Remarks on Analytic Hypoellipticity and Local Solvability in the Space of Hyperfunctions

By Seiichiro WAKABAYASHI

Abstract. Let p(x, D) be a pseudodifferential operator on \mathbb{R}^n with a (formal) analytic symbol $p(x, \xi)$, and let $x^0 \in \mathbb{R}^n$. In this paper we prove that the transposed operator ${}^tp(x, D)$ of p(x, D) is locally solvable at x^0 modulo analytic functions in the space of hyperfunctions if p(x, D) is analytic hypoelliptic at x^0 . We also microlocalize this result.

1. Introduction

Let P be a linear partial differential operator on \mathbb{R}^n with C^{∞} coefficients, and let $x^0 \in \mathbb{R}^n$. In Treves [10] and Yoshikawa [13] it was proved that if P is hypoelliptic at x^0 , then there is a neighborhood U of x^0 satisfying the following; for every $f \in C^{\infty}(U)$ there is $u \in \mathcal{D}'(U)$ such that ${}^{t}Pu = f$ in U. Here ${}^{t}P$ denotes the transposed operator of P. Recently Albanese, Corli and Rodino proved in [1] that the above result is still valid in the framework of the Gevrey classes and the spaces of ultradistributions. Moreover, Cordaro and Trépreau proved in [2] that P is locally solvable at x^0 in the space of hyperfunctions if the coefficients of P are analytic and P is analytic hypoelliptic at x^0 . Precise definitions of local solvability and analytic hypoellipticity will be given in Definition 1.4 below. They obtained more general results in the first section of [2] which may be a continuation of Schapira [8] and [9]. The aim of this paper is to prove that for a pseudodifferential operator p(x, D) the transposed operator ${}^{t}p(x, D)$ is locally solvable at x^0 modulo analytic functions in the space of hyperfunctions if p(x, D) is analytic hypoelliptic at x^0 (see Theorem 1.6 below). We shall also microlocalize this result, *i.e.*, we shall give the corresponding result in the space of microfunctions (see Theorem 1.5 below).

²⁰⁰⁰ Mathematics Subject Classification. Primary 35G05; Secondary 35A07, 35H10, 35A20.

We shall explain briefly about hyperfunctions, microfunctions and pseudodifferential operators acting on them. For the details we refer to [12]. Let $\varepsilon \in \mathbb{R}$, and denote $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$, where $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$ and $|\xi| = (\sum_{j=1}^n |\xi_j|^2)^{1/2}$. We define

$$\widehat{\mathcal{S}}_{\varepsilon} := \{ v(\xi) \in C^{\infty}(\mathbb{R}^n); \ e^{\varepsilon \langle \xi \rangle} v(\xi) \in \mathcal{S} \},\$$

where $\mathcal{S} \ (\equiv \mathcal{S}(\mathbb{R}^n))$ denotes the Schwartz space. We introduce the topology to $\widehat{\mathcal{S}}_{\varepsilon}$ in a natural way. Then the dual space $\widehat{\mathcal{S}}'_{\varepsilon}$ of $\widehat{\mathcal{S}}_{\varepsilon}$ can be identified with $\{v(\xi) \in \mathcal{D}'; e^{-\varepsilon\langle\xi\rangle}v(\xi) \in \mathcal{S}'\}$, since $\mathcal{D}(=C_0^{\infty}(\mathbb{R}^n))$ is dense in $\widehat{\mathcal{S}}_{\varepsilon}$. If $\varepsilon \geq 0$, then $\widehat{\mathcal{S}}_{\varepsilon}$ is a dense subset of \mathcal{S} and we can define $\mathcal{S}_{\varepsilon} := \mathcal{F}^{-1}[\widehat{\mathcal{S}}_{\varepsilon}]$ $(=\mathcal{F}[\widehat{\mathcal{S}}_{\varepsilon}])$ $(\subset \mathcal{S})$, where \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transformation and the inverse Fourier transformation on \mathcal{S} (or \mathcal{S}'), respectively. For example, $\mathcal{F}[u](\xi) = \int e^{-ix\cdot\xi} u(x) \, dx$ for $u \in \mathcal{S}$, where $x \cdot \xi = \sum_{j=1}^n x_j \xi_j$ for $x = (x_1, \cdots, x_n) \in \mathbb{R}^n$ and $\xi = (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n$. Let $\varepsilon \ge 0$. We introduce the topology in $\mathcal{S}_{\varepsilon}$ so that $\mathcal{F}: \widehat{\mathcal{S}}_{\varepsilon} \to \mathcal{S}_{\varepsilon}$ is homeomorphic. Denote by $\mathcal{S}'_{\varepsilon}$ the dual space of $\mathcal{S}_{\varepsilon}$. Since $\mathcal{S}_{\varepsilon}$ is dense in \mathcal{S} , we can regard \mathcal{S}' as a subspace of $\mathcal{S}_{\varepsilon}'$. We can define the transposed operators ${}^{t}\mathcal{F}$ and ${}^{t}\mathcal{F}^{-1}$ of \mathcal{F} and \mathcal{F}^{-1} , which map $\mathcal{S}'_{\varepsilon}$ and $\widehat{\mathcal{S}}'_{\varepsilon}$ onto $\widehat{\mathcal{S}}'_{\varepsilon}$ and $\mathcal{S}'_{\varepsilon}$, respectively. Since $\widehat{\mathcal{S}}_{-\varepsilon} \subset \widehat{\mathcal{S}}'_{\varepsilon}$ ($\subset \mathcal{D}'$), we can define $\mathcal{S}_{-\varepsilon} = {}^t \mathcal{F}^{-1}[\widehat{\mathcal{S}}_{-\varepsilon}]$, and introduce the topology in $\mathcal{S}_{-\varepsilon}$ so that ${}^{t}\mathcal{F}^{-1}: \widehat{\mathcal{S}}_{-\varepsilon} \to \mathcal{S}_{-\varepsilon}$ is homeomorphic. $\mathcal{S}'_{-\varepsilon}$ denotes the dual space of $\mathcal{S}_{-\varepsilon}$. We note that $\mathcal{S}'_{-\varepsilon} = \mathcal{F}[\widehat{\mathcal{S}}'_{-\varepsilon}] \subset \mathcal{S}' \subset \mathcal{S}'_{\varepsilon}$ and $\mathcal{F} = {}^t\mathcal{F}$ on \mathcal{S}' . So we also represent ${}^{t}\mathcal{F}$ by \mathcal{F} . Let $\mathcal{A}(\mathbb{C}^{n})$ be the space of entire analytic functions on \mathbb{C}^n , and let K be a compact subset of \mathbb{C}^n . We denote by $\mathcal{A}'(K)$ the space of analytic functionals carried by K, *i.e.*, $u \in \mathcal{A}'(K)$ if and only if (i) u: $\mathcal{A}(\mathbb{C}^n) \ni \varphi \mapsto u(\varphi) \in \mathbb{C}$ is a linear functional, and (ii) for any neighborhood ω of K in \mathbb{C}^n there is $C_{\omega} \geq 0$ such that $|u(\varphi)| \leq C_{\omega} \sup_{z \in \omega} |\varphi(z)|$ for $\varphi \in \mathcal{C}$ $\mathcal{A}(\mathbb{C}^n)$. Define $\mathcal{A}'(\mathbb{R}^n) := \bigcup_{K \in \mathbb{R}^n} \mathcal{A}'(K), \ \mathcal{S}_{\infty} := \bigcap_{\varepsilon \in \mathbb{R}} \mathcal{S}_{\varepsilon}, \ \mathcal{E}_0 := \bigcap_{\varepsilon > 0} \mathcal{S}_{-\varepsilon}$ and $\mathcal{F}_0 := \bigcap_{\varepsilon > 0} \mathcal{S}'_{\varepsilon}$. Here $A \in B$ means that the closure \overline{A} of A is compact and included in the interior \check{B} of B. We note that $\mathcal{F}^{-1}[C_0^{\infty}(\mathbb{R}^n)] \subset \mathcal{S}_{\infty}$ and that \mathcal{S}_{∞} is dense in $\mathcal{S}_{\varepsilon}$ and $\mathcal{S}'_{\varepsilon}$ for $\varepsilon \in \mathbb{R}$. For $u \in \mathcal{A}'(\mathbb{R}^n)$ we can define the Fourier transform $\hat{u}(\xi)$ of u by

$$\hat{u}(\xi) \left(=\mathcal{F}[u](\xi)\right) = u_z(e^{-iz\cdot\xi}),$$

where $z \cdot \xi = \sum_{j=1}^{n} z_j \xi_j$ for $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ and $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$. By definition we have $\hat{u}(\xi) \in \bigcap_{\varepsilon > 0} \widehat{\mathcal{S}}_{-\varepsilon}$ $(= \mathcal{F}[\mathcal{E}_0])$. Therefore, we can regard $\mathcal{A}'(\mathbb{R}^n)$ as a subspace of \mathcal{E}_0 , *i.e.*, $\mathcal{A}'(\mathbb{R}^n) \subset \mathcal{E}_0 \subset \mathcal{F}_0$, (see Lemma 1.1.2 of [12]). The space \mathcal{F}_0 plays an important role in our treatment as the space \mathcal{S}' does in the framework of C^{∞} and distributions. For a bounded open subset X of \mathbb{R}^n we define the space $\mathcal{B}(X)$ of hyperfunctions in X by

$$\mathcal{B}(X) := \mathcal{A}'(\overline{X}) / \mathcal{A}'(\partial X),$$

where ∂X denotes the boundary of X.

Let $u \in \mathcal{F}_0$. We define

$$\mathcal{H}(u)(x, x_{n+1}) := (\operatorname{sgn} x_{n+1}) \exp[-|x_{n+1}|\langle D \rangle] u(x)/2$$

(= (\operatorname{sgn} x_{n+1}) \mathcal{F}_{\xi}^{-1} [\exp[-|x_{n+1}|\langle \xi \rangle] \hat{u}(\xi)](x)/2 \in \mathcal{S}'(\mathbb{R}^n))

for $x_{n+1} \in \mathbb{R} \setminus \{0\}$, and

supp $u := \bigcap \{F; F \text{ is a closed subset of } \mathbb{R}^n \text{ and there is a real}$ analytic function $U(x, x_{n+1}) \text{ in } \mathbb{R}^{n+1} \setminus F \times \{0\}$ such that $U(x, x_{n+1}) = \mathcal{H}(u)(x, x_{n+1}) \text{ for } x_{n+1} \neq 0\}.$

We note that supp u coincides with the support of u as a distribution if $u \in S'$ (see Lemma 1.2.2 of [12]). Moreover, for a compact subset K of \mathbb{R}^n , $u \in \mathcal{A}'(K)$ if and only if u is an analytic functional and supp $u \subset K$ (see Proposition 1.2.6 of [12]). Let K be a compact subset of \mathbb{R}^n . It follows from Theorem 1.3.3 of [12] that for any u and K as above there is $v \in \mathcal{A}'(K)$ satisfying supp $(u - v) \cap K \subset \partial K$, and if $v = v_1, v_2$ are such functions in $\mathcal{A}'(K)$ we have supp $(v_1 - v_2) \subset \partial K$. Therefore, we can define the restriction map from \mathcal{F}_0 to $\mathcal{A}'(K)/\mathcal{A}'(\partial K)$ ($= \mathcal{B}(K)$) which is surjective. For $x^0 \in \mathbb{R}^n$ we say that u is analytic at x^0 if $\mathcal{H}(u)(x, x_{n+1})$ can be continued analytically from $\mathbb{R}^n \times (0, \infty)$ to a neighborhood of $(x^0, 0)$ in \mathbb{R}^{n+1} . We define

sing supp
$$u := \{x \in \mathbb{R}^n; u \text{ is not analytic at } x\}.$$

Next let $u \in \mathcal{B}(X)$, where X is a bounded open subset of \mathbb{R}^n . Then there is $v \in \mathcal{A}'(\overline{X})$ such that the residue class of v is u in $\mathcal{B}(X)$. We define

supp $u := \text{supp } v \cap X$, sing supp $u := \text{sing supp } v \cap X$.

These definitions do not depend on the choice of v. So we say that u is analytic at x^0 if $x^0 \notin sing supp u$. Let X be an open subset of \mathbb{R}^n . We also define $\mathcal{B}(X)$ (see Definition 1.4.5 of [12]). For open subsets U and V of X with $V \subset U$ the restriction map $\rho_V^U : \mathcal{B}(U) \ni u \mapsto u|_V \in \mathcal{B}(V)$ can be defined so that ρ_U^U is the identity mapping and $\rho_W^V \circ \rho_U^V = \rho_W^U$ for open subsets U, V and W of X with $W \subset V \subset U$. By definition we can also define the restriction map from \mathcal{F}_0 to $\mathcal{B}(X)$, and we denote by $v|_X$ the restriction of $v \in \mathcal{F}_0$ to $\mathcal{B}(X)$ (or on X). We define the presheaf \mathcal{B}_X by associating $\mathcal{B}(U)$ to every open subset U of X. By definition \mathcal{B}_X is a sheaf on X.

Next we shall define analytic wave front sets and microfunctions.

DEFINITION 1.1. (i) Let $u \in \mathcal{F}_0$. The analytic wave front set $WF_A(u) \subset T^*\mathbb{R}^n \setminus 0$ ($\simeq \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$) is defined as follows: $(x^0, \xi^0) \in T^*\mathbb{R}^n \setminus 0$ does not belong to $WF_A(u)$ if there are a conic neighborhood Γ of ξ^0 , $R_0 > 0$ and $\{g^R(\xi)\}_{R \geq R_0} \subset C^{\infty}(\mathbb{R}^n)$ such that $g^R(\xi) = 1$ in $\Gamma \cap \{\langle \xi \rangle \geq R\}$,

(1.1)
$$|\partial_{\xi}^{\alpha+\tilde{\alpha}}g^{R}(\xi)| \leq C_{|\tilde{\alpha}|}(C/R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|}$$

if $\langle \xi \rangle \geq R |\alpha|$, and $g^R(D)u$ ($= \mathcal{F}^{-1}[g^R(\xi)\hat{u}(\xi)]$) is analytic at x^0 for $R \geq R_0$, where C is a positive constant independent of R.

