Remarks on Analytic Hypoellipticity and Local Solvability in the Space of Hyperfunctions

By Seiichiro Wakabayashi

Abstract

Let $p(x, D)$ be a pseudodifferential operator on \mathbb{R}^{n} with a (formal) analytic symbol $p(x, \xi)$, and let $x^{0} \in \mathbb{R}^{n}$. In this paper we prove that the transposed operator ${ }^{t} p(x, D)$ of $p(x, D)$ is locally solvable at x^{0} modulo analytic functions in the space of hyperfunctions if $p(x, D)$ is analytic hypoelliptic at x^{0}. We also microlocalize this result.

1. Introduction

Let P be a linear partial differential operator on \mathbb{R}^{n} with C^{∞} coefficients, and let $x^{0} \in \mathbb{R}^{n}$. In Treves [10] and Yoshikawa [13] it was proved that if P is hypoelliptic at x^{0}, then there is a neighborhood U of x^{0} satisfying the following; for every $f \in C^{\infty}(U)$ there is $u \in \mathcal{D}^{\prime}(U)$ such that ${ }^{t} P u=f$ in U. Here ${ }^{t} P$ denotes the transposed operator of P. Recently Albanese, Corli and Rodino proved in [1] that the above result is still valid in the framework of the Gevrey classes and the spaces of ultradistributions. Moreover, Cordaro and Trépreau proved in [2] that P is locally solvable at x^{0} in the space of hyperfunctions if the coefficients of P are analytic and P is analytic hypoelliptic at x^{0}. Precise definitions of local solvability and analytic hypoellipticity will be given in Definition 1.4 below. They obtained more general results in the first section of [2] which may be a continuation of Schapira [8] and [9]. The aim of this paper is to prove that for a pseudodifferential operator $p(x, D)$ the transposed operator ${ }^{t} p(x, D)$ is locally solvable at x^{0} modulo analytic functions in the space of hyperfunctions if $p(x, D)$ is analytic hypoelliptic at x^{0} (see Theorem 1.6 below). We shall also microlocalize this result, i.e., we shall give the corresponding result in the space of microfunctions (see Theorem 1.5 below).

[^0]We shall explain briefly about hyperfunctions, microfunctions and pseudodifferential operators acting on them. For the details we refer to [12]. Let $\varepsilon \in \mathbb{R}$, and denote $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{1 / 2}$, where $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$ and $|\xi|=\left(\sum_{j=1}^{n}\left|\xi_{j}\right|^{2}\right)^{1 / 2}$. We define

$$
\widehat{\mathcal{S}}_{\varepsilon}:=\left\{v(\xi) \in C^{\infty}\left(\mathbb{R}^{n}\right) ; e^{\varepsilon\langle\xi\rangle} v(\xi) \in \mathcal{S}\right\}
$$

where $\mathcal{S}\left(\equiv \mathcal{S}\left(\mathbb{R}^{n}\right)\right)$ denotes the Schwartz space. We introduce the topology to $\widehat{\mathcal{S}}_{\varepsilon}$ in a natural way. Then the dual space $\widehat{\mathcal{S}}_{\varepsilon}^{\prime}$ of $\widehat{\mathcal{S}}_{\varepsilon}$ can be identified with $\left\{v(\xi) \in \mathcal{D}^{\prime} ; e^{-\varepsilon\langle\xi\rangle} v(\xi) \in \mathcal{S}^{\prime}\right\}$, since $\mathcal{D}\left(=C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right)$ is dense in $\widehat{\mathcal{S}}_{\varepsilon}$. If $\varepsilon \geq 0$, then $\widehat{\mathcal{S}}_{\varepsilon}$ is a dense subset of \mathcal{S} and we can define $\mathcal{S}_{\varepsilon}:=\mathcal{F}^{-1}\left[\widehat{\mathcal{S}}_{\varepsilon}\right]$ $\left(=\mathcal{F}\left[\widehat{\mathcal{S}}_{\varepsilon}\right]\right)(\subset \mathcal{S})$, where \mathcal{F} and \mathcal{F}^{-1} denote the Fourier transformation and the inverse Fourier transformation on \mathcal{S} (or \mathcal{S}^{\prime}), respectively. For example, $\mathcal{F}[u](\xi)=\int e^{-i x \cdot \xi} u(x) d x$ for $u \in \mathcal{S}$, where $x \cdot \xi=\sum_{j=1}^{n} x_{j} \xi_{j}$ for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$. Let $\varepsilon \geq 0$. We introduce the topology in $\mathcal{S}_{\varepsilon}$ so that $\mathcal{F}: \widehat{\mathcal{S}}_{\varepsilon} \rightarrow \mathcal{S}_{\varepsilon}$ is homeomorphic. Denote by $\mathcal{S}_{\varepsilon}^{\prime}$ the dual space of $\mathcal{S}_{\varepsilon}$. Since $\mathcal{S}_{\varepsilon}$ is dense in \mathcal{S}, we can regard \mathcal{S}^{\prime} as a subspace of $\mathcal{S}_{\varepsilon}^{\prime}$. We can define the transposed operators ${ }^{t} \mathcal{F}$ and ${ }^{t} \mathcal{F}^{-1}$ of \mathcal{F} and \mathcal{F}^{-1}, which map $\mathcal{S}_{\varepsilon}^{\prime}$ and $\widehat{\mathcal{S}}_{\varepsilon}^{\prime}$ onto $\widehat{\mathcal{S}}_{\varepsilon}^{\prime}$ and $\mathcal{S}_{\varepsilon}^{\prime}$, respectively. Since $\widehat{\mathcal{S}}_{-\varepsilon} \subset \widehat{\mathcal{S}}_{\varepsilon}^{\prime}\left(\subset \mathcal{D}^{\prime}\right)$, we can define $\mathcal{S}_{-\varepsilon}={ }^{t} \mathcal{F}^{-1}\left[\widehat{\mathcal{S}}_{-\varepsilon}\right]$, and introduce the topology in $\mathcal{S}_{-\varepsilon}$ so that ${ }^{t} \mathcal{F}^{-1}: \widehat{\mathcal{S}}_{-\varepsilon} \rightarrow \mathcal{S}_{-\varepsilon}$ is homeomorphic. $\mathcal{S}_{-\varepsilon}^{\prime}$ denotes the dual space of $\mathcal{S}_{-\varepsilon}$. We note that $\mathcal{S}_{-\varepsilon}^{\prime}=\mathcal{F}\left[\widehat{\mathcal{S}}_{-\varepsilon}^{\prime}\right] \subset \mathcal{S}^{\prime} \subset \mathcal{S}_{\varepsilon}^{\prime}$ and $\mathcal{F}={ }^{t} \mathcal{F}$ on \mathcal{S}^{\prime}. So we also represent ${ }^{t} \mathcal{F}$ by \mathcal{F}. Let $\mathcal{A}\left(\mathbb{C}^{n}\right)$ be the space of entire analytic functions on \mathbb{C}^{n}, and let K be a compact subset of \mathbb{C}^{n}. We denote by $\mathcal{A}^{\prime}(K)$ the space of analytic functionals carried by K, i.e., $u \in \mathcal{A}^{\prime}(K)$ if and only if (i) u : $\mathcal{A}\left(\mathbb{C}^{n}\right) \ni \varphi \mapsto u(\varphi) \in \mathbb{C}$ is a linear functional, and (ii) for any neighborhood ω of K in \mathbb{C}^{n} there is $C_{\omega} \geq 0$ such that $|u(\varphi)| \leq C_{\omega} \sup _{z \in \omega}|\varphi(z)|$ for $\varphi \in$ $\mathcal{A}\left(\mathbb{C}^{n}\right)$. Define $\mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right):=\bigcup_{K \in \mathbb{R}^{n}} \mathcal{A}^{\prime}(K), \mathcal{S}_{\infty}:=\bigcap_{\varepsilon \in \mathbb{R}} \mathcal{S}_{\varepsilon}, \mathcal{E}_{0}:=\bigcap_{\varepsilon>0} \mathcal{S}_{-\varepsilon}$ and $\mathcal{F}_{0}:=\bigcap_{\varepsilon>0} \mathcal{S}_{\varepsilon}^{\prime}$. Here $A \Subset B$ means that the closure \bar{A} of A is compact and included in the interior $\stackrel{\circ}{B}$ of B. We note that $\mathcal{F}^{-1}\left[C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right] \subset \mathcal{S}_{\infty}$ and that \mathcal{S}_{∞} is dense in $\mathcal{S}_{\varepsilon}$ and $\mathcal{S}_{\varepsilon}^{\prime}$ for $\varepsilon \in \mathbb{R}$. For $u \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ we can define the Fourier transform $\hat{u}(\xi)$ of u by

$$
\hat{u}(\xi)(=\mathcal{F}[u](\xi))=u_{z}\left(e^{-i z \cdot \xi}\right)
$$

where $z \cdot \xi=\sum_{j=1}^{n} z_{j} \xi_{j}$ for $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \mathbb{R}^{n}$. By definition we have $\hat{u}(\xi) \in \bigcap_{\varepsilon>0} \widehat{\mathcal{S}}_{-\varepsilon}\left(=\mathcal{F}\left[\mathcal{E}_{0}\right]\right)$. Therefore, we can regard
$\mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ as a subspace of \mathcal{E}_{0}, i.e., $\mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right) \subset \mathcal{E}_{0} \subset \mathcal{F}_{0}$, (see Lemma 1.1.2 of [12]). The space \mathcal{F}_{0} plays an important role in our treatment as the space \mathcal{S}^{\prime} does in the framework of C^{∞} and distributions. For a bounded open subset X of \mathbb{R}^{n} we define the space $\mathcal{B}(X)$ of hyperfunctions in X by

$$
\mathcal{B}(X):=\mathcal{A}^{\prime}(\bar{X}) / \mathcal{A}^{\prime}(\partial X)
$$

where ∂X denotes the boundary of X.
Let $u \in \mathcal{F}_{0}$. We define

$$
\begin{aligned}
& \mathcal{H}(u)\left(x, x_{n+1}\right):=\left(\operatorname{sgn} x_{n+1}\right) \exp \left[-\left|x_{n+1}\right|\langle D\rangle\right] u(x) / 2 \\
& \left(=\left(\operatorname{sgn} x_{n+1}\right) \mathcal{F}_{\xi}^{-1}\left[\exp \left[-\left|x_{n+1}\right|\langle\xi\rangle\right] \hat{u}(\xi)\right](x) / 2 \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)\right)
\end{aligned}
$$

for $x_{n+1} \in \mathbb{R} \backslash\{0\}$, and
supp $u:=\bigcap\left\{F ; F\right.$ is a closed subset of \mathbb{R}^{n} and there is a real analytic function $U\left(x, x_{n+1}\right)$ in $\mathbb{R}^{n+1} \backslash F \times\{0\}$ such that $U\left(x, x_{n+1}\right)=\mathcal{H}(u)\left(x, x_{n+1}\right)$ for $\left.x_{n+1} \neq 0\right\}$.

We note that supp u coincides with the support of u as a distribution if $u \in \mathcal{S}^{\prime}$ (see Lemma 1.2.2 of [12]). Moreover, for a compact subset K of \mathbb{R}^{n}, $u \in \mathcal{A}^{\prime}(K)$ if and only if u is an analytic functional and supp $u \subset K$ (see Proposition 1.2.6 of [12]). Let K be a compact subset of \mathbb{R}^{n}. It follows from Theorem 1.3.3 of [12] that for any u and K as above there is $v \in \mathcal{A}^{\prime}(K)$ satisfying supp $(u-v) \cap K \subset \partial K$, and if $v=v_{1}, v_{2}$ are such functions in $\mathcal{A}^{\prime}(K)$ we have supp $\left(v_{1}-v_{2}\right) \subset \partial K$. Therefore, we can define the restriction map from \mathcal{F}_{0} to $\mathcal{A}^{\prime}(K) / \mathcal{A}^{\prime}(\partial K)(=\mathcal{B}(\stackrel{\circ}{K}))$ which is surjective. For $x^{0} \in \mathbb{R}^{n}$ we say that u is analytic at x^{0} if $\mathcal{H}(u)\left(x, x_{n+1}\right)$ can be continued analytically from $\mathbb{R}^{n} \times(0, \infty)$ to a neighborhood of $\left(x^{0}, 0\right)$ in \mathbb{R}^{n+1}. We define

$$
\text { sing supp } u:=\left\{x \in \mathbb{R}^{n} ; u \text { is not analytic at } x\right\} .
$$

Next let $u \in \mathcal{B}(X)$, where X is a bounded open subset of \mathbb{R}^{n}. Then there is $v \in \mathcal{A}^{\prime}(\bar{X})$ such that the residue class of v is u in $\mathcal{B}(X)$. We define

$$
\operatorname{supp} u:=\operatorname{supp} v \cap X, \quad \operatorname{sing} \operatorname{supp} u:=\operatorname{sing} \operatorname{supp} v \cap X .
$$

These definitions do not depend on the choice of v. So we say that u is analytic at x^{0} if $x^{0} \notin \operatorname{sing} \operatorname{supp} u$. Let X be an open subset of \mathbb{R}^{n}. We
also define $\mathcal{B}(X)$ (see Definition 1.4.5 of [12]). For open subsets U and V of X with $V \subset U$ the restriction map $\rho_{V}^{U}:\left.\mathcal{B}(U) \ni u \mapsto u\right|_{V} \in \mathcal{B}(V)$ can be defined so that ρ_{U}^{U} is the identity mapping and $\rho_{W}^{V} \circ \rho_{V}^{U}=\rho_{W}^{U}$ for open subsets U, V and W of X with $W \subset V \subset U$. By definition we can also define the restriction map from \mathcal{F}_{0} to $\mathcal{B}(X)$, and we denote by $\left.v\right|_{X}$ the restriction of $v \in \mathcal{F}_{0}$ to $\mathcal{B}(X)$ (or on X). We define the presheaf \mathcal{B}_{X} by associating $\mathcal{B}(U)$ to every open subset U of X. By definition \mathcal{B}_{X} is a sheaf on X.

