J. Math. Sci. Univ. Tokyo 10 (2003), 171–185.

The Corona Type Decomposition of Hardy-Orlicz Spaces

By Ryuta Imai

Abstract. The H^p -corona type problem in several complex variables has been solved affirmatively by Amar [1], Andersson [2], Andersson-Carlesson [3, 4], Krantz-Li [11] and others. In particular, Andersson-Carlsson [4] proved the H^p -norm estimates of the corona solutions which are constructed by a concrete integral representation formula. In this paper, we give some Orlicz space versions for interpolation theorems of Marcinkiewicz type and prove the H_{ϕ} -norm estimates of the corona solutions for $\phi \in \Delta_2 \cap \nabla_2$. Moreover we also show that the Δ_2 -condition is necessary in some interesting cases.

1. Introduction

Let $f_1, \dots, f_m \in H^{\infty}(\Omega)$ be corona data and X be a space of holomorphic functions on Ω , where Ω is the bounded strictly pseudoconvex domain with C^3 -smooth boundary. As usual, corona data means that $\sum_{i=1}^m |f_i(z)| \ge \delta >$ 0 for all $z \in \Omega$.

Then we consider the mapping defined by

$$X \times \cdots \times X \ni (g_1, \cdots, g_m) \mapsto \sum_{i=1}^m f_i g_i \in X.$$

We say that X has X-corona solutions (for any corona data f_1, \dots, f_m) if this mapping is surjective. Then, let $T_k : X \to X$, $(k = 1, \dots, m)$ be an operator such that

$$h(z) = \sum_{k=1}^{m} f_k(z) \cdot T_k h(z), \quad (h \in X, z \in \Omega)$$

if X has the X-corona solution for the corona data f_1, \dots, f_m . In particular we refer to T_kh , $(k = 1, \dots, m)$ as the X-corona solution if T_k is bounded on X in such sense as $||T_kh||_X \leq C||h||_X$.

¹⁹⁹¹ Mathematics Subject Classification. 42B25, 32A35, 32A40.

As is well-known, H^p -corona type theorem says that Hardy space $H^p(\Omega)$ has the $H^p(\Omega)$ -corona solutions for any corona data. (For details, see Amar [1], Andersson [2], Andersson-Carlsson [3, 4], Krantz-Li [11] and others.) In particular, Andersson-Carlsson [4] shows that an explicit integral formula due to Berndtsson [5] provides the corona solutions and admits H^p -estimates.

THEOREM 1 (Andersson-Carlsson [4]). Let $1 \leq p < \infty$. If $f_1, \dots, f_m \in H^{\infty}(\Omega)$ satisfy that $\sum_{i=1}^m |f_i(z)| \geq \delta > 0$ for all $z \in \Omega$, then there exist integral operators $T_i : H^p(\Omega) \to H^p(\Omega), (i = 1, \dots, m)$ such that $\sum_{i=1}^m f_i(z)T_ih(z) = h(z), (z \in \Omega)$ and $||T_ih||_p \leq C||h||_p$ for a positive constant C.

In this paper, we show that this integral formula due to Berndtsson [5] admits H_{ϕ} -estimates and that $H_{\phi}(\Omega)$ has the $H_{\phi}(\Omega)$ -corona solutions if $\phi \in \Delta_2 \cap \nabla_2$. On the other hand, we prove that the Δ_2 -condition for ϕ is necessary in order that the Szegö projection is of weak type (ϕ, ϕ) .

At first, we recall the definition of the Hardy-Orlicz space $H_{\phi}(\Omega)$ corresponding to an *N*-function ϕ , where *N*-function is a continuous Young function ϕ : $\mathbf{R} \to \mathbf{R}_+ \cup \{\infty\}$ such that (1) $\phi(x) = 0$ iff x = 0 and (2) $\lim_{x\to 0} \frac{\phi(x)}{x} = 0$, $\lim_{x\to\infty} \frac{\phi(x)}{x} = \infty$. $H_{\phi}(\Omega)$ consists of all holomorphic functions $f \in \mathcal{O}(\Omega)$ such that

$$\limsup_{\varepsilon \to 0} \int_{\partial \Omega_{\varepsilon}} \phi(|f|) d\sigma_{\varepsilon} < \infty.$$

We say that an N-function ϕ satisfies the Δ_2 -condition ($\phi \in \Delta_2$) if there exists a positive constant C such that

$$\phi(2x) \le C\phi(x), \quad (x \ge 0).$$

And we say that an N-function ϕ satisfies the ∇_2 -condition ($\phi \in \nabla_2$) if there exists a constant a > 1 such that

$$\phi(x) \le \frac{1}{2a}\phi(ax), \quad (x \ge 0).$$

Now, our main theorems are as follows.

