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The Corona Type Decomposition of
Hardy-Orlicz Spaces

By Ryuta IMAI

Abstract. The HP-corona type problem in several complex
variables has been solved affirmatively by Amar [1], Andersson [2],
Andersson-Carlesson [3, 4], Krantz-Li [11] and others. In particular,
Andersson-Carlsson [4] proved the HP-norm estimates of the corona
solutions which are constructed by a concrete integral representation
formula. In this paper, we give some Orlicz space versions for in-
terpolation theorems of Marcinkiewicz type and prove the Hg-norm
estimates of the corona solutions for ¢ € Ay N V5. Moreover we also
show that the As-condition is necessary in some interesting cases.

1. Introduction

Let f1,-- -, fm € H®(£2) be corona data and X be a space of holomorphic
functions on €2, where €2 is the bounded strictly pseudoconvex domain with
C3-smooth boundary. As usual, corona data means that Y7, | f;(2)] > 6 >
0 for all z € Q.

Then we consider the mapping defined by

m
Xx---xX> (gl,-~-,gm)'—>2fz‘gi e X.
We say that X has X-corona solutions (for any corona data fi,---, fn,) if
this mapping is surjective. Then, let T : X — X, (k = 1,---,m) be an
operator such that

m

Z )-Tph(z), (h€X,ze€Q)
if X has the X-corona solution for the corona data fi,-- -, fi,. In particular
we refer to Tih, (k = 1,---,m) as the X-corona solution if T} is bounded

on X in such sense as | Txh||x < C||h| x.
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As is well-known, HP-corona type theorem says that Hardy space HP({2)
has the HP() -corona solutions for any corona data. (For details, see
Amar [1], Andersson [2], Andersson-Carlsson [3, 4], Krantz-Li [11] and oth-
ers.) In particular, Andersson-Carlsson [4] shows that an explicit integral
formula due to Berndtsson [5] provides the corona solutions and admits H?
-estimates.

THEOREM 1 (Andersson-Carlsson [4]). Let 1 < p < oo. If f1,---,
fm € H™(Q) satisfy that ZZ";I |fi(2)] > 6 > 0 for all z € Q, then there
exist integral operators T; : HP(Q2) — HP(Q), (i = 1,---,m) such that
Yoty fi(2)Tih(2) = h(z), (z € Q) and ||T;h|l, < C|lh|p for a positive con-
stant C'.

In this paper, we show that this integral formula due to Berndtsson [5]
admits Hy-estimates and that Hy(€2) has the Hy(€2) -corona solutions if
¢ € Aa N Va. On the other hand, we prove that the As-condition for ¢ is
necessary in order that the Szegd projection is of weak type (¢, ¢).

At first, we recall the definition of the Hardy-Orlicz space Hy(€2) cor-
responding to an N-function ¢, where N-function is a continuous Young
function ¢ : R — Ry U {oco} such that (1) ¢(x) = 0 iff x = 0 and
(2) limy—0 ¢( ) =0, limg—oo @ = 00. Hy(2) consists of all holomorphic
functions f E O(Q) such that

hmsup/ (| f|)doe < .

We say that an N-function ¢ satisfies the Ay -condition (¢ € Ag) if there
exists a positive constant C' such that

¢(2z) < Cp(x), (z=0).

And we say that an N-function ¢ satisfies the V, -condition (¢ € Va) if
there exists a constant ¢ > 1 such that

$a) < 5o0la), (20,

Now, our main theorems are as follows.
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THEOREM 2. Let ¢,¢p2 € Ao N Vo satisfy that Sup)\>0%m <1,

where ¢ and @2 are the left derivatives of ¢ and ¢o respectively. We sup-
pose that a sublinear operator B defined on H' () and Hy,(Q) is of weak
type (1,1) and of weak type (¢p2,¢2). Then B is defined on Hy(2) and the
following holds:

/ o(|Bf|)do < C'inf {/ é(lgl)do : g € Ly(00) such that f = Sg} ,
o0N o0N
(f € Hy(2)),

where S is the Szegd projection.