Next we shall define analytic wave front sets and microfunctions.
Definition 1.1. (i) Let $u \in \mathcal{F}_{0}$. The analytic wave front set $W F_{A}(u) \subset T^{*} \mathbb{R}^{n} \backslash 0\left(\simeq \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)\right)$ is defined as follows: $\left(x^{0}, \xi^{0}\right) \in$ $T^{*} \mathbb{R}^{n} \backslash 0$ does not belong to $W F_{A}(u)$ if there are a conic neighborhood Γ of $\xi^{0}, R_{0}>0$ and $\left\{g^{R}(\xi)\right\}_{R \geq R_{0}} \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $g^{R}(\xi)=1$ in $\Gamma \cap\{\langle\xi\rangle \geq R\}$,

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} g^{R}(\xi)\right| \leq C_{|\tilde{\alpha}|}(C / R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|} \tag{1.1}
\end{equation*}
$$

if $\langle\xi\rangle \geq R|\alpha|$, and $g^{R}(D) u\left(=\mathcal{F}^{-1}\left[g^{R}(\xi) \hat{u}(\xi)\right]\right)$ is analytic at x^{0} for $R \geq R_{0}$, where C is a positive constant independent of R.
(ii) Let X be an open subset of \mathbb{R}^{n}, and let $u \in \mathcal{B}(X)$ and $\left(x^{0}, \xi^{0}\right) \in$ $T^{*} X \backslash 0\left(\simeq X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)\right)$. Then we say that $\left(x^{0}, \xi^{0}\right) \notin W F_{A}(u)\left(\subset T^{*} X \backslash 0\right)$ if there are a bounded open neighborhood U of x^{0} and $v \in \mathcal{A}^{\prime}(\bar{U})$ such that $\left.v\right|_{U}=\left.u\right|_{U}$ in $\mathcal{B}(U)$ and $\left(x^{0}, \xi^{0}\right) \notin W F_{A}(v)$

Remark. (i) $W F_{A}(u)$ for $u \in \mathcal{B}(X)$ is well-defined. Indeed, it follows from Theorem 2.6.5 in [12] that for any $v \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$ with $x^{0} \notin \operatorname{supp} v$ there is $R_{1}>0$ such that $g^{R}(D) v$ is analytic at x^{0} if $R \geq R_{1}$, where $\left\{g^{R}(\xi)\right\}_{R \geq R_{0}}$ is a family of symbols satisfying (1.1).
(ii) Several remarks on this definition are given in Proposition 3.1.2 of [12].
(iii) From Theorem 3.1.6 in [12] and the results in [3] it follows that our definition of $W F_{A}(u)$ coincides with the usual definition.

Let \mathcal{U} be an open subset of the cosphere bundle $S^{*} \mathbb{R}^{n}$ over \mathbb{R}^{n}, which is identified with $\mathbb{R}^{n} \times S^{n-1}$. We define

$$
\mathcal{C}(\mathcal{U}):=\mathcal{B}\left(\mathbb{R}^{n}\right) /\left\{u \in \mathcal{B}\left(\mathbb{R}^{n}\right) ; W F_{A}(u) \cap \mathcal{U}=\emptyset\right\} .
$$

Since \mathcal{B} is a flabby sheaf, we have

$$
\mathcal{C}(\mathcal{U})=\mathcal{B}(U) /\left\{u \in \mathcal{B}(U) ; W F_{A}(u) \cap \mathcal{U}=\emptyset\right\}
$$

if U is an open subset of \mathbb{R}^{n} and $\mathcal{U} \subset U \times S^{n-1}$. Elements of $\mathcal{C}(\mathcal{U})$ are called microfunctions on \mathcal{U}. We can define the restriction map $\mathcal{C}(\mathcal{U}) \ni u \mapsto$ $\left.u\right|_{\mathcal{V}} \in \mathcal{C}(\mathcal{V})$ for open subsets \mathcal{U} and \mathcal{V} of $\mathbb{R}^{n} \times S^{n-1}$ with $\mathcal{V} \subset \mathcal{U}$. Let Ω be an open subset of $\mathbb{R}^{n} \times S^{n-1}$. We define the presheaf \mathcal{C}_{Ω} on Ω associating $\mathcal{C}(\mathcal{U})$ to every open subset \mathcal{U} of Ω. Then \mathcal{C}_{Ω} is a flabby sheaf (see, e.g., Theorem 3.6.1 of [12]). For each open subset U of \mathbb{R}^{n} we define the mapping sp: $\mathcal{B}(U) \rightarrow \mathcal{C}\left(U \times S^{n-1}\right)$ such that the residue class in $\mathcal{C}\left(U \times S^{n-1}\right)$ of $u \in \mathcal{B}(U)$ is equal to $\operatorname{sp}(u)$. We also write $\left.u\right|_{\mathcal{U}}=\left.\operatorname{sp}(u)\right|_{\mathcal{U}}$ for $u \in \mathcal{B}(U)$ and $\left.v\right|_{\mathcal{U}}=\left.\operatorname{sp}\left(\left.v\right|_{U}\right)\right|_{\mathcal{U}}$ for $v \in \mathcal{F}_{0}$, where \mathcal{U} is an open subset of $U \times S^{n-1}$.

Assume that $a(\xi, y, \eta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and there are positive constants $C_{k}(k \geq 0)$ such that

$$
\begin{align*}
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)\right| \tag{1.2}\\
& \leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|}(A / R)^{|\beta|}\langle\xi\rangle^{m_{1}+|\beta|}\langle\eta\rangle^{m_{2}} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{align*}
$$

if $\alpha, \beta, \tilde{\beta}, \gamma \in\left(\mathbb{Z}_{+}\right)^{n}, \xi, y, \eta \in \mathbb{R}^{n},\langle\xi\rangle \geq R|\beta|$, where $D_{y}=-i \partial_{y}, R \geq 1$, $A \geq 0, m_{1}, m_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. It should be remarked that some functions satisfying the estimates (1.2) with $m_{1}=m_{2}=0$ and $\delta_{1}=$ $\delta_{2}=0$ are given in Proposition 2.2.3 of [12]. We define pseudodifferential operators $a\left(D_{x}, y, D_{y}\right)$ and ${ }^{r} a\left(D_{x}, y, D_{y}\right)$ by

$$
a\left(D_{x}, y, D_{y}\right) u(x)=(2 \pi)^{-n} \mathcal{F}_{\xi}^{-1}\left[\int\left(\int e^{-i y \cdot(\xi-\eta)} a(\xi, y, \eta) \hat{u}(\eta) d \eta\right) d y\right](x)
$$

and ${ }^{r} a\left(D_{x}, y, D_{y}\right) u=b\left(D_{x}, y, D_{y}\right)$ for $u \in \mathcal{S}_{\infty}$, respectively, where $b(\xi, y, \eta)=a(\eta, y, \xi)$. Applying the same argument as in the proof of Theorem 2.3.3 of [12] we have the following

Proposition 1.2. $a\left(D_{x}, y, D_{y}\right)$ can be extended to a continuous linear operator from $\mathcal{S}_{\varepsilon_{2}}$ to $\mathcal{S}_{\varepsilon_{1}}$ and from $\mathcal{S}_{-\varepsilon_{2}}^{\prime}$ to $\mathcal{S}_{-\varepsilon_{1}}^{\prime}$, respectively, if

$$
\left\{\begin{array}{l}
\nu>1, \quad \varepsilon_{2}-\delta_{2}=\nu\left(\varepsilon_{1}+\delta_{1}\right)_{+} \tag{1.3}\\
\varepsilon_{1}+\delta_{1} \leq 1 / R, \quad R \geq e \sqrt{n} \nu A /(\nu-1)
\end{array}\right.
$$

where $c_{+}=\max \{c, 0\}$. Similarly, ${ }^{r} a\left(D_{x}, y, D_{y}\right)$ can be extended to a continuous linear operator from $\mathcal{S}_{-\varepsilon_{1}}$ to $\mathcal{S}_{-\varepsilon_{2}}$ and from $\mathcal{S}_{\varepsilon_{1}}^{\prime}$ to $\mathcal{S}_{\varepsilon_{2}}^{\prime}$, respectively, if (1.3) is valid.

Remark. (i) We had a slight improvement in the remark of Theorem 2.3.3 of [12], i.e., we can take $R_{1}(S, T, \nu)=e \sqrt{n} \nu /(\nu-1)$ there instead of $R_{1}(S, T, \nu)=e n \nu /(\nu-1)$ if $n=n^{\prime}=n^{\prime \prime}, S(y, \xi)=-y \cdot \xi$ and $T(y, \eta)=y \cdot \eta$. This is reflected in the condition (1.3).
(ii) Since for any open sets $X_{j}(j=1,2)$ with $X_{1} \Subset X_{2}$ one can construct a symbol $a(\xi, y, \eta)$ satisfying (1.2) with $m_{1}=m_{2}=0$ and $\delta_{1}=\delta_{2}=0$, $\operatorname{supp} a \subset \mathbb{R}^{n} \times X_{2} \times \mathbb{R}^{n}$ and $a(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times X_{1} \times \mathbb{R}^{n}$, one can use the operator $a\left(D_{x}, y, D_{y}\right)$ instead of cut-off functions.

Definition 1.3. Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and let X be an open subset of \mathbb{R}^{n}. Moreover, let $R_{0} \geq 0$.
(i) Let $R_{0} \geq 1, m, \delta \in \mathbb{R}$ and $A, B \geq 0$, and let $a(x, \xi) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We say that $a(x, \xi) \in S^{m, \delta}\left(R_{0}, A, B\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{(\beta+\tilde{\beta})}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|}\left(A / R_{0}\right)^{|\alpha|}\left(B / R_{0}\right)^{|\beta|}\langle\xi\rangle^{m+|\beta|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in\left(\mathbb{Z}_{+}\right)^{n},(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq R_{0}(|\alpha|+|\beta|)$, where $a_{(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} a(x, \xi)$ and the C_{k} are independent of α and β. We also write $S^{m}\left(R_{0}, A, B\right)=S^{m, 0}\left(R_{0}, A, B\right)$ and $S^{m}\left(R_{0}, A\right)=S^{m}\left(R_{0}, A, A\right)$. We define $S^{+}\left(R_{0}, A, B\right)=\bigcap_{\delta>0} S^{0, \delta}\left(R_{0}, A, B\right)$.
(ii) Let $R_{0} \geq 1, m_{j}, \delta_{j} \in \mathbb{R}(j=1,2), A_{j} \geq 0(j=1,2)$ and $B \geq 0$, and let $a(\xi, y, \eta) \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We say that $a(\xi, y, \eta) \in$ $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A_{1}, B, A_{2}\right)$ if $a(\xi, y, \eta)$ satisfies

$$
\begin{gathered}
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta^{1}+\beta^{2}+\tilde{\beta}} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)\right| \leq C_{|\tilde{\alpha}|+|\tilde{\beta}|+|\tilde{\gamma}|}\left(A_{1} / R_{0}\right)^{|\alpha|}\left(B / R_{0}\right)^{\left|\beta^{1}\right|+\left|\beta^{2}\right|} \\
\times\left(A_{2} / R_{0}\right)^{|\gamma|}\langle\xi\rangle^{m_{1}+\left|\beta^{1}\right|-|\tilde{\alpha}|}\langle\eta\rangle^{m_{2}+\left|\beta^{2}\right|-|\tilde{\gamma}|} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{gathered}
$$