THEOREM 2. Let $\phi, \phi_2 \in \Delta_2 \cap \nabla_2$ satisfy that $\sup_{\lambda>0} \frac{\varphi(\lambda)\phi_2(\lambda)}{\phi(\lambda)\varphi_2(\lambda)} < 1$, where φ and φ_2 are the left derivatives of ϕ and ϕ_2 respectively. We suppose that a sublinear operator B defined on $H^1(\Omega)$ and $H_{\phi_2}(\Omega)$ is of weak type (1,1) and of weak type (ϕ_2, ϕ_2) . Then B is defined on $H_{\phi}(\Omega)$ and the following holds:

$$\int_{\partial\Omega} \phi(|Bf|) d\sigma \le C \inf \left\{ \int_{\partial\Omega} \phi(|g|) d\sigma : g \in L_{\phi}(\partial\Omega) \text{ such that } f = Sg \right\},$$

(f \in H_{\phi}(\Omega)),

where S is the Szegö projection.

By combining the Theorems 1 and 2, we obtain the following corona type decomposition of Hardy-Orlicz spaces:

COROLLARY 1. Let $\phi \in \Delta_2 \cap \nabla_2$. If $f_1, \dots, f_m \in H^{\infty}(\Omega)$ is a corona data, that is, they satisfy that $\sum_{i=1}^m |f_i(z)| \ge \delta > 0$ for all $z \in \Omega$, then there exist integral operators $T_i : H_{\phi}(\Omega) \to H_{\phi}(\Omega)$, $(i = 1, \dots, m)$ such that $\sum_{i=1}^m f_i(z)T_ih(z) = h(z)$, $(z \in \Omega)$. Furthermore it follows that there exists a positive constant C such that

$$\int_{\partial\Omega}\phi(|T_ih|)d\sigma \le C\inf\left\{\int_{\partial\Omega}\phi(|g|)d\sigma: g\in L_{\phi}(\partial\Omega) \text{ such that } h=Sg\right\},$$

where S is the Szegö projection.

On the other hand, we show that the Δ_2 -condition is necessary in the following sense.

THEOREM 3. Let ϕ be an N-function. We suppose that S is the Szegö projection on Ω . If S is of weak type (ϕ, ϕ) , that is

$$\phi(\lambda)\sigma(\{|Sf| > \lambda\}) \le C_1 \int_{\partial\Omega} \phi(C_2|f|) d\sigma, \quad (\lambda > 0, \ f \in L_{\phi}(\partial\Omega)),$$

then ϕ satisfies the Δ_2 -condition.

THEOREM 4. Let $f_1, \dots, f_m \in H^{\infty}(\Omega)$ be a corona data satisfying that $\sum_{i=1}^m \|f_i\|_{\infty} < 1$. We suppose that $T_i: H^{\infty}(\Omega) \to H^1(\Omega), (i = 1, \dots, m)$ is

an operator which satisfies that $h(z) = \sum_{i=1}^{m} f_i(z)T_ih(z), (z \in \Omega)$. If every operator T_i satisfies that

$$\phi(\lambda)\sigma(\{|T_ih| > \lambda\}) \le C \int_{\partial\Omega} \phi(|h|) d\sigma, \quad (\lambda > 0, h \in H_{\phi}(\Omega)),$$

then ϕ satisfies the Δ_2 -condition.

2. Preliminaries

As shown in Imai [8], we can identify the Hardy-Orlicz space $H_{\phi}(\Omega)$ with a subspace of the associated Orlicz space $L_{\phi}(\partial\Omega)$ on the boundary $\partial\Omega$. It may be noted that the boundary $\partial\Omega$ endowed with a non-isotropic distance is a space of homogeneous type. (For details, see Stein [15].) Thus, we will show a variant of the interpolation thorem of Marcikiewicz type on a space X of homogeneous type below. In what follows, we denote the quasi-distance over X by d and Borel regular measure on X with doubling condition by μ :

$$\begin{aligned} d(x,y) &\leq K\{d(x,z) + d(z,y)\}, \quad (x,y,z \in X), \\ \mu(S_{2r}(x)) &\leq A\mu(S_r(x)), \quad (x \in X, r > 0), \end{aligned}$$

where $S_r(x) = \{y \in X : d(x, y) < r\}$ is a sphere at center x with radius r.

At first, in order to improve our interpolation theorem which is a variant of one in Gallardo [7], let us describe a definition of weak type inequality in $L_{\phi}(\partial \Omega)$. Let us recall that an operator T is said to be quasi-additive if $|T(f+g)| \leq C(|Tf| + |Tg|)$ for a constant C > 0. If C = 1 here, then T is called sublinear.

