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Gross’ Conjecture for Extensions

Ramified over Three Points of P1

By Michael Reid

Abstract. B. Gross has formulated a conjectural generalization
of the class number formula. Suppose L/K is an abelian extension of
global fields with Galois group G. A generalized Stickelberger element
θ ∈ Z[G] is constructed from special values of L-functions at s = 0.
Gross’ conjecture then predicts some I-adic information about θ, where
I ⊆ Z[G] is the augmentation ideal. In this paper, we prove (under a
mild hypothesis) the conjecture for the maximal abelian extension of the
rational function field Fq(X) that is unramified outside a set of three
degree 1 places.

1. Introduction

Let K be a global field, i.e. either a finite extension of Q, or a finite,

separable extension of Fq(X). Let S be any finite, non-empty set of places

of K. We also require, in the number field case, that S contains all the

archimedean places. We consider the S-zeta function

ζS(s) =
∑

a⊆OS

(Na)−s ,

where the summation ranges over all ideals a in the ring OS of S-integers.

This series definition makes sense only for �(s) > 1, where the series con-

verges absolutely. However, it is well-known that this function has an ana-

lytic continuation to the whole complex plane, with only a simple pole at

s = 1.

In the Taylor series expansion for ζS(s), at s = 0, the leading term has

a very simple form. Specifically, we have

(1.1) ζS(s) = −hSRS

wS
sn + O(sn+1) near s = 0,
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where hS is the class number of OS , RS is the S-regulator, wS is the number

of roots of unity in OS (which does not actually depend upon S) and n =

#S−1, which is the rank of the unit group, O∗
S , by Dirichlet’s unit theorem.

In order to state Gross’ conjecture, we need a formula such as (1.1)

above, but which has no denominator. Towards this end, we introduce an

auxiliary set, T , of places of K. For now, we only insist that T is finite and

disjoint from S, but we will make further restrictions below. We introduce

the modified zeta function

ζS,T (s) = ζS(s)
∏
q∈T

(
1 − Nq

1−s
)
.

The auxiliary factors are all regular and non-zero at s = 0. We will see

that the leading term of the Taylor series of ζS,T (s) also has a simple form,

namely

(1.2) ζS,T (s) = (−1)#T−1hS,TRS,T

wS,T
sn + O(sn+1) near s = 0.

Each term in this formula has an interpretation analogous to the corre-

sponding term in formula (1.1). Here hS,T is the order of the ray class group

modulo T (i.e. modulo the conductor which is the product of primes in T ),

RS,T is the regulator of US,T , the subgroup of units that are ≡ 1 mod T

(i.e. are congruent to 1 modulo every place in T ), and wS,T is the number

of roots of unity in US,T , or equivalently, the order of its torsion subgroup.

To prove formula (1.2) above, note that we have an exact sequence

1 −→ US,T −→ US −→
∏
q∈T

κ(q)∗ −→ ClS,T −→ ClS −→ 1

where κ(q) is the residue field at q, ClS is the class group of OS , and

ClS,T is the ray class group modulo T . This shows that (US : US,T )
hS,T

hS
=∏

q∈T (Nq − 1). Moreover, we have (US : US,T ) =
RS,T

RS
· wS
wS,T

. These last

two equations, along with (1.1) and the definition of ζS,T give (1.2).

Thus, to achieve a formula without a denominator, we need only insist

that wS,T = 1, which imposes only mild conditions on T . Henceforth we

make this assumption on T .
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Gross’ Conjecture

Let L be a finite abelian extension of K with Galois group G. Consider

S as in the previous section, but now we will impose another condition,

namely that S contains all places of K that ramify in L. For any character

χ ∈ Ĝ, we define the L-function

LS(χ, s) =
∑

a⊆OS

χ̃(a)(Na)−s,

where χ̃ is defined by χ̃(p) = χ(ϕp) for prime ideals, and extended to

integral ideals by multiplicativity. Here ϕp denotes the Frobenius element

at p. We define modified L-functions in a manner analogous to the modified

zeta functions. Specifically, if T is finite and disjoint from S, we define

LS,T (χ, s) = LS(χ, s)
∏
q∈T

(
1 − χ(ϕq)(Nq)1−s

)
.

Next we introduce the opposite Stickelberger element, θ̄S,T . This is the

element of C[G] characterized by the property that

χ(θ̄S,T ) = LS,T (χ, 0) for all characters χ ∈ Ĝ.

We use this terminology because it seems traditional to call the Stickel-

berger element the element that, under χ, maps to the value of the L-

function for the conjugate character, χ̄. There is also the opposite Stickel-

berger element θ̄S , which is characterized by the property that

χ(θ̄S) = LS(χ, 0) for all characters χ ∈ Ĝ.

The element θ̄S nominally lives in C[G]. However, it actually lives in

Q[G]; in the number field case, this is a consequence of a famous theorem

of Seigel, in the function field case, it follows from Weil’s work. Moreover,

with our assumptions on T , θ̄S,T lies in Z[G]. In the function field case, this

again follows from Weil’s work. In the number field case, it requires the

p-adic congruences first proved by Barsky and Cassou-Noguès, and later by

Deligne and Ribet.