for any $\alpha, \tilde{\alpha}, \beta^{1}, \beta^{2}, \tilde{\beta}, \gamma, \tilde{\gamma} \in\left(\mathbb{Z}_{+}\right)^{n},(\xi, y, \eta) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq$ $R_{0}\left(|\alpha|+\left|\beta^{1}\right|\right)$ and $\langle\eta\rangle \geq R_{0}\left(|\gamma|+\left|\beta^{2}\right|\right)$. We also write $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A\right)=$ $S^{m_{1}, m_{2}, \delta_{1}, \delta_{2}}\left(R_{0}, A, A, A\right)$. Similarly, we define $S^{+}\left(R_{0}, A_{1}, B, A_{2}\right)=$ $\bigcap_{\delta>0} S^{0,0, \delta, \delta}\left(R_{0}, A_{1}, B, A_{2}\right)$.
(iii) Let $A, B \geq 0$, and let $a(x, \xi) \in C^{\infty}(\Gamma)$. We say that $a(x, \xi) \in$ $P S^{+}\left(\Gamma ; R_{0}, A, B\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{(\beta)}^{(\alpha+\tilde{\alpha})}(x, \xi)\right| \leq C_{|\tilde{\alpha}|, \delta} A^{|\alpha|} B^{|\beta|}|\alpha|!|\beta|!\langle\xi\rangle^{-|\alpha|-|\tilde{\alpha}|} e^{\delta\langle\xi\rangle}
$$

for any $\alpha, \tilde{\alpha}, \beta \in\left(\mathbb{Z}_{+}\right)^{n},(x, \xi) \in \Gamma$ with $|\xi| \geq 1$ and $\langle\xi\rangle \geq R_{0}|\alpha|$ and $\delta>0$. We also write $P S^{+}\left(\Gamma ; R_{0}, A\right)=P S^{+}\left(\Gamma ; R_{0}, A, A\right)$. Moreover, we say that $a(x, \xi) \in P S^{+}\left(X ; R_{0}, A, B\right)$ if $a(x, \xi) \in C^{\infty}\left(X \times \mathbb{R}^{n}\right)$ and $a(x, \xi) \in$ $P S^{+}\left(X \times\left(\mathbb{R}^{n} \backslash\{0\}\right) ; R_{0}, A, B\right)$.
(iv) Let $A, C_{0} \geq 0$, and let $\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}} \in \prod_{j \in \mathbb{Z}_{+}} C^{\infty}(\Gamma)$. We say that $a(x, \xi) \equiv\left\{a_{j}(x, \xi)\right\}_{j \in \mathbb{Z}_{+}} \in F S^{+}\left(\Gamma ; C_{0}, A\right)$ if $a(x, \xi)$ satisfies

$$
\left|a_{j(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{\delta} C_{0}^{j} A^{|\alpha|+|\beta|} j!|\alpha|!|\beta|!\langle\xi\rangle^{-j-|\alpha|} e^{\delta\langle\xi\rangle}
$$

for any $j \in \mathbb{Z}_{+}, \alpha, \beta \in\left(\mathbb{Z}_{+}\right)^{n},(x, \xi) \in \Gamma$ with $|\xi| \geq 1$ and $\delta>0$, where C_{δ} is independent of α, β and j. We also write $a(x, \xi)=\sum_{j=0}^{\infty} a_{j}(x, \xi)$ formally. Moreover, we write $F S^{+}\left(X ; C_{0}, A\right)=F S^{+}\left(X \times\left(\mathbb{R}^{n} \backslash\{0\}\right) ; C_{0}, A\right)$.
(v) For $a(x, \xi)=\sum_{j=0}^{\infty} a_{j}(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$ we define the symbol $\left({ }^{t} a\right)(x, \xi)$ by

$$
\left({ }^{t} a\right)(x, \xi)=\sum_{j=0}^{\infty} b_{j}(x, \xi), \quad b_{j}(x, \xi)=\sum_{k+|\alpha|=j}(-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi) / \alpha!.
$$

Remark. It is easy to see that $\left({ }^{t} a\right)(x, \xi) \in F S^{+}\left(\check{\Gamma} ; \max \left\{C_{0}, 4 n A^{2}\right\}\right.$, $2 A)$, where $\check{\Gamma}=\{(x, \xi) ;(x,-\xi) \in \Gamma\}$. Moreover, we have $\left({ }^{t}\left({ }^{t} a\right)\right)(x, \xi)=$ $a(x, \xi)$.

Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and assume that $a(x, \xi) \in P S^{+}\left(\Gamma ; R_{0}, A\right)$, where $A \geq 0$ and $R_{0} \geq 1$. Let $\Gamma_{j}(0 \leq j \leq 2)$ be open conic subsets of Γ such that $\Gamma_{0} \Subset \Gamma_{1} \Subset \Gamma_{2} \Subset \Gamma$, and write $\Gamma^{0}=\Gamma \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$, where $\Gamma_{2} \Subset \Gamma$ implies that $\Gamma_{2}^{0} \Subset \Gamma$. It follows from Proposition 2.2.3 of [12] that there are symbols $\Phi^{R}(\xi, y, \eta) \in$ $S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Gamma_{1}, \Gamma_{2}\right)\right)(R \geq 4)$ satisfying $0 \leq \Phi^{R}(\xi, y, \eta) \leq 1$, $\operatorname{supp} \Phi^{R} \subset \mathbb{R}^{n} \times \Gamma_{2}$ and $\Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Gamma_{1}$ with $\langle\eta\rangle \geq R$. Put $a^{R}(\xi, y, \eta)=\Phi^{R}(\xi, y, \eta) a(y, \eta)$. Then we have $a^{R}(\xi, y, \eta) \in$ $S^{+}\left(R, C_{*}, 2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), A+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)$ for $R \geq \max \left\{4, R_{0}\right\}$. Let $u \in$ $\mathcal{C}\left(\Gamma_{0}^{0}\right)$, and choose $v \in \mathcal{F}_{0}$ so that $\left.v\right|_{\Gamma_{0}^{0}}=u$. Applying Proposition 1.2
with $a(\xi, y, \eta)=a^{R}(\eta, y, \xi)$ and noting that $a^{R}\left(D_{x}, y, D_{y}\right)={ }^{r} a\left(D_{x}, y, D_{y}\right)$, we can see that $a^{R}\left(D_{x}, y, D_{y}\right) v$ is well-defined and belongs to \mathcal{F}_{0} if $R \geq$ $\max \left\{4, R_{0}, 2 e \sqrt{n}\left(2 A+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)\right\}$. Moreover, $a^{R}\left(D_{x}, y, D_{y}\right) v$ determines an element $\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{U} \in \mathcal{B}(U)$, where U is a bounded open subset of \mathbb{R}^{n} satisfying $\Gamma_{0}^{0} \subset U \times S^{n-1}$, and, therefore, an element $\left.\operatorname{sp}\left(\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{U}\right)\right|_{\Gamma_{0}^{0}}\left(\left.\equiv\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}\right) \in \mathcal{C}\left(\Gamma_{0}^{0}\right)$. It follows from Lemma 2.1 below that $\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}$ does not depend on the choice of $\Phi^{R}(\xi, y, \eta)$ if $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}(R, B)$ and $R \geq R\left(A, B, \Gamma_{0}, \Gamma_{1}\right)$, where $R\left(A, B, \Gamma_{0}, \Gamma_{1}\right)>0$. From Lemma 2.2 it follows that for each conic subset Ω of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with $\Omega \Subset \Gamma_{0}$ there is $R\left(A, \Omega, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right)>0$ such that $W F_{A}\left(a^{R}\left(D_{x}, y, D_{y}\right) w\right) \cap \Omega=\emptyset$ if $R \geq R\left(A, \Omega, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right), w \in \mathcal{F}_{0}$ and $W F_{A}(w) \cap \Gamma_{0}=\emptyset$. Therefore, we can define the operator $a(x, D)$: $\mathcal{C}\left(\Gamma_{0}^{0}\right) \rightarrow \mathcal{C}\left(\Gamma_{0}^{0}\right)$ by $a(x, D) u=\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}$ for $R \gg 1$, and the operator $a(x, D): \mathcal{C}\left(\Gamma^{0}\right) \rightarrow \mathcal{C}\left(\Gamma^{0}\right)$. Moreover, it follows from Lemma 2.2 that

$$
a(x, D)\left(\left.w\right|_{\mathcal{U}}\right)=\left.(a(x, D) w)\right|_{\mathcal{U}} \quad \text { for } w \in \mathcal{C}(\mathcal{V})
$$

where \mathcal{U} and \mathcal{V} are open subsets of $\mathbb{R}^{n} \times S^{n-1}$ satisfying $\mathcal{U} \subset \mathcal{V} \subset \Gamma^{0}$. So we can define $a(x, D): \mathcal{C}_{\Gamma^{0}} \rightarrow \mathcal{C}_{\Gamma^{0}}$, which is a sheaf homomorphism. Let X be an open subset of \mathbb{R}^{n}, and assume that $a(x, \xi) \in P S^{+}\left(X ; R_{0}, A\right)$. Similarly, taking $\Gamma=X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, we can define the operator $a(x, D)$: $\mathcal{B}(U) \rightarrow \mathcal{B}(U) / \mathcal{A}(U)$ and the operator $a(x, D): \mathcal{B}(U) / \mathcal{A}(U) \rightarrow \mathcal{B}(U) / \mathcal{A}(U)$, where U is a bounded open subset of X and $\mathcal{A}(U)$ denotes the space of all real analytic functions defined in U (see, also, $\S 2.7$ of [12]). In doing so, we may choose $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Gamma_{1}, \Gamma_{2}\right)\right)$ so that $\Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times X_{1} \times \mathbb{R}^{n}$, where $\Gamma_{j}=X_{j} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Moreover, we can define the operator $a(x, D): \mathcal{B}_{X} \rightarrow \mathcal{B}_{X} / \mathcal{A}_{X}$ and the operator $a(x, D): \mathcal{B}_{X} / \mathcal{A}_{X} \rightarrow \mathcal{B}_{X} / \mathcal{A}_{X}$, which are sheaf homomorphisms. Here \mathcal{A}_{X} denotes the sheaf (of germs) of real analytic functions on X.

Assume that $a(x, D)$ is a differential operator in X. Let K be a compact subset of X. Then, by duality we can define $a(x, D) w \in \mathcal{A}^{\prime}(K)$ for $w \in \mathcal{A}^{\prime}(K)$. From Proposition 1.2.6 of [12] and the definition of analytic functionals we have supp $a(x, D) w \subset \operatorname{supp} w$ for $w \in \mathcal{A}^{\prime}(K)$. Therefore, we can define $a(x, D): \mathcal{B}_{X} \rightarrow \mathcal{B}_{X}$, which is a sheaf homomorphism. From Theorem 2.7.1 of [12] and Lemma 2.5 it follows that two definitions of $a(x, D)$: $\mathcal{B}_{X} \rightarrow \mathcal{B}_{X} / \mathcal{A}_{X}$ are consistent.

Next we assume that $a(x, \xi) \equiv \sum_{j=0}^{\infty} a_{j}(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$. Choose

$$
\begin{aligned}
\left\{\phi_{j}^{R}(\xi)\right\}_{j \in \mathbb{Z}_{+}} & \subset C^{\infty}\left(\mathbb{R}^{n}\right) \text { so that } 0 \leq \phi_{j}^{R}(\xi) \leq 1 \\
& \phi_{j}^{R}(\xi)= \begin{cases}0 & \text { if }\langle\xi\rangle \leq 2 R j \\
1 & \text { if }\langle\xi\rangle \geq 3 R j\end{cases} \\
& \left|\partial_{\xi}^{\alpha+\beta} \phi_{j}^{R}(\xi)\right| \leq \widehat{C}_{|\beta|}(\widehat{C} / R)^{|\alpha|}\langle\xi\rangle^{-|\beta|} \quad \text { if }|\alpha| \leq 2 j
\end{aligned}
$$

where the $\widehat{C}_{|\beta|}$ and \widehat{C} do not depend on j and R (see $\S 2.2$ of [12]). Then it follows from Lemma 2.2.4 of [12] that

$$
\tilde{a}(x, \xi):=\sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\xi) a_{j}(x, \xi) \in P S^{+}(\Gamma ; R, 2 A+3 \widehat{C}, A)
$$

if $R>C_{0}$. So we can define $a(x, D) u \in \mathcal{C}\left(\Gamma^{0}\right)$ by $a(x, D) u=\tilde{a}(x, D) u$. Indeed, applying the same argument as in $\S 3.7$ of [12] we can see that $a(x, D) u \in \mathcal{C}\left(\Gamma^{0}\right)$ does not depend on the choice of $\left\{\phi_{j}^{R}(\xi)\right\}$. Similarly, $a(x, D)$ defines a sheaf homomorphism $a(x, D): \mathcal{C}_{\Gamma^{0}} \rightarrow \mathcal{C}_{\Gamma^{0}}$.