DEFINITION 1. A sublinear operator T defined on an Orlicz space $L_{\phi}(X)$ is of weak type (ϕ, ϕ) if there exists positive constants C_1 and C_2 such that

$$\phi(\lambda)\mu(\{x \in X : |Tf| > \lambda\}) \le C_1 \int_X \phi(C_2|f|)d\mu, \quad (f \in L_\phi(X), \, \lambda > 0)$$

LEMMA 1. Let ϕ , ϕ_1 and ϕ_2 be three N-functions satisfying the following growth conditions:

$$\sup_{\lambda>0} \frac{\varphi(\lambda)\phi_1(\lambda)}{\phi(\lambda)\varphi_1(\lambda)} < 1,$$

$$\inf_{\lambda>0} \frac{\varphi(\lambda)\phi_2(\lambda)}{\phi(\lambda)\varphi_2(\lambda)} > 1,$$

where φ, φ_1 and φ_2 are the left derivatives of ϕ , ϕ_1 and ϕ_2 respectively. Then, there exist positive constants C_1 and C_2 such that

$$\int_{u}^{\infty} \frac{\varphi(t)}{\phi_{1}(t)} dt \leq C_{1} \frac{\phi(u)}{\phi_{1}(u)}, \quad (u > 0),$$
$$\int_{0}^{u} \frac{\varphi(t)}{\phi_{2}(t)} dt \leq C_{2} \frac{\phi(u)}{\phi_{2}(u)}, \quad (u > 0).$$

PROOF. We may take a positive number r such that

$$\sup_{\lambda > 0} \frac{\varphi(\lambda)\phi_1(\lambda)}{\phi(\lambda)\varphi_1(\lambda)} < r < 1.$$

Then it follows that

$$\frac{\varphi(\lambda)}{\phi_1(\lambda)} < r\phi(\lambda) \frac{\varphi_1(\lambda)}{\phi_1(\lambda)^2} = -r\phi(\lambda) \frac{d}{d\lambda} \left(\frac{1}{\phi_1(\lambda)}\right), \quad (\lambda > 0).$$

On the other hand, for any $\lambda_0 > 0$, the following holds:

$$\log \frac{\phi(\lambda)}{\phi(\lambda_0)} = \int_{\lambda_0}^{\lambda} \frac{\varphi(t)}{\phi(t)} dt \le r \int_{\lambda_0}^{\lambda} \frac{\varphi_1(t)}{\phi_1(t)} dt = \log \left(\frac{\phi_1(\lambda)}{\phi_1(\lambda_0)}\right)^r, \quad (\lambda \ge \lambda_0).$$

Hence we obtain that

$$\begin{split} \int_{u}^{\infty} \frac{\varphi(\lambda)}{\phi_{1}(\lambda)} d\lambda &\leq -r \left[\frac{\phi(\lambda)}{\phi_{1}(\lambda)} \right]_{u}^{\infty} + r \int_{u}^{\infty} \frac{\varphi(\lambda)}{\phi_{1}(\lambda)} d\lambda \\ &= r \frac{\phi(u)}{\phi_{1}(u)} + r \int_{u}^{\infty} \frac{\varphi(\lambda)}{\phi_{1}(\lambda)} d\lambda, \quad (u > 0), \end{split}$$

since $\frac{\phi(\lambda)}{\phi_1(\lambda)} \leq \frac{\phi(\lambda_0)}{\phi_1(\lambda_0)^r} \phi_1(\lambda)^{r-1} = C\phi_1(\lambda)^{r-1} \to 0, \ (\lambda \to \infty)$. Thus we conclude that

$$\int_{u}^{\infty} \frac{\varphi(\lambda)}{\phi(\lambda)} d\lambda \le \frac{r}{1-r} \frac{\phi(u)}{\phi_1(u)}, \quad (u>0).$$

We can show the another inequality in the same way as above. \Box

Using the lemma above, we can prove a variant of the interpolation theorem in Gallardo [7] to prove the next theorem.

THEOREM 5. Let ϕ , ϕ_1 and ϕ_2 be as in the lemma above and $\phi_1, \phi_2 \in \Delta_2$. We suppose that a sublinear operator $T : L_{\phi_1}(X) + L_{\phi_2}(X) \to M(X)$ is of weak type (ϕ_1, ϕ_1) and of weak type (ϕ_2, ϕ_2) , where M(X) is the set of all measurable functions on X. Then T is bounded on the Orlicz space $L_{\phi}(X)$:

$$\int_X \phi(|Tf|)d\mu \le C_1 \int_X \phi(C_2|f|)d\mu, \quad (f \in L_\phi(X)).$$

Moreover we can obtain the same conclusion if T is of type (∞, ∞) and of weak type (ϕ_2, ϕ_2) .

PROOF. From the weak type inequality and the sublinearity in the hypothesis, we can assume that

$$\begin{aligned} |T(f+g)| &\leq |Tf| + |Tg|,\\ \phi_i(\lambda)\nu(|Tf| > \lambda) &\leq C_i \int \phi_i(|f|)d\mu, \quad (i = 1, 2). \end{aligned}$$

For any $f \in L_{\phi}(X)$ and any $\lambda > 0$, we take f_{λ} and f^{λ} as follows:

$$f_{\lambda} = f \chi_{\{|f| > \frac{\lambda}{2}\}}.$$

$$f^{\lambda} = f - f_{\lambda}.$$

Then, since $\nu(|Tf| > \lambda) \le \nu\left(|Tf_{\lambda}| > \frac{\lambda}{2}\right) + \nu\left(|Tf^{\lambda}| > \frac{\lambda}{2}\right)$, the following holds.