(ii) Let X be an open subset of \mathbb{R}^n , and let $u \in \mathcal{B}(X)$ and $(x^0, \xi^0) \in T^*X \setminus 0$ ($\simeq X \times (\mathbb{R}^n \setminus \{0\})$). Then we say that $(x^0, \xi^0) \notin WF_A(u)$ ($\subset T^*X \setminus 0$) if there are a bounded open neighborhood U of x^0 and $v \in \mathcal{A}'(\overline{U})$ such that $v|_U = u|_U$ in $\mathcal{B}(U)$ and $(x^0, \xi^0) \notin WF_A(v)$

REMARK. (i) $WF_A(u)$ for $u \in \mathcal{B}(X)$ is well-defined. Indeed, it follows from Theorem 2.6.5 in [12] that for any $v \in \mathcal{A}'(\mathbb{R}^n)$ with $x^0 \notin \text{supp } v$ there is $R_1 > 0$ such that $g^R(D)v$ is analytic at x^0 if $R \ge R_1$, where $\{g^R(\xi)\}_{R \ge R_0}$ is a family of symbols satisfying (1.1).

(ii) Several remarks on this definition are given in Proposition 3.1.2 of [12].

(iii) From Theorem 3.1.6 in [12] and the results in [3] it follows that our definition of $WF_A(u)$ coincides with the usual definition.

Let \mathcal{U} be an open subset of the cosphere bundle $S^*\mathbb{R}^n$ over \mathbb{R}^n , which is identified with $\mathbb{R}^n \times S^{n-1}$. We define

$$\mathcal{C}(\mathcal{U}) := \mathcal{B}(\mathbb{R}^n) / \{ u \in \mathcal{B}(\mathbb{R}^n); WF_A(u) \cap \mathcal{U} = \emptyset \}.$$

Since \mathcal{B} is a flabby sheaf, we have

$$\mathcal{C}(\mathcal{U}) = \mathcal{B}(U) / \{ u \in \mathcal{B}(U); WF_A(u) \cap \mathcal{U} = \emptyset \}$$

if U is an open subset of \mathbb{R}^n and $\mathcal{U} \subset U \times S^{n-1}$. Elements of $\mathcal{C}(\mathcal{U})$ are called microfunctions on \mathcal{U} . We can define the restriction map $\mathcal{C}(\mathcal{U}) \ni u \mapsto$ $u|_{\mathcal{V}} \in \mathcal{C}(\mathcal{V})$ for open subsets \mathcal{U} and \mathcal{V} of $\mathbb{R}^n \times S^{n-1}$ with $\mathcal{V} \subset \mathcal{U}$. Let Ω be an open subset of $\mathbb{R}^n \times S^{n-1}$. We define the presheaf \mathcal{C}_{Ω} on Ω associating $\mathcal{C}(\mathcal{U})$ to every open subset \mathcal{U} of Ω . Then \mathcal{C}_{Ω} is a flabby sheaf (see, *e.g.*, Theorem 3.6.1 of [12]). For each open subset U of \mathbb{R}^n we define the mapping sp: $\mathcal{B}(U) \to \mathcal{C}(U \times S^{n-1})$ such that the residue class in $\mathcal{C}(U \times S^{n-1})$ of $u \in \mathcal{B}(U)$ is equal to $\operatorname{sp}(u)$. We also write $u|_{\mathcal{U}} = \operatorname{sp}(u)|_{\mathcal{U}}$ for $u \in \mathcal{B}(U)$ and $v|_{\mathcal{U}} = \operatorname{sp}(v|_U)|_{\mathcal{U}}$ for $v \in \mathcal{F}_0$, where \mathcal{U} is an open subset of $U \times S^{n-1}$.

Assume that $a(\xi, y, \eta) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ and there are positive constants C_k ($k \ge 0$) such that

(1.2)
$$\begin{aligned} |\partial_{\xi}^{\alpha} D_{y}^{\beta+\hat{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)| \\ &\leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|} (A/R)^{|\beta|} \langle \xi \rangle^{m_{1}+|\beta|} \langle \eta \rangle^{m_{2}} \exp[\delta_{1} \langle \xi \rangle + \delta_{2} \langle \eta \rangle] \end{aligned}$$

if $\alpha, \beta, \tilde{\beta}, \gamma \in (\mathbb{Z}_+)^n$, $\xi, y, \eta \in \mathbb{R}^n$, $\langle \xi \rangle \geq R|\beta|$, where $D_y = -i\partial_y$, $R \geq 1$, $A \geq 0$, $m_1, m_2, \delta_1, \delta_2 \in \mathbb{R}$ and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. It should be remarked that some functions satisfying the estimates (1.2) with $m_1 = m_2 = 0$ and $\delta_1 = \delta_2 = 0$ are given in Proposition 2.2.3 of [12]. We define pseudodifferential operators $a(D_x, y, D_y)$ and $ra(D_x, y, D_y)$ by

$$a(D_x, y, D_y)u(x) = (2\pi)^{-n} \mathcal{F}_{\xi}^{-1} \Big[\int \Big(\int e^{-iy \cdot (\xi - \eta)} a(\xi, y, \eta) \hat{u}(\eta) \, d\eta \Big) dy \Big](x)$$

and ${}^{r}a(D_x, y, D_y)u = b(D_x, y, D_y)$ for $u \in S_{\infty}$, respectively, where $b(\xi, y, \eta) = a(\eta, y, \xi)$. Applying the same argument as in the proof of Theorem 2.3.3 of [12] we have the following

PROPOSITION 1.2. $a(D_x, y, D_y)$ can be extended to a continuous linear operator from S_{ε_2} to S_{ε_1} and from $S'_{-\varepsilon_2}$ to $S'_{-\varepsilon_1}$, respectively, if

,

(1.3)
$$\begin{cases} \nu > 1, \quad \varepsilon_2 - \delta_2 = \nu(\varepsilon_1 + \delta_1)_+, \\ \varepsilon_1 + \delta_1 \le 1/R, \quad R \ge e\sqrt{n\nu}A/(\nu - 1) \end{cases}$$

where $c_{+} = \max\{c, 0\}$. Similarly, ${}^{r}a(D_{x}, y, D_{y})$ can be extended to a continuous linear operator from $S_{-\varepsilon_{1}}$ to $S_{-\varepsilon_{2}}$ and from $S'_{\varepsilon_{1}}$ to $S'_{\varepsilon_{2}}$, respectively, if (1.3) is valid.

REMARK. (i) We had a slight improvement in the remark of Theorem 2.3.3 of [12], *i.e.*, we can take $R_1(S, T, \nu) = e\sqrt{n\nu}/(\nu - 1)$ there instead of $R_1(S, T, \nu) = en\nu/(\nu - 1)$ if n = n' = n'', $S(y, \xi) = -y \cdot \xi$ and $T(y, \eta) = y \cdot \eta$. This is reflected in the condition (1.3).

(ii) Since for any open sets X_j (j = 1, 2) with $X_1 \in X_2$ one can construct a symbol $a(\xi, y, \eta)$ satisfying (1.2) with $m_1 = m_2 = 0$ and $\delta_1 = \delta_2 = 0$, supp $a \subset \mathbb{R}^n \times X_2 \times \mathbb{R}^n$ and $a(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times X_1 \times \mathbb{R}^n$, one can use the operator $a(D_x, y, D_y)$ instead of cut-off functions.

DEFINITION 1.3. Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and let X be an open subset of \mathbb{R}^n . Moreover, let $R_0 \geq 0$.

(i) Let $R_0 \ge 1$, $m, \delta \in \mathbb{R}$ and $A, B \ge 0$, and let $a(x, \xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. We say that $a(x, \xi) \in S^{m,\delta}(R_0, A, B)$ if $a(x, \xi)$ satisfies

$$|a_{(\beta+\tilde{\beta})}^{(\alpha+\tilde{\alpha})}(x,\xi)| \le C_{|\tilde{\alpha}|+|\tilde{\beta}|} (A/R_0)^{|\alpha|} (B/R_0)^{|\beta|} \langle \xi \rangle^{m+|\beta|-|\tilde{\alpha}|} e^{\delta\langle \xi \rangle}$$

for any $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in (\mathbb{Z}_+)^n$, $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n$ with $\langle \xi \rangle \geq R_0(|\alpha| + |\beta|)$, where $a_{(\beta)}^{(\alpha)}(x,\xi) = \partial_{\xi}^{\alpha} D_x^{\beta} a(x,\xi)$ and the C_k are independent of α and β . We also write $S^m(R_0, A, B) = S^{m,0}(R_0, A, B)$ and $S^m(R_0, A) = S^m(R_0, A, A)$. We define $S^+(R_0, A, B) = \bigcap_{\delta > 0} S^{0,\delta}(R_0, A, B)$.

(ii) Let $R_0 \geq 1$, $m_j, \delta_j \in \mathbb{R}$ (j = 1, 2), $A_j \geq 0$ (j = 1, 2) and $B \geq 0$, and let $a(\xi, y, \eta) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$. We say that $a(\xi, y, \eta) \in S^{m_1, m_2, \delta_1, \delta_2}(R_0, A_1, B, A_2)$ if $a(\xi, y, \eta)$ satisfies

$$\begin{aligned} |\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta^{1}+\beta^{2}+\tilde{\beta}} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)| &\leq C_{|\tilde{\alpha}|+|\tilde{\beta}|+|\tilde{\gamma}|} (A_{1}/R_{0})^{|\alpha|} (B/R_{0})^{|\beta^{1}|+|\beta^{2}|} \\ &\times (A_{2}/R_{0})^{|\gamma|} \langle \xi \rangle^{m_{1}+|\beta^{1}|-|\tilde{\alpha}|} \langle \eta \rangle^{m_{2}+|\beta^{2}|-|\tilde{\gamma}|} \exp[\delta_{1} \langle \xi \rangle + \delta_{2} \langle \eta \rangle] \end{aligned}$$

for any $\alpha, \tilde{\alpha}, \beta^1, \beta^2, \tilde{\beta}, \gamma, \tilde{\gamma} \in (\mathbb{Z}_+)^n$, $(\xi, y, \eta) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ with $\langle \xi \rangle \geq R_0(|\alpha| + |\beta^1|)$ and $\langle \eta \rangle \geq R_0(|\gamma| + |\beta^2|)$. We also write $S^{m_1, m_2, \delta_1, \delta_2}(R_0, A) = S^{m_1, m_2, \delta_1, \delta_2}(R_0, A, A, A)$. Similarly, we define $S^+(R_0, A_1, B, A_2) = \bigcap_{\delta \geq 0} S^{0, 0, \delta, \delta}(R_0, A_1, B, A_2)$.

(iii) Let $A, B \ge 0$, and let $a(x,\xi) \in C^{\infty}(\Gamma)$. We say that $a(x,\xi) \in PS^+(\Gamma; R_0, A, B)$ if $a(x,\xi)$ satisfies

$$|a_{(\beta)}^{(\alpha+\tilde{\alpha})}(x,\xi)| \le C_{|\tilde{\alpha}|,\delta} A^{|\alpha|} B^{|\beta|} |\alpha|! |\beta|! \langle \xi \rangle^{-|\alpha|-|\tilde{\alpha}|} e^{\delta \langle \xi \rangle}$$

for any $\alpha, \tilde{\alpha}, \beta \in (\mathbb{Z}_+)^n$, $(x,\xi) \in \Gamma$ with $|\xi| \geq 1$ and $\langle \xi \rangle \geq R_0 |\alpha|$ and $\delta > 0$. We also write $PS^+(\Gamma; R_0, A) = PS^+(\Gamma; R_0, A, A)$. Moreover, we say that $a(x,\xi) \in PS^+(X; R_0, A, B)$ if $a(x,\xi) \in C^{\infty}(X \times \mathbb{R}^n)$ and $a(x,\xi) \in PS^+(X \times (\mathbb{R}^n \setminus \{0\}); R_0, A, B)$.

(iv) Let $A, C_0 \geq 0$, and let $\{a_j(x,\xi)\}_{j\in\mathbb{Z}_+} \in \prod_{j\in\mathbb{Z}_+} C^{\infty}(\Gamma)$. We say that $a(x,\xi) \equiv \{a_j(x,\xi)\}_{j\in\mathbb{Z}_+} \in FS^+(\Gamma; C_0, A)$ if $a(x,\xi)$ satisfies

$$|a_{j(\beta)}^{(\alpha)}(x,\xi)| \le C_{\delta} C_0^j A^{|\alpha|+|\beta|} j! |\alpha|! |\beta|! \langle \xi \rangle^{-j-|\alpha|} e^{\delta \langle \xi \rangle}$$

for any $j \in \mathbb{Z}_+$, $\alpha, \beta \in (\mathbb{Z}_+)^n$, $(x,\xi) \in \Gamma$ with $|\xi| \ge 1$ and $\delta > 0$, where C_δ is independent of α , β and j. We also write $a(x,\xi) = \sum_{j=0}^{\infty} a_j(x,\xi)$ formally. Moreover, we write $FS^+(X; C_0, A) = FS^+(X \times (\mathbb{R}^n \setminus \{0\}); C_0, A)$.

(v) For $a(x,\xi) = \sum_{j=0}^{\infty} a_j(x,\xi) \in FS^+(\Gamma; C_0, A)$ we define the symbol $({}^ta)(x,\xi)$ by

$$({}^{t}a)(x,\xi) = \sum_{j=0}^{\infty} b_j(x,\xi), \quad b_j(x,\xi) = \sum_{k+|\alpha|=j} (-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi)/\alpha!.$$

REMARK. It is easy to see that $({}^{t}a)(x,\xi) \in FS^+(\check{\Gamma}; \max\{C_0, 4nA^2\}, 2A)$, where $\check{\Gamma} = \{(x,\xi); (x,-\xi) \in \Gamma\}$. Moreover, we have $({}^{t}({}^{t}a))(x,\xi) = a(x,\xi)$.

Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and assume that $a(x,\xi) \in PS^+(\Gamma; R_0, A)$, where $A \geq 0$ and $R_0 \geq 1$. Let Γ_j ($0 \leq j \leq 2$) be open conic subsets of Γ such that $\Gamma_0 \Subset \Gamma_1 \Subset \Gamma_2 \Subset \Gamma$, and write $\Gamma^0 = \Gamma \cap (\mathbb{R}^n \times S^{n-1})$, where $\Gamma_2 \Subset \Gamma$ implies that $\Gamma_2^0 \Subset \Gamma$. It follows from Proposition 2.2.3 of [12] that there are symbols $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C(\Gamma_1, \Gamma_2))$ ($R \geq 4$) satisfying $0 \leq \Phi^R(\xi, y, \eta) \leq 1$, supp $\Phi^R \subset \mathbb{R}^n \times \Gamma_2$ and $\Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Gamma_1$ with $\langle \eta \rangle \geq R$. Put $a^R(\xi, y, \eta) = \Phi^R(\xi, y, \eta)a(y, \eta)$. Then we have $a^R(\xi, y, \eta) \in S^+(R, C_*, 2A + C(\Gamma_1, \Gamma_2), A + C(\Gamma_1, \Gamma_2))$ for $R \geq \max\{4, R_0\}$. Let $u \in C(\Gamma_0^0)$, and choose $v \in \mathcal{F}_0$ so that $v|_{\Gamma_0^0} = u$. Applying Proposition 1.2

with $a(\xi, y, \eta) = a^R(\eta, y, \xi)$ and noting that $a^R(D_x, y, D_y) = {}^r a(D_x, y, D_y)$, we can see that $a^R(D_x, y, D_y)v$ is well-defined and belongs to \mathcal{F}_0 if $R \geq \max\{4, R_0, 2e\sqrt{n}(2A + C(\Gamma_1, \Gamma_2))\}$. Moreover, $a^R(D_x, y, D_y)v$ determines an element $(a^R(D_x, y, D_y)v)|_U \in \mathcal{B}(U)$, where U is a bounded open subset of \mathbb{R}^n satisfying $\Gamma_0^0 \subset U \times S^{n-1}$, and, therefore, an element $sp((a^R(D_x, y, D_y)v)|_U)|_{\Gamma_0^0} (\equiv (a^R(D_x, y, D_y)v)|_{\Gamma_0^0}) \in \mathcal{C}(\Gamma_0^0)$. It follows from Lemma 2.1 below that $(a^R(D_x, y, D_y)v)|_{\Gamma_0^0}$ does not depend on the choice of $\Phi^R(\xi, y, \eta)$ if $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, B)$ and $R \geq R(A, B, \Gamma_0, \Gamma_1)$, where $R(A, B, \Gamma_0, \Gamma_1) > 0$. From Lemma 2.2 it follows that for each conic subset Ω of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ with $\Omega \in \Gamma_0$ there is $R(A, \Omega, \Gamma_0, \Gamma_1, \Gamma_2) > 0$ such that $WF_A(a^R(D_x, y, D_y)w) \cap \Omega = \emptyset$ if $R \geq R(A, \Omega, \Gamma_0, \Gamma_1, \Gamma_2)$, $w \in \mathcal{F}_0$ and $WF_A(w) \cap \Gamma_0 = \emptyset$. Therefore, we can define the operator a(x, D): $\mathcal{C}(\Gamma_0^0) \to \mathcal{C}(\Gamma_0^0)$ by $a(x, D)u = (a^R(D_x, y, D_y)v)|_{\Gamma_0^0}$ for $R \gg 1$, and the operator a(x, D): $\mathcal{C}(\Gamma^0) \to \mathcal{C}(\Gamma^0)$. Moreover, it follows from Lemma 2.2 that

$$a(x,D)(w|_{\mathcal{U}}) = (a(x,D)w)|_{\mathcal{U}}$$
 for $w \in \mathcal{C}(\mathcal{V})$,

where \mathcal{U} and \mathcal{V} are open subsets of $\mathbb{R}^n \times S^{n-1}$ satisfying $\mathcal{U} \subset \mathcal{V} \subset \Gamma^0$. So we can define $a(x, D): \mathcal{C}_{\Gamma^0} \to \mathcal{C}_{\Gamma^0}$, which is a sheaf homomorphism. Let X be an open subset of \mathbb{R}^n , and assume that $a(x,\xi) \in PS^+(X;R_0,A)$. Similarly, taking $\Gamma = X \times (\mathbb{R}^n \setminus \{0\})$, we can define the operator a(x,D): $\mathcal{B}(U) \to \mathcal{B}(U)/\mathcal{A}(U)$ and the operator $a(x,D): \mathcal{B}(U)/\mathcal{A}(U) \to \mathcal{B}(U)/\mathcal{A}(U)$, where U is a bounded open subset of X and $\mathcal{A}(U)$ denotes the space of all real analytic functions defined in U (see, also, §2.7 of [12]). In doing so, we may choose $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C(\Gamma_1, \Gamma_2))$ so that $\Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times X_1 \times \mathbb{R}^n$, where $\Gamma_j = X_j \times (\mathbb{R}^n \setminus \{0\})$. Moreover, we can define the operator a(x, D): $\mathcal{B}_X \to \mathcal{B}_X/\mathcal{A}_X$ and the operator a(x, D): $\mathcal{B}_X/\mathcal{A}_X \to \mathcal{B}_X/\mathcal{A}_X$, which are sheaf homomorphisms. Here \mathcal{A}_X denotes the sheaf (of germs) of real analytic functions on X.

Assume that a(x, D) is a differential operator in X. Let K be a compact subset of X. Then, by duality we can define $a(x, D)w \in \mathcal{A}'(K)$ for $w \in \mathcal{A}'(K)$. From Proposition 1.2.6 of [12] and the definition of analytic functionals we have supp $a(x, D)w \subset$ supp w for $w \in \mathcal{A}'(K)$. Therefore, we can define a(x, D): $\mathcal{B}_X \to \mathcal{B}_X$, which is a sheaf homomorphism. From Theorem 2.7.1 of [12] and Lemma 2.5 it follows that two definitions of a(x, D): $\mathcal{B}_X \to \mathcal{B}_X/\mathcal{A}_X$ are consistent.

Next we assume that $a(x,\xi) \equiv \sum_{j=0}^{\infty} a_j(x,\xi) \in FS^+(\Gamma; C_0, A)$. Choose

$$\begin{split} \{\phi_j^R(\xi)\}_{j\in\mathbb{Z}_+} \subset C^\infty(\mathbb{R}^n) \text{ so that } 0 \leq \phi_j^R(\xi) \leq 1, \\ \phi_j^R(\xi) &= \begin{cases} 0 & \text{if } \langle \xi \rangle \leq 2Rj, \\ 1 & \text{if } \langle \xi \rangle \geq 3Rj, \\ |\partial_{\xi}^{\alpha+\beta}\phi_j^R(\xi)| \leq \widehat{C}_{|\beta|}(\widehat{C}/R)^{|\alpha|} \langle \xi \rangle^{-|\beta|} & \text{if } |\alpha| \leq 2j, \end{cases} \end{split}$$

where the $\hat{C}_{|\beta|}$ and \hat{C} do not depend on j and R (see §2.2 of [12]). Then it follows from Lemma 2.2.4 of [12] that

$$\tilde{a}(x,\xi) := \sum_{j=0}^{\infty} \phi_j^{R/2}(\xi) a_j(x,\xi) \in PS^+(\Gamma; R, 2A+3\widehat{C}, A)$$

if $R > C_0$. So we can define $a(x, D)u \in \mathcal{C}(\Gamma^0)$ by $a(x, D)u = \tilde{a}(x, D)u$. Indeed, applying the same argument as in §3.7 of [12] we can see that $a(x, D)u \in \mathcal{C}(\Gamma^0)$ does not depend on the choice of $\{\phi_j^R(\xi)\}$. Similarly, a(x, D) defines a sheaf homomorphism $a(x, D): \mathcal{C}_{\Gamma^0} \to \mathcal{C}_{\Gamma^0}$.

To state our main results we need the following

DEFINITION 1.4. Let Γ be an open subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and let $p(x,\xi) \in PS^+(\Gamma; R_0, A)$ (or $p(x,\xi) \in FS^+(\Gamma; C_0, A)$), where $R_0 \geq 1$ and $A, C_0 \geq 0$.

(i) For $z^0 = (x^0, \xi^0) \in \Gamma$ we say that p(x, D) is analytic microhypoelliptic at z^0 if there is an open neighborhood \mathcal{U} of $(x^0, \xi^0/|\xi^0|)$ in $\Gamma \cap (\mathbb{R}^n \times S^{n-1})$ satisfying supp u = supp p(x, D)u for any $u \in \mathcal{C}(\mathcal{U})$, *i.e.*, the sheaf homomorphism $p(x, D) : \mathcal{C}_{\mathcal{U}} \to \mathcal{C}_{\mathcal{U}}$ is injective.

(ii) For $z^0 = (x^0, \xi^0) \in \Gamma$ we say that p(x, D) is microlocally solvable at z^0 if there is a open neighborhood \mathcal{U} of $(x^0, \xi^0/|\xi^0|)$ in $\Gamma \cap (\mathbb{R}^n \times S^{n-1})$ satisfying the following; for any $f \in \mathcal{C}(\mathcal{U})$ there is $u \in \mathcal{C}(\mathcal{U})$ such that p(x, D)u = f in $\mathcal{C}(\mathcal{U})$, *i.e.*, p(x, D): $\mathcal{C}(\mathcal{U}) \to \mathcal{C}(\mathcal{U})$ is surjective.

(iii) Assume that $\Gamma = X \times (\mathbb{R}^n \setminus \{0\})$, *i.e.*, $p(x,\xi) \in PS^+(X; R_0, A)$ (or $p(x,\xi) \in FS^+(X; C_0, A)$), where X is an open subset of \mathbb{R}^n . Let $x^0 \in X$. We say that p(x, D) is analytic hypoelliptic at x^0 if there is an open neighborhood U of x^0 in X satisfying supp u = supp p(x, D)u for any $u \in \mathcal{B}(U)/\mathcal{A}(U)$, *i.e.*, the sheaf homomorphism p(x, D): $\mathcal{B}_U/\mathcal{A}_U \to \mathcal{B}_U/\mathcal{A}_U$ is injective. Similarly, we say that p(x, D) is locally solvable at x^0 modulo analytic functions if there is an open neighborhood U of x^0 in X satisfying the following; for any $f \in \mathcal{B}(U)/\mathcal{A}(U)$ there is $u \in \mathcal{B}(U)/\mathcal{A}(U)$ such that p(x,D)u = f in $\mathcal{B}(U)/\mathcal{A}(U)$, *i.e.*, p(x,D): $\mathcal{B}(U)/\mathcal{A}(U) \to \mathcal{B}(U)/\mathcal{A}(U)$ is surjective. Assume that $p(x,\xi)$ is a polynomial of ξ whose coefficients are real analytic functions of x defined in X. Then we say that p(x,D) is locally solvable at x^0 if there is an open neighborhood U of x^0 in X such that p(x,D): $\mathcal{B}(U) \to \mathcal{B}(U) \to \mathcal{B}(U)$ is surjective.

THEOREM 1.5. Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ and $z^0 = (x^0, \xi^0) \in \Gamma$. Let $p(x, \xi) \in FS^+(\Gamma; C_0, A)$, where $A, C_0 \geq 0$. Then $({}^tp)(x, D)$ is microlocally solvable at $(x^0, -\xi^0)$ if p(x, D) is analytic microhypoelliptic at z^0 .

THEOREM 1.6. Let X be an open subset of \mathbb{R}^n and $x^0 \in X$. Let $p(x,\xi) \in FS^+(X;C_0,A)$, where $A, C_0 \geq 0$. Then $({}^tp)(x,D)$ is locally solvable at x^0 modulo analytic functions if p(x,D) is analytic hypoelliptic at x^0 .

In $\S2$ we shall give preliminary lemmas. Theorems 1.5 and 1.6 will be proved in $\S3$.

The author would like to thank Professor P. Schapira for informing him about the paper [2] of Cordaro and Trépreau.

2. Preliminaries

In this section we shall prepare a series of lemmas for the proofs of Theorems 1.5 and 1.6.

Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$. We write $\Gamma_{\varepsilon} = \{(x,\xi) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}); |(x,\xi/|\xi|) - (y,\eta/|\eta|)| < \varepsilon$ for some $(y,\eta) \in \Gamma\}$ for $\varepsilon > 0$. For a subset U of \mathbb{R}^n and $\varepsilon > 0$ we write $U_{\varepsilon} = \{x \in \mathbb{R}^n; |x-y| < \varepsilon$ for some $y \in U\}$. We also write $\gamma_{\varepsilon} = \{\xi \in \mathbb{R}^n \setminus \{0\}; |\xi/|\xi| - \eta/|\eta|| < \varepsilon$ for some $\eta \in \gamma\}$ for a conic subset γ of $\mathbb{R}^n \setminus \{0\}$ and $\varepsilon > 0$.

LEMMA 2.1. Let $p(\xi, y, \eta) \in S^+(R_0, A)$. Assume that $p(\xi, y, \eta) = 0$ if $(y, \eta) \in \Gamma_{\varepsilon}, |\xi/|\xi| - \eta/|\eta|| \leq \varepsilon/4$ and $\langle \xi \rangle \geq R_0$, where $\varepsilon > 0$. Then there is $R_0(\varepsilon) > 0$ such that

$$WF_A(p(D_x, y, D_y)u) \cap \Gamma = \emptyset \quad for \ u \in \mathcal{F}_0$$

if $R_0 \geq R_0(\varepsilon)A$.

PROOF. It follows from Proposition 1.2 that $p(D_x, y, D_y)u \in \mathcal{F}_0$ if $u \in \mathcal{F}_0$ and $R_0 \geq 2e\sqrt{n}A$. Let $(x^0, \xi^0) \in \Gamma$, and let $U \times \gamma$ be an open conic neighborhood of (x^0, ξ^0) satisfying $U \times \gamma \subset \Gamma$. We choose $\{g^R(\xi)\}_{R \geq R}$ so that supp $g^R \subset \gamma_{\varepsilon/4}, g^R(\xi) = 1$ in $\gamma \cap \{\langle \xi \rangle \geq R\}$ and

$$|\partial_{\xi}^{\alpha+\tilde{\alpha}}g^{R}(\xi)| \leq C_{|\tilde{\alpha}|}(\varepsilon)(C(\varepsilon)/R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|}$$

if $\langle \xi \rangle \geq R|\alpha|$, where the $C_j(\varepsilon)$ and $C(\varepsilon)$ are positive constants depending on ε . Put

$$\tilde{p}^R(\xi, y, \eta) = g^R(\xi)p(\xi, y, \eta) \ (\in S^+(R, RA/R_0 + C(\varepsilon), RA/R_0, RA/R_0))$$

for $R \geq R_0$. Then we have $\tilde{p}^R(\xi, y, \eta) = 0$ if $y \in U_{\varepsilon/2}$, $|\xi/|\xi| - \eta/|\eta|| \leq \varepsilon/4$ and $\langle \xi \rangle \geq R_0$. Applying Corollary 2.6.3 of [12] we see that there are positive constants $R_j(\varepsilon)$ (j = 1, 2) such that $\tilde{p}^R(D_x, y, D_y)u$ ($= g^R(D)(p(D_x, y, D_y)u)$) is analytic in U for $u \in \mathcal{F}_0$ if $R \geq R_1(\varepsilon)(RA/R_0 + C(\varepsilon)) + R_2(\varepsilon)$ and $R \geq R_0$. From the definition of $WF_A(\cdot)$ the lemma easily follows. \Box

LEMMA 2.2. Let $p(\xi, y, \eta) \in S^+(R_0, A)$, and let Γ_1 be an open conic subset of Γ such that $\Gamma_1 \Subset \Gamma$. Then there is $R_0(\Gamma_1, \Gamma) > 0$ such that $WF_A(p(D_x, y, D_y)u) \cap \Gamma_1 = \emptyset$ if $u \in \mathcal{F}_0$, $WF_A(u) \cap \Gamma = \emptyset$ and $R_0 \ge R_0(\Gamma_1, \Gamma)A$.