To state our main results we need the following
Definition 1.4. Let Γ be an open subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and let $p(x, \xi) \in P S^{+}\left(\Gamma ; R_{0}, A\right)\left(\right.$ or $\left.p(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)\right)$, where $R_{0} \geq 1$ and $A, C_{0} \geq 0$.
(i) For $z^{0}=\left(x^{0}, \xi^{0}\right) \in \Gamma$ we say that $p(x, D)$ is analytic microhypoelliptic at z^{0} if there is an open neighborhood \mathcal{U} of $\left(x^{0}, \xi^{0} /\left|\xi^{0}\right|\right)$ in $\Gamma \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$ satisfying supp $u=\operatorname{supp} p(x, D) u$ for any $u \in \mathcal{C}(\mathcal{U})$, i.e., the sheaf homomorphism $p(x, D): \mathcal{C}_{\mathcal{U}} \rightarrow \mathcal{C}_{\mathcal{U}}$ is injective.
(ii) For $z^{0}=\left(x^{0}, \xi^{0}\right) \in \Gamma$ we say that $p(x, D)$ is microlocally solvable at z^{0} if there is a open neighborhood \mathcal{U} of $\left(x^{0}, \xi^{0} /\left|\xi^{0}\right|\right)$ in $\Gamma \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$ satisfying the following; for any $f \in \mathcal{C}(\mathcal{U})$ there is $u \in \mathcal{C}(\mathcal{U})$ such that $p(x, D) u=f$ in $\mathcal{C}(\mathcal{U})$, i.e., $p(x, D): \mathcal{C}(\mathcal{U}) \rightarrow \mathcal{C}(\mathcal{U})$ is surjective.
(iii) Assume that $\Gamma=X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, i.e., $p(x, \xi) \in P S^{+}\left(X ; R_{0}, A\right)$ (or $p(x, \xi) \in F S^{+}\left(X ; C_{0}, A\right)$), where X is an open subset of \mathbb{R}^{n}. Let $x^{0} \in X$. We say that $p(x, D)$ is analytic hypoelliptic at x^{0} if there is an open neighborhood U of x^{0} in X satisfying supp $u=\operatorname{supp} p(x, D) u$ for any $u \in \mathcal{B}(U) / \mathcal{A}(U)$, i.e., the sheaf homomorphism $p(x, D): \mathcal{B}_{U} / \mathcal{A}_{U} \rightarrow \mathcal{B}_{U} / \mathcal{A}_{U}$ is injective. Similarly, we say that $p(x, D)$ is locally solvable at x^{0} modulo analytic functions if there is an open neighborhood U of x^{0} in X satisfying
the following; for any $f \in \mathcal{B}(U) / \mathcal{A}(U)$ there is $u \in \mathcal{B}(U) / \mathcal{A}(U)$ such that $p(x, D) u=f$ in $\mathcal{B}(U) / \mathcal{A}(U)$, i.e., $p(x, D): \mathcal{B}(U) / \mathcal{A}(U) \rightarrow \mathcal{B}(U) / \mathcal{A}(U)$ is surjective. Assume that $p(x, \xi)$ is a polynomial of ξ whose coefficients are real analytic functions of x defined in X. Then we say that $p(x, D)$ is locally solvable at x^{0} if there is an open neighborhood U of x^{0} in X such that $p(x, D): \mathcal{B}(U) \rightarrow \mathcal{B}(U)$ is surjective.

ThEOREM 1.5. Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ and $z^{0}=\left(x^{0}, \xi^{0}\right) \in \Gamma$. Let $p(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$, where $A, C_{0} \geq 0$. Then $\left({ }^{t} p\right)(x, D)$ is microlocally solvable at $\left(x^{0},-\xi^{0}\right)$ if $p(x, D)$ is analytic microhypoelliptic at z^{0}.

Theorem 1.6. Let X be an open subset of \mathbb{R}^{n} and $x^{0} \in X$. Let $p(x, \xi) \in F S^{+}\left(X ; C_{0}, A\right)$, where $A, C_{0} \geq 0$. Then $\left({ }^{t} p\right)(x, D)$ is locally solvable at x^{0} modulo analytic functions if $p(x, D)$ is analytic hypoelliptic at x^{0}.

In $\S 2$ we shall give preliminary lemmas. Theorems 1.5 and 1.6 will be proved in $\S 3$.

The author would like to thank Professor P. Schapira for informing him about the paper [2] of Cordaro and Trépreau.

2. Preliminaries

In this section we shall prepare a series of lemmas for the proofs of Theorems 1.5 and 1.6.

Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$. We write $\Gamma_{\varepsilon}=\{(x, \xi) \in$ $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right) ;|(x, \xi /|\xi|)-(y, \eta /|\eta|)|<\varepsilon$ for some $\left.(y, \eta) \in \Gamma\right\}$ for $\varepsilon>0$. For a subset U of \mathbb{R}^{n} and $\varepsilon>0$ we write $U_{\varepsilon}=\left\{x \in \mathbb{R}^{n} ;|x-y|<\varepsilon\right.$ for some $y \in U\}$. We also write $\gamma_{\varepsilon}=\left\{\xi \in \mathbb{R}^{n} \backslash\{0\} ;|\xi /|\xi|-\eta /|\eta||<\varepsilon\right.$ for some $\eta \in \gamma\}$ for a conic subset γ of $\mathbb{R}^{n} \backslash\{0\}$ and $\varepsilon>0$.

Lemma 2.1. Let $p(\xi, y, \eta) \in S^{+}\left(R_{0}, A\right)$. Assume that $p(\xi, y, \eta)=0$ if $(y, \eta) \in \Gamma_{\varepsilon},|\xi /|\xi|-\eta /|\eta|| \leq \varepsilon / 4$ and $\langle\xi\rangle \geq R_{0}$, where $\varepsilon>0$. Then there is $R_{0}(\varepsilon)>0$ such that

$$
W F_{A}\left(p\left(D_{x}, y, D_{y}\right) u\right) \cap \Gamma=\emptyset \quad \text { for } u \in \mathcal{F}_{0}
$$

if $R_{0} \geq R_{0}(\varepsilon) A$.

Proof. It follows from Proposition 1.2 that $p\left(D_{x}, y, D_{y}\right) u \in \mathcal{F}_{0}$ if $u \in \mathcal{F}_{0}$ and $R_{0} \geq 2 e \sqrt{n} A$. Let $\left(x^{0}, \xi^{0}\right) \in \Gamma$, and let $U \times \gamma$ be an open conic neighborhood of $\left(x^{0}, \xi^{0}\right)$ satisfying $U \times \gamma \subset \Gamma$. We choose $\left\{g^{R}(\xi)\right\}_{R \geq R}$ so that supp $g^{R} \subset \gamma_{\varepsilon / 4}, g^{R}(\xi)=1$ in $\gamma \cap\{\langle\xi\rangle \geq R\}$ and

$$
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} g^{R}(\xi)\right| \leq C_{|\tilde{\alpha}|}(\varepsilon)(C(\varepsilon) / R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|}
$$

if $\langle\xi\rangle \geq R|\alpha|$, where the $C_{j}(\varepsilon)$ and $C(\varepsilon)$ are positive constants depending on ε. Put

$$
\tilde{p}^{R}(\xi, y, \eta)=g^{R}(\xi) p(\xi, y, \eta)\left(\in S^{+}\left(R, R A / R_{0}+C(\varepsilon), R A / R_{0}, R A / R_{0}\right)\right)
$$

for $R \geq R_{0}$. Then we have $\tilde{p}^{R}(\xi, y, \eta)=0$ if $y \in U_{\varepsilon / 2},|\xi /|\xi|-\eta /|\eta|| \leq$ $\varepsilon / 4$ and $\langle\xi\rangle \geq R_{0}$. Applying Corollary 2.6.3 of [12] we see that there are positive constants $R_{j}(\varepsilon)(j=1,2)$ such that $\tilde{p}^{R}\left(D_{x}, y, D_{y}\right) u(=$ $\left.g^{R}(D)\left(p\left(D_{x}, y, D_{y}\right) u\right)\right)$ is analytic in U for $u \in \mathcal{F}_{0}$ if $R \geq R_{1}(\varepsilon)\left(R A / R_{0}+\right.$ $C(\varepsilon))+R_{2}(\varepsilon)$ and $R \geq R_{0}$. From the definition of $W F_{A}(\cdot)$ the lemma easily follows.

Lemma 2.2. Let $p(\xi, y, \eta) \in S^{+}\left(R_{0}, A\right)$, and let Γ_{1} be an open conic subset of Γ such that $\Gamma_{1} \Subset \Gamma$. Then there is $R_{0}\left(\Gamma_{1}, \Gamma\right)>0$ such that $W F_{A}\left(p\left(D_{x}, y, D_{y}\right) u\right) \cap \Gamma_{1}=\emptyset$ if $u \in \mathcal{F}_{0}, W F_{A}(u) \cap \Gamma=\emptyset$ and $R_{0} \geq$ $R_{0}\left(\Gamma_{1}, \Gamma\right) A$.

Proof. By Proposition 1.2 we have $p\left(D_{x}, y, D_{y}\right) u \in \mathcal{F}_{0}$ if $u \in \mathcal{F}_{0}$ and $R_{0} \geq 2 e \sqrt{n} A$. Let $u \in \mathcal{F}_{0}$, and assume that $W F_{A}(u) \cap \Gamma=\emptyset$. Let $\left(x^{0}, \xi^{0}\right) \in \Gamma_{1}$, and let $U \times \gamma$ be an open conic neighborhood of $\left(x^{0}, \xi^{0}\right)$ satisfying $U \times \gamma \subset \Gamma_{1}$. Then there is $\varepsilon>0$ such that $U_{2 \varepsilon} \times \gamma_{3 \varepsilon} \Subset \Gamma$. We choose $\left\{g_{j}^{R}(\xi)\right\}_{R \geq R_{0}}(j=1,2)$ so that supp $g_{1}^{R} \subset \gamma_{\varepsilon}$, supp $g_{2}^{R} \subset \gamma_{3 \varepsilon}$, $g_{1}^{R}(\xi)=1$ in $\gamma \cap\{\langle\xi\rangle \geq R\}, g_{2}^{R}(\xi)=1$ in $\gamma_{2 \varepsilon} \cap\{\langle\xi\rangle \geq R\}$ and

$$
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} g_{j}^{R}(\xi)\right| \leq C_{j,|\tilde{\alpha}|}(\varepsilon)(C(\varepsilon) / R)^{|\alpha|}\langle\xi\rangle^{-|\tilde{\alpha}|}
$$

if $\langle\xi\rangle \geq R|\alpha|$ and $j=1,2$, where the $C_{j, k}(\varepsilon)$ and $C(\varepsilon)$ are positive constants. Then it follows from Proposition 3.1.2 (i) and (ii) of [12] that there is $R(\varepsilon)>$ 0 such that $g_{2}^{R}(D) u$ is analytic in U_{ε} if $R \geq R(\varepsilon)$. Put

$$
\begin{aligned}
& p_{1}^{R}(\xi, y, \eta)=g_{1}^{R}(\xi) p(\xi, y, \eta) g_{2}^{R}(\eta)\left(\in S^{+}\left(R, R A / R_{0}+C(\varepsilon)\right)\right) \\
& p_{2}^{R}(\xi, y, \eta)=g_{1}^{R}(\xi) p(\xi, y, \eta)\left(1-g_{2}^{R}(\eta)\right)\left(\in S^{+}\left(R, R A / R_{0}+C(\varepsilon)\right)\right)
\end{aligned}
$$

for $R \geq R_{0}$. Note that $g_{1}^{R}(D)\left(p\left(D_{x}, y, D_{y}\right) u\right)=p_{1}^{R}\left(D_{x}, y, D_{y}\right) u+p_{2}^{R}\left(D_{x}, y\right.$, $\left.D_{y}\right) u$. By Corollary 2.6 .6 of [12] there are positive constants $R_{1}(\varepsilon)$ and $R_{2}(\varepsilon)$ such that $p_{1}^{R}\left(D_{x}, y, D_{y}\right) u$ is analytic in U if $R \geq R_{1}(\varepsilon)\left(R A / R_{0}+\right.$ $C(\varepsilon))+R_{2}(\varepsilon)$ and $R \geq R_{0} \geq 2 e \sqrt{n} A$. On the other hand, we have

$$
p_{2}^{R}(\xi, y, \eta)=0 \quad \text { if }|\xi /|\xi|-\eta /|\eta||<\varepsilon \text { and }\langle\eta\rangle \geq R
$$

Therefore, it follows from Lemma 2.1 (or Corollary 2.6.3 of [12]) that $p_{2}^{R}\left(D_{x}, y, D_{y}\right) u$ is analytic in \mathbb{R}^{n} if $R \geq R_{0}^{\prime}(\varepsilon)\left(R A / R_{0}+C(\varepsilon)\right)$, where $R_{0}^{\prime}(\varepsilon)>0$. Indeed, one can apply Lemma 2.1 to $p_{2}^{R}(\xi, y, \eta) \phi_{1}^{R}(\eta)$. Proposition 1.2 implies that $p_{2}^{R}\left(D_{x}, y, D_{y}\right)\left(1-\phi_{1}^{R}(D)\right) u$ is analytic. This proves the lemma.