$$\begin{split} \int \phi(|Tf|)d\nu &= \int_0^\infty \varphi(\lambda)\nu(|Tf| > \lambda)d\lambda \\ &\leq \int_0^\infty \varphi(\lambda)\nu\left(|Tf_\lambda| > \frac{\lambda}{2}\right)d\lambda \\ &+ \int_0^\infty \varphi(\lambda)\nu\left(|Tf^\lambda| > \frac{\lambda}{2}\right)d\lambda. \end{split}$$

It may be noted that $f_{\lambda} \in L_{\phi_2}$ and $f^{\lambda} \in L_{\phi_1}$. In fact, $\phi_2(x) \leq C_R \phi(x), (\frac{\lambda}{2} = R \leq x)$ and $\phi_1(x) \leq C'_R \phi(x), (x \leq R = \frac{\lambda}{2})$, it follows

that $\phi_2(|f_{\lambda}|) \leq C_R \phi(|f|)$ and $\phi_1(|f^{\lambda}|) \leq C'_R \phi(|f|)$. From the weak type inequality, the first term in the right hand side above is less than

$$\int_0^\infty \varphi(\lambda) d\lambda \int C_2 \frac{\phi_2(|f_\lambda|)}{\phi_2(\frac{\lambda}{2})} d\mu \leq C_2 \int \phi_2(|f|) d\mu \int_0^{2|f|} \frac{\varphi(\lambda)}{\phi_2(\frac{\lambda}{2})} d\lambda$$

We note that there exists K > 0 such that $K\phi_2(\frac{\lambda}{2}) \ge \phi_2(\lambda)$ since $\phi_2 \in \Delta_2$. Then, by using Lemma 1 we obtain that

$$\begin{split} \int_{0}^{2|f|} \frac{\varphi(\lambda)}{\phi_{2}(\frac{\lambda}{2})} d\lambda &\leq K \int_{0}^{2|f|} \frac{\varphi(\lambda)}{\phi_{2}(\lambda)} d\lambda \\ &\leq K' \frac{\phi(2|f|)}{\phi_{2}(2|f|)} \\ &\leq K' \frac{\phi(2|f|)}{\phi_{2}(|f|)}. \end{split}$$

Hence the following holds.

$$\begin{split} \int_0^\infty \varphi(\lambda)\nu\left(|Tf_\lambda| > \frac{\lambda}{2}\right)d\lambda &\leq C_2 K' \int \phi_2(|f|) \frac{\phi(2|f|)}{\phi_2(|f|)}d\mu \\ &\leq C_2 K' \int \phi(2|f|)d\mu. \end{split}$$

In a similar way as above, we can obtain that

$$\int_0^\infty \varphi(\lambda)\nu\left(|Tf^\lambda| > \frac{\lambda}{2}\right)d\lambda \le C_1 K' \int \phi(2|f|)d\mu.$$

In the case that T is of type (∞, ∞) , we may assume that

$$||Tf||_{\infty} \leq C_1 ||f||_{\infty}.$$

$$\phi_2(\lambda)\nu(|Tf| > \lambda) \leq C_2 \int \phi_2(|f|) d\mu.$$

For any $f \in L_{\phi}(X)$ and any $\lambda > 0$, we take f_{λ} and f^{λ} as follows:

$$f_{\lambda} = f \chi_{\{|f| > \frac{\lambda}{2C_1}\}}$$

$$f^{\lambda} = f - f_{\lambda}.$$

We note that $\nu\left(|Tf^{\lambda}| > \frac{\lambda}{2}\right) = 0$ since $||Tf^{\lambda}||_{\infty} \leq C_1 ||f^{\lambda}||_{\infty} \leq C_1 \frac{\lambda}{2C_1} = \frac{\lambda}{2}$. Thus we obtain that

$$\nu(|Tf| > \lambda) \le \nu\left(|Tf_{\lambda}| > \frac{\lambda}{2}\right) + \nu\left(|Tf^{\lambda}| > \frac{\lambda}{2}\right) = \nu\left(|Tf_{\lambda}| > \frac{\lambda}{2}\right).$$

Therefore it follows that

$$\begin{split} \int \phi(|f|)d\nu &= \int_0^\infty \varphi(\lambda)\nu(|Tf| > \lambda)d\lambda \\ &\leq \int_0^\infty \varphi(\lambda)\nu\left(|Tf_\lambda| > \frac{\lambda}{2}\right)d\lambda \\ &\leq C_2 \int_0^\infty \varphi(\lambda)d\lambda \frac{\int \phi_2(|f_\lambda|)d\mu}{\phi_2(\frac{\lambda}{2})} \\ &\leq C_2 \int \phi_2(|f|)d\mu \int_0^{2C_1|f|} \frac{\varphi(\lambda)}{\phi_2(\frac{\lambda}{2})}d\lambda. \end{split}$$