Before introducing the Gross regulator, it is worthwhile to revisit the

usual regulator. We order the places in S as v0, v1, . . . , vn. Let u1, u2, . . . ,
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un be a Z-basis of the torsion-free group US,T , and consider the (n+ 1)×n

matrix (log |uj |vi). We obtain the usual regulator by deleting an arbitrary

row of this matrix, and taking the absolute value of the determinant. The

Gross regulator is intended as an algebraic analogue, however, there is no

algebraic analogue of the absolute value. For definiteness, we delete the

0-th row (corresponding to the place v0). Then we can say that

det (log |uj |vi)1≤i,j,≤n = ±RS,T

with the realization that the choice of sign depends upon the ordering of

places in S, as well as the orientation of Z-basis of US,T . We denote this

determinant above as detR(λS,T ); then we have

ζS,T (s) = ±hS,T detR(λS,T )sn + O(sn+1) near s = 0.

Let L/K be an abelian extension, unramified outside of S, with Galois

group G. Consider the (n + 1) × n matrix (rvi(uj)), where rvi is the local

reciprocity map at the place vi for the extension L/K. Now rv(uj) = 1 for

v /∈ S, since L/K is unramified outside of S, so the product formula tells us

that the product of the elements in any given column is the identity element

of G. Using the isomorphism G → I/I2 as an analogue of the logarithm,

we define the Gross regulator to be

detG(λS,T ) = det (rvi(uj) − 1)1≤i,j,≤n mod In+1.

This definition also depends upon the ordering of places in S, as well as the

orientation of Z-basis of US,T , which may effect a change in sign. Otherwise,

it is well-defined, modulo In+1.

Now we may state Gross’ conjecture.

Conjecture 1.3 (Gross’ Conjecture). With the notation above, we

have

θ̄S,T ≡ ±hS,T detG(λS,T ) mod In+1,

where the sign is chosen to agree with the sign in

ζS,T (s) = ±hS,T detR(λS,T )sn + O(sn+1) near s = 0.
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The conjecture behaves well with respect to various functorialities, which

we note here.

Proposition 1.4. Suppose that Gross’ conjecture holds for the exten-

sion L/K with respect to S and T . Let L′/K be a subextension of L/K, S′

a superset of S and T ′ a superset of T .

(a) Gross’ conjecture holds for L′/K with respect to S and T .

(b) Gross’ conjecture holds for L/K with respect to S′ and T .

(c) Gross’ conjecture holds for L/K with respect to S and T ′.

Part (a) is more or less obvious from the functoriality of the Stickelberger

element and the local reciprocity maps that comprise the Gross regulator.

Parts (b) and (c) are also straightforward. We refer the reader to Aoki’s

paper [1] where the proofs are given in some detail.

As Gross notes, the functoriality of part (a) allows a formulation for

infinite extensions by passing to the limit. The conjecture for an infinite

extension is equivalent to it holding for every finite subextension.

Proposition 1.5. Gross’ conjecture holds for an extension L/K if and

only if it holds for each subextension of prime power degree.

We will prove this proposition in the next section.

We enumerate here some cases of Gross’ conjecture that have been

proven.

Theorem 1.6. Gross’ conjecture holds in the following cases.

(a) S is a singleton.

(b) L/K is a constant field extension of function fields.

(c) L/K is a p-power extension, or pro-p, and K is a function field of

characteristic p.

(d) L/K is an elementary abelian p-extension, and the class number of K

is not divisible by p.

(e) K = Q.

(f) S contains a place that splits completely in L.
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Proof. Part (a) is immediate from the formulation of the conjecture.

In this case, the conjecture becomes the usual class number formula.

For (b), the extension is unramified, so we may reduce S to a singleton.

Then it holds from part (a) and also 1.4(b).

Part (c) was proved by Tan [11].

Part (d) was proved by Lee [7].

Part (e) was proved by Aoki [1].

For part (f), the Stickelberger element is 0, because all the L-functions

for L/K vanish at s = 0. On the other hand, the Gross regulator vanishes

modulo In+1, because the row of the matrix corresponding to the split place

also vanishes. �

Statement of result

Let K = Fq(X) be the rational function field over the finite field with

q elements. We will consider abelian extensions of K that are unramified

outside a set S of three degree 1 places of K. Let KS be the maximal

abelian extension of K that is unramified outside of S.

Theorem 1.7. If T is any set of places, whose greatest common divisor

of their degrees is relatively prime to q− 1, then Gross’ conjecture holds for

KS/K.

Remark. The set T should be considered secondary in the conjecture,

so the restriction placed on it is only a minor issue. Nonetheless, it would

be of some interest to eliminate this hypothesis.