Lemma 2.3. Let $q(\xi, y, \eta)$ be a symbol in $C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ such that

$$
\left|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta} \partial_{\eta}^{\gamma} q(\xi, y, \eta)\right| \leq C_{|\tilde{\alpha}|+|\gamma|, \delta}\left(A / R_{0}\right)^{|\alpha|+|\beta|}\langle\eta\rangle^{|\beta|} e^{\delta\langle\xi\rangle+\delta\langle\eta\rangle}
$$

if $\langle\xi\rangle \geq R_{0}|\alpha|,\langle\eta\rangle \geq R_{0}|\beta|$ and $\delta>0$, where $A \geq 0$ and $R_{0} \geq 1$. Let U be an open subset of \mathbb{R}^{n}, and assume that $q(\xi, y, \eta)=0$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times U_{\varepsilon} \times \mathbb{R}^{n}$, where $\varepsilon>0$. Then there is $R(\varepsilon)>0$ such that $q\left(D_{x}, y, D_{y}\right) u$ is analytic in U if $u \in \mathcal{F}_{0}$ and $R_{0} \geq R(\varepsilon) A$.

Proof. It follows from Proposition 1.2 that $q\left(D_{x}, y, D_{y}\right)$ is a continuous linear operator on \mathcal{F}_{0} if $R_{0} \geq 2 e \sqrt{n} A$. In order to prove the lemma we shall apply the same argument as in the proof of Proposition 3.2.1 of [12]. We may assume that U is bounded. We can write

$$
\langle D\rangle^{\nu} e^{-\rho\langle D\rangle} q\left(D_{x}, y, D_{y}\right) u=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty}\left\langle e^{-\delta\langle\eta\rangle} \hat{u}(\eta), f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right\rangle_{\eta}
$$

for $u \in \mathcal{F}_{0}, \nu=0,1,0<\rho \leq 1$ and $0<\delta \leq 1$, where $M \in \mathbb{Z}_{+}$satisfies $M>n / 2, R \geq R_{0}, \psi_{j}^{R}(\xi):=\phi_{j-1}^{R}(\xi)-\phi_{j}^{R}(\xi)(j \in \mathbb{N})$ and

$$
\begin{aligned}
f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho) & =(2 \pi)^{-2 n} \int e^{i(x-y) \cdot \xi+i y \cdot \eta+\delta\langle\eta\rangle} \\
\times & \psi_{k}^{R}(\eta)\langle x-y\rangle^{-2 M}\left\langle D_{\xi}\right\rangle^{2 M}\left(\langle\xi\rangle^{\nu} e^{-\rho\langle\xi\rangle} \psi_{j}^{R}(\xi) q(\xi, y, \eta)\right) d \xi d y
\end{aligned}
$$

Here the $\phi_{j}^{R}(\xi)$ are symbols as in $\S 1$. Since $\operatorname{Re}(1+(x-y) \cdot(x-y))=$ $1+|\operatorname{Re} x-y|^{2}-|\operatorname{Im} x|^{2}$ for $x \in \mathbb{C}^{n}$ and $y \in \mathbb{R}^{n}, f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)$ is analytic
in x if $|\operatorname{Im} x|<1$. Let us first consider the case where $j, k \in \mathbb{N}$ and $2 R(k-1)-1 \geq 6 R j$. Then we have $|\eta| \geq 2|\xi|$ if $\psi_{j}^{R}(\xi) \psi_{k}^{R}(\eta) \neq 0$. Let K be a differential operator defined by

$$
{ }^{t} K=|\xi-\eta|^{-2} \sum_{\ell=1}^{n}\left(\eta_{\ell}-\xi_{\ell}\right) D_{y_{\ell}}
$$

A simple calculation gives

$$
\begin{aligned}
& \mid \partial_{\xi}^{\alpha} \partial_{\eta}^{\gamma} K^{k}\left\{\psi_{k}^{R}(\eta)\langle\xi\rangle^{\nu} e^{-\rho\langle\xi\rangle} \psi_{j}^{R}(\xi) q(\xi, y, \eta)\right\} \\
& \quad \leq C_{|\alpha|+|\gamma|, \delta^{\prime}}\left(16 n A / R_{0}\right)^{k}\langle\xi\rangle^{\nu-|\alpha|}\langle\eta\rangle^{-|\gamma|} e^{\delta^{\prime}\langle\xi\rangle+\delta^{\prime}\langle\eta\rangle}
\end{aligned}
$$

if $\delta^{\prime}>0$. Here we have used the facts given in $\S 2.1$ of [12]. Taking $M>$ $(|\gamma|+n) / 2$, we can write

$$
\begin{aligned}
& \langle\eta\rangle^{\ell} D_{\eta}^{\gamma} f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)=(2 \pi)^{-2 n} \int e^{i(x-y) \cdot \xi+i y \cdot \eta+\delta\langle\eta\rangle} \\
& \quad \times\langle x-y\rangle^{-2 M}\langle\eta\rangle^{\ell} \sum_{\gamma^{\prime} \leq \gamma}\binom{\gamma}{\gamma^{\prime}} t_{\delta, \gamma-\gamma^{\prime}}(y, \eta) D_{\eta}^{\gamma^{\prime}}\left\langle D_{\xi}\right\rangle^{2 M} K^{k} \\
& \quad \times\left\{\psi_{k}^{R}(\eta)\langle\xi\rangle^{\nu} e^{-\rho\langle\xi\rangle} \psi_{j}^{R}(\xi) q(\xi, y, \eta)\right\} d \xi d y
\end{aligned}
$$

where $t_{\delta, \gamma}(y, \eta)=e^{-i y \cdot \eta-\delta\langle\eta\rangle} D_{\eta}^{\gamma} e^{i y \cdot \eta+\delta\langle\eta\rangle}$. Therefore, we have

$$
\begin{aligned}
& \left|\langle\eta\rangle^{\ell} D_{\eta}^{\gamma} f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right| \leq C_{\delta,|\gamma|, \ell \delta^{\prime}, R} j^{-2} k^{-2}\langle\operatorname{Re} x\rangle^{|\gamma|} \\
& \quad \times \exp \left[\left(\delta+\delta^{\prime}+\left(\rho_{1}+\delta^{\prime}\right) / 2-1 /(3 R)\right)\langle\eta\rangle\right]
\end{aligned}
$$

if $\ell \in \mathbb{Z}_{+}, \gamma \in\left(\mathbb{Z}_{+}\right)^{n}, \delta^{\prime}>0, x \in \mathbb{C}^{n},|\operatorname{Im} x| \leq \rho_{1} \leq 1 / 2$ and $R_{0} \geq 32 e n A$. Moreover, $\left\langle e^{-\delta\langle\eta\rangle} \hat{u}(\eta), f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right\rangle_{\eta}$ is analytic in x and

$$
\begin{equation*}
\left|\left\langle e^{-\delta\langle\eta\rangle} \hat{u}(\eta), f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right\rangle_{\eta}\right| \leq C_{\delta, R, r}(u) j^{-2} k^{-2} \tag{2.1}
\end{equation*}
$$

if $u \in \mathcal{F}_{0}, x \in \mathbb{C}^{n},|\operatorname{Re} x| \leq r,|\operatorname{Im} x| \leq \rho_{1} \leq 1 / 2, R \geq R_{0} \geq 32 e n A$ and $\delta+\rho_{1} / 2<1 /(3 R)$. Next consider the case where $j, k \in \mathbb{N}$ and $2 R(k-1)-1<$ $6 R j$. Then we have $2\langle\eta\rangle \leq 9\langle\xi\rangle(1+27 R /\langle\xi\rangle)$ if $\psi_{j}^{R}(\xi) \psi_{k}^{R}(\eta) \neq 0$. Let L be a differential operator defined by

$$
{ }^{t} L=|x-y|^{-2} \sum_{\ell=1}^{n}\left(\bar{x}_{\ell}-y_{\ell}\right) D_{\xi_{\ell}}
$$

for $x \in \mathbb{C}^{n}$ with $\operatorname{Re} x \in U$ and $y \notin \mathbb{R}^{n} \backslash U_{\varepsilon}$. Then we have

$$
\begin{aligned}
& \left|\partial_{\eta}^{\gamma} L^{j+M}\left\{\psi_{k}^{R}(\eta)\langle\xi\rangle^{\nu} e^{-\rho\langle\xi\rangle} \psi_{j}^{R}(\xi) q(\xi, y, \eta)\right\}\right| \\
& \leq C_{|\gamma|, M, \delta^{\prime}, R}\left(\sqrt{n}\left(A / R_{0}+(\widehat{C}+6(1+\sqrt{2})) / R\right) / \varepsilon\right)^{j} \\
& \quad \times|x-y|^{-M}\langle\xi\rangle^{\nu-M}\langle\eta\rangle^{-|\gamma|} e^{\delta^{\prime}\langle\xi\rangle+\delta^{\prime}\langle\eta\rangle}
\end{aligned}
$$

if $\delta^{\prime}>0, x \in \mathbb{C}^{n}$ and Re $x \in U$. Taking $M>|\gamma|+n$, we have

$$
\left|\langle\eta\rangle^{\ell} D_{\eta}^{\gamma} f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right| \leq C_{\delta,|\gamma|, \ell, \varepsilon, R}(U) j^{-2} k^{-2}
$$

if $\ell \in \mathbb{Z}_{+}, \gamma \in\left(\mathbb{Z}_{+}\right)^{n}, x \in \mathbb{C}^{n}$, Re $x \in U,|\operatorname{Im} x| \leq \rho_{1}$ and

$$
\left\{\begin{array}{l}
R_{0} \geq 4 e \sqrt{n} A / \varepsilon, \quad R \geq 4 e \sqrt{n}(\widehat{C}+6(1+\sqrt{2})) / \varepsilon \tag{2.2}\\
9 \delta+\rho_{1}<1 /(3 R)
\end{array}\right.
$$

Moreover, $\left\langle e^{-\delta\langle\eta\rangle} \hat{u}(\eta), f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right\rangle_{\eta}$ is analytic in x and

$$
\begin{equation*}
\left|\left\langle e^{-\delta\langle\eta\rangle} \hat{u}(\eta), f_{\nu, \delta, j, k}^{R}(x, \eta ; \rho)\right\rangle_{\eta}\right| \leq C_{\delta, \varepsilon, R}(U, u) j^{-2} k^{-2} \tag{2.3}
\end{equation*}
$$

if $u \in \mathcal{F}_{0}, x \in \mathbb{C}^{n}$, $\operatorname{Re} x \in U,|\operatorname{Im} x| \leq \rho_{1} \leq 1 / 2$ and (2.2) is valid. We put

$$
V\left(x, x_{n+1}\right)=\mathcal{H}\left(q\left(D_{x}, y, D_{y}\right) u\right)\left(x, x_{n+1}\right)
$$

and assume that

$$
\begin{aligned}
& R_{0} \geq \max \{32 e n A, 4 e \sqrt{n} A / \varepsilon\} \\
& 0<\rho_{1}<\min \left\{1 / 2,1 /\left(3 R_{0}\right), \varepsilon /(12 e \sqrt{n}(\widehat{C}+6(1+\sqrt{2}))\}\right.
\end{aligned}
$$

Then it follows from (2.1) and (2.3) that $\left\langle D_{x}\right\rangle^{\nu} V(x, \rho)(\nu=0,1)$ can be continued analytically to $\left\{x \in \mathbb{C}^{n} ; \operatorname{Re} x \in U\right.$ and $\left.|\operatorname{Im} x|<\rho_{1}\right\}$. Applying Lemma 1.2.4 of [12] to the Cauchy problem

$$
\left\{\begin{array}{l}
\left(1-\Delta_{x, x_{n+1}}\right) v\left(x, x_{n+1}\right)=0 \\
v(x, \rho)=V(x, \rho), \quad\left(\partial v / \partial x_{n+1}\right)(x, \rho)=-\left\langle D_{x}\right\rangle V(x, \rho)
\end{array}\right.
$$

we can show that $V\left(x, x_{n+1}\right)$ can be continued analytically from $\mathbb{R}^{n} \times(0, \infty)$ to $U \times\left(\rho-\rho_{1}, \infty\right)$. This implies that $q\left(D_{x}, y, D_{y}\right) u$ is analytic in U.