Since $\phi_2 \in \Delta_2$, there exists K > 0 such that $K\phi_2(\frac{\lambda}{2}) \ge \phi_2(\lambda)$. Then, using Lemma 1, the following holds.

$$C_2 \int \phi_2(|f|) d\mu \int_0^{2C_1|f|} \frac{\varphi(\lambda)}{\phi_2(\frac{\lambda}{2})} d\lambda \leq C_2 K \int \phi_2(|f|) d\mu \int_0^{2C_1|f|} \frac{\varphi(\lambda)}{\phi_2(\lambda)} d\lambda$$
$$\leq C_2 K \int \phi_2(|f|) \frac{\phi(2C_1|f|)}{\phi_2(2C_1|f|)} d\mu.$$

Now we should note that $\phi_2(|f|) \leq \phi_2(2C_1|f|)$ if $2C_1 \geq 1$ and that $\phi_2(|f|) \leq L\phi_2(2C_1|f|)$ for an L > 0 if $2C_1 < 1$ since $\phi_2 \in \Delta_2$. Hence we obtain that

$$C_2 K \int \phi_2(|f|) \frac{\phi(2C_1|f|)}{\phi_2(2C_1|f|)} d\mu \le C_2 K L \int \phi(2C_1|f|) d\mu.$$

This completes the proof. \Box

Furthermore, a small modification of the proof in Coifman-Weiss [6] leads us to the following.

THEOREM 6. Let $\phi \in \Delta_2 \cap \nabla_2$ and ϕ_2 be an N-function. We suppose that $\sup_{\lambda>0} \frac{\varphi(\lambda)\phi_2(\lambda)}{\phi(\lambda)\varphi_2(\lambda)} < 1$ and that a sublinear operator $B: H^1_{Re}(X) +$

 $L_{\phi_2}(X) \to M(X)$ is of weak type $(H^1_{Re}, 1)$ and of weak type (ϕ_2, ϕ_2) , where M(X) is the set of all measurable functions on X. If X is bounded, then the following holds:

$$\int_X \phi(|Bf|) d\mu \le C \int_X \phi(|f|) d\mu, \quad (f \in L_\phi(X)).$$

Before giving the proof of this theorem, we show the boundedness of a modified maximal operator $M_q f = M(|f|^q)^{\frac{1}{q}}$, (q > 1), where M is the Hardy-Littlewood maximal operator.

LEMMA 2. Let $\phi \in \Delta_2 \cap \nabla_2$. We suppose that $1 < q < \inf_{s>0} \frac{s\varphi(s)}{\phi(s)}$. (For details, see Rao-Ren [14].) Then, we obtain the following:

$$\int_X \phi(M_q f) d\mu \le C \int_X \phi(|f|) d\mu \quad (f \in L_\phi(X)).$$

PROOF. Since the Hardy-Littlewood maximal operator M is of weak type (1, 1), a modified maximal operator M_q is of weak type (q, q). And it is trivial that M_q is of type (∞, ∞) . Therefore we can apply the interpolation theorem 5 to M_q in order to obtain the following.

$$\int_X \phi(M_q f) d\mu \le C \int_X \phi(|f|) d\mu \quad (f \in L_\phi(X)). \ \Box$$

PROOF OF THEOREM 6. It may be noted that the outline of this proof is similar to one in Coifman-Weiss [6].

We take q > 1 such that $1 < q < \inf_{s>0} \frac{s\varphi(s)}{\phi(s)}$ (For details, see Gallardo [7].) It may be assumed that there exist some sphere S_0 such that $X = S_0$ if X is bounded. Then we let $f \in L_{\phi}(X)$ and $U^{\alpha} = \{M_q f > \alpha\}, (\alpha > 0)$. Since M_q is bounded on $L_{\phi}(X)$ from Lemma 2, the following holds:

$$\mu(U^{\alpha}) \le C \frac{\int_X \phi(|f|) d\mu}{\phi(\alpha)}$$

Hence, if $\alpha > \alpha_0 = \phi^{-1} \left(2C \frac{\int_X \phi(|f|) d\mu}{\mu(S_0)} \right)$, we obtain that $\mu(U^{\alpha}) \leq \frac{\mu(S_0)}{2} < \mu(X)$. Thus U^{α} is a bounded open subset of X and $U^{\alpha} \neq X$ if $\alpha > \alpha_0$.

Ryuta IMAI

Now we can apply the Whitney covering lemma to U^{α} for $\alpha > \alpha_0$ in order to choose some sequence of spheres S_j such that the following holds:

- (1) $U^{\alpha} = \bigcup_{j} S_{j}$.
- (2) No points belong to more than m of spheres S_i .