2. Group Rings

In this section we develop some general results about group rings and

their augmentation ideals. Let G be a group, Z[G] the group ring, and

IG ⊆ Z[G] its augmentation ideal. Our goal is a moderate understanding

of congruences modulo I3
G, so that we may verify the congruence of the

conjecture. Of course, congruences modulo I2
G are well-understood, so we

use that as our starting point.

In the following, when the group G is understood, we will write simply

I rather than the more cumbersome IG. The following lemma, whose proof

we omit, is entirely elementary.
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Lemma 2.1. (a) If a, b ∈ I and a ≡ a′ mod I2 and b ≡ b′ mod I2, then

ab ≡ a′b′ mod I3.

(b) Suppose G has exponent n. Then n annihilates Ir/Ir+1 for every

positive r.

We will use these two throughout the computation without mention.

Lemma 2.2. Let g ∈ G have order dividing n. If n is odd, then n(g −
1) ≡ 0 mod I3, and if n = 2m is even, then n(g − 1) ≡ m(g − 1)2 mod I3.

Proof. We have n(g − 1) = [n − (1 + g + g2 + · · · + gn−1)](g − 1) ≡
n(1−n)

2 (g − 1)2 mod I3. If n is odd, this is 0 mod I3, because n(g − 1) ∈ I2.

If n = 2m is even, then this is m(g−1)2−mn(g−1)2 ≡ m(g−1)2 mod I3. �

Lemma 2.3. Let G be the direct product of two cyclic groups of order n.

If n is odd, then
∑

γ∈G(γ−1) ≡ 0 mod I3. If n is even, then
∑

γ∈G(γ−1) ≡
(σ − 1)2 + (σ − 1)(τ − 1) + (τ − 1)2 mod I3, where σ and τ generate the

2-torsion subgroup of G.

Proof. Let g, h be generators of the two cyclic components. Then∑
γ∈G

(γ − 1) = (1 + g + g2 + · · · + gn−1 − n)(1 + h + h2 + · · · + hn−1 − n)

+ n(1 + g + g2 + · · · + gn−1 − n) + n(1 + h + h2 + · · · + hn−1 − n),

and note that

(1 + g + g2 + · · · + gn−1 − n)(1 + h + h2 + · · · + hn−1 − n)

≡
(
n(n−1)

2 (g − 1)
)(

n(n−1)
2 (h− 1)

)
mod I3.

Also, n kills I2/I3, so that n(1+g+g2+· · ·+gn−1−n) ≡ n(n(n−1)
2 (g−1)) mod

I3. Moreover, n(g−1) ≡ −n(n−1)
2 (g−1)2 mod I3, as in the proof of Lemma

2.1, and since n(n − 1) kills I2/I3, this is also ≡ n(n−1)
2 (g − 1)2 mod I3.

Thus n(1+g+g2+ · · ·+gn−1−n) ≡ (n(n−1)
2 )2(g−1)2 mod I3, and similarly,

n(1 + h + h2 + · · · + hn−1 − n) ≡ (n(n−1)
2 )2(h− 1)2 mod I3, so that

∑
γ∈G

(γ − 1) ≡
(
n(n−1)

2

)2
((g − 1)2 + (g − 1)(h− 1) + (h− 1)2) mod I3.
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If n is odd, then
(
n(n−1)

2

)2
is divisible by n, and therefore kills I2/I3,

so the sum in question vanishes modulo I3.

On the other hand, if n = 2m is even, then
(
n(n−1)

2

)2
≡ m2 mod n, so

that

∑
γ∈G

(γ − 1) ≡ m2((g − 1)2 + (g − 1)(h− 1) + (h− 1)2)

≡ (gm − 1)2 + (gm − 1)(hm − 1) + (hm − 1)2 mod I3.

The proof concludes by noting that gm and hm generate the 2-torsion in

G. �

Remark. In the lemma, if n is divisible by 4, then the sum
∑

G(g−1) ≡
0 mod I3, since

(
n(n−1)

2

)2
is divisible by n. However, we will not need this

below.

Let G1 [respectively G2] be a finite group of exponent n1 [respectively

n2], where (n1, n2) = 1, and let G = G1 × G2. Let πi : G → Gi be the

natural projection and ιi : Gi → G the inclusions defined by ι1(g) = (g, 1)

and ι2(g) = (1, g). Let IG ⊆ Z[G] denote the augmentation ideal, and

similarly for IGi ⊆ Z[Gi].

Lemma 2.4. If η ∈ IG, then η ≡ ι1(π1(η)) + ι2(π2(η)) mod IrG for any

r.