Lemma 2.4. Let $a(x, \xi)$ be a symbol satisfying

$$
\left|a_{(\beta+\tilde{\beta})}^{(\alpha)}(x, \xi)\right| \leq C_{|\alpha|+|\tilde{\beta}|, \delta}\left(A / R_{0}\right)^{|\beta|}\langle\xi\rangle^{|\beta|} e^{\delta\langle\xi\rangle}
$$

if $\langle\xi\rangle \geq R_{0}|\beta|$ and $\delta>0$, where $R_{0}>0$ and $A \geq 0$. Let U be an open subset of \mathbb{R}^{n}, and assume that

$$
\left|a_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{|\alpha|} B^{|\beta|}|\beta|!e^{-c\langle\xi\rangle}
$$

for $x \in U_{\varepsilon}$, where B, c and ε are positive constants. Then there is $C>0$, which is independent of A, R_{0}, B, c and ε, such that $a(x, D) u$ is analytic in U if $u \in \mathcal{F}_{0}$ and $R_{0} \geq C A$.

Proof. Choose symbols $\varphi^{R}(x, \xi) \in S^{0}\left(R, C_{*}, C(\varepsilon)\right)(R \geq 4)$ so that $0 \leq \varphi^{R}(x, \xi) \leq 1, \operatorname{supp} \varphi^{R} \subset U_{\varepsilon} \times \mathbb{R}^{n}$ and $\varphi^{R}(x, \xi)=1$ for $x \in U_{2 \varepsilon / 3}$. We put

$$
a_{1}^{R}(x, \xi)=\varphi^{R}(x, \xi) a(x, \xi), \quad a_{2}^{R}(x, \xi)=\left(1-\varphi^{R}(x, \xi)\right) a(x, \xi)
$$

Then we have

$$
\begin{aligned}
& \left|a_{1(\beta)}^{R(\alpha)}(x, \xi)\right| \leq C_{|\alpha|+|\beta|, \varepsilon} e^{-c\langle\xi\rangle} \\
& \left|a_{1(\beta)}^{R(\alpha)}(x, \xi)\right| \leq C_{|\alpha|} B^{|\beta|}|\beta|!e^{-c\langle\xi\rangle \quad \text { for } x \in U_{2 \varepsilon / 3}} .
\end{aligned}
$$

Since $e^{-c\langle\xi\rangle / 2} \hat{u}(\xi) \in \mathcal{S}^{\prime}$ and

$$
a_{1}^{R}(x, D) u(x)=(2 \pi)^{-n}\left\langle e^{-c\langle\xi\rangle / 2} \hat{u}(\xi), e^{i x \cdot \xi+c\langle\xi\rangle / 2} a_{1}^{R}(x, \xi)\right\rangle_{\xi}
$$

for $u \in \mathcal{F}_{0}, a_{1}^{R}(x, D) u(x)$ is analytic in $U_{2 \varepsilon / 3}$. Moreover, we have supp $a_{2}^{R} \cap$ $\bar{U}_{\varepsilon / 3} \times \mathbb{R}^{n}=\emptyset$ and

$$
\left|a_{2(\beta+\tilde{\beta})}^{R(\alpha)}(x, \xi)\right| \leq C_{|\alpha|+|\tilde{\beta}|, \delta}\left(A / R_{0}+C(\varepsilon) / R\right)^{|\beta|}\langle\xi\rangle^{|\beta|} e^{\delta\langle\xi\rangle}
$$

if $R \geq R_{0},\langle\xi\rangle \geq R|\beta|$ and $\delta>0$. It follows from Theorem 2.6.1 of [12] that there are $C>0$ and $R(\varepsilon)>0$ such that supp $a_{2}^{R}(x, D) u \cap U=\emptyset$ if $R_{0} \geq C A, R \geq R(\varepsilon)$ and $u \in \mathcal{F}_{0}$. This proves the lemma.

Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and assume that $a(x, \xi) \in P S^{+}\left(\Gamma ; R_{0}, A\right)$, where $A \geq 0$ and $R_{0} \geq 4$. Let $\Gamma_{j}(j=1,2)$
be open conic subsets of Γ such that $\Gamma_{1} \Subset \Gamma_{2} \Subset \Gamma$. Moreover, let $\varepsilon>0$, and let $X \times \gamma$ be an open conic subset of Γ_{1} such that $X_{2 \varepsilon} \times \gamma_{2 \varepsilon} \subset \Gamma_{1}$. We choose symbols $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Gamma_{1}, \Gamma_{2}\right)\right)$ and $\varphi^{R}(x, \xi) \in S^{0,0}\left(R, C_{*}, C(\varepsilon)\right)$ and $g^{R}(\xi) \in S^{0,0}(R, C(\varepsilon))(R \geq 4)$ so that $0 \leq$ $\Phi^{R}(\xi, y, \eta), \varphi^{R}(x, \xi), g^{R}(\xi) \leq 1, \operatorname{supp} \Phi^{R} \subset \mathbb{R}^{n} \times \Gamma_{2}, \operatorname{supp} \varphi^{R} \subset X_{\varepsilon} \times \mathbb{R}^{n}$, $\operatorname{supp} g^{R} \subset \gamma_{\varepsilon} \cap\{|\xi| \geq R\}, \Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Gamma_{1}$ with $\langle\eta\rangle \geq R, \varphi^{R}(x, \xi)=1$ for $(x, \xi) \in X_{\varepsilon / 2} \times \mathbb{R}^{n}$ and $g^{R}(\xi)=1$ for $\xi \in \gamma_{\varepsilon / 2}$ with $|\xi| \geq 2 R$ (see Proposition 2.2.3 in [12]). Put $a^{R}(\xi, y, \eta)=\Phi^{R}(\xi, y, \eta) a(y, \eta)$ and $A^{R}(x, \xi)=\varphi^{R}(x, \xi) g^{R}(\xi) a(x, \xi)$. We denote $\gamma^{0}=\gamma \cap S^{n-1}$. Then we have the following

Lemma 2.5. There is $R_{1}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right) \geq 4$ such that

$$
\left.\left(A^{R}(x, D) u\right)\right|_{X \times \gamma^{0}}=\left.\left(a^{R}\left(D_{x}, y, D_{y}\right) u\right)\right|_{X \times \gamma^{0}} \quad \text { in } \mathcal{C}\left(X \times \gamma^{0}\right)
$$

i.e.,

$$
\left.\left(A^{R}(x, D) u\right)\right|_{X \times \gamma^{0}}=a(x, D)\left(\left.u\right|_{X \times \gamma^{0}}\right) \quad \text { in } \mathcal{C}\left(X \times \gamma^{0}\right),
$$

if $R \geq \max \left\{R_{0}, R_{1}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right)\right\}$ and $u \in \mathcal{F}_{0}$.
Proof. It suffices to show that there is $R_{1}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right) \geq 4$ such that

$$
W F_{A}\left(a^{R}\left(D_{x}, y, D_{y}\right) u-A^{R}(x, D) u\right) \cap X \times \gamma=\emptyset
$$

if $R \geq \max \left\{R_{0}, R_{1}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right)\right\}$ and $u \in \mathcal{F}_{0}$. Write

$$
a^{R}\left(D_{x}, y, D_{y}\right)-A^{R}(x, D)=a_{1}^{R}\left(D_{x}, y, D_{y}\right)+a_{2}^{R}\left(D_{x}, y, D_{y}\right) \quad \text { on } \mathcal{F}_{0}
$$

where

$$
\begin{aligned}
& a_{1}^{R}(\xi, y, \eta)=\left(\Phi^{R}(\xi, y, \eta) g^{R}(\eta)-\varphi^{R}(y, \eta) g^{R}(\eta)\right) a(y, \eta), \\
& a_{2}^{R}(\xi, y, \eta)=\Phi^{R}(\xi, y, \eta)\left(1-g^{R}(\eta)\right) a(y, \eta) .
\end{aligned}
$$

We note that

$$
\begin{aligned}
& \left|\partial_{\xi}^{\alpha+\tilde{\alpha}} D_{y}^{\beta} \partial_{\eta}^{\gamma} a_{1}^{R}(\xi, y, \eta)\right| \\
& \leq C_{|\tilde{\alpha}|+|\gamma|, \delta}\left(C_{*} / R\right)^{|\alpha|}\left(\left(A+C\left(\Gamma_{1}, \Gamma_{2}\right)+C(\varepsilon)\right) / R\right)^{|\beta|}\langle\eta\rangle^{|\beta|} e^{\delta\langle\eta\rangle}
\end{aligned}
$$

if $\langle\xi\rangle \geq R|\alpha|,\langle\eta\rangle \geq R|\beta|$ and $\delta>0$, and that $a_{1}^{R}(\xi, y, \eta)=0$ if $y \in X_{\varepsilon / 2}$. By Lemma 2.3 there is $R_{1}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right) \geq 4$ such that $a_{1}^{R}\left(D_{x}, y, D_{y}\right) u$ is analytic in X if $u \in \mathcal{F}_{0}$ and $R \geq R_{1}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right)$. It is easy to see that $a_{2}^{R}(\xi, y, \eta) \in S^{+}\left(R, C_{*}, 2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), A+C\left(\Gamma_{1}, \Gamma_{2}\right)+C(\varepsilon)\right)$ if $R \geq R_{0}$, and that $a_{2}^{R}(\xi, y, \eta)=0$ if $\eta \in \gamma_{\varepsilon / 2}$ and $|\eta| \geq 2 R$. Therefore, from Lemma 2.1 there is $R_{2}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right) \geq 4$ such that

$$
W F_{A}\left(a_{2}^{R}\left(D_{x}, y, D_{y}\right) u\right) \cap \mathbb{R}^{n} \times \gamma=\emptyset \quad \text { for } u \in \mathcal{F}_{0}
$$

if $R \geq \max \left\{R_{0}, R_{2}\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right)\right\}$, which proves the lemma.
Next assume that $a(x, \xi) \equiv \sum_{j=0}^{\infty} a_{j}(x, \xi) \in F S^{+}\left(\Gamma ; C_{0}, A\right)$. We put $\tilde{a}(x, \xi)=\sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\xi) a_{j}(x, \xi)\left(\in P S^{+}(\Gamma ; R, 2 A+3 \widehat{C}, A)\right)$ and $\tilde{a}^{R}(\xi, y, \eta)=$ $\Phi^{R}(\xi, y, \eta) \tilde{a}(y, \eta)\left(\in S^{+}\left(R, C_{*}, 2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), 2 A+3 \widehat{C}+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)\right)$ for $R>C_{0}$.