We let $\chi_j = \chi_{S_j}$ be the characteristic function of a sphere S_j and $\eta_j(x) = \frac{\chi_j(x)}{\sum_k \chi_k(x)} \chi_{U^{\alpha}}(x)$. Using these functions, we construct the Calderón-Zygmund decomposition $f = g_{\alpha} + h_{\alpha}$ for $\alpha > \alpha_0$ as follows:

$$g_{\alpha}(x) = \begin{cases} f(x), & (x \notin U^{\alpha}) \\ \sum_{j} m_{S_{j}}(\eta_{j}f)\chi_{j}(x), & (x \in U^{\alpha}) \end{cases}$$
$$h_{\alpha}(x) = \sum_{j} h_{j}^{\alpha}(x),$$
$$h_{j}^{\alpha}(x) = f(x)\eta_{j}(x) - m_{S_{j}}(\eta_{j}f)\chi_{j}(x),$$

where $m_{S_j}(\eta_j f) = \mu(S_j)^{-1} \int_{S_j} \eta_j f d\mu$. Then it is shown that there exist positive constant C such that

$$\left(\frac{1}{\mu(S_j)}\int_{S_j}|h_j^{\alpha}|^q d\mu\right)^{\frac{1}{q}} \le C\alpha.$$

(For details, see Coifman-Weiss [6].) Hence $a_j = \frac{1}{C\alpha\mu(S_j)}h_j^{\alpha}$ is a (1,q)-atom and $h_{\alpha} = C\alpha \sum_j \mu(S_j)a_j \in H^1_{Re}(X) = H^{1,q}_{Re}(X)$ for $\alpha > \alpha_0$. Then, from the *m*-disjointness of S_j and the definition of the norm in $H^1_{Re}(X) = H^{1,q}_{Re}(X)$, it follows that

$$\|h_{\alpha}\|_{H^{1}_{Re}} \leq C\alpha \sum_{j} \mu(S_{j}) \leq mC\alpha\mu(U^{\alpha}).$$

Using this decomposition $f = g_{\alpha} + h_{\alpha}$ for $\alpha > \alpha_0$ and the definition of α_0 , we obtain that

$$\begin{split} \int_{X} \phi(|Bf|) d\mu &= \int_{0}^{\infty} \varphi(\alpha) \mu(|Bf| > \alpha) d\alpha \\ &= \int_{0}^{\alpha_{0}} \varphi(\alpha) \mu(|Bf| > \alpha) d\alpha + \int_{\alpha_{0}}^{\infty} \varphi(\alpha) \mu(|Bf| > \alpha) d\alpha \\ &\leq \phi(\alpha_{0}) \mu(X) + \int_{\alpha_{0}}^{\infty} \varphi(\alpha) \mu(|Bf| > \alpha) d\alpha \end{split}$$

The Corona Type Decomposition of Hardy-Orlicz Spaces

$$\leq 2C \int_X \phi(|f|) d\mu + \int_{\alpha_0}^{\infty} \varphi(\alpha) \mu\left(|Bg_{\alpha}| > \frac{\alpha}{2}\right) d\alpha \\ + \int_{\alpha_0}^{\infty} \varphi(\alpha) \mu\left(|Bh_{\alpha}| > \frac{\alpha}{2}\right) d\alpha \\ = 2C \int_X \phi(|f|) d\mu + I_1 + I_2$$

We substitute the weak type inequality hypothesis

$$\mu\left(|Bh_{\alpha}| > \frac{\alpha}{2}\right) \le \frac{M_1 \|h_{\alpha}\|_{H^1_{Re}}}{\frac{\alpha}{2}} = \frac{2M_1 \|h_{\alpha}\|_{H^1_{Re}}}{\alpha}$$

and the H_{Re}^1 -norm estimate into I_2 to obtain that

$$I_2 \le 2mM_1C \int_{\alpha_0}^{\infty} \varphi(\alpha)\mu(U^{\alpha})d\alpha \le 2mM_1C \int_X \phi(M_q f)d\mu.$$

Applying Lemma 2, it follows that $I_2 \leq C \int_X \phi(|f|) d\mu$. In order to estimate I_1 , we substitute the weak type inequality hypothesis

$$\mu\left(|Bg_{\alpha}| > \frac{\alpha}{2}\right) \le M_2 \frac{\int_X \phi_2(|g_{\alpha}|)d\mu}{\phi_2(\frac{\alpha}{2})} = CM_2 \frac{\int_X \phi_2(|g_{\alpha}|)d\mu}{\phi_2(\alpha)}$$

into I_1 and obtain that

$$I_{1} \leq CM_{2} \int_{\alpha_{0}}^{\infty} \frac{\varphi(\alpha)}{\phi_{2}(\alpha)} d\alpha \int_{X} \phi_{2}(|g_{\alpha}|) d\mu$$

$$= CM_{2} \int_{\alpha_{0}}^{\infty} \frac{\varphi(\alpha)}{\phi_{2}(\alpha)} d\alpha \left(\int_{U^{\alpha}} \phi_{2}(|g_{\alpha}|) d\mu + \int_{X \setminus U^{\alpha}} \phi_{2}(|g_{\alpha}|) d\mu \right)$$

$$= CM_{2}(I_{1,1} + I_{1,2}).$$

Since $|g_{\alpha}| \leq C\alpha$, we apply Lemma 2 to show that

$$I_{1,1} = C \int_{\alpha_0}^{\infty} \varphi(\alpha) \mu(U^{\alpha}) d\alpha \le C \int_X \phi(M_q f) d\mu \le C \int_X \phi(|f|) d\mu.$$