PROOF. By Proposition 1.2 we have $p(D_x, y, D_y)u \in \mathcal{F}_0$ if $u \in \mathcal{F}_0$ and $R_0 \geq 2e\sqrt{n}A$. Let $u \in \mathcal{F}_0$, and assume that $WF_A(u) \cap \Gamma = \emptyset$. Let $(x^0, \xi^0) \in \Gamma_1$, and let $U \times \gamma$ be an open conic neighborhood of (x^0, ξ^0) satisfying $U \times \gamma \subset \Gamma_1$. Then there is $\varepsilon > 0$ such that $U_{2\varepsilon} \times \gamma_{3\varepsilon} \Subset \Gamma$. We choose $\{g_j^R(\xi)\}_{R \geq R_0}$ (j = 1, 2) so that supp $g_1^R \subset \gamma_{\varepsilon}$, supp $g_2^R \subset \gamma_{3\varepsilon}$, $g_1^R(\xi) = 1$ in $\gamma \cap \{\langle \xi \rangle \geq R\}, g_2^R(\xi) = 1$ in $\gamma_{2\varepsilon} \cap \{\langle \xi \rangle \geq R\}$ and

$$|\partial_{\xi}^{\alpha+\tilde{\alpha}}g_{j}^{R}(\xi)| \leq C_{j,|\tilde{\alpha}|}(\varepsilon)(C(\varepsilon)/R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|}$$

if $\langle \xi \rangle \geq R |\alpha|$ and j = 1, 2, where the $C_{j,k}(\varepsilon)$ and $C(\varepsilon)$ are positive constants. Then it follows from Proposition 3.1.2 (i) and (ii) of [12] that there is $R(\varepsilon) > 0$ such that $g_2^R(D)u$ is analytic in U_{ε} if $R \geq R(\varepsilon)$. Put

$$p_1^R(\xi, y, \eta) = g_1^R(\xi) p(\xi, y, \eta) g_2^R(\eta) \ (\in S^+(R, RA/R_0 + C(\varepsilon)))$$

$$p_2^R(\xi, y, \eta) = g_1^R(\xi) p(\xi, y, \eta) (1 - g_2^R(\eta)) \ (\in S^+(R, RA/R_0 + C(\varepsilon)))$$

for $R \geq R_0$. Note that $g_1^R(D)(p(D_x, y, D_y)u) = p_1^R(D_x, y, D_y)u + p_2^R(D_x, y, D_y)u$. By Corollary 2.6.6 of [12] there are positive constants $R_1(\varepsilon)$ and $R_2(\varepsilon)$ such that $p_1^R(D_x, y, D_y)u$ is analytic in U if $R \geq R_1(\varepsilon)(RA/R_0 + C(\varepsilon)) + R_2(\varepsilon)$ and $R \geq R_0 \geq 2e\sqrt{n}A$. On the other hand, we have

$$p_2^R(\xi, y, \eta) = 0$$
 if $|\xi/|\xi| - \eta/|\eta|| < \varepsilon$ and $\langle \eta \rangle \ge R$.

Therefore, it follows from Lemma 2.1 (or Corollary 2.6.3 of [12]) that $p_2^R(D_x, y, D_y)u$ is analytic in \mathbb{R}^n if $R \geq R'_0(\varepsilon)(RA/R_0 + C(\varepsilon))$, where $R'_0(\varepsilon) > 0$. Indeed, one can apply Lemma 2.1 to $p_2^R(\xi, y, \eta)\phi_1^R(\eta)$. Proposition 1.2 implies that $p_2^R(D_x, y, D_y)(1 - \phi_1^R(D))u$ is analytic. This proves the lemma. \Box

LEMMA 2.3. Let $q(\xi, y, \eta)$ be a symbol in $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$ such that $|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_y^{\beta} \partial_{\eta}^{\gamma} q(\xi, y, \eta)| \leq C_{|\tilde{\alpha}|+|\gamma|,\delta} (A/R_0)^{|\alpha|+|\beta|} \langle \eta \rangle^{|\beta|} e^{\delta\langle \xi \rangle + \delta\langle \eta \rangle}$

if $\langle \xi \rangle \geq R_0 |\alpha|, \langle \eta \rangle \geq R_0 |\beta|$ and $\delta > 0$, where $A \geq 0$ and $R_0 \geq 1$. Let U be an open subset of \mathbb{R}^n , and assume that $q(\xi, y, \eta) = 0$ for $(\xi, y, \eta) \in \mathbb{R}^n \times U_{\varepsilon} \times \mathbb{R}^n$, where $\varepsilon > 0$. Then there is $R(\varepsilon) > 0$ such that $q(D_x, y, D_y)u$ is analytic in U if $u \in \mathcal{F}_0$ and $R_0 \geq R(\varepsilon)A$.

PROOF. It follows from Proposition 1.2 that $q(D_x, y, D_y)$ is a continuous linear operator on \mathcal{F}_0 if $R_0 \geq 2e\sqrt{n}A$. In order to prove the lemma we shall apply the same argument as in the proof of Proposition 3.2.1 of [12]. We may assume that U is bounded. We can write

$$\langle D \rangle^{\nu} e^{-\rho \langle D \rangle} q(D_x, y, D_y) u = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \langle e^{-\delta \langle \eta \rangle} \hat{u}(\eta), f^R_{\nu, \delta, j, k}(x, \eta; \rho) \rangle_{\eta}$$

for $u \in \mathcal{F}_0$, $\nu = 0, 1, 0 < \rho \leq 1$ and $0 < \delta \leq 1$, where $M \in \mathbb{Z}_+$ satisfies M > n/2, $R \geq R_0$, $\psi_j^R(\xi) := \phi_{j-1}^R(\xi) - \phi_j^R(\xi)$ ($j \in \mathbb{N}$) and

$$\begin{split} f^R_{\nu,\delta,j,k}(x,\eta;\rho) &= (2\pi)^{-2n} \int e^{i(x-y)\cdot\xi + iy\cdot\eta + \delta\langle\eta\rangle} \\ &\times \psi^R_k(\eta) \langle x-y \rangle^{-2M} \langle D_\xi \rangle^{2M} (\langle\xi\rangle^\nu e^{-\rho\langle\xi\rangle} \psi^R_j(\xi) q(\xi,y,\eta)) \, d\xi dy. \end{split}$$

Here the $\phi_j^R(\xi)$ are symbols as in §1. Since Re $(1 + (x - y) \cdot (x - y)) =$ $1 + |\operatorname{Re} x - y|^2 - |\operatorname{Im} x|^2$ for $x \in \mathbb{C}^n$ and $y \in \mathbb{R}^n$, $f_{\nu,\delta,j,k}^R(x,\eta;\rho)$ is analytic in x if |Im x| < 1. Let us first consider the case where $j, k \in \mathbb{N}$ and $2R(k-1)-1 \ge 6Rj$. Then we have $|\eta| \ge 2|\xi|$ if $\psi_j^R(\xi)\psi_k^R(\eta) \neq 0$. Let K be a differential operator defined by

$${}^{t}K = |\xi - \eta|^{-2} \sum_{\ell=1}^{n} (\eta_{\ell} - \xi_{\ell}) D_{y_{\ell}}.$$

A simple calculation gives

$$\begin{aligned} &|\partial_{\xi}^{\alpha}\partial_{\eta}^{\gamma}K^{k}\{\psi_{k}^{R}(\eta)\langle\xi\rangle^{\nu}e^{-\rho\langle\xi\rangle}\psi_{j}^{R}(\xi)q(\xi,y,\eta)\}\\ &\leq C_{|\alpha|+|\gamma|,\delta'}(16nA/R_{0})^{k}\langle\xi\rangle^{\nu-|\alpha|}\langle\eta\rangle^{-|\gamma|}e^{\delta'\langle\xi\rangle+\delta'\langle\eta\rangle}\end{aligned}$$

if $\delta' > 0$. Here we have used the facts given in §2.1 of [12]. Taking $M > (|\gamma| + n)/2$, we can write

$$\begin{split} \langle \eta \rangle^{\ell} D_{\eta}^{\gamma} f_{\nu,\delta,j,k}^{R}(x,\eta;\rho) &= (2\pi)^{-2n} \int e^{i(x-y)\cdot\xi + iy\cdot\eta + \delta\langle\eta\rangle} \\ &\times \langle x-y \rangle^{-2M} \langle \eta \rangle^{\ell} \sum_{\gamma' \leq \gamma} \binom{\gamma}{\gamma'} t_{\delta,\gamma-\gamma'}(y,\eta) D_{\eta}^{\gamma'} \langle D_{\xi} \rangle^{2M} K^{k} \\ &\times \{\psi_{k}^{R}(\eta) \langle \xi \rangle^{\nu} e^{-\rho\langle \xi \rangle} \psi_{j}^{R}(\xi) q(\xi,y,\eta)\} d\xi dy, \end{split}$$

where $t_{\delta,\gamma}(y,\eta) = e^{-iy\cdot\eta - \delta\langle\eta\rangle} D_{\eta}^{\gamma} e^{iy\cdot\eta + \delta\langle\eta\rangle}$. Therefore, we have

$$\begin{aligned} |\langle \eta \rangle^{\ell} D_{\eta}^{\gamma} f_{\nu,\delta,j,k}^{R}(x,\eta;\rho)| &\leq C_{\delta,|\gamma|,\ell,\delta',R} \, j^{-2} k^{-2} \langle \operatorname{Re} x \rangle^{|\gamma|} \\ &\times \exp[(\delta + \delta' + (\rho_1 + \delta')/2 - 1/(3R)) \langle \eta \rangle] \end{aligned}$$

if $\ell \in \mathbb{Z}_+$, $\gamma \in (\mathbb{Z}_+)^n$, $\delta' > 0$, $x \in \mathbb{C}^n$, $|\operatorname{Im} x| \le \rho_1 \le 1/2$ and $R_0 \ge 32enA$. Moreover, $\langle e^{-\delta\langle \eta \rangle} \hat{u}(\eta), f^R_{\nu,\delta,j,k}(x,\eta;\rho) \rangle_{\eta}$ is analytic in x and

(2.1)
$$|\langle e^{-\delta\langle\eta\rangle}\hat{u}(\eta), f^R_{\nu,\delta,j,k}(x,\eta;\rho)\rangle_{\eta}| \le C_{\delta,R,r}(u)j^{-2}k^{-2}$$

if $u \in \mathcal{F}_0$, $x \in \mathbb{C}^n$, $|\operatorname{Re} x| \leq r$, $|\operatorname{Im} x| \leq \rho_1 \leq 1/2$, $R \geq R_0 \geq 32enA$ and $\delta + \rho_1/2 < 1/(3R)$. Next consider the case where $j, k \in \mathbb{N}$ and 2R(k-1)-1 < 6Rj. Then we have $2\langle \eta \rangle \leq 9\langle \xi \rangle (1 + 27R/\langle \xi \rangle)$ if $\psi_j^R(\xi)\psi_k^R(\eta) \neq 0$. Let L be a differential operator defined by

$${}^{t}L = |x - y|^{-2} \sum_{\ell=1}^{n} (\bar{x}_{\ell} - y_{\ell}) D_{\xi_{\ell}}$$

for $x \in \mathbb{C}^n$ with Re $x \in U$ and $y \notin \mathbb{R}^n \setminus U_{\varepsilon}$. Then we have

$$\begin{aligned} &|\partial_{\eta}^{\gamma} L^{j+M} \{\psi_k^R(\eta) \langle \xi \rangle^{\nu} e^{-\rho \langle \xi \rangle} \psi_j^R(\xi) q(\xi, y, \eta) \}| \\ &\leq C_{|\gamma|, M, \delta', R} (\sqrt{n} (A/R_0 + (\widehat{C} + 6(1 + \sqrt{2}))/R)/\varepsilon)^j \\ &\times |x - y|^{-M} \langle \xi \rangle^{\nu - M} \langle \eta \rangle^{-|\gamma|} e^{\delta' \langle \xi \rangle + \delta' \langle \eta \rangle} \end{aligned}$$

if $\delta' > 0, x \in \mathbb{C}^n$ and Re $x \in U$. Taking $M > |\gamma| + n$, we have

$$|\langle \eta \rangle^{\ell} D_{\eta}^{\gamma} f_{\nu,\delta,j,k}^{R}(x,\eta;\rho)| \leq C_{\delta,|\gamma|,\ell,\varepsilon,R}(U) j^{-2} k^{-2}$$

if $\ell \in \mathbb{Z}_+, \, \gamma \in (\mathbb{Z}_+)^n, \, x \in \mathbb{C}^n$, Re $x \in U, \, |\operatorname{Im} x| \leq \rho_1$ and

(2.2)
$$\begin{cases} R_0 \ge 4e\sqrt{n}A/\varepsilon, \quad R \ge 4e\sqrt{n}(\widehat{C} + 6(1+\sqrt{2}))/\varepsilon, \\ 9\delta + \rho_1 < 1/(3R). \end{cases}$$

Moreover, $\langle e^{-\delta\langle\eta\rangle}\hat{u}(\eta), f^R_{\nu,\delta,j,k}(x,\eta;\rho)\rangle_{\eta}$ is analytic in x and

(2.3)
$$|\langle e^{-\delta\langle\eta\rangle}\hat{u}(\eta), f^R_{\nu,\delta,j,k}(x,\eta;\rho)\rangle_{\eta}| \le C_{\delta,\varepsilon,R}(U,u)j^{-2}k^{-2}$$

if $u \in \mathcal{F}_0$, $x \in \mathbb{C}^n$, Re $x \in U$, $|\operatorname{Im} x| \le \rho_1 \le 1/2$ and (2.2) is valid. We put

$$V(x, x_{n+1}) = \mathcal{H}(q(D_x, y, D_y)u)(x, x_{n+1})$$

and assume that

$$R_0 \ge \max\{32enA, 4e\sqrt{n}A/\varepsilon\},\ 0 < \rho_1 < \min\{1/2, 1/(3R_0), \varepsilon/(12e\sqrt{n}(\widehat{C} + 6(1+\sqrt{2})))\}.$$

Then it follows from (2.1) and (2.3) that $\langle D_x \rangle^{\nu} V(x,\rho)$ ($\nu = 0,1$) can be continued analytically to $\{x \in \mathbb{C}^n; \text{Re } x \in U \text{ and } | \text{Im } x| < \rho_1\}$. Applying Lemma 1.2.4 of [12] to the Cauchy problem

$$\begin{cases} (1 - \Delta_{x, x_{n+1}})v(x, x_{n+1}) = 0, \\ v(x, \rho) = V(x, \rho), \quad (\partial v / \partial x_{n+1})(x, \rho) = -\langle D_x \rangle V(x, \rho), \end{cases}$$

we can show that $V(x, x_{n+1})$ can be continued analytically from $\mathbb{R}^n \times (0, \infty)$ to $U \times (\rho - \rho_1, \infty)$. This implies that $q(D_x, y, D_y)u$ is analytic in U. \Box LEMMA 2.4. Let $a(x,\xi)$ be a symbol satisfying

$$|a_{(\beta+\tilde{\beta})}^{(\alpha)}(x,\xi)| \le C_{|\alpha|+|\tilde{\beta}|,\delta} (A/R_0)^{|\beta|} \langle \xi \rangle^{|\beta|} e^{\delta \langle \xi \rangle}$$

if $\langle \xi \rangle \geq R_0 |\beta|$ and $\delta > 0$, where $R_0 > 0$ and $A \geq 0$. Let U be an open subset of \mathbb{R}^n , and assume that

$$|a_{(\beta)}^{(\alpha)}(x,\xi)| \le C_{|\alpha|} B^{|\beta|} |\beta|! e^{-c\langle\xi\rangle}$$

for $x \in U_{\varepsilon}$, where B, c and ε are positive constants. Then there is C > 0, which is independent of A, R_0 , B, c and ε , such that a(x, D)u is analytic in U if $u \in \mathcal{F}_0$ and $R_0 \ge CA$.