By combining the Theorems 1 and 2, we obtain the following corona
type decomposition of Hardy-Orlicz spaces:

COROLLARY 1. Let ¢ € AoNVa. If f1,--+, fm € H®(Q) is a corona
data, that is, they satisfy that Y ;" |fi(2)] > 6 > 0 for all z € §, then
there exist integral operators T; : Hy(2) — Hy(S2), (i = 1,---,m) such that

L fi(2)Tih(z) = h(z), (z € Q). Furthermore it follows that there exists
a positive constant C' such that

/ o(|Tih|)do < Cinf {/ é(lg|)do : g € Ly(0N) such thath = Sg} ,
o0N [219]

where S is the Szegd projection.

On the other hand, we show that the As-condition is necessary in the
following sense.

THEOREM 3. Let ¢ be an N-function. We suppose that S is the Szego
projection on Q. If S is of weak type (¢, ®), that is

SNo({ISF1> M) < €1 [ 6(Calfllda, (A >0, f € Lo(09)
then ¢ satisfies the Ao-condition.

THEOREM 4. Let f1, -, fm € H>®(Q) be a corona data satisfying that
T filleo < 1. We suppose that Ty : H®(Q) — HY(Q), (i = 1,---,m) is
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an operator which satisfies that h(z) = it fi(2)Tih(2), (z € Q). If every
operator T; satisfies that

SNT({[Tihl > A < C [ allbl)da. (>0, he Hy(®).
then ¢ satisfies the Ao-condition.

2. Preliminaries

As shown in Imai [8], we can identify the Hardy-Orlicz space Hy(€2)
with a subspace of the associated Orlicz space Lg(02) on the boundary
0. It may be noted that the boundary 92 endowed with a non-isotropic
distance is a space of homogeneous type. (For details, see Stein [15].) Thus,
we will show a variant of the interpolation thorem of Marcikiewicz type
on a space X of homogeneous type below. In what follows, we denote the
quasi-distance over X by d and Borel regular measure on X with doubling
condition by u:

dz,y) < K{d(z,2)+d(z,y)}, (z,y,z¢€ X),
p(S2r () < Ap(Sr(z)), (z€X,r>0),

where Sy () = {y € X : d(x,y) < r} is a sphere at center x with radius 7.

At first, in order to improve our interpolation theorem which is a variant
of one in Gallardo [7], let us describe a definition of weak type inequality
in Ly(0f2) . Let us recall that an operator 7" is said to be quasi-additive if
IT(f+9) < C(Tf|+ |Tgl|) for a constant C' > 0. If C' =1 here, then T is
called sublinear.

DEFINITION 1. A sublinear operator T defined on an Orlicz space
Lyg(X) is of weak type (¢, @) if there exists positive constants Cy and C
such that

sVn({z € X |Tf] > A}) < O /X S(Colf ), (f € Ly(X), A > 0).

LEMMA 1. Let ¢, ¢1 and ¢o be three N-functions satisfying the follow-
g growth conditions:

sup PNy

x>0 ¢(AN)p1(A)
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IRy

oy

where @,p1 and po are the left derivatives of ¢, ¢1 and ¢ respectively.
Then, there exist positive constants C7 and Co such that

(1) o(u)
L a@® < S

¢
v p(t) P(u)
/0 Sl S O (w>0)

(u>0),

Proor. We may take a positive number r such that

©(N)p1(N)
e ey <<t
Then it follows that
o) 21 () a4/ 1
A5 <ron 2, —“W)a(@m) (A > 0).

On the other hand, for any Ag > 0, the following holds:

¢(>\) i AM . A S01([.5) _ ¢1()\) r
o8 g~ S = [ s (Gy) 02

Hence we obtain that

fﬁ&ﬁﬁ s LZ } /m;

¢(u) P(A)
T +7r dA, >0
i L o >0
since % < q;fgj\\g p1( A" = Cp1(A\)"! — 0, (A — o0). Thus we con-
clude that

> (A r P(u)
[ iRy oo

We can show the another inequality in the same way as above. [
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Using the lemma above, we can prove a variant of the interpolation
theorem in Gallardo [7] to prove the next theorem.