In order to estimate $I_{1,2}$, we apply Lemma 1 and the fact that $|f| \leq M_q f$, a.e. as follows:

$$I_{1,2} = \int_{\alpha_0}^{\infty} \frac{\varphi(\alpha)}{\phi_2(\alpha)} d\alpha \int_{X \setminus U^{\alpha}} \phi_2(|g_{\alpha}|) d\mu = \int_X \phi_2(|f|) d\mu \int_{M_q f}^{\infty} \frac{\varphi(\alpha)}{\phi_2(\alpha)} d\alpha$$

$$\leq \int_X \phi_2(|f|) d\mu \int_{|f|}^{\infty} \frac{\varphi(\alpha)}{\phi_2(\alpha)} d\alpha \leq C \int_X \phi(|f|) d\mu.$$

Therefore, we conclude that $\int_X \phi(|Bf|) d\mu \leq C \int_X \phi(|f|) d\mu$, $(f \in L_{\phi}(X))$. \Box

3. Proofs

As shown in Imai [8], we recall that the Szegö projection S is bounded on the Orlicz space $L_{\phi}(\partial \Omega)$, that is,

$$\int_{\partial\Omega}\phi(|Sf|)d\sigma \leq C\int_{\partial\Omega}\phi(|f|)d\sigma, \quad (f\in L_{\phi}(\partial\Omega)),$$

if $\phi \in \Delta_2 \cap \nabla_2$. And it is shown that S is bounded from $H^1_{Re}(\partial\Omega)$ to $H^1(\Omega)$ in Krantz [10]. Now we are ready to prove Theorem 2.

PROOF OF THEOREM 2. Let $A = B \circ S$. Then, since A is bounded on real Hardy space $H^1_{Re}(\partial\Omega)$ and on an Orlicz space $L_{\phi_2}(\partial\Omega)$, we can apply our interpolation theorem, Theorem 6, in the previous section to the operator A in order to show that

$$\int_{\partial\Omega}\phi(|Ag|)d\sigma \leq C\int_{\partial\Omega}\phi(|g|)d\sigma, \quad (g\in L_{\phi}(\partial\Omega)).$$

For any $f \in H_{\phi}(\Omega)$ there exists $g \in L_{\phi}(\partial\Omega)$ such that f = Sg since $H_{\phi}(\Omega) = SL_{\phi}(\partial\Omega)$ as shown in Imai [8]. Hence we have that $Bf = (B \circ S)g = Ag$ in order to obtain that

$$\int_{\partial\Omega} \phi(|Bf|) d\sigma = \int_{\partial\Omega} \phi(|Ag|) d\sigma \le C \int_{\partial\Omega} \phi(|g|) d\sigma.$$

Since g is an arbitrary function in $L_{\phi}(\partial \Omega)$ such that f = Sg, we can conclude that

$$\int_{\partial\Omega} \phi(|Bf|) d\sigma \le C \inf \left\{ \int_{\partial\Omega} \phi(|g|) d\sigma \, : \, g \in L_{\phi}(\partial\Omega) \text{ such that } f = Sg \right\}. \square$$

PROOF OF COROLLARY 1. Since $\phi \in \Delta_2 \cap \nabla_2$, there exists an *N*-function $\phi_2 \in \Delta_2 \cap \nabla_2$ such that $\sup_{x>0} \frac{\varphi(x)\phi_2(x)}{\phi(x)\varphi_2(x)} < 1$. (For details, see Rao-Ren [14].) Then we may apply Theorem 2 to operators T_i in Theorem 1 in order to complete the proof. \Box

Before giving the proofs of Theorems 3 and 4, we show the following lemma.

LEMMA 3. Let ϕ be an N-function. We suppose that a sublinear operator T on $L_{\phi}(\partial \Omega)$ is of weak type (ϕ, ϕ) , that is,

$$\phi(\lambda)\sigma(|Tf| > \lambda) \le C_1 \int_{\partial\Omega} \phi(C_2|f|) d\sigma, \quad (f \in L_{\phi}(\partial\Omega), \, \lambda > 0).$$

If $\sup_{\|f\|_{\infty} \leq 1} \|Tf\|_{\infty} > C_2$, then ϕ satisfies the Δ_2 -condition.