Lemma 2.6. There is $R\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right) \geq 4$ such that

$$
\left.\left({ }^{t} \tilde{a}^{R}\left(D_{x}, y, D_{y}\right) u\right)\right|_{X \times(-\gamma)^{0}}=\left({ }^{t} a\right)(x, D)\left(\left.u\right|_{\left.X \times(-\gamma)^{0}\right)} \quad \text { in } \mathcal{C}\left(X \times(-\gamma)^{0}\right)\right.
$$

if $R \geq R\left(A, \Gamma_{1}, \Gamma_{2}, \varepsilon\right)$ and $u \in \mathcal{F}_{0}$, where $-\gamma=\{\xi ;-\xi \in \gamma\}$.
Proof. Note that ${ }^{t} \tilde{a}^{R}\left(D_{x}, y, D_{y}\right) u=B^{R}\left(D_{x}, y, D_{y}\right) u$ for $u \in \mathcal{F}_{0}$, where $B^{R}(\xi, y, \eta)=\tilde{a}^{R}(-\eta, y,-\xi)$. It follows from Corollary 2.4.7 in [12] that there are symbols $q_{j}(x, \xi)(j=1,2)$ and $R\left(C_{0}, A_{1}\right)>\max \left\{4, C_{0}\right\}$ such that ${ }^{t} \tilde{a}^{R}\left(D_{x}, y, D_{y}\right)=q_{1}(x, D)+q_{2}(x, D)$ on $\mathcal{S}_{\infty}, q_{1}(x, \xi) \in S^{+}\left(4 R, \widehat{C}_{*}+\right.$ $10 A_{1}$) and

$$
\left|q_{2(\beta)}^{(\alpha)}(x, \xi)\right| \leq C_{|\alpha|, R}(4 R+1)^{|\beta|}|\beta|!e^{-\langle\xi\rangle / R}
$$

if $R \geq R\left(C_{0}, A_{1}\right)$, where $A_{1}=\max \left\{C_{*}, 2 A+3 \widehat{C}+C\left(\Gamma_{1}, \Gamma_{2}\right)\right\}$ and \widehat{C}_{*} is a positive constant. There is $R\left(C_{0}, A_{1}, \varepsilon\right) \geq R\left(C_{0}, A_{1}\right)$ such that

$$
\left|\partial_{\xi}^{\alpha} D_{x}^{\beta}\left\{q_{1}(x, \xi)-q(x, \xi)\right\}\right| \leq C_{|\alpha|, R}(R+1)^{|\beta|}|\beta|!e^{-\langle\xi\rangle / R}
$$

if $(x,-\xi) \in X_{\varepsilon} \times \gamma_{\varepsilon}$ and $R \geq R\left(C_{0}, A_{1}, \varepsilon\right)$, where

$$
\begin{aligned}
& b_{j}(x, \xi)=\sum_{k+|\alpha|=j}(-1)^{|\alpha|} a_{k(\alpha)}^{(\alpha)}(x,-\xi) / \alpha!\quad\left(j \in \mathbb{Z}_{+}\right) \\
& q(x, \xi)=\sum_{j=0}^{\infty} \phi_{j}^{4 R}(\xi) b_{j}(x, \xi) \quad \text { for }(x,-\xi) \in \Gamma
\end{aligned}
$$

Write

$$
{ }^{t} \tilde{a}^{R}\left(D_{x}, y, D_{y}\right)=\tilde{q}_{1}(x, D)+\tilde{q}_{2}(x, D)+\widetilde{B}^{R}\left(D_{x}, y, D_{y}\right) \quad \text { on } \mathcal{S}_{\infty}
$$

where $\tilde{q}_{j}(x, \xi)=q_{j}(x, \xi) g^{R}(-\xi)(j=1,2)$ and $\widetilde{B}^{R}(\xi, y, \eta)=\tilde{a}^{R}(-\eta, y$, $-\xi)\left(1-g^{R}(-\xi)\right)$. Proposition 1.2 implies that $\tilde{q}_{2}(x, D) u$ is analytic if $u \in \mathcal{F}_{0}$. It follows from Lemma 2.1 that there is $R_{1}\left(C_{0}, A_{1}, \varepsilon\right) \geq 4$ such that

$$
W F_{A}\left(\widetilde{B}^{R}\left(D_{x}, y, D_{y}\right) u\right) \cap \mathbb{R}^{n} \times(-\gamma)=\emptyset \quad \text { for } u \in \mathcal{F}_{0}
$$

if $R \geq R_{1}\left(C_{0}, A_{1}, \varepsilon\right)$. We note that $b_{j}(x, \xi) \in F S^{+}\left(\check{\Gamma} ; C_{0}^{\prime}, 2 A\right)$, where $C_{0}^{\prime}=$ $\max \left\{C_{0}, 4 n A^{2}\right\}$. Put

$$
\begin{aligned}
\tilde{b}(x, \xi)= & \sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\xi) b_{j}(x, \xi)\left(\in P S^{+}(\check{\Gamma} ; R, 4 A+3 \widehat{C}, 2 A)\right), \\
b^{R}(x, \xi)= & \varphi^{R}(x, \xi) g^{R}(-\xi) \tilde{b}(x, \xi) \\
& \left(\in S^{+}\left(R, C_{*}+4 A+3 \widehat{C}+C(\varepsilon), 2 A+C(\varepsilon)\right)\right),
\end{aligned}
$$

where $R>C_{0}^{\prime}$. Then we can see that $\tilde{q}_{1}(x, \xi)-b^{R}(x, \xi) \in S^{+}\left(4 R, A_{2}\right)$ and

$$
\begin{equation*}
\left|\partial_{\xi}^{\alpha} D_{x}^{\beta}\left\{\tilde{q}_{1}(x, \xi)-b^{R}(x, \xi)\right\}\right| \leq C_{|\alpha|, R} A_{R}^{|\beta|}|\beta|!e^{-\langle\xi\rangle /(24 R)} \tag{2.4}
\end{equation*}
$$

if $x \in X_{\varepsilon / 2}$ and $R \geq \max \left\{R_{1}\left(C_{0}, A_{1}, \varepsilon\right), e C_{0}^{\prime} / 2\right\}$, where $A_{2}=\max \left\{\widehat{C}_{*}+\right.$ $\left.10 A_{1}+4 C(\varepsilon), 4 C_{*}+16 A+12 \widehat{C}+4 C(\varepsilon)\right\}$ and $A_{R}=\max \{R+1,2 A\}$. Indeed, we have

$$
\begin{array}{r}
b^{R}(x, \xi)-q(x, \xi) g^{R}(-\xi)=g^{R}(-\xi) \sum_{j=0}^{\infty}\left(\phi_{j}^{R / 2}(\xi)-\phi_{j}^{4 R}(\xi)\right) b_{j}(x, \xi) \\
\quad \text { for } x \in X_{\varepsilon / 2}
\end{array}
$$

$\operatorname{supp}\left(\phi_{j}^{R / 2}-\phi_{j}^{4 R}\right) \subset\{\xi ; R j \leq\langle\xi\rangle \leq 12 R j\}$,

$$
\left|\partial_{\xi}^{\alpha} D_{x}^{\beta}\left\{b^{R}(x, \xi)-q(x, \xi) g^{R}(-\xi)\right\}\right|
$$

$$
\leq C_{|\alpha|, R, \varepsilon} \sum_{j=0}^{\infty}\left(j!/\left(1+j^{j}\right)\right)\left(C_{0}^{\prime} / R\right)^{j} \chi_{j}(\xi)(2 A)^{|\beta|}|\beta|!e^{\langle\xi\rangle /(24 R)}
$$

$$
\leq C_{|\alpha|, R, \varepsilon}^{\prime}(2 A)^{|\beta|}|\beta|!e^{-\langle\xi\rangle /(24 R)} \quad \text { if } x \in X_{\varepsilon / 2} \text { and } R \geq e C_{0}^{\prime}
$$

where $\chi_{j}(\xi)=\left\{\begin{array}{ll}1 & \text { if } R j \leq\langle\xi\rangle \leq 12 R j, \\ 0 & \text { otherwise. }\end{array} \quad\right.$ The estimates (2.4) and Lemma 2.4 implies that there is $C>0$ such that $\tilde{q}_{1}(x, D) u-b^{R}(x, D) u$ is analytic in X if $u \in \mathcal{F}_{0}$ and $R \geq C A_{2}$. This gives

$$
W F_{A}\left({ }^{t} \tilde{a}^{R}\left(D_{x}, y, D_{y}\right) u-b^{R}(x, D) u\right) \cap X \times(-\gamma)=\emptyset \quad \text { for } u \in \mathcal{F}_{0}
$$

if $R \geq \max \left\{R_{1}\left(C_{0}, A_{1}, \varepsilon\right), C A_{2}\right\}$. So the lemma easily follows from Lemma 2.5.

For $\varepsilon, \nu \in \mathbb{R}$ we can define

$$
L_{\varepsilon, \nu}^{2}:=\left\{f \in \mathcal{S}_{-\varepsilon}^{\prime} ;\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} f(x) \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

Indeed, $e^{\varepsilon\langle D\rangle} f(x) \in \mathcal{S}^{\prime}$ and $\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} f(x)$ is well-defined in \mathcal{S}^{\prime} if $f \in \mathcal{S}_{-\varepsilon}^{\prime}$. $L_{\varepsilon, \nu}^{2}$ is a Hilbert space in which the scalar product is given by

$$
(f, g)_{L_{\varepsilon, \nu}^{2}}:=\left(\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} f,\langle x\rangle^{\nu} e^{\varepsilon\langle D\rangle} g\right)_{L^{2}}
$$

where $(\cdot, \cdot)_{L^{2}}$ denotes the scalar product of $L^{2}\left(\mathbb{R}^{n}\right)$.
Lemma 2.7. Let $a(\xi, y, \eta)$ be a symbol satisfying

$$
\begin{aligned}
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma} a(\xi, y, \eta)\right| \\
& \leq C_{|\alpha|+|\tilde{\beta}|+|\gamma|}\left(A / R_{0}\right)^{|\beta|}\langle\xi\rangle^{-|\alpha|+|\beta|}\langle\eta\rangle^{-|\gamma|} \exp \left[\delta_{1}\langle\xi\rangle-\delta_{2}\langle\eta\rangle\right]
\end{aligned}
$$

for any $\alpha, \beta, \tilde{\beta}, \gamma \in\left(\mathbb{Z}_{+}\right)^{n}$ and $(\xi, y, \eta) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\langle\xi\rangle \geq R_{0}|\beta|$, where $A \geq 0, R_{0} \geq 1$ and $\delta_{1}, \delta_{2} \in \mathbb{R}$.
(i) $a\left(D_{x}, y, D_{y}\right)$ is well-defined on $L_{\varepsilon_{2}, \nu}^{2}$ and maps continuously $L_{\varepsilon_{2}, \nu}^{2}$ to $L_{\varepsilon_{1}, \nu}^{2}$ if $R_{0} \geq 25 e \sqrt{n} A, 2\left(\varepsilon_{1}+\delta_{1}\right)_{+}<\varepsilon_{2}+\delta_{2}$ and $3\left(\varepsilon_{1}+\delta_{1}\right)+2\left(\varepsilon_{2}+\delta_{2}\right)_{-}<$ $1 / R_{0}$.
(ii) If $\varepsilon_{1}<\varepsilon_{2}$ and $\nu_{1}<\nu_{2}$, then $L_{\varepsilon_{2}, \nu_{2}}^{2} \subset L_{\varepsilon_{1}, \nu_{1}}^{2}$ and the inclusion map $L_{\varepsilon_{2}, \nu_{2}}^{2} \ni u \mapsto u \in L_{\varepsilon_{1}, \nu_{1}}^{2}$ is compact.

Remark. The assertion (i) is given in Lemma 5.1.6 of [12] when $\nu=0$.

Proof. (i) Choose a symbol $g(\xi, \eta)$ so that $\left|\partial_{\xi}^{\alpha} \partial_{\eta}^{\gamma} g(\xi, \eta)\right| \leq$ $C_{|\alpha|+|\gamma|}\langle\xi\rangle^{-|\alpha|}\langle\eta\rangle^{-|\gamma|}, g(\xi, \eta)=1$ if $|\xi| \leq 3|\eta| / 2$ or $|\xi| \leq 1$, and $g(\xi, \eta)=0$ if $|\xi| \geq 2|\eta|$ and $|\xi| \geq 2$. We put

$$
a_{1}(\xi, y, \eta)=g(\xi, \eta) a(\xi, y, \eta), \quad a_{2}(\xi, y, \eta)=(1-g(\xi, \eta)) a(\xi, y, \eta) .
$$

Let $\varepsilon_{1}, \varepsilon_{2} \in \mathbb{R}$ satisfy $2\left(\varepsilon_{1}+\delta_{1}\right)_{+}<\varepsilon_{2}+\delta_{2}$. Then we have

$$
\left|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma}\left\{\exp \left[\varepsilon_{1}\langle\xi\rangle-\varepsilon_{2}\langle\eta\rangle\right] a_{1}(\xi, y, \eta)\right\}\right| \leq C_{|\alpha|+|\beta|+|\gamma|}\langle\xi\rangle^{-|\alpha|}\langle\eta\rangle^{-|\gamma|} .
$$

Therefore, there is $b_{1}(x, \xi) \in S_{1,0}^{0}$ such that

$$
\exp \left[\varepsilon_{1}\langle D\rangle\right] a_{1}\left(D_{x}, y, D_{y}\right) \exp \left[-\varepsilon_{2}\langle D\rangle\right]=b_{1}(x, D) \quad \text { on } \mathcal{S}_{\infty} .
$$

Moreover, we have

$$
\begin{aligned}
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma}\left\{\exp \left[-\delta\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right] a_{2}(\xi, y, \eta)\right\}\right| \\
& \leq C_{|\alpha|+|\beta|+|\gamma|}|\xi\rangle^{-|\alpha|}\langle\eta\rangle^{-|\gamma|} \exp \left[-\left(\delta-\delta_{1}\right)\langle\xi\rangle / 2\right]
\end{aligned}
$$

if $\delta>\delta_{1}$. This gives $a_{2}\left(D_{x}, y, D_{y}\right) v \in \mathcal{S}_{-\delta}$ and $\sum_{j=1}^{\infty} \psi_{j}^{R_{0}}(D) a_{2}\left(D_{x}, y\right.$, $\left.D_{y}\right) v=a_{2}\left(D_{x}, y, D_{y}\right) v$ in $\mathcal{S}_{-\delta}$ if $v \in \mathcal{S}_{\infty}$ and $\delta>\delta_{1}$, where $\psi_{j}^{R}(\xi)=$ $\phi_{j-1}^{R}(\xi)-\phi_{j}^{R}(\xi)$. Put

$$
\tilde{a}_{2}(\xi, y, \eta)=\sum_{j=1}^{\infty} \psi_{j}^{R_{0}}(\xi) K^{j} a_{2}(\xi, y, \eta),
$$

where $K=|\xi-\eta|^{-2} \sum_{k=1}^{n}\left(\xi_{k}-\eta_{k}\right) D_{y_{k}}$. Then we have

$$
\begin{aligned}
& a_{2}\left(D_{x}, y, D_{y}\right)=\tilde{a}_{2}\left(D_{x}, y, D_{y}\right) \quad \text { on } \mathcal{S}_{\infty}, \\
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta} \partial_{\eta}^{\gamma}\left\{\exp \left[\varepsilon_{1}\langle\xi\rangle-\varepsilon_{2}\langle\eta\rangle\right] \tilde{a}_{2}(\xi, y, \eta)\right\}\right| \\
& \leq C_{|\alpha|+|\beta|+|\gamma|} \exp \left[\left(\delta_{1}-1 /\left(3 R_{0}\right)+\varepsilon_{1}+2\left(\varepsilon_{2}+\delta_{2}\right)_{-} / 3\right)\langle\xi\rangle\right]
\end{aligned}
$$

if $R_{0} \geq 25 e \sqrt{n} A$, where $c_{-}=\max \{-c, 0\}$ (see the proof of Lemma 5.1.6 of [12]). Now assume that $R_{0} \geq 25 e \sqrt{n} A$ and $3\left(\varepsilon_{1}+\delta_{1}\right)+2\left(\varepsilon_{2}+\delta_{2}\right)_{-}<1 / R_{0}$. Then there is $b_{2}(x, \xi) \in S^{-\infty}\left(\subset S_{1,0}^{0}\right)$ such that

$$
\exp \left[\varepsilon_{1}\langle D\rangle\right] a_{2}\left(D_{x}, y, D_{y}\right) \exp \left[-\varepsilon_{2}\langle D\rangle\right]=b_{2}(x, D) \quad \text { on } \mathcal{S}_{\infty} .
$$

Putting $b(x, \xi)=b_{1}(x, \xi)+b_{2}(x, \xi)\left(\in S_{1,0}^{0}\right)$, we have

$$
\exp \left[\varepsilon_{1}\langle D\rangle\right] a\left(D_{x}, y, D_{y}\right) \exp \left[-\varepsilon_{2}\langle D\rangle\right]=b(x, D) \quad \text { on } \mathcal{S}_{\infty}
$$

Let $\nu \in \mathbb{R}$, and put

$$
\tilde{b}_{\nu}(x, \xi)=(2 \pi)^{-n} \text { Os- } \int e^{-y \cdot \eta}\langle x\rangle^{\nu} b(x, \xi+\eta)\langle x+y\rangle^{-\nu} d y d \eta
$$

where Os- \int denotes an oscillatory integral. Then we have $\tilde{b}_{\nu}(x, \xi) \in S_{1,0}^{0}$ and

$$
\langle x\rangle^{\nu} b(x, D)\left(\langle x\rangle^{-\nu} v\right)=\tilde{b}_{\nu}(x, D) v \quad \text { on } \mathcal{S} .
$$

Let $\chi(\xi)$ be a function in $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\chi(\xi)=1$ if $|\xi| \leq 1$. Then we have $\langle x\rangle^{\nu} \chi(D / j)\left(\langle x\rangle^{-\nu} f(x)\right) \rightarrow f(x)$ in \mathcal{S} as $j \rightarrow \infty$ for $f \in \mathcal{S}$. This implies that $\left\{\langle x\rangle^{\nu} f(x) ; f \in \mathcal{S}_{\infty}\right\}$ is dense in $L^{2}\left(\mathbb{R}^{n}\right)$. Therefore, $\langle x\rangle^{\nu} \exp \left[\varepsilon_{1}\langle D\rangle\right] a\left(D_{x}, y, D_{y}\right) \exp \left[-\varepsilon_{2}\langle D\rangle\right]\langle x\rangle^{-\nu}$ can be extended to a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$, i.e., $a\left(D_{x}, y, D_{y}\right)$ maps continuously $L_{\varepsilon_{2}, \nu}^{2}$ to $L_{\varepsilon_{1}, \nu}^{2}$.
(ii) Assume that $\varepsilon_{1}<\varepsilon_{2}$ and $\nu_{1}<\nu_{2}$. Then there is $c(x, \xi) \in S_{1,0}^{-1}$ such that $\langle x\rangle^{\nu_{2}} \exp \left[\left(\varepsilon_{1}-\varepsilon_{2}\right)\langle D\rangle\right]\left(\langle x\rangle^{-\nu_{2}} u\right)=c(x, D) u$ for $u \in \mathcal{S}$. Therefore, the operator: $L^{2}\left(\mathbb{R}^{n}\right) \ni u \mapsto\langle x\rangle^{\nu_{1}} \exp \left[\left(\varepsilon_{1}-\varepsilon_{2}\right)\langle D\rangle\right]\left(\langle x\rangle^{-\nu_{2}} u\right) \in L^{2}\left(\mathbb{R}^{n}\right)$ is compact (see, e.g., Theorem 5.14 of [5]). This proves the assertion (ii).

Lemma 2.8. Let X and X_{1} be bounded open subsets of \mathbb{R}^{n} satisfying $X_{1} \Subset X$, and let $a(\xi, y, \eta)$ be a symbol such that $\operatorname{supp} a \subset \mathbb{R}^{n} \times X_{1} \times \mathbb{R}^{n}$ and

$$
\begin{align*}
& \left|\partial_{\xi}^{\alpha} D_{y}^{\beta+\tilde{\beta}} \partial_{\eta}^{\gamma+\tilde{\gamma}} a(\xi, y, \eta)\right| \tag{2.5}\\
& \leq C_{|\alpha|+|\tilde{\beta}|+|\tilde{\gamma}|}\left(A / R_{0}\right)^{|\beta|+|\gamma|}\langle\xi\rangle^{m_{1}-|\alpha|+|\beta|}\langle\eta\rangle^{m_{2}-|\tilde{\gamma}|} \exp \left[\delta_{1}\langle\xi\rangle+\delta_{2}\langle\eta\rangle\right]
\end{align*}
$$

if $\langle\xi\rangle \geq R_{0}|\beta|$ and $\langle\eta\rangle \geq R_{0}|\gamma|$, where $A \geq 0, R_{0} \geq 1$ and $m_{1}, m_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$. Put $\varepsilon=\operatorname{dis}\left(X_{1}, \mathbb{R}^{n} \backslash X\right)$, and assume that $u \in \mathcal{F}_{0}$ and that u is analytic in a neighborhood of \bar{X}, where $\operatorname{dis}\left(Y_{1}, Y_{2}\right):=\inf \left\{|x-y| ; x \in Y_{1}\right.$ and $\left.y \in Y_{2}\right\}$ for $Y_{1}, Y_{2} \subset \mathbb{R}^{n}$. Then there are positive constants $\delta(\varepsilon, u)$ and $\delta_{j}(\varepsilon, u)(j=1,2)$ such that $a\left(D_{x}, y, D_{y}\right) u \in \mathcal{S}_{\delta}$ if $R_{0} \geq 4 e \sqrt{n} \max \{1,2 / \varepsilon\} A, 2 \delta_{1}+\left(\delta_{2}\right)_{+}<$ $1 / R_{0}, \delta_{j} \leq \delta_{j}(\varepsilon, u)(j=1,2)$ and $\delta<\min \left\{1 /\left(2 R_{0}\right), \delta(\varepsilon, u)\right\}$.

Proof. We shall prove the lemma in the same way as Theorem 2.6.7 of [12]. Put $u_{\rho}(x)=e^{-\rho\langle D\rangle} u(x)$ for $\rho>0$. Then we have $u_{\rho}(x) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ for $\rho>0$ and

$$
\begin{align*}
& \left|D^{\beta} u_{\rho}(x)\right| \leq C(u) A(u)^{|\beta|}|\beta|!\quad \text { for } x \in X \text { and } 0<\rho \leq 1, \tag{2.6}\\
& \left|u_{\rho}(x)\right| \leq C_{\rho}(1+|x|)^{\ell} \quad \text { for } x \in \mathbb{R}^{n} \text { and } \rho>0
\end{align*}
$$

where $C(u), A(u)$ and C_{ρ} are positive constants and $\ell \in \mathbb{Z}_{+}$. Let X_{2} be an open subset of X satisfying $X_{1} \Subset X_{2} \Subset X$ and $\operatorname{dis}\left(X_{1}, \mathbb{R}^{n} \backslash X_{2}\right)=\varepsilon / 2$. We choose a family $\left\{\chi_{j}\right\}_{j \in \mathbb{N}}$ of $C_{0}^{\infty}(X)$ so that $\chi_{j}(x)=1$ in X_{2} and $\left|D^{\beta} \chi_{j}(x)\right| \leq$ $C\left(C_{*} j / \varepsilon\right)^{|\beta|}$ for $|\beta| \leq j$. Then (2.6) yields

$$
\left|\mathcal{F}\left[\chi_{j} u_{\rho}\right](\xi)\right| \leq C^{\prime}(u)\left(1+\sqrt{n}\left(C_{*} / \varepsilon+A(u)\right) j\right)^{j}\langle\xi\rangle^{-j}
$$

for $0<\rho \leq 1$. Note that

$$
\begin{aligned}
& \partial_{\xi}^{\alpha} \mathcal{F}\left[a\left(D_{x}, y, D_{y}\right) \psi_{j}^{R}(D) e^{\rho\langle D\rangle}\left(\chi_{j} u_{\rho}\right)\right](\xi) \\
& =(2 \pi)^{-n} \sum_{\alpha^{1}+\alpha^{2}=\alpha} \frac{\alpha!}{\alpha^{1}!\alpha^{2}!} \int e^{-i y \cdot(\xi-\eta)} a_{\alpha^{1}, \alpha^{2}}(\xi, y, \eta) \psi_{j}^{R}(\eta) \\
& \\
& \quad \times e^{\rho\langle\eta\rangle} \mathcal{F}\left[\chi_{j} u_{\rho}\right](\eta) d \eta d y
\end{aligned}
$$

where $a_{\alpha^{1}, \alpha^{2}}(\xi, y, \eta)=(-i y)^{\alpha^{1}} \partial_{\xi}^{\alpha^{2}} a(\xi, y, \eta)$. Replacing $p(\xi, y, \eta)$ by $a_{\alpha^{1}, \alpha^{2}}(\xi, y, \eta)$ in the proof of Theorem 2.6.7 of [12], we have

$$
\begin{align*}
& \left|\partial_{\xi}^{\alpha} \mathcal{F}\left[a\left(D_{x}, y, D_{y}\right) \psi_{j}^{R}(D) e^{\rho\langle D\rangle}\left(\chi_{j} u_{\rho}\right)\right](\xi)\right| \tag{2.7}\\
& \leq C_{R, R_{0}, \alpha}(u) j^{n+m_{2}} 2^{-j}\langle\xi\rangle^{m_{1}} e^{-\delta\langle\xi\rangle}
\end{align*}
$$

if $\rho>0, R \geq 2 e\left(1+\sqrt{n}\left(C_{*} / \varepsilon+A(u)\right)\right), R_{0} \geq 2 e \sqrt{n} A, \rho+\delta_{2}+2\left(\delta_{1}+\delta\right)_{+} \leq$ $1 /(3 R), \delta_{1} \leq 1 /\left(2 R_{0}\right)$ and $\delta \leq 1 /\left(2 R_{0}\right)$. Similarly, we have

$$
\begin{aligned}
& \left|\partial_{\xi}^{\alpha} \mathcal{F}\left[a\left(D_{x}, y, D_{y}\right) \psi_{j}^{R}(D) e^{\rho\langle D\rangle}\left(\left(1-\chi_{j}\right) u_{\rho}\right)\right](\xi)\right| \\
& \leq C_{\rho, A, R, R_{0}, \alpha}(u) j^{-2}\langle\xi\rangle^{m_{1}} e^{-\delta\langle\xi\rangle}
\end{aligned}
$$

if $\rho>0, R \geq 8 e \sqrt{n}\left(C_{*}+\widehat{C}+6(1+\sqrt{2})\right) / \varepsilon, