proof of Lemma 3.
If |r(t)| < 1, then we obtain

A2872ut

2 1

lw(z, t)[|72 > R0

Ifo<v< %, there exists the time 77 (v) > 0 such that r (7} (v)) = 1.

Accordingly, ||w(x,t)||f2 — o0 as t — 17 (v). O
4. Numerical Examples for Other Initial Data

It is not easy to prove blow-up of solutions when some of their initial
Fourier coefficients are negative, since the comparison like Proposition 2
never holds. In the subsequent subsections, we give some numerical exam-
ples that indicate blow-up could also occur for other initial conditions.
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12 B
alpha= 3.0

alpha= 2.5

time

alpha= 2.6

alpha=-1.0-1.5 |

0.2 B

O | | | | | | | | |
50 100 150 200 250 300 350 400 450 500
mode

Fig. 7. Estimated times t™ when iw, (t") > 1 for « = —1, —0.5, 0, 0.5, 1, 1.5, 2, 2.5
and 3. Initial data are A; = 2e, A2 = —% and v = 0.05.

4.1. Numerical method

Since the equation (3) has already been reformulated with the system of
ordinary differential equations (9), we have only to solve them by a conven-
tional numerical scheme. We integrate the formula (11) and (12) recursively
by the trapezoidal rule. That is to say, for a given time interval [0,7] and
t; = %T, we approximate the Fourier coefficients iwy,(t;) by

. Al
. . — t
lwy (t) = w] = 5 ¢ Vi,
. . ] n —n< - « PR . .
iwp (tj) ~iw), = 5 ¢ ntty 4 N E e v (ti—tm) E ww .

According to the proofs in the previous section, ||w(x,t)||r2 blows up, if
almost all the Fourier coefficients are greater than one at some time t¢*.
Hence, we search a time ¢* when iw, (t*) > 1 in the numerical computation.

We compare a numerical solution with the exact solution given in
Lemma 3 in order to show the numerical method works well. The proof
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35

3 |
alpha= 1.0
5’ alpha=1.5
25 H |
T alphas 2.0
2 H 4
© alpha= 3.0
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50 100 150 200 250 300 350 400

mode

Fig. 8. Estimated times t™ when iw, (t") > 1 for « = —1, —0.5, 0, 0.5, 1, 1.5, 2, 2.5
and 3. Initial data are A1 = 2e, Ay = —2A; and v = 0.05.

of Theorem 4 tells us that ||w(z,t)||;2 blows up in finite time for A; = 4e
and v = 0.25 . We compute the coefficients from n = 1 to 300 up to the tar-
get time T' = 0.25 for various N and show relative maximum errors between
the numerical solutions and the exact solutions for n = 10, 50, 100, 200 and
300 at T = 0.25 in Figure 2. As N — oo, the errors tend to zero at O(N~2).
Next, we plot estimated times ¢(™ when iw,, (t(”)) > 1 in Figure 3. The

time ¢ approaches asymptotically to some finite time as n — co. Hence,
we expect blow-up of the solution at the time sup,, () near 0.193.

4.2. Blow-up of the solutions when A; > 0 and As <0

We give numerical results when A; and As have different signs, i.e.
Ay = —pA; (p > 0). The other coefficients A,, are zero for n > 3. At
first, we investigate a numerical solution when a@ = 2, v = 0.05, A; = 2e¢
and p = %. The target time T is 0.55 and N = 5500. Figure 4 shows
the coefficients iw), for n = 1,---,10 and j = 0,---, N. Though some of
these coefficients are negative at the beginning, they become positive and
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06 e alpha=3.0]

Nalpha= -1.0 - 1.5

time

0.2 B

O Il Il Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500

mode

Fig. 9. Estimated times t™ when iw, (t") > 1 for « = —1, —0.5, 0, 0.5, 1, 1.5, 2, 2.5
and 3. Initial data are A4, = 26(_1)n+1 and v = 0.01.

n2

eventually exceed 1. We plot estimated times ¢ when these coefficients
exceeds 1 in Figure 5. This figure indicates that there exists sup,, t(") ~ (.55,
at which all the coefficients are greater than 1 as we also see in Figure 6.
These figures give evidences of blow-up of the solution (13).

Next, we compute the numerical solutions for @« = —1, —0.5, 0, 0.5,
1, 1.5, 2, 2.5 and 3. Other numerical parameters such as v, A; and As
are unchanged. Figure 7 shows estimated times ¢ when the coefficient
iwy, (t(”)) > 1 for each a, which indicates that there exists a blow-up time

t* = sup,, t™ for every a.

Solutions blow up as well when magnitude of the negative mode are
larger than the positive mode, i.e. |A;| < |Az|. Figure 8 shows the estimated
times ¢ at which iw, (t(")> > 1 when Ay = 2¢, v = 0.05 and p = 2 for
various o.
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0.6 T
__alpha=3.0

0

“alpha= -1.0 - 1.5

time

0.1 4

O Il Il Il Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500

mode

Fig. 10. Estimated times t(,) when iw, (t™) > 1 for a = -1, 0.5, 0, 0.5, 1, 1.5, 2, 2.5
and 3. Initial data are A, = = 2¢! 1)n+ and v = 0.01.

4.3. Blow-up of the solutions when A, = = 2¢ 1 , (p>2)
We show blow-up of the solutions when the 1n1t1al Fourier coefficients

are given by an alternative sequence, A, = 26(_ ) for p = 2,3 and 4.
The viscosity coefficients is v = 0.01 and the order of viscous diffusion are
a = -1, —0.5, 0, 0.5, 1, 1.5, 2, 2.5 and 3. We plot the estimated times
() such that iw, t(”)) > 1 for p = 2, 3 and 4 in Figure 9, 10 and 11,
respectively. These estimated times approach asymptotically to some finite
times as n — oo, at which the solutions blow up.

5. Conclusion

We investigated a generalized one-dimensional model for the three-
dimensional vorticity equation of incompressible and viscous flows. The
viscosity term is given by an arbitrary order derivative of the vorticity.
Whatever order derivative of the vorticity the viscosity term has, we proved
mathematically that the solution of the equation blows up in finite time for
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Fig. 11. Estimated times t") when iw, (t™) > 1 for a = -1, 0.5, 0, 0.5, 1, 1.5, 2, 2.5
and 3. Initial data are 4, = 26(_1)n+1 and v = 0.01.

nd

a small range of the viscosity coefficient if all the initial Fourier coefficients
are non-negative. For other range of initial data, we show some numerical
examples that indicate blow-up of the solution.
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