Proof. First consider an element of the form η = g − 1, for some

g ∈ G, and let gi = ιi(πi(g)) for i = 1, 2, so that g = g1g2. Then we

have η − ι1(π1(η)) − ι2(π2(η)) = (g1 − 1)(g2 − 1), so we must show that

this element is in IrG. Since n1 and n2 are relatively prime, we may write

a1n1 + a2n2 = 1 for some integers a1 and a2. Let

θ = a1(n1− (1+g1 +g2
1 + · · ·+gn1−1

1 ))+a2(n2− (1+g2 +g2
2 + · · ·+gn2−1

2 )),

which is visibly an element of IG. Since gi−1 annihilates 1+ gi + g2
i + · · ·+

gni−1
i , we have θ(g1−1)(g2−1) = (a1n1+a2n2)(g1−1)(g2−1) = (g1−1)(g2−

1). Thus, for any r, we have (g1 − 1)(g2 − 1) = θr−2(g1 − 1)(g2 − 1) ∈ IrG,
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as desired. This proves the result for elements of the form η = g − 1. The

result now holds for arbitrary η ∈ IG by Z-linearity. �

Corollary 2.5. Let η ∈ Z[G]. Then η ∈ IrG if and only if π1(η) ∈ IrG1

and π2(η) ∈ IrG2
.

Proof. The “only if” part is trivial, and the “if” part is immediate

for r = 1. Now suppose that r > 1, and that η ∈ Z[G] has the property

that πi(η) ∈ IrGi
for i = 1, 2. Then η ∈ IG, so from Lemma 1, η ≡

ι1(π1(η)) + ι2(π2(η)) mod IrG. Finally, ιi(πi(η)) ∈ ιi(I
r
Gi

) ⊆ IrG, for i = 1, 2,

so that η ∈ IrG, as desired. �

Proof of Proposition 1.5. This follows easily from Corollary 2.5

and the functoriality of both sides of the conjecture, as in 1.4(a). �

3. Extensions Ramified over Three Points of P1

Let K = Fq(X) be the rational function field over a finite field with q

elements, and S = {0, 1,∞} a set of three degree 1 places of K. Also let p be

the characteristic of K. Let KS be the maximal abelian extension of K that

is unramified outside of S. The Galois group Gal(KS/K) factors canonically

as the product of its prime-to-p part and its p-power part. These correspond

to linearly disjoint subextensions, K
(p)
S /K and K

(not p)
S /K. From Corollary

2.5, to verify Gross’ conjecture for KS/K, it is sufficient to verify it for

K
(p)
S /K and K

(not p)
S /K. Tan’s result (1.6(c)) handles the extension K

(p)
S /K.

Thus our task is to verify Gross’ conjecture for K
(not p)
S /K; in fact, we

will do slightly more. Let Ktame
S be the maximal abelian extension of K

that is unramified outside of S and is only tamely ramified. Then clearly

K
(not p)
S ⊆ Ktame

S . We will verify Gross’ conjecture for Ktame
S /K.

Proposition 3.1. Ktame
S = Fq(

q−1
√
X, q−1

√
X − 1).

Proof. Let JK denote the idele group of K. We have a short exact

sequence

1 −→
∏
v∈S

κ(v)∗/image of(F∗
q) −→ JK/(K∗ ·

∏
v/∈S

Uv ×
∏
v∈S

U1
v )

−→ JK/(K∗ ·
∏
v

Uv) −→ 1.
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Moreover, JK/(K∗ ·
∏

v Uv) = Pic(K) ∼= Z, since Pic0(K) is trivial. The

middle term of the exact sequence corresponds to the extension Ktame
S /K,

under classfield theory, so we get another short exact sequence

1 −→
∏
v∈S

κ(v)∗/image of(F∗
q) −→ Gal(Ktame

S /K) −→ Ẑ −→ 0,

where the quotient Ẑ is the Galois group of the constant field extension

Fq(X)/K. This sequence splits (non-canonically). It is easy to see that∏
v∈S κ(v)∗/image of(F∗

q)
∼= (F∗

q)
2, and then it is straightforward to identify

K( q−1
√
X, q−1

√
X − 1) as a complement. �

In order to prove Theorem 1.7, we will use the following calculation.

Theorem 3.2. Let L = Fqm( q−1
√
X, q−1

√
X − 1), S = {0, 1,∞} as

above, and let T contain a single place of degree d. Then Gross’ conjec-

ture holds for L/K when both sides are multiplied by (qd − 1)/(q − 1), in

other words, we have the congruence

(1+q+q2+· · ·+qd−1)θ̄S,T ≡ (1+q+q2+· · ·+qd−1)hS,TdetG(λS,T ) mod In+1.

Before proving Theorem 3.2, we will show how to prove Theorem 1.7

from it.

Proof of Theorem 1.7. As remarked above, we need only prove

Gross’ conjecture for Ktame
S /K. Moreover, from 2.5, we may work one

prime at a time.

Let , be a prime. If , does not divide q − 1, then the ,-power part of

Ktame
S /K is the constant field extension Fq�∞ (X)/K, and Gross’ conjecture

is known for constant field extensions.