PROOF. From the hypothesis, there exist r > 1 and $||f||_{\infty} \le 1$ such that

$$K = \sigma(\{|Tf| > rC_2\}) > 0.$$

Then, for any $\lambda > 0$, we define a function $g \in L_{\phi}(\partial \Omega)$ by

$$g(\zeta) = \frac{\lambda}{rC_2} f(\zeta).$$

By applying the inequality of weak type to g, we obtain that

$$\phi(\lambda)\sigma\left\{|Tg|>\lambda\right\} \le C_1 \int_{\partial\Omega} \phi(C_2|g|) d\sigma.$$

Since $\{|Tg| > \lambda\} = \{|Tf| > rC_2\}$, we have that $\sigma(\{|Tg| > \lambda\}) = \sigma(\{|Tf| > rC_2\}) = K > 0$. Therefore, we have that

$$\phi(\lambda) \leq \sigma \left(\{|Tf| > rC_2\}\right)^{-1} C_1 \int_{\partial\Omega} \phi \left(C_2 \frac{\lambda}{rC_2} \|f\|_{\infty}\right) d\sigma \\
\leq C_1 K^{-1} \|\sigma\| \cdot \phi \left(\frac{\lambda}{r}\right).$$

This inequality shows that ϕ satisfies the Δ_2 -condition. \Box

Now we are ready to prove Theorems 3 and 4.

PROOF OF THEOREM 3. Since $SL^{\infty}(\partial \Omega) = BMOA \supset H^{\infty}$, it follows that

$$\sup \{ \|Sf\|_{\infty} : f \in L^{\infty} \text{such that } \|f\|_{\infty} \le 1 \} = \infty.$$

Therefore we can apply Lemma 3 to the Szegö projection S. \Box

PROOF OF THEOREM 4. We suppose that $\sup\{||T_if||_{\infty} : f \in H^{\infty} \text{ such that } ||f||_{\infty} \leq 1\} \leq 1$ for every $i = 1, \dots, m$. Now we choose a bounded

holomorphic function $h \in H^{\infty}(\Omega)$ such that $\sum_{i=1}^{m} ||f_i||_{\infty} < ||h||_{\infty} \leq 1$. Then we have that

$$\|h\|_{\infty} \leq \sum_{i=1}^{m} \|f_i\|_{\infty} \|T_ih\|_{\infty}$$
$$\leq \sum_{i=1}^{m} \|f_i\|_{\infty}$$
$$< \|h\|_{\infty}.$$

This is a contradiction. Therefore there exist a certain $k \in \{1, \dots, m\}$ such that

$$\sup\{\|T_k f\|_{\infty} : f \in H^{\infty} \text{ such that } \|f\|_{\infty} \le 1\} > 1.$$

Then we can apply Lemma 3 to the operators T_k . \Box

Acknowledgement. The author would like to thank Professor Hitoshi Arai for valuable discussions. Thanks are also due to the referee for helpful suggestions.

References

- [1] Amar, E., On the corona problem, J. of Geom. Anal. 1 (1991), 291–305.
- [2] Andersson, M., On the H^p -corona problem, Bull. Sci. Math. **118** (1994), 287–306.
- [3] Andersson, M. and H. Carlsson, Wolff-type estimates and the H^p -corona problem in strictly pseudoconvex domains, Ark. Math. **32** (1994), 255–276.
- [4] Andersson, M. and H. Carlsson, H^p-estimates of holomorphic division formulas, Pacific J. Math. 173 (1996), 307–335.
- [5] Berndtsson, B., A formula for division and interpolation, Math. Ann. 263 (1983), 399–418.
- [6] Coifman, R. R. and G. Weiss, Extentions of Hardy spaces and their use in analysis, Bull. AMS 83 (1977), 569–645.
- [7] Gallardo, D., Orlicz spaces for which the Hardy-Littlewood maximal operator is bounded, Publicacions Matemàtiques **32** (1988), 261–266.
- [8] Imai, R., Characterizations of Hardy-Orlicz spaces on strictly pseudoconvex domains of C^n , to appear in Arch. Math.
- [9] Krantz, S. G., Function Theory of Several Complex Variables, 2nd. ed., Wadsworth, Belmont, 1992.
- [10] Krantz, S. G., Geometric Analysis and Function Spaces, Regional Conf. Ser. in Math. 81, 1993, Amer. Math. Soc.

- [11] Krantz, S. G. and S. Y. Li, Some remarks on the corona problem on strongly pseudoconvex domains in \mathbb{C}^n , Illinois Journal of Mathematics, Volume 39, Number 2, Summer 1995.
- [12] Li, S. Y., Corona problem of several complex variables, Contemp. Mathematics 137 (1992), 307–328.
- [13] Lin, K. C., The H^p -corona theorem for the polydisc, Trans. Amer. Math. Soc. **341** (1994), 371–375.
- [14] Rao, M. M. and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, Inc., 1991.
- [15] Stein, E. M., Boundary Behavior of Holomorphic Functions of Several Complex Variables, Mathematical notes, Princeton University Press, 1972.
- [16] Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, 1993.
- [17] Stein, E. M., Singular Integrals and Differential Properties of Functions, Princeton Univ. Press, 1970.

(Received January 7, 2002) (Revised October 2, 2002)

> Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba Tokyo 153-8914, Japan