PROOF. Choose symbols $\varphi^R(x,\xi) \in S^0(R,C_*,C(\varepsilon))$ ($R \ge 4$) so that $0 \le \varphi^R(x,\xi) \le 1$, supp $\varphi^R \subset U_{\varepsilon} \times \mathbb{R}^n$ and $\varphi^R(x,\xi) = 1$ for $x \in U_{2\varepsilon/3}$. We put

$$a_1^R(x,\xi) = \varphi^R(x,\xi)a(x,\xi), \quad a_2^R(x,\xi) = (1 - \varphi^R(x,\xi))a(x,\xi).$$

Then we have

$$\begin{aligned} |a_{1(\beta)}^{R(\alpha)}(x,\xi)| &\leq C_{|\alpha|+|\beta|,\varepsilon} e^{-c\langle\xi\rangle}, \\ |a_{1(\beta)}^{R(\alpha)}(x,\xi)| &\leq C_{|\alpha|} B^{|\beta|} |\beta|! e^{-c\langle\xi\rangle} \quad \text{for } x \in U_{2\varepsilon/3}. \end{aligned}$$

Since $e^{-c\langle\xi\rangle/2}\hat{u}(\xi) \in \mathcal{S}'$ and

$$a_1^R(x,D)u(x) = (2\pi)^{-n} \langle e^{-c\langle\xi\rangle/2} \hat{u}(\xi), e^{ix\cdot\xi + c\langle\xi\rangle/2} a_1^R(x,\xi) \rangle_{\xi}$$

for $u \in \mathcal{F}_0$, $a_1^R(x, D)u(x)$ is analytic in $U_{2\varepsilon/3}$. Moreover, we have supp $a_2^R \cap \overline{U}_{\varepsilon/3} \times \mathbb{R}^n = \emptyset$ and

$$|a_{2(\beta+\tilde{\beta})}^{R(\alpha)}(x,\xi)| \le C_{|\alpha|+|\tilde{\beta}|,\delta}(A/R_0 + C(\varepsilon)/R)^{|\beta|} \langle \xi \rangle^{|\beta|} e^{\delta \langle \xi \rangle}$$

if $R \geq R_0$, $\langle \xi \rangle \geq R|\beta|$ and $\delta > 0$. It follows from Theorem 2.6.1 of [12] that there are C > 0 and $R(\varepsilon) > 0$ such that supp $a_2^R(x, D)u \cap U = \emptyset$ if $R_0 \geq CA$, $R \geq R(\varepsilon)$ and $u \in \mathcal{F}_0$. This proves the lemma. \Box

Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and assume that $a(x,\xi) \in PS^+(\Gamma; R_0, A)$, where $A \geq 0$ and $R_0 \geq 4$. Let Γ_j (j = 1, 2)

be open conic subsets of Γ such that $\Gamma_1 \Subset \Gamma_2 \Subset \Gamma$. Moreover, let $\varepsilon > 0$, and let $X \times \gamma$ be an open conic subset of Γ_1 such that $X_{2\varepsilon} \times \gamma_{2\varepsilon} \subset \Gamma_1$. We choose symbols $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C(\Gamma_1, \Gamma_2))$ and $\varphi^R(x,\xi) \in S^{0,0}(R, C_*, C(\varepsilon))$ and $g^R(\xi) \in S^{0,0}(R, C(\varepsilon))$ ($R \ge 4$) so that $0 \le \Phi^R(\xi, y, \eta), \varphi^R(x,\xi), g^R(\xi) \le 1$, supp $\Phi^R \subset \mathbb{R}^n \times \Gamma_2$, supp $\varphi^R \subset X_{\varepsilon} \times \mathbb{R}^n$, supp $g^R \subset \gamma_{\varepsilon} \cap \{|\xi| \ge R\}, \ \Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Gamma_1$ with $\langle \eta \rangle \ge R, \varphi^R(x,\xi) = 1$ for $(x,\xi) \in X_{\varepsilon/2} \times \mathbb{R}^n$ and $g^R(\xi) = 1$ for $\xi \in \gamma_{\varepsilon/2}$ with $|\xi| \ge 2R$ (see Proposition 2.2.3 in [12]). Put $a^R(\xi, y, \eta) = \Phi^R(\xi, y, \eta)a(y, \eta)$ and $A^R(x,\xi) = \varphi^R(x,\xi)g^R(\xi)a(x,\xi)$. We denote $\gamma^0 = \gamma \cap S^{n-1}$. Then we have the following

LEMMA 2.5. There is
$$R_1(A, \Gamma_1, \Gamma_2, \varepsilon) \ge 4$$
 such that

$$(A^R(x,D)u)|_{X\times\gamma^0} = (a^R(D_x,y,D_y)u)|_{X\times\gamma^0} \quad in \ \mathcal{C}(X\times\gamma^0),$$

i.e.,

$$(A^{R}(x,D)u)|_{X\times\gamma^{0}} = a(x,D)(u|_{X\times\gamma^{0}}) \quad in \ \mathcal{C}(X\times\gamma^{0}),$$

if $R \ge \max\{R_0, R_1(A, \Gamma_1, \Gamma_2, \varepsilon)\}$ and $u \in \mathcal{F}_0$.

PROOF. It suffices to show that there is $R_1(A, \Gamma_1, \Gamma_2, \varepsilon) \ge 4$ such that

$$WF_A(a^R(D_x, y, D_y)u - A^R(x, D)u) \cap X \times \gamma = \emptyset$$

if $R \ge \max\{R_0, R_1(A, \Gamma_1, \Gamma_2, \varepsilon)\}$ and $u \in \mathcal{F}_0$. Write

$$a^{R}(D_{x}, y, D_{y}) - A^{R}(x, D) = a_{1}^{R}(D_{x}, y, D_{y}) + a_{2}^{R}(D_{x}, y, D_{y})$$
 on \mathcal{F}_{0} ,

where

$$a_1^R(\xi, y, \eta) = (\Phi^R(\xi, y, \eta)g^R(\eta) - \varphi^R(y, \eta)g^R(\eta))a(y, \eta), a_2^R(\xi, y, \eta) = \Phi^R(\xi, y, \eta)(1 - g^R(\eta))a(y, \eta).$$

We note that

$$\begin{aligned} \partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta} \partial_{\eta}^{\gamma} a_{1}^{R}(\xi, y, \eta) | \\ &\leq C_{|\tilde{\alpha}|+|\gamma|, \delta} (C_{*}/R)^{|\alpha|} ((A + C(\Gamma_{1}, \Gamma_{2}) + C(\varepsilon))/R)^{|\beta|} \langle \eta \rangle^{|\beta|} e^{\delta \langle \eta \rangle} \end{aligned}$$

if $\langle \xi \rangle \geq R|\alpha|, \langle \eta \rangle \geq R|\beta|$ and $\delta > 0$, and that $a_1^R(\xi, y, \eta) = 0$ if $y \in X_{\varepsilon/2}$. By Lemma 2.3 there is $R_1(A, \Gamma_1, \Gamma_2, \varepsilon) \geq 4$ such that $a_1^R(D_x, y, D_y)u$ is analytic in X if $u \in \mathcal{F}_0$ and $R \geq R_1(A, \Gamma_1, \Gamma_2, \varepsilon)$. It is easy to see that $a_2^R(\xi, y, \eta) \in S^+(R, C_*, 2A + C(\Gamma_1, \Gamma_2), A + C(\Gamma_1, \Gamma_2) + C(\varepsilon))$ if $R \geq R_0$, and that $a_2^R(\xi, y, \eta) = 0$ if $\eta \in \gamma_{\varepsilon/2}$ and $|\eta| \geq 2R$. Therefore, from Lemma 2.1 there is $R_2(A, \Gamma_1, \Gamma_2, \varepsilon) \geq 4$ such that

$$WF_A(a_2^R(D_x, y, D_y)u) \cap \mathbb{R}^n \times \gamma = \emptyset \quad \text{for } u \in \mathcal{F}_0$$

if $R \ge \max\{R_0, R_2(A, \Gamma_1, \Gamma_2, \varepsilon)\}$, which proves the lemma. \Box

Next assume that $a(x,\xi) \equiv \sum_{j=0}^{\infty} a_j(x,\xi) \in FS^+(\Gamma; C_0, A)$. We put $\tilde{a}(x,\xi) = \sum_{j=0}^{\infty} \phi_j^{R/2}(\xi) a_j(x,\xi) \ (\in PS^+(\Gamma; R, 2A+3\widehat{C}, A)) \text{ and } \tilde{a}^R(\xi, y, \eta) = \Phi^R(\xi, y, \eta) \tilde{a}(y, \eta) \ (\in S^+(R, C_*, 2A + C(\Gamma_1, \Gamma_2), 2A + 3\widehat{C} + C(\Gamma_1, \Gamma_2))) \text{ for } R > C_0.$

LEMMA 2.6. There is
$$R(A, \Gamma_1, \Gamma_2, \varepsilon) \ge 4$$
 such that
 $({}^t \tilde{a}^R(D_x, y, D_y)u)|_{X \times (-\gamma)^0} = ({}^t a)(x, D)(u|_{X \times (-\gamma)^0})$ in $\mathcal{C}(X \times (-\gamma)^0)$
if $R \ge R(A, \Gamma_1, \Gamma_2, \varepsilon)$ and $u \in \mathcal{F}_0$, where $-\gamma = \{\xi; -\xi \in \gamma\}$.

PROOF. Note that ${}^{t}\tilde{a}^{R}(D_{x}, y, D_{y})u = B^{R}(D_{x}, y, D_{y})u$ for $u \in \mathcal{F}_{0}$, where $B^{R}(\xi, y, \eta) = \tilde{a}^{R}(-\eta, y, -\xi)$. It follows from Corollary 2.4.7 in [12] that there are symbols $q_{j}(x,\xi)$ (j = 1, 2) and $R(C_{0}, A_{1}) > \max\{4, C_{0}\}$ such that ${}^{t}\tilde{a}^{R}(D_{x}, y, D_{y}) = q_{1}(x, D) + q_{2}(x, D)$ on \mathcal{S}_{∞} , $q_{1}(x,\xi) \in S^{+}(4R, \widehat{C}_{*} + 10A_{1})$ and

$$|q_{2(\beta)}^{(\alpha)}(x,\xi)| \le C_{|\alpha|,R} (4R+1)^{|\beta|} |\beta|! e^{-\langle\xi\rangle/R}$$

if $R \ge R(C_0, A_1)$, where $A_1 = \max\{C_*, 2A + 3\widehat{C} + C(\Gamma_1, \Gamma_2)\}$ and \widehat{C}_* is a positive constant. There is $R(C_0, A_1, \varepsilon) \ge R(C_0, A_1)$ such that

$$|\partial_{\xi}^{\alpha} D_{x}^{\beta} \{q_{1}(x,\xi) - q(x,\xi)\}| \leq C_{|\alpha|,R} (R+1)^{|\beta|} |\beta|! e^{-\langle \xi \rangle / R}$$

if $(x, -\xi) \in X_{\varepsilon} \times \gamma_{\varepsilon}$ and $R \ge R(C_0, A_1, \varepsilon)$, where

$$b_j(x,\xi) = \sum_{\substack{k+|\alpha|=j\\ j=0}} (-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi)/\alpha! \quad (j \in \mathbb{Z}_+)$$
$$q(x,\xi) = \sum_{j=0}^{\infty} \phi_j^{4R}(\xi) b_j(x,\xi) \quad \text{for } (x,-\xi) \in \Gamma.$$

Write

$${}^{t}\tilde{a}^{R}(D_{x}, y, D_{y}) = \tilde{q}_{1}(x, D) + \tilde{q}_{2}(x, D) + \widetilde{B}^{R}(D_{x}, y, D_{y}) \quad \text{on } \mathcal{S}_{\infty},$$

where $\tilde{q}_j(x,\xi) = q_j(x,\xi)g^R(-\xi)$ (j = 1,2) and $\tilde{B}^R(\xi,y,\eta) = \tilde{a}^R(-\eta,y,-\xi)(1-g^R(-\xi))$. Proposition 1.2 implies that $\tilde{q}_2(x,D)u$ is analytic if $u \in \mathcal{F}_0$. It follows from Lemma 2.1 that there is $R_1(C_0,A_1,\varepsilon) \ge 4$ such that

$$WF_A(\widetilde{B}^R(D_x, y, D_y)u) \cap \mathbb{R}^n \times (-\gamma) = \emptyset \quad \text{for } u \in \mathcal{F}_0$$

if $R \ge R_1(C_0, A_1, \varepsilon)$. We note that $b_j(x, \xi) \in FS^+(\check{\Gamma}; C'_0, 2A)$, where $C'_0 = \max\{C_0, 4nA^2\}$. Put

$$\begin{split} \tilde{b}(x,\xi) &= \sum_{j=0}^{\infty} \phi_j^{R/2}(\xi) b_j(x,\xi) \ (\in PS^+(\check{\Gamma};R,4A+3\widehat{C},2A)), \\ b^R(x,\xi) &= \varphi^R(x,\xi) g^R(-\xi) \tilde{b}(x,\xi) \\ &\quad (\in S^+(R,C_*+4A+3\widehat{C}+C(\varepsilon),2A+C(\varepsilon))), \end{split}$$

where $R > C'_0$. Then we can see that $\tilde{q}_1(x,\xi) - b^R(x,\xi) \in S^+(4R,A_2)$ and