Now suppose that , divides q − 1. By hypothesis, T contains a place

whose degree is not divisible by ,. Let a ∈ T be such a place, of degree

d, and let T0 = {a}. Also let Lm = Fqm( q−1
√
X, q−1

√
X − 1). Theorem 3.2

shows that Gross’ conjecture for Lm/K holds when multiplied by (1 + q +

q2 + · · · + qd−1). The functoriality of the conjecture then implies that the

same is true for any subextension of Lm/K, in particular, the ,-power part
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of it, L
(�)
m /K. But then Gal(L

(�)
m /K) is an ,-group, so In/In+1 is ,∞-torsion.

However, 1 + q + q2 + · · · + qd−1 ≡ d �≡ 0 mod ,, because , divides q − 1,

but not d. In particular, multiplication by (1 + q + q2 + · · · + qd−1) is an

automorphism of In/In+1. Therefore, the conjecture itself holds for L
(�)
m /K.

Moreover, the compositum of L
(�)
m over all m is the ,-power part of Ktame

S ,

since the compositum of all such Lm is Ktame
S . Thus the conjecture holds

for the ,-power part of Ktame
S /K, with respect to T0, and therefore also

with respect to T . This proves the theorem. �

Now we return to prove Theorem 3.2. Let L = Fqm( q−1
√
X, q−1

√
X − 1),

and G = Gal(L/K). Let E0 = Fqm(X) and E1 = Fq(
q−1
√
X, q−1

√
X − 1) be

the given intermediate fields, and Gi = Gal(L/Ei), so that G ∼= G0 ×G1.

The group G1 is cyclic of order m, with a canonical generator, the “arith-

metic” Frobenius, F , which acts on constants via the q-th power map.

Standard Kummer theory shows that G0
∼= (F∗

q)
2. For α, β ∈ F∗

q , let

τ(α, β) ∈ G0 be the element that acts via

τ(α, β)(
q−1
√
X) = α

q−1
√
X and τ(α, β)( q−1

√
X − 1) = β q−1

√
X − 1

and acts trivially on constants. For notational convenience, we will let

δ(α, β) denote the group ring element τ(α, β) − 1.

For a place v /∈ S of K, let ϕv denote its Frobenius element for the exten-

sion L/K. This is characterized by the condition that ϕv(x) ≡ xNv mod v

for all x that are integral at v. We will only need to determine these Frobe-

nius elements for degree 1 places.

Lemma 3.3. Let f(X) ∈ Fq[X] be a monic irreducible polynomial of

degree d. Then f(X) divides X1+q+q2+···+qd−1 − (−1)df(0) and also (X −
1)1+q+q2+···+qd−1 − (−1)df(1).

Proof. Let α be a root of f(X) in Fqd ; then the other roots are

αq, αq2 , αq3 , . . . , αqd−1
. The product of these roots is (−1)df(0). Therefore,

over Fqd , f(X) divides

X1+q+q2+···+qd−1 − α1+q+q2+···+qd−1
= X1+q+q2+···+qd−1 − (−1)df(0).

The same divisibility then holds in Fq[X], and the second divisibility follows

in a similar way. �
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Lemma 3.4. If a /∈ S is a degree d place, which corresponds to a monic

irreducible polynomial f(X), its Frobenius element is given by

F dτ((−1)df(0), (−1)df(1)). In particular, the Frobenius element of the de-

gree 1 place at b �= 0, 1 is given by Fτ(b, b− 1).

Proof. For a constant α ∈ Fq, we have ϕa(α) ≡ αNa = αqd mod a,

and since ϕa(α) is also a constant, we have ϕa(α) = αqd . Furthermore,

ϕa(
q−1
√
X) ≡ (X1+q+q2+···+qd−1

)(
q−1
√
X) ≡ (−1)df(0)(

q−1
√
X) mod a.

Since ϕa(
q−1
√
X) is a constant times q−1

√
X, this congruence is in fact an

equality. Similarly, ϕa(
q−1
√
X − 1) = (−1)df(1)( q−1

√
X − 1). This proves

the first statement, and the second is a special case. �

Next we determine the Stickelberger element. Let T be a singleton {a}
where a /∈ S is a place of degree d which corresponds to the monic irreducible

polynomial f(X).

Proposition 3.5. θ̄S,T = (1−qdϕa)(1+
∑
b
=0,1

ϕb)+F 2(1+qF +q2F 2 +

· · · + qd−1F d−1)
∑
g∈G0

g.

Proof. Let η = (1− qϕa)(1 +
∑

b
=0,1 ϕb) + F 2(1 + qF + q2F 2 + · · ·+
qd−1F d−1)

∑
g∈G0

g, and let χ be a character of G. We aim to show that

χ(η) = LS,T (χ, 0). Note that LS(χ, s) =
∑∞

n=0 q
−ns

∑
deg b=n χ̃(b), where

the inner sum is over effective divisors of degree n with support outside

of S. In general, if χ is non-trivial on the subgroup corresponding to the

maximal constant field extension, then this expression is a polynomial in

q−s, of degree 2g − 2 + deg f, where g is the genus of the base field and f is

the conductor of χ (see [12, Chapter VII, Theorem 6]). In our situation, we

have g = 0 and deg f = 3, so the inner sum vanishes for n ≥ 2. Therefore,

if χ is non-trivial on G0, then LS(χ, s) = 1 + q−s
∑

b
=0,1 χ(ϕb). Now, still

assuming that χ is non-trivial on G0, we have

LS,T (χ, 0) = (1 − qχ(ϕa))(1 +
∑
b
=0,1

χ(ϕb)) = χ(η),
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since χ(
∑

G0
g) = 0.