THEOREM 5. Let ¢, ¢1 and ¢o be as in the lemma above and ¢1, ¢ €
Agy. We suppose that a sublinear operator T : Ly, (X) 4+ Lg,(X) — M(X)
is of weak type (¢p1,¢1) and of weak type (¢2,p2), where M(X) is the set
of all measurable functions on X. Then T is bounded on the Orlicz space

[ oTaDdu <y [ o(Calfhn, (1 € Lo(x)).
X X

Moreover we can obtain the same conclusion if T is of type (00, 00) and of
weak type (P2, P2).

ProoOF. From the weak type inequality and the sublinearity in the
hypothesis, we can assume that

T(f+9)l < [Tfl+ITyl,
ST >N < C [ oillfhdn (=1.2).

For any f € Ly(X) and any A > 0, we take fy and f* as follows:

o= Xy
o= =i

Then, since v(|Tf| > \) <v (]Tf,\\ > %) +v (\TfA] > %), the following

holds.

Jotrshar = [ o011 > 2dr
< [Tew (|TfA>>\>d)\
+ [T oo (112> 5) ax

It may be noted that fy € Ly, and f* € Ly,. In fact, ¢o(x) <
Croé(z), (3 = R < z) and ¢1(z) < Cro(z), (x < R = 3), it follows
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that ¢2(|f2) < Cro(lf]) and é1(|f*]) < Cre(|f]). From the weak type
inequality, the first term in the right hand side above is less than

/0 d)\/C@‘f)"d,uSC'Q/fﬁz‘f’dﬂ/Zsog

We note that there exists K > 0 such that K¢2(%) > ¢2(A) since ¢y €
As. Then, by using Lemma 1 we obtain that

2 o) (V)
I PRETRE K)o

, 6211
= Rl
62If)
< K5

Hence the following holds.

. \ , #2111
[ et (o > 3)ar < ok [ty G

< K [ o2l )dn

In a similar way as above, we can obtain that

o0 A
[ o (191> 5 ) ax < e’ [ oc@iran
In the case that T is of type (co,o0), we may assume that

ITflle < Cillflloo-
G (NV(Tf] > \) < /¢2 1£)d

For any f € Ls(X) and any A > 0, we take f) and f* as follows:

Hh = fX{|f|>
P o= f-h

201}
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We note that v (|Tf)‘| > %) = 0 since [|Tf*|oo < C1[[fMloo < Clﬁ =
%. Thus we obtain that

A A A
W(Tf >0 <v (1] > 5 ) +v (109> 5) =v (1101 > 5).
Therefore it follows that

Jetsbar = [7ewrs| > 2ax

< / P(A <\TfA|>)\>d)\

f¢2 |fA)d
< O et
2C1|f|
Ny Z%ﬁ
2

Since ¢ € Ag, there exists K > 0 such that Kng(%) > ¢2(A). Then,
using Lemma 1, the following holds.

201111 p(2) 2011 o(N)
O fontsian [ Zo5an < Ok [ontshan [ 255
P(2C1|f])
< C2K/¢2 1) Wdﬂ

Now we should note that ¢a(|f]) < ¢2(2C1|f|) if 2C7 > 1 and that
d2(|f) < Lo2(2C1|f]) for an L > 0 if 2C; < 1 since ¢ € Ag. Hence we
obtain that

P(2C1|f])

¢2(2C1|f1)

This completes the proof. [

CoF [ 6a(11) dn < KL [ 62011 ))dn

Furthermore, a small modification of the proof in Coifman-Weiss [6]
leads us to the following.

THEOREM 6. Let ¢ € Ay N Vg and ¢o be an N-function . We sup-

pose that supy~g z&;zzg% < 1 and that a sublinear operator B : Hp, (X) +
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Ly, (X) — M(X) is of weak type (H},,1) and of weak type (¢2, ¢2), where
M(X) is the set of all measurable functions on X. If X is bounded, then
the following holds:

| (B du<C [ oD, (f € Lo(X)).
X X

Before giving the proof of this theorem, we show the boundedness of

a modified maximal operator M,f = M(|f|q)%, (g > 1), where M is the
Hardy-Littlewood maximal operator.

LEMMA 2. Let ¢ € Ay N Va. We suppose that 1 < q < infg~q Sqf((ss)).
(For details, see Rao-Ren [14].) Then, we obtain the following:

[otupan<c [ oshan (5 € Lo(x).
X X

PRrROOF. Since the Hardy-Littlewood maximal operator M is of weak
type (1,1), a modified maximal operator M, is of weak type (¢,¢). And it is
trivial that M, is of type (00, 00). Therefore we can apply the interpolation
theorem 5 to M, in order to obtain the following.

[ otupdn<c [ e(fhdn (f € Lo(x). O
X X

PROOF OF THEOREM 6. It may be noted that the outline of this proof
is similar to one in Coifman-Weiss [6].

We take ¢ > 1 such that 1 < ¢ < infs~g Sqf((ss)) (For details, see Gal-
lardo [7].) It may be assumed that there exist some sphere Sy such that
X = Sy if X is bounded. Then we let f € Ly(X) and U* = {M,f >

a}, (o > 0). Since M, is bounded on Lg(X) from Lemma 2, the following

hold: Jx 6 d
w(U?) ()
Hence, if & > ag = ¢! (20%), we obtain that p(U%) < ”(50) <

#(X). Thus U® is a bounded open subset of X and U* # X if a > ap.
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Now we can apply the Whitney covering lemma to U* for a > «g in order
to choose some sequence of spheres S; such that the following holds:

(2) No points belong to more than m of spheres S;.

We let x; = xs; be the characteristic function of a sphere S; and

ni(z) = Zijfc?(x)XUa (). Using these functions, we construct the Calderén-

Zygmund decomposition f = g, + he for a > aq as follows:

{f(:v), (z ¢ U%)
Zj ms; (Ujf)Xj(%')’ (x e U?),

Zh?(x)
hi(z) = f(x)ni(x) —ms;(n;fx;(z),

where mg; (n;f) = p(S fS njfdu. Then it is shown that there exist
positive constant C' such that

1
1 q

- a|q < Ca.

(M(Sj) /S]- |5 | d,u,> <Ca

(For details, see Coifman-Weiss [6].) Hence a; =

9o ()

W()ho‘ is a (1, ¢)-atom
and he = Cad_; u(Sj)a; € Hp(X) = H}%’g(X) for a > ap. Then, from the
m-disjointness of S; and the definition of the norm in Hp, (X) = Hll;i’g(X),

it follows that

Ihallmy, < Ca) u(S;) < mCau(U®).
J

Using this decomposition f = g, + ho for a > ag and the definition of «y,
we obtain that

[ @Bshdn = [ pl@u(Bs| > a)da
- [ <><|Bf|>ada+/ u(|Bf| > a)da

< Plao)u(X) + @(a)ﬂ(\Bf|>a)da

@Q
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< 20 [ ofhdn+ [ etan (1Boal > § ) do
+ [ o (|Bha| > ‘;) da

ao
= 20 [ o(1fdu+ 1+ 1o
We substitute the weak type inequality hypothesis
Milhallgy, — 2Miflhal
(191> ) = MlPol, _ 2Vl

g a
and the Hp -norm estimate into I to obtain that

I, <2mM,C e(a)p(U*)da < ZliC/ d(Myf)dp
X

ao
Applying Lemma 2, it follows that Iy < C [y ¢(|f|)dp. In order to estimate
I, we substitute the weak type inequality hypothesis
d
(1Bt > 2 = el _ g Sl

$2(5) P2(ax)
into I; and obtain that

L < CM, dq/¢ﬂ%

aQ ¢2

= CM;y ¢ (/ ¢2 ’ga dﬂ+/ ¢2(’ga‘)dﬂ>
ag 2( & X\U=
= CMy(li1+ -71,2)-

Since |go| < Ca, we apply Lemma 2 to show that

a=C [ p@uUda < [ oMy f)du<C [ ol

@Q

In order to estimate I;o, we apply Lemma 1 and the fact that |f| <
M,f, a.e. as follows:

() pla)
Ly = %@@méw (gl = [ a(1£Dd Aw¢um

Jentiian [ Zo e < c [ otlfn

Therefore, we conclude that [y ¢( |Bf|)d,u < C [y o(|f])dp, (f € Ly(X)). O

IN
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3. Proofs

As shown in Imai [8], we recall that the Szegd projection S is bounded
on the Orlicz space Lg(0N2) , that is,

| elisthdo<c | s(lfdo, (f € Lo(0),
%9) o0

if € AoNVa. And it is shown that S is bounded from H}, (09Q) to H(€)
in Krantz [10]. Now we are ready to prove Theorem 2.

PROOF OF THEOREM 2. Let A = Bo S. Then, since A is bounded
on real Hardy space Hp,(0Q) and on an Orlicz space Ly, (0S2), we can
apply our interpolation theorem, Theorem 6, in the previous section to the
operator A in order to show that

| elAghdo<c [ olighdo, (g€ Lo(@9).
o0 16}9]

For any f € Hy(Q2) there exists g € Ly(0S2) such that f = Sg since Hy(2) =
SLy(0R2) as shown in Imai [8]. Hence we have that Bf = (BoS)g = Ag in
order to obtain that

| oBshdo = | o(laghds <C [ o(lgl)ao.

Since g is an arbitrary function in L, (0€2) such that f = Sg, we can conclude
that

/ o(|Bf|)do < Cinf{/ o(lgl)do : g € Ly(0R2)such that f = Sg}. O
o0 o0

PROOF OF COROLLARY 1. Since ¢ € Ay N Vo, there exists an N-
function ¢o € Az N V3 such that sup, i((i))zzgg < 1. (For details, see
Rao-Ren [14].) Then we may apply Theorem 2 to operators 7; in Theorem

1 in order to complete the proof. [

Before giving the proofs of Theorems 3 and 4, we show the following
lemma.
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LEMMA 3. Let ¢ be an N-function. We suppose that a sublinear oper-

ator T on Lg(00) is of weak type (¢, @), that is,

SN (ITf] > N) < C) /8 0(Cal o, (f € Ly(d9). A > 0).

If supjp| <1 1T flloo > C2, then ¢ satisfies the Ag-condition.

PROOF.

From the hypothesis, there exist 7 > 1 and ||f|lcc < 1 such
that

K =o({|Tf] > rC3}) > 0.
Then, for any A > 0, we define a function g € Lg(02) by

9(C) = %f@).

By applying the inequality of weak type to g, we obtain that
SN {ITg| > A< C1 [ o(Calgio

Since {|Tg| >} = {|Tf|>rCsy}, we have that o ({|Tg| > A})
o ({|Tf] > rCs}) = K > 0. Therefore, we have that

{[Tf > e G [ 6 (@%ufuoo) do
kol 0 (%)

P(A)

IN

IN

This inequality shows that ¢ satisfies the As -condition. []

Now we are ready to prove Theorems 3 and 4.

PROOF OF THEOREM 3. Since SL>®(0Q) = BMOA > H™, it follows
that

sup {||Sf|leo : f € Lsuch that || f||cc < 1} = 00.
Therefore we can apply Lemma 3 to the Szego projection S. [

PROOF OF THEOREM 4. We suppose that sup{||7;fl|l : f € H* such
that ||flleoc < 1} < 1 for every i = 1,---,m. Now we choose a bounded
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holomorphic function h € H*(Q) such that > 1" || fille < [|h]lec < 1.
Then we have that

m
hlle < > I fillsoll iAo

i=1
m

< D llfills
i=1

< [Alleo-

This is a contradiction. Therefore there exist a certain k € {1,---,m} such

that

sup{||7% flloo : f € H*such that || f|joc < 1} > 1.

Then we can apply Lemma 3 to the operators T}. [J
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