(2.4)
$$|\partial_{\xi}^{\alpha} D_{x}^{\beta} \{ \tilde{q}_{1}(x,\xi) - b^{R}(x,\xi) \} | \leq C_{|\alpha|,R} A_{R}^{|\beta|} |\beta|! e^{-\langle \xi \rangle / (24R)}$$

if $x \in X_{\varepsilon/2}$ and $R \ge \max\{R_1(C_0, A_1, \varepsilon), eC'_0/2\}$, where $A_2 = \max\{\widehat{C}_* + 10A_1 + 4C(\varepsilon), 4C_* + 16A + 12\widehat{C} + 4C(\varepsilon)\}$ and $A_R = \max\{R+1, 2A\}$. Indeed, we have

$$b^{R}(x,\xi) - q(x,\xi)g^{R}(-\xi) = g^{R}(-\xi)\sum_{j=0}^{\infty} (\phi_{j}^{R/2}(\xi) - \phi_{j}^{4R}(\xi))b_{j}(x,\xi)$$

for $x \in X_{\varepsilon/2}$,

$$\begin{split} &\sup p \ (\phi_j^{R/2} - \phi_j^{4R}) \subset \{\xi; \ Rj \le \langle \xi \rangle \le 12Rj\}, \\ &|\partial_{\xi}^{\alpha} D_x^{\beta} \{ b^R(x,\xi) - q(x,\xi) g^R(-\xi) \} | \\ &\le C_{|\alpha|,R,\varepsilon} \sum_{j=0}^{\infty} (j!/(1+j^j)) (C'_0/R)^j \chi_j(\xi) (2A)^{|\beta|} |\beta|! e^{\langle \xi \rangle/(24R)} \\ &\le C'_{|\alpha|,R,\varepsilon} (2A)^{|\beta|} |\beta|! e^{-\langle \xi \rangle/(24R)} \quad \text{if } x \in X_{\varepsilon/2} \text{ and } R \ge eC'_0, \end{split}$$

106

where $\chi_j(\xi) = \begin{cases} 1 & \text{if } Rj \le \langle \xi \rangle \le 12Rj, \\ 0 & \text{otherwise.} \end{cases}$ The estimates (2.4) and Lemma

2.4 implies that there is C > 0 such that $\tilde{q}_1(x, D)u - b^R(x, D)u$ is analytic in X if $u \in \mathcal{F}_0$ and $R \ge CA_2$. This gives

$$WF_A({}^t\tilde{a}^R(D_x, y, D_y)u - b^R(x, D)u) \cap X \times (-\gamma) = \emptyset \quad \text{for } u \in \mathcal{F}_0$$

if $R \ge \max\{R_1(C_0, A_1, \varepsilon), CA_2\}$. So the lemma easily follows from Lemma 2.5. \Box

For $\varepsilon, \nu \in \mathbb{R}$ we can define

$$L^{2}_{\varepsilon,\nu} := \{ f \in \mathcal{S}'_{-\varepsilon}; \ \langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} f(x) \in L^{2}(\mathbb{R}^{n}) \}.$$

Indeed, $e^{\varepsilon \langle D \rangle} f(x) \in \mathcal{S}'$ and $\langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} f(x)$ is well-defined in \mathcal{S}' if $f \in \mathcal{S}'_{-\varepsilon}$. $L^2_{\varepsilon,\nu}$ is a Hilbert space in which the scalar product is given by

$$(f,g)_{L^2_{\varepsilon,\nu}} := (\langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} f, \langle x \rangle^{\nu} e^{\varepsilon \langle D \rangle} g)_{L^2},$$

where $(\cdot, \cdot)_{L^2}$ denotes the scalar product of $L^2(\mathbb{R}^n)$.

LEMMA 2.7. Let $a(\xi, y, \eta)$ be a symbol satisfying

$$\begin{aligned} &|\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)| \\ &\leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|} (A/R_{0})^{|\beta|} \langle \xi \rangle^{-|\alpha|+|\beta|} \langle \eta \rangle^{-|\gamma|} \exp[\delta_{1} \langle \xi \rangle - \delta_{2} \langle \eta \rangle] \end{aligned}$$

for any $\alpha, \beta, \tilde{\beta}, \gamma \in (\mathbb{Z}_+)^n$ and $(\xi, y, \eta) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ with $\langle \xi \rangle \geq R_0 |\beta|$, where $A \geq 0$, $R_0 \geq 1$ and $\delta_1, \delta_2 \in \mathbb{R}$.

(i) $a(D_x, y, D_y)$ is well-defined on $L^2_{\varepsilon_2,\nu}$ and maps continuously $L^2_{\varepsilon_2,\nu}$ to $L^2_{\varepsilon_1,\nu}$ if $R_0 \ge 25e\sqrt{n}A$, $2(\varepsilon_1 + \delta_1)_+ < \varepsilon_2 + \delta_2$ and $3(\varepsilon_1 + \delta_1) + 2(\varepsilon_2 + \delta_2)_- < 1/R_0$.

(ii) If $\varepsilon_1 < \varepsilon_2$ and $\nu_1 < \nu_2$, then $L^2_{\varepsilon_2,\nu_2} \subset L^2_{\varepsilon_1,\nu_1}$ and the inclusion map $L^2_{\varepsilon_2,\nu_2} \ni u \mapsto u \in L^2_{\varepsilon_1,\nu_1}$ is compact.

REMARK. The assertion (i) is given in Lemma 5.1.6 of [12] when $\nu = 0$.

PROOF. (i) Choose a symbol $g(\xi,\eta)$ so that $|\partial_{\xi}^{\alpha}\partial_{\eta}^{\gamma}g(\xi,\eta)| \leq C_{|\alpha|+|\gamma|}\langle\xi\rangle^{-|\alpha|}\langle\eta\rangle^{-|\gamma|}, g(\xi,\eta) = 1$ if $|\xi| \leq 3|\eta|/2$ or $|\xi| \leq 1$, and $g(\xi,\eta) = 0$ if $|\xi| \geq 2|\eta|$ and $|\xi| \geq 2$. We put

$$a_1(\xi, y, \eta) = g(\xi, \eta)a(\xi, y, \eta), \quad a_2(\xi, y, \eta) = (1 - g(\xi, \eta))a(\xi, y, \eta).$$

Let $\varepsilon_1, \varepsilon_2 \in \mathbb{R}$ satisfy $2(\varepsilon_1 + \delta_1)_+ < \varepsilon_2 + \delta_2$. Then we have

$$|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma} \{ \exp[\varepsilon_{1} \langle \xi \rangle - \varepsilon_{2} \langle \eta \rangle] a_{1}(\xi, y, \eta) \} | \leq C_{|\alpha| + |\beta| + |\gamma|} \langle \xi \rangle^{-|\alpha|} \langle \eta \rangle^{-|\gamma|}.$$

Therefore, there is $b_1(x,\xi) \in S_{1,0}^0$ such that

$$\exp[\varepsilon_1 \langle D \rangle] a_1(D_x, y, D_y) \exp[-\varepsilon_2 \langle D \rangle] = b_1(x, D) \quad \text{on } \mathcal{S}_{\infty}.$$

Moreover, we have

$$\begin{aligned} &|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma} \{ \exp[-\delta \langle \xi \rangle + \delta_{2} \langle \eta \rangle] a_{2}(\xi, y, \eta) \} | \\ &\leq C_{|\alpha| + |\beta| + |\gamma|} \langle \xi \rangle^{-|\alpha|} \langle \eta \rangle^{-|\gamma|} \exp[-(\delta - \delta_{1}) \langle \xi \rangle / 2] \end{aligned}$$

if $\delta > \delta_1$. This gives $a_2(D_x, y, D_y)v \in S_{-\delta}$ and $\sum_{j=1}^{\infty} \psi_j^{R_0}(D)a_2(D_x, y, D_y)v = a_2(D_x, y, D_y)v$ in $S_{-\delta}$ if $v \in S_{\infty}$ and $\delta > \delta_1$, where $\psi_j^R(\xi) = \phi_{j-1}^R(\xi) - \phi_j^R(\xi)$. Put

$$\tilde{a}_2(\xi, y, \eta) = \sum_{j=1}^{\infty} \psi_j^{R_0}(\xi) K^j a_2(\xi, y, \eta),$$

where $K = |\xi - \eta|^{-2} \sum_{k=1}^{n} (\xi_k - \eta_k) D_{y_k}$. Then we have

$$a_{2}(D_{x}, y, D_{y}) = \tilde{a}_{2}(D_{x}, y, D_{y}) \text{ on } \mathcal{S}_{\infty},$$

$$|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma} \{ \exp[\varepsilon_{1} \langle \xi \rangle - \varepsilon_{2} \langle \eta \rangle] \tilde{a}_{2}(\xi, y, \eta) \} |$$

$$\leq C_{|\alpha| + |\beta| + |\gamma|} \exp[(\delta_{1} - 1/(3R_{0}) + \varepsilon_{1} + 2(\varepsilon_{2} + \delta_{2})_{-}/3) \langle \xi \rangle]$$

if $R_0 \geq 25e\sqrt{n}A$, where $c_- = \max\{-c, 0\}$ (see the proof of Lemma 5.1.6 of [12]). Now assume that $R_0 \geq 25e\sqrt{n}A$ and $3(\varepsilon_1 + \delta_1) + 2(\varepsilon_2 + \delta_2)_- < 1/R_0$. Then there is $b_2(x,\xi) \in S^{-\infty}$ ($\subset S_{1,0}^0$) such that

$$\exp[\varepsilon_1 \langle D \rangle] a_2(D_x, y, D_y) \exp[-\varepsilon_2 \langle D \rangle] = b_2(x, D) \quad \text{on } \mathcal{S}_{\infty}.$$

Putting $b(x,\xi) = b_1(x,\xi) + b_2(x,\xi)$ ($\in S_{1,0}^0$), we have

$$\exp[\varepsilon_1 \langle D \rangle] a(D_x, y, D_y) \exp[-\varepsilon_2 \langle D \rangle] = b(x, D) \quad \text{on } \mathcal{S}_{\infty}.$$

Let $\nu \in \mathbb{R}$, and put

$$\tilde{b}_{\nu}(x,\xi) = (2\pi)^{-n} \operatorname{Os-} \int e^{-y \cdot \eta} \langle x \rangle^{\nu} b(x,\xi+\eta) \langle x+y \rangle^{-\nu} dy d\eta,$$

where Os- \int denotes an oscillatory integral. Then we have $\tilde{b}_{\nu}(x,\xi) \in S_{1,0}^0$ and

$$\langle x \rangle^{\nu} b(x, D)(\langle x \rangle^{-\nu} v) = \tilde{b}_{\nu}(x, D) v \text{ on } \mathcal{S}.$$

Let $\chi(\xi)$ be a function in $C_0^{\infty}(\mathbb{R}^n)$ such that $\chi(\xi) = 1$ if $|\xi| \leq 1$. Then we have $\langle x \rangle^{\nu} \chi(D/j)(\langle x \rangle^{-\nu} f(x)) \to f(x)$ in S as $j \to \infty$ for $f \in S$. This implies that $\{\langle x \rangle^{\nu} f(x); f \in S_{\infty}\}$ is dense in $L^2(\mathbb{R}^n)$. Therefore, $\langle x \rangle^{\nu} \exp[\varepsilon_1 \langle D \rangle] a(D_x, y, D_y) \exp[-\varepsilon_2 \langle D \rangle] \langle x \rangle^{-\nu}$ can be extended to a bounded operator on $L^2(\mathbb{R}^n)$, *i.e.*, $a(D_x, y, D_y)$ maps continuously $L^2_{\varepsilon_2,\nu}$ to $L^2_{\varepsilon_1,\nu}$.

(ii) Assume that $\varepsilon_1 < \varepsilon_2$ and $\nu_1 < \nu_2$. Then there is $c(x,\xi) \in S_{1,0}^{-1}$ such that $\langle x \rangle^{\nu_2} \exp[(\varepsilon_1 - \varepsilon_2) \langle D \rangle] (\langle x \rangle^{-\nu_2} u) = c(x, D) u$ for $u \in S$. Therefore, the operator: $L^2(\mathbb{R}^n) \ni u \mapsto \langle x \rangle^{\nu_1} \exp[(\varepsilon_1 - \varepsilon_2) \langle D \rangle] (\langle x \rangle^{-\nu_2} u) \in L^2(\mathbb{R}^n)$ is compact (see, *e.g.*, Theorem 5.14 of [5]). This proves the assertion (ii). \Box

LEMMA 2.8. Let X and X_1 be bounded open subsets of \mathbb{R}^n satisfying $X_1 \subseteq X$, and let $a(\xi, y, \eta)$ be a symbol such that supp $a \subset \mathbb{R}^n \times X_1 \times \mathbb{R}^n$ and

$$(2.5) \quad \begin{aligned} |\partial_{\xi}^{\alpha} D_{y}^{\beta+\beta} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)| \\ &\leq C_{|\alpha|+|\tilde{\beta}|+|\tilde{\gamma}|} (A/R_{0})^{|\beta|+|\gamma|} \langle \xi \rangle^{m_{1}-|\alpha|+|\beta|} \langle \eta \rangle^{m_{2}-|\tilde{\gamma}|} \exp[\delta_{1} \langle \xi \rangle + \delta_{2} \langle \eta \rangle] \end{aligned}$$

$$\begin{split} &if \langle \xi \rangle \geq R_0 |\beta| \text{ and } \langle \eta \rangle \geq R_0 |\gamma|, \text{ where } A \geq 0, R_0 \geq 1 \text{ and } m_1, m_2, \delta_1, \delta_2 \in \mathbb{R}. \\ &Put \, \varepsilon = \operatorname{dis}(X_1, \mathbb{R}^n \setminus X), \text{ and assume that } u \in \mathcal{F}_0 \text{ and that } u \text{ is analytic in a} \\ &neighborhood \text{ of } \overline{X}, \text{ where } \operatorname{dis}(Y_1, Y_2) := \inf\{|x - y|; x \in Y_1 \text{ and } y \in Y_2\} \text{ for } \\ &Y_1, Y_2 \subset \mathbb{R}^n. \text{ Then there are positive constants } \delta(\varepsilon, u) \text{ and } \delta_j(\varepsilon, u) \ (j = 1, 2) \\ &such \text{ that } a(D_x, y, D_y)u \in \mathcal{S}_\delta \text{ if } R_0 \geq 4e\sqrt{n}\max\{1, 2/\varepsilon\}A, \ 2\delta_1 + (\delta_2)_+ < 1/R_0, \ \delta_j \leq \delta_j(\varepsilon, u) \ (j = 1, 2) \text{ and } \delta < \min\{1/(2R_0), \delta(\varepsilon, u)\}. \end{split}$$

PROOF. We shall prove the lemma in the same way as Theorem 2.6.7 of [12]. Put $u_{\rho}(x) = e^{-\rho \langle D \rangle} u(x)$ for $\rho > 0$. Then we have $u_{\rho}(x) \in C^{\infty}(\mathbb{R}^n)$ for $\rho > 0$ and

(2.6)
$$|D^{\beta}u_{\rho}(x)| \leq C(u)A(u)^{|\beta|}|\beta|! \quad \text{for } x \in X \text{ and } 0 < \rho \leq 1,$$
$$|u_{\rho}(x)| \leq C_{\rho}(1+|x|)^{\ell} \quad \text{for } x \in \mathbb{R}^{n} \text{ and } \rho > 0,$$

where C(u), A(u) and C_{ρ} are positive constants and $\ell \in \mathbb{Z}_+$. Let X_2 be an open subset of X satisfying $X_1 \in X_2 \in X$ and $\operatorname{dis}(X_1, \mathbb{R}^n \setminus X_2) = \varepsilon/2$. We choose a family $\{\chi_j\}_{j\in\mathbb{N}}$ of $C_0^{\infty}(X)$ so that $\chi_j(x) = 1$ in X_2 and $|D^{\beta}\chi_j(x)| \leq C(C_*j/\varepsilon)^{|\beta|}$ for $|\beta| \leq j$. Then (2.6) yields

$$|\mathcal{F}[\chi_j u_\rho](\xi)| \le C'(u)(1 + \sqrt{n}(C_*/\varepsilon + A(u))j)^j \langle \xi \rangle^{-j}$$

for $0 < \rho \leq 1$. Note that

$$\partial_{\xi}^{\alpha} \mathcal{F}[a(D_x, y, D_y)\psi_j^R(D)e^{\rho\langle D\rangle}(\chi_j u_\rho)](\xi)$$

= $(2\pi)^{-n} \sum_{\alpha^1 + \alpha^2 = \alpha} \frac{\alpha!}{\alpha^{1!}\alpha^{2!}} \int e^{-iy \cdot (\xi - \eta)} a_{\alpha^1, \alpha^2}(\xi, y, \eta)\psi_j^R(\eta)$
 $\times e^{\rho\langle \eta \rangle} \mathcal{F}[\chi_j u_\rho](\eta) \, d\eta dy,$

where $a_{\alpha^1,\alpha^2}(\xi, y, \eta) = (-iy)^{\alpha^1} \partial_{\xi}^{\alpha^2} a(\xi, y, \eta)$. Replacing $p(\xi, y, \eta)$ by $a_{\alpha^1,\alpha^2}(\xi, y, \eta)$ in the proof of Theorem 2.6.7 of [12], we have

(2.7)
$$|\partial_{\xi}^{\alpha} \mathcal{F}[a(D_x, y, D_y)\psi_j^R(D)e^{\rho\langle D\rangle}(\chi_j u_{\rho})](\xi)|$$

$$\leq C_{R,R_0,\alpha}(u)j^{n+m_2}2^{-j}\langle \xi \rangle^{m_1}e^{-\delta\langle \xi \rangle}$$

if $\rho > 0$, $R \ge 2e(1 + \sqrt{n}(C_*/\varepsilon + A(u)))$, $R_0 \ge 2e\sqrt{n}A$, $\rho + \delta_2 + 2(\delta_1 + \delta)_+ \le 1/(3R)$, $\delta_1 \le 1/(2R_0)$ and $\delta \le 1/(2R_0)$. Similarly, we have

$$\begin{aligned} &|\partial_{\xi}^{\alpha} \mathcal{F}[a(D_x, y, D_y)\psi_j^R(D)e^{\rho\langle D\rangle}((1-\chi_j)u_{\rho})](\xi)| \\ &\leq C_{\rho, A, R, R_0, \alpha}(u)j^{-2}\langle \xi \rangle^{m_1}e^{-\delta\langle \xi \rangle} \end{aligned}$$

if $\rho > 0$, $R \ge 8e\sqrt{n}(C_* + \hat{C} + 6(1 + \sqrt{2}))/\varepsilon$, $R_0 \ge 4e\sqrt{n}\max\{1, 2/\varepsilon\}A$, $\delta \le 1/(2R_0), 2\delta_1 + (\rho + \delta_2)_+ \le 1/R_0, \ \rho + \delta_2 \le 1/(3R) \text{ and } \delta \le 1/(12R) - \delta_1 - (\rho + \delta_2)/4$. This, together with (2.7), yields

$$\left|\partial_{\xi}^{\alpha}\mathcal{F}[a(D_x, y, D_y)u](\xi)\right| \le C_{R_0, \alpha}(u, a)\langle\xi\rangle^{m_1} e^{-\delta\langle\xi\rangle}$$

if $R_0 \geq 4e\sqrt{n} \max\{1, 2/\varepsilon\}A$, $\delta_2 + 2(\delta_1 + \delta)_+ < c(\varepsilon, u)/3$, $2\delta_1 + (\delta_2)_+ < 1/R_0$, $\delta \leq 1/(2R_0)$ and $\delta + \delta_1 + \delta_2/4 < c(\varepsilon, u)/12$, where $c(\varepsilon, u) = \min\{1/(2e(1 + \sqrt{n}(C_*/\varepsilon + A(u)))), \varepsilon/(8e\sqrt{n}(C_* + \widehat{C} + 6(1 + \sqrt{2})))\}$, which proves the lemma. \Box

LEMMA 2.9. Let Γ be an open conic subset of $\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ satisfying $\Gamma \Subset \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$, and let $a(\xi, y, \eta)$ be a symbol such that supp $a \subset \mathbb{R}^n \times \Gamma$ and $a(\xi, y, \eta)$ satisfies the estimates (2.5) if $\langle \xi \rangle \ge R_0 |\beta|$ and $\langle \eta \rangle \ge R_0 |\gamma|$. Let $\varepsilon > 0$, and assume that $u \in \mathcal{F}_0$ and that $WF_A(u) \cap \Gamma_{\varepsilon} = \emptyset$. Then there are positive constants $R_0(\varepsilon)$, $\delta(\varepsilon, u)$ and $\delta_j(\varepsilon, u)$ (j = 1, 2) such that $a(D_x, y, D_y)u \in S_\delta$ if $R_0 \ge R_0(\varepsilon)A$, $2\delta_1 + (\delta_2)_+ < 1/R_0$, $\delta_j \le \delta_j(\varepsilon, u)$ (j = 1, 2) and $\delta < \min\{1/(2R_0), \delta(\varepsilon, u)\}$.

PROOF. One can prove the lemma in the same way as in the proof of Lemma 4.1.1 of [12], using Lemma 2.8 instead of Theorem 2.6.7 of [12]. \Box

It follows from Lemma 2.7(ii) that $\{L_{1/j,1/j}^2\}_{j\in\mathbb{N}}$ is a compact injective sequence of Hilbert spaces, *i.e.*, the inclusion maps: $L_{1/j,1/j}^2 \ni u \mapsto u \in L_{1/(j+1),1/(j+1)}^2$ ($j \in \mathbb{N}$) are compact. We denote by \mathcal{X} the inductive limit $\lim_{i \to 1} L_{1/j,1/j}^2$ of the sequence $\{L_{1/j,1/j}^2\}$ (as a locally convex space). Then \mathcal{X} is a separable complete bornologic (DF) Montel space and for any bounded subset B of \mathcal{X} there is $j \in \mathbb{N}$ such that $B \subset L_{1/j,1/j}^2$ and B is bounded in $L_{1/j,1/j}^2$ (see, *e.g.*, Theorems 6 and 6' in [4]). For terminology we refer to Schaefer [7]. Moreover, S is open (resp. closed) in \mathcal{X} if and only if $S \cap L_{1/j,1/j}^2$ is open (resp. closed) in $L_{1/j,1/j}^2$ for each $j \in \mathbb{N}$, *i.e.*, the topology of \mathcal{X} is the inductive limit topology of $\{L_{1/j,1/j}^2\}$ as a topological space (see Theorem 6 in [4]). By Theorem 9 of [4] we have

(2.8)
$$L^{2}(\mathbb{R}^{n}) \times \mathcal{X} \times \mathcal{X} = \varinjlim (L^{2}(\mathbb{R}^{n}) \times L^{2}_{1/j,1/j} \times L^{2}_{1/j,1/j}),$$

where the inductive limit on the right-hand side is the inductive limit as a locally convex space.

LEMMA 2.10. Let F be a closed subspace of $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$, and put $F_j = F \cap (L^2(\mathbb{R}^n) \times L^2_{1/j_1/j_j} \times L^2_{1/j_1/j_j}).$

Then we have $F = \varinjlim F_i$ (as a locally convex space).

PROOF. By Proposition 8.6.8(i) of [6] it suffices to show that S is open in $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$ if $S \cap L^2(\mathbb{R}^n) \times L^2_{1/j,1/j} \times L^2_{1/j,1/j}$ is open in $L^2(\mathbb{R}^n) \times L^2_{1/j,1/j} \times L^2_{1/j,1/j}$ for each $j \in \mathbb{N}$, *i.e.*, the topology of $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$ is the inductive limit topology of a sequence $\{L^2(\mathbb{R}^n) \times L^2_{1/j,1/j} \times L^2_{1/j,1/j}\}$ of topological spaces. We note that (2.8) is also valid if the inductive limits $\lim_{i \to 1} L^2_{1/j,1/j}$ ($= \mathcal{X}$) and $\lim_{i \to 1} (L^2(\mathbb{R}^n) \times L^2_{1/j,1/j} \times L^2_{1/j,1/j})$ are replaced by the inductive limits as topological spaces. Recall that the topology of \mathcal{X} coincides with the inductive limit topology of $\{L^2_{1/j,1/j} \times \mathcal{X} \times \mathcal{X}$ coincides with the inductive limit topology of $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$ coincides with the inductive limit topology of $\{L^2(\mathbb{R}^n) \times L^2_{1/j,1/j} \times L^2_{1/j,1/j}\}$ as a topological space, which proves the lemma. \Box

3. Proof of Theorems 1.5 and 1.6

First we shall prove Theorem 1.5. Assume that p(x, D) is analytic microhypoelliptic at z^0 . Let Γ_j ($0 \le j \le 2$) be open conic subsets of Γ such that $z^0 \in \Gamma_0 \Subset \Gamma_1 \Subset \Gamma_2 \Subset \Gamma$. By assumption we may assume that

(3.1)
$$\operatorname{supp} p(x, D)u = \operatorname{supp} u \quad \text{for } u \in \mathcal{C}(\Gamma_0^0),$$

where $\Gamma_0^0 = \Gamma_0 \cap (\mathbb{R}^n \times S^{n-1})$. Choose $\Phi^R(\xi, y, \eta) \in S^{0,0,0,0}(R, C_*, C(\Gamma_1, \Gamma_2), C(\Gamma_1, \Gamma_2))$ ($R \ge 4$) so that $0 \le \Phi^R(\xi, y, \eta) \le 1$, supp $\Phi^R \subset \mathbb{R}^n \times \Gamma_2$ and $\Phi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Gamma_1$ with $\langle \eta \rangle \ge R$. We put

$$p^{R}(\xi, y, \eta) = \Phi^{R}(\xi, y, \eta) \sum_{j=0}^{\infty} \phi_{j}^{R/2}(\eta) p_{j}(y, \eta),$$

where $R > \max\{4, C_0\}$. Then we have

$$p^{R}(\xi, y, \eta) \in S^{+}(R, C_{*}, 2A + C(\Gamma_{1}, \Gamma_{2}), 2A + 3\widehat{C} + C(\Gamma_{1}, \Gamma_{2})).$$

By definition there is $R(A, \Gamma_0, \Gamma_1, \Gamma_2) > \max\{4, C_0\}$ such that

(3.2)
$$(p^R(D_x, y, D_y)v)|_{\Gamma_0^0} = p(x, D)(v|_{\Gamma_0^0}) \quad \text{in } \mathcal{C}(\Gamma_0^0),$$
$$WF_A(p^R(D_x, y, D_y)v) \cap \Gamma_0 = WF_A(v) \cap \Gamma_0$$

if $R \geq R(A, \Gamma_0, \Gamma_1, \Gamma_2)$ and $v \in \mathcal{F}_0$. Let Ω_j (j = 1, 2) be open conic neighborhoods of z^0 satisfying $\Omega_2 \Subset \Omega_1 \Subset \Gamma_0$, and let $\Psi^R(\xi, y, \eta) \in$

112

 $S^{0,0,0,0}(R, C_*, C(\Omega_2, \Omega_1), C(\Omega_2, \Omega_1))$ ($R \ge 4$) satisfy supp $\Psi^R \subset \mathbb{R}^n \times \Omega_1$ and $\Psi^R(\xi, y, \eta) = 1$ for $(\xi, y, \eta) \in \mathbb{R}^n \times \Omega_2$ with $\langle \eta \rangle \ge R$. We assume that $R \ge \max\{R(A, \Gamma_0, \Gamma_1, \Gamma_2), 25e\sqrt{n}\max\{2A + C(\Gamma_1, \Gamma_2), C(\Omega_2, \Omega_1)\}\}$. Let \mathcal{X} be the locally convex space defined in §2, *i.e.*, $\mathcal{X} = \varinjlim L^2_{1/j,1/j}$. We define an operator $T: L^2(\mathbb{R}^n) \to \mathcal{X} \times \mathcal{X}$ as follows;

(i) the domain D(T) of T is given by

$$D(T) = \{ f \in L^{2}(\mathbb{R}^{n}); (1 - \Psi^{R}(D_{x}, y, D_{y})) f \in \mathcal{X} \text{ and } p^{R}(D_{x}, y, D_{y}) f \in \mathcal{X} \},$$

(ii) $Tf = ((1 - \Psi^{R}(D_{x}, y, D_{y}))f, p^{R}(D_{x}, y, D_{y})f) \text{ for } f \in D(T).$

It follows from Lemma 2.9 and the analytic microhypoellipticity of p that $\mathcal{X} = D(T)$ if $R \geq R(\Omega_2, \Omega_1, \Gamma_0)$, where $R(\Omega_2, \Omega_1, \Gamma_0)$ is a positive constant depending on Ω_2 , Ω_1 and Γ_0 . Indeed, let $u \in D(T)$. Then $u \in L^2(\mathbb{R}^n)$ and there is $j \in \mathbb{N}$ such that $(1 - \Psi^R(D_x, y, D_y))u \in L^2_{1/j,1/j}$. Since $p^R(D_x, y, D_y)u$ is analytic in \mathbb{R}^n , (3.2) gives $WF_A(u) \cap \Gamma_0 = \emptyset$. It follows from Lemma 2.9 that there are $R(\Omega_2, \Omega_1, \Gamma_0) > 0$ and $\delta(u, \Omega_1, \Gamma_0) > 0$ such that $\Psi^R(D_x, y, D_y)u \in L^2_{\delta,\nu}$ if $R \geq R(\Omega_2, \Omega_1, \Gamma_0), \nu \in \mathbb{R}, \delta < \min\{1/(2R), \delta(u, \Omega_1, \Gamma_0)\}$. This implies that $u \in \mathcal{X}$.