On the other hand, if χ is trivial on G0, it is easy to calculate

LS,T (χ, s) = (1 − χ(F )q−s)2

×
(
1 + χ(F )q1−s + (χ(F )q1−s)2 + · · · + (χ(F )q1−s)d−1

)
,

so that

LS,T (χ, 0) = (1 − χ(F ))2(1 + qχ(F ) + q2χ(F 2) + · · · + qd−1χ(F d−1)).

Moreover, since χ is trivial on G0, we have χ(ϕa) = χ(F d) and χ(ϕb) =

χ(F ), so that

χ(η) = (1 − qdχ(F d))(1 + (q − 2)χ(F ))

+ (q − 1)2χ(F 2)((1 + qχ(F ) + q2χ(F 2) + · · · + qd−1χ(F d−1)),

which equals the value of LS,T (χ, 0) above. This shows that χ(η) =

LS,T (χ, 0) for all χ ∈ Ĝ, so η = θ̄S,T , as claimed. �

Now we attempt to compute the Gross regulator. In general, we do not

know enough units to compute it exactly, but we can compute some multiple

of it. The unit group US is generated by F∗
q , X and X−1. We easily identify

two independent units in US,T , namely, u0 = X1+q+q2+···+qd−1
/((−1)df(0))

and u1 = (X − 1)1+q+q2+···+qd−1
/((−1)df(1)). For notational convenience,

we let α denote (−1)df(0) and β = (−1)df(1). Let V be the group gener-

ated by u0 and u1. The index (US : V ) is (1 + q + q2 + · · · + qd−1)(qd − 1),

whereas (US : US,T ) = (qd − 1)/hS,T . Therefore (US,T : V ) = (1 + q + q2 +

· · · + qd−1)hS,T , whence

(1 + q + q2 + · · · + qd−1)hS,TdetG(λS,T )(3.6)

≡ det

(
r0(u0) − 1 r0(u1) − 1

r1(u0) − 1 r1(u1) − 1

)
mod I3,

where r0 and r1 are the local reciprocity maps at 0 and 1 respectively.



132 Michael Reid

Proposition 3.7. We have the following values of the local reciprocity

maps:

r0(u0) = F−(1+q+q2+···+qd−1)τ((−1)dα−1, (−1)d)

r0(u1) = τ((−1)dβ−1, 1)

r1(u0) = τ(1, α−1)

r1(u1) = F−(1+q+q2+···+qd−1)τ(1, (−1)dβ−1)

Proof. On constants, r0(u0) acts as F− ord0(u0) = F−(1+q+q2+···+qd−1).

For its action on q−1
√
X and q−1

√
X − 1, we use the “tame symbol” (see Serre

[9, Chapter XIV, Proposition 8]). We calculate

(u0, X)0 = (−1)1+q+q2+···+qd−1
u0/X

1+q+q2+···+qd−1 ≡ (−1)dα−1 mod p0

and

(u0, X − 1)0 = (−1)0u0
0/(X − 1)1+q+q2+···+qd−1 ≡ (−1)d mod p0.

Thus r0(u0) = F−(1+q+q2+···+qd−1)τ((−1)dα−1, (−1)d), as claimed. The

other values are similar computations. �

In order to simplify (3.6) above, we need a lemma.

Lemma 3.8. For x, y ∈ F∗
q, we have δ(x, 1)δ(1, y) ≡ δ(y, 1)δ(1, x) mod

I3.

Proof. We use the fact that F∗
q is cyclic; let t be a generator. Then

tm = x and tn = y for some integers m,n. Then we have δ(x, 1)δ(1, y) ≡
mδ(t, 1)nδ(1, t) mod I3, and similarly, δ(y, 1)δ(1, x) ≡ nδ(t, 1)mδ(1, t) mod

I3. �

Proposition 3.9. We have

(1 + q + q2 + · · · + qd−1)hS,T detG(λS,T )

≡ (1 + q + q2 + · · · + qd−1)2(F − 1)2

+ (1 + q + q2 + · · · + qd−1)(F − 1)δ((−1)dα, β)

+ dδ(−1,−1)δ(1, (−1)dβ) mod I3.
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Proof. From 3.7, we have

r0(u0) − 1 ≡ −(1 + q + q2 + · · · + qd−1)(F − 1) − δ((−1)dα, (−1)d) mod I2,

as well as r0(u1)−1 ≡ −δ((−1)dβ, 1) mod I2, r1(u0)−1 ≡ −δ(1, α) mod I2,

and

r1(u1) − 1 ≡ −(1 + q + q2 + · · · + qd−1)(F − 1) − δ(1, (−1)dβ) mod I2.

Now it follows that

(1 + q + q2 + · · · + qd−1)hS,T detG(λS,T )

≡ (1 + q + q2 + · · · + qd−1)2(F − 1)2

+ (1 + q + q2 + · · · + qd−1)(F − 1)[δ((−1)dα, (−1)d) + δ(1, (−1)dβ)]

+ δ((−1)dα, (−1)d)δ(1, (−1)dβ) − δ((−1)dβ, 1)δ(1, α) mod I3,

from equation (3.6) above. We also have

(F − 1)[δ((−1)dα, (−1)d) + δ(1, (−1)dβ)] ≡ (F − 1)δ((−1)dα, β) mod I3,

and, using the lemma,

δ((−1)dα, (−1)d)δ(1, (−1)dβ)

≡ [δ((−1)d, (−1)d) + δ(α, 1)]δ(1, (−1)dβ)

≡ dδ(−1,−1)δ(1, (−1)dβ) + δ((−1)dβ, 1)δ(1, α) mod I3,

from which the result follows. �

We now return to consider the Stickelberger element. To simplify the

expression for this, we need a few easy lemmas.

Lemma 3.10. We have
∑

g∈G0
(g − 1) ≡ δ(−1, 1)2 + δ(1,−1)δ(−1,−1)

mod I3.

Proof. If q is even, then the left hand side vanishes modulo I3, from

Lemma 2.3, while the right hand side vanishes because −1 = 1. If q is odd,
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then it also follows from Lemma 2.3, by noting that τ(−1, 1) and τ(1,−1)

generate the 2-torsion in G0, and also that δ(−1, 1)δ(1,−1) + δ(1,−1)2 ≡
δ(1,−1)δ(−1,−1) mod I3. �

Lemma 3.11. For any x ∈ F∗
q, we have (q − 1)δ(x, 1) ≡ δ(x, 1)δ(−1, 1)

mod I3, and (q − 1)δ(1, x) ≡ δ(1, x)δ(1,−1) mod I3.

Proof. We prove the first statement; the second is similar. If q is

even, then the left hand side vanishes modulo I3 by Lemma 2.2, while the

right hand side vanishes because −1 = 1. If q is odd, then Lemma 2.2 shows

that (q − 1)δ(x, 1) ≡ q−1
2 δ(x, 1)2 ≡ δ(x, 1)δ(x(q−1)/2, 1) mod I3. Thus we

must show that δ(x, 1)δ(−x(q−1)/2, 1) ≡ 0 mod I3. If x is a square in Fq, say

x = y2, then δ(x, 1)δ(−x(q−1)/2, 1) = δ(y2, 1)δ(−1, 1) ≡ 2δ(y, 1)δ(−1, 1) ≡
δ(y, 1)δ(1, 1) = 0 mod I3. On the other hand, if x is not a square, then

δ(−x(q−1)/2, 1) = δ(1, 1) = 0. �

Now we return our attention to the Stickelberger element.

Proposition 3.12. We have the congruence

θ̄S,T ≡ (1 + q + q2 + · · · + qd−1)(F − 1)2

+ (F − 1)δ((−1)dα, β) + δ(α, β)δ(−1,−1) mod I3.

Proof. We begin with the expression in Proposition 3.5, and write

(1 − qdϕa)(1 +
∑
b
=0,1

ϕb)

= (q − 1)(1 − qd) − qd(q − 1)(ϕa − 1) + (1 − qd)
∑
b
=0,1

(ϕb − 1)

− qd(ϕa − 1)
∑
b
=0,1

(ϕb − 1)

and now consider each term individually. The term (q−1)(1− qd) does not

require any simplification.
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Firstly, we have

−qd(q − 1)(ϕa − 1) = −qd(q − 1)(F dτ(α, β) − 1)

= −qd(q − 1)((F d − 1)δ(α, β) + (F d − 1)

+ δ(α, 1)δ(1, β) + δ(α, 1) + δ(1, β))

≡ −qd(q − 1)((F d − 1) + δ(α, 1) + δ(1, β)) mod I3,

because (q−1) kills δ(α, β), δ(α, 1) and δ(1, β), modulo I2. Also, from 3.11,

we have

−qd(q − 1)δ(α, 1) ≡ −qdδ(α, 1)δ(−1, 1) ≡ −δ(α, 1)δ(−1, 1)

≡ δ(α, 1)δ(−1, 1) mod I3

and similarly, −qd(q− 1)δ(1, β) ≡ δ(1, β)δ(1,−1) mod I3. Expand (F d− 1)

in powers of (F−1) to see that (F d−1) ≡ d(F−1)+ d(d−1)
2 (F−1)2 mod I3.

Therefore we get

(3.13)

− qd(q − 1)(ϕa − 1) ≡ −dqd(q − 1)(F − 1) − d(d−1)
2 qd(q − 1)(F − 1)2

+ δ(α, 1)δ(−1, 1) + δ(1, β)δ(1,−1) mod I3

Secondly, we have

(1 − qd)
∑
b
=0,1

(ϕb − 1)

= (1 − qd)
∑
b
=0,1

((F − 1)δ(b, b− 1) + (F − 1) + δ(b, b− 1))

≡ (q − 2)(1 − qd)(F − 1) + (1 − qd)
∑
b
=0,1

δ(b, b− 1),

because (q − 1)δ(b, b − 1) ∈ I2. Moreover, we have
∑

b
=0,1 δ(b, b − 1) ≡
δ(−1, 1) mod I2, from Wilson’s Theorem, and because (q−1) kills I2

G0
/I3

G0
,

we have

(1 − qd)
∑
b
=0,1

δ(b, b− 1) ≡ (1 − qd)δ(−1, 1)

≡ −(1 + q + q2 + · · · + qd−1)δ(−1, 1)2

≡ dδ(−1, 1)2 mod I3,
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also using 3.11. Therefore we have

(3.14) (1− qd)
∑
b
=0,1

(ϕb − 1) ≡ (q− 2)(1− qd)(F − 1) + dδ(−1, 1)2 mod I3.

Thirdly, we have

(ϕa − 1)
∑
b
=0,1

(ϕb − 1) ≡ [d(F − 1) + δ(α, β)]
∑
b
=0,1

[(F − 1) + δ(b, b− 1)]

≡ [d(F − 1) + δ(α, β)][(q − 2)(F − 1) + δ(−1, 1)]

≡ d(q − 2)(F − 1)2 − (F − 1)δ((−1)dα, β)

+ δ(α, β)δ(−1, 1) mod I3.

Multiply by −qd to get

(3.15)

− qd(ϕa − 1)
∑
b
=0,1

(ϕb − 1) ≡ −dqd(q − 2)(F − 1)2 + (F − 1)δ((−1)dα, β)

+ δ(α, β)δ(−1, 1) mod I3.

Lastly, since
∑

g∈G0
g ≡ (q−1)2 +δ(−1, 1)2 +δ(1,−1)δ(−1,−1) mod I3,

we get

F 2(1 + qF + q2F 2 + · · · + qd−1F d−1)
∑
g∈G0

g

≡ (q − 1)2F 2(1 + qF + q2F 2 + · · · + qd−1F d−1)

+ (1 + q + q2 + · · · + qd−1)(δ(−1, 1)2 + δ(1,−1)δ(−1,−1)) mod I3.

We also have

(1 + q + q2 + · · · + qd−1)(δ(−1, 1)2 + δ(1,−1)δ(−1,−1))

≡ d(δ(−1, 1)2 + δ(1,−1)δ(−1,−1)) mod I3.

Expand (q − 1)2F 2(1 + qF + q2F 2 + · · · + qd−1F d−1) in ascending powers

of (F − 1) to see that it is congruent to c0 + c1(F − 1) + c2(F − 1)2 modulo
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I3, where the coefficients are c0 = (q − 1)(qd − 1), c1 = (d + 1)qd+1 − (d +

2)qd − q + 2, and

c2 = 1 + q + q2 + · · · + qd−1 − d(d+3)
2 qd + d(d+1)

2 qd+1.

Putting these together, we obtain

(3.16) F 2(1 + qF + q2F 2 + · · · + qd−1F d−1)
∑
g∈G0

g

≡ c0 + c1(F − 1)+ c2(F − 1)2 + d(δ(−1, 1)2 + δ(1,−1)δ(−1,−1)) mod I3.

Now add together equations (3.13) through (3.16) to obtain

θ̄S,T ≡ (1+q+q2+· · ·+qd−1)(F−1)2+(F−1)δ((−1)dα, β)+δ(α, β)δ(−1, 1)

+ δ(α, 1)δ(−1, 1) + δ(1, β)δ(1,−1) + dδ(1,−1)δ(−1,−1).

Finally, we have

δ(α, β)δ(−1, 1)+δ(α, 1)δ(−1, 1) + δ(1, β)δ(1,−1) + dδ(1,−1)δ(−1,−1)

≡ δ(1, β)δ(−1, 1) + δ(1, β)δ(1,−1) + dδ(1,−1)δ(−1,−1)

≡ δ(1, β)δ(−1,−1) + dδ(1,−1)δ(−1,−1)

≡ δ(1, (−1)dβ)δ(−1,−1) mod I3,

which proves the required congruence. �

Finally, we complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Start with the congruence of Proposition

3.12, and multiply by (1 + q + q2 + · · · + qd−1). Note also that

(1 + q + q2 + · · · + qd−1)δ(1, (−1)dβ)δ(−1,−1)

≡ dδ(1, (−1)dβ)δ(−1,−1) mod I3,

because (q − 1) kills I2
G0

/I3
G0

. Now the theorem follows by comparing with

the congruence in Proposition 3.9. �
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