We next show that T is a closed operator. Assume that R > $R(\Omega_2, \Omega_1, \Gamma_0)$. Let A be a directed set, and let $\{w_a\}_{a \in A}$ be a directed family of points in $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$ satisfying $w_a \to w \equiv (f, g, h)$ in $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$, where $w_a = (f_a, (1 - \Psi^R(D_x, y, D_y))f_a, p^R(D_x, y, D_y)f_a) \in \operatorname{graph}(T)$. Define $\mathcal{Z} = \lim_{j \to -1/j} L^2_{-1/j,-1/j}$. Then \mathcal{Z} is a reflexive Fréchet space and $\mathcal{Z}' = \mathcal{X}$ with obvious identification (see, e.g., Theorems 1 and 11 of [4]). Moreover, we have also $\mathcal{X} \subset \mathcal{Z} \subset \mathcal{F}_0$ with obvious identification and the inclusion map $\iota : \mathcal{X} \ni v \mapsto v \in \mathcal{Z}$ is continuous. Indeed, let B be a bounded subset of \mathcal{X} . Then there is $j \in \mathbb{N}$ such that B is bounded in $L^2_{1/i,1/i}$ (see Theorem 6 of [4]). This implies that there is $C_B > 0$ such that $\|\langle x \rangle^{1/j} e^{\langle D \rangle/j} v\| \leq C_B$ for $v \in B$, where $\|f\|$ denotes the L^2 -norm of $f \in L^2(\mathbb{R}^n)$. Therefore, B is bounded in \mathcal{Z} . Since \mathcal{X} is bornologic, the inclusion map ι is continuous (see Theorem 6 in [4]). Noting that \mathcal{Z} and $L^2(\mathbb{R}^n)$ are metric spaces and that $(1-\Psi^R(D_x,y,D_y))f_a \to g$ in \mathcal{Z} and $f_a \to f$ in $L^2(\mathbb{R}^n)$, we have $(1 - \Psi^R(D_x, y, D_y))f = g$ (in \mathcal{Z}). Similarly, we have $p^R(D_x, y, D_y)f = h$. This implies that $f \in D(T)$ and $Tf = ((1 - \Psi^R(D_x, y, D_y))f, p^{\check{R}}(D_x, y, D_y)f).$ Therefore, T is a closed operator.

Let $\{p_i\}_{i\in I}$ be a fundamental system of semi-norms on \mathcal{X} , *i.e.*, for any continuous semi-norm q on \mathcal{X} there are $i \in I$ and C > 0 satisfying $q(f) \leq Cp_i(f)$ for $f \in \mathcal{X}$. graph(T) is a closed subspace of $L^2(\mathbb{R}^n) \times \mathcal{X} \times \mathcal{X}$ and its topology (the induced topology) is generated by a family of semi-norms $\{q_i\}_{i\in I}$, where

$$q_i(w) = ||f|| + p_i((1 - \Psi^R(D_x, y, D_y))f) + p_i(p^R(D_x, y, D_y)f)$$

for $w = (f, (1 - \Psi^R(D_x, y, D_y))f, p^R(D_x, y, D_y)f) \in \text{graph}(T)$. From Lemma 2.10 we have

$$\operatorname{graph}(T) = \underline{\lim} (\operatorname{graph}(T) \cap (L^2(\mathbb{R}^n) \times L^2_{1/j,1/j} \times L^2_{1/j,1/j})).$$

It is obvious that the projection: $\operatorname{graph}(T) \ni (f, (1 - \Psi^R(D_x, y, D_y))f, p^R(D_x, y, D_y)f) \mapsto f \in \mathcal{X}$ is closed. Since the injective limit of (weakly) compact sequence of locally convex spaces is barreled, the strong dual of a reflexive Fréchet space and B-complete, it follows from the closed graph theorem that for any $i \in I$ there are $j \in I$ and C > 0 such that

(3.3)
$$p_i(f) \le Cq_j(w)$$

for $w = (f, (1 - \Psi^R(D_x, y, D_y))f, p^R(D_x, y, D_y)f) \in graph(T).$

For terminology and the closed graph theorem we refer to §8 of chapter IV in [7].

LEMMA 3.1. For any $i \in I$ there are $j \in I$ and C > 0 such that $p_i(f) \leq C(p_j((1 - \Psi^R(D_x, y, D_y))f) + p_j(p^R(D_x, y, D_y)f)$ $+ ||e^{-\langle D \rangle}f||) \quad for f \in \mathcal{X}.$

PROOF. The inclusion map $\iota : \mathcal{X} \ni f \mapsto f \in H^1(\mathbb{R}^n)$ is continuous, where $H^1(\mathbb{R}^n)$ denotes the Sobolev space of order 1. Indeed, let B be a bounded subset of \mathcal{X} . Then there are $j \in \mathbb{N}$ and $C_B > 0$ such that $\|\langle x \rangle^{1/j} e^{\langle D \rangle/j} f\| \leq C_B$ for $f \in B$. It is obvious that $\|\langle D \rangle f\| \leq (j/e) \|\langle x \rangle^{1/j} e^{\langle D \rangle/j} f\|$ for $f \in L^2_{1/j,1/j}$. So B is bounded in $H^1(\mathbb{R}^n)$ and ι is continuous. Thus there are $i_0 \in I$ and $C_0 > 0$ satisfying

(3.4)
$$\|\langle D \rangle f\| \le C_0 p_{i_0}(f) \quad \text{for } f \in \mathcal{X}.$$

114

On the other hand, for any $\varepsilon > 0$ there is $C_{\varepsilon} > 0$ such that

(3.5)
$$||f|| \le \varepsilon ||\langle D\rangle f|| + C_{\varepsilon} ||e^{-\langle D\rangle} f|| \quad \text{for } f \in H^1(\mathbb{R}^n).$$

Therefore, from (3.3) with $i = i_0$, (3.4) and (3.5) there are $j_0 \in I$ and $C_1 > 0$ such that

$$||f|| \le C_0 p_{i_0}(f)$$

$$\le C_1(p_{j_0}((1 - \Psi^R(D_x, y, D_y))f) + p_{j_0}(p^R(D_x, y, D_y)f) + ||e^{-\langle D \rangle}f||)$$

for $f \in \mathcal{X}$. This, together with (3.3), proves the lemma.

Let $f \in \mathcal{A}'(\mathbb{R}^n)$. We shall show that there are an open neighborhood \mathcal{U} of $(x^0, \xi^0/|\xi^0|)$ in $\mathbb{R}^n \times S^{n-1}$, which is independent of f, and $u \in \mathcal{X}'$ such that $({}^tp)(x, D)(u|_{\mathcal{U}}) = f|_{\mathcal{U}}$ in $\mathcal{C}(\mathcal{U})$. We note that $f \in \mathcal{A}'(\mathbb{R}^n) \subset \mathcal{X}' \subset \mathcal{F}_0 \subset \mathcal{S}'_{\delta}$ and $\mathcal{S}_{\infty} \subset \mathcal{S}_{\delta} \subset \mathcal{X}$ for $\delta > 0$. Moreover, we have

$$\langle g, v \rangle_{\mathcal{X}', \mathcal{X}} = \langle g, v \rangle_{\mathcal{S}'_{\delta}, \mathcal{S}_{\delta}} \quad \text{for } \delta > 0, \ g \in \mathcal{X}' \text{ and } v \in \mathcal{S}_{\delta}, \langle g, v \rangle_{\mathcal{S}'_{\varepsilon}, \mathcal{S}_{\varepsilon}} = \langle g, v \rangle_{\mathcal{S}'_{\varepsilon}, \mathcal{S}_{\delta}} \quad \text{for } \varepsilon \ge \delta, \ g \in \mathcal{S}'_{\delta} \text{ and } v \in \mathcal{S}_{\varepsilon},$$

where $\langle \cdot, \cdot \rangle_{\mathcal{X}', \mathcal{X}}$ (resp. $\langle \cdot, \cdot \rangle_{\mathcal{S}'_{\delta}, \mathcal{S}_{\delta}}$) denotes the duality between \mathcal{X}' and \mathcal{X} (resp. \mathcal{S}'_{δ} and \mathcal{S}_{δ}). Therefore, we denote simply by $\langle \cdot, \cdot \rangle$ these dualities. Define

$$\mathcal{M} := L_{-1}^2 \times \mathcal{X} \times \mathcal{X},$$

$$\mathcal{N} := \{ (v, (1 - \Psi^R(D_x, y, D_y))v, p^R(D_x, y, D_y)v) \in \mathcal{M}; \ v \in \mathcal{S}_{\infty} \},$$

where $L_{\varepsilon}^2 = L_{\varepsilon,0}^2$. Let F be a linear functional on \mathcal{N} defined by $F(w) = \langle f, v_1 \rangle$ for $w = (v_1, v_2, v_3) \in \mathcal{N}$. Note that there are $i_1 \in I$ and $C_2 > 0$ satisfying $|\langle f, v_1 \rangle| \leq C_2 p_{i_1}(v_1)$ for $v_1 \in \mathcal{X}$. By Lemma 3.1 there are $j_1 \in I$ and $C_3 > 0$ such that

$$|F(w)| \le C_3(p_{j_1}(v_2) + p_{j_1}(v_3) + ||e^{-\langle D \rangle}v_1||) \quad \text{for } w \equiv (v_1, v_2, v_3) \in \mathcal{N}.$$

Therefore, it follows from the Hahn-Banach theorem that there is $\widetilde{F} \equiv (-\psi, -\varphi, u) \in \mathcal{M}'$ ($= L_1^2 \times \mathcal{X}' \times \mathcal{X}'$) such that $\widetilde{F}|_{\mathcal{N}} = F$, *i.e.*,

$$\langle f, v \rangle = - \langle \psi, v \rangle - \langle \varphi, (1 - \Psi^R(D_x, y, D_y))v \rangle + \langle u, p^R(D_x, y, D_y)v \rangle \quad \text{for } v \in \mathcal{S}_{\infty}.$$

This yields

$$\langle {}^t p^R(D_x, y, D_y) u, v \rangle = \langle f + \psi + (1 - {}^t \Psi^R(D_x, y, D_y)) \varphi, v \rangle$$

for $v \in \mathcal{S}_{\infty}$, *i.e.*,

$${}^t p^R(D_x, y, D_y) u = f + \psi + (1 - {}^t \Psi^R(D_x, y, D_y)) \varphi \quad \text{in } \mathcal{F}_0.$$

Note that $\psi \in \mathcal{A}(\mathbb{R}^n)$. Let Ω_3 be an open conic neighborhood of $(x^0, -\xi^0)$ satisfying $\Omega_3 \Subset \check{\Omega}_2$, where $\check{\Omega}_2 = \{(x,\xi); (x, -\xi) \in \Omega_2\}$. From Lemma 2.1 there is $R_1(\Omega_3, \Omega_2, \Omega_1) > 0$ such that

$$WF_A((1 - {}^t\Psi^R(D_x, y, D_y))\varphi) \cap \Omega_3 = \emptyset \text{ if } R \ge R_1(\Omega_3, \Omega_2, \Omega_1).$$

Therefore, Lemma 2.6 gives

$$({}^{t}p)(x,D)(u|_{\Omega_{3}^{0}}) = f|_{\Omega_{3}^{0}}$$
 in $\mathcal{C}(\Omega_{3}^{0}),$

where $\Omega_3^0 = \Omega_3 \cap (\mathbb{R}^n \times S^{n-1})$, which proves Theorem 1.5.

Similarly, one can prove Theorem 1.6 if one choose $\Gamma = X \times (\mathbb{R}^n \setminus \{0\})$.

References

- Albanese, A. A., Corli, A. and L. Rodino, Hypoellipticity and local solvability in Gevrey classes, Math. Nachr. 242 (2002), 5–16.
- [2] Cordaro, P. D. and J.-M. Trépreau, On the solvability of linear partial differential equations in spaces of hyperfunctions, Ark. Mat. 36 (1998), 41–71.
- Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
- [4] Komatsu, H., Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366–383.
- [5] Kumano-go, H., Pseudo-Differential Operators, MIT Press, Cambridge, 1982.
- [6] Pérez Carreras, P. and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Studies 131, Amsterdam, 1987.
- [7] Schaefer, H. H., Topological Vector Spaces, Macmillan, New York, 1966.
- [8] Schapira, P., Solution hyperfonctions des équations aux dérivées partielles du premier ordre, Bull. Soc. Math. France **97** (1969), 243–255.
- [9] Schapira, P., Théorie des Hyperfonctions, Lecture Notes in Math. vol. 126, Springer, 1970.

116

- [10] Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
- [11] Wakabayashi, Generalized flows and their applications, Proc. NATO ASI on Advances in Microlocal Analysis, Series C, D. Reidel, 1986, 363–384.
- [12] Wakabayashi, S., Classical Microlocal Analysis in the Space of Hyperfunctions, Lecture Notes in Math. vol. 1737, Springer, 2000.
- [13] Yoshikawa, A., On the hypoellipticity of differential operators, J. Fac. Sci. Univ. Tokyo, Sect. IA 14 (1967), 81–88.

(Received June 3, 2002)

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571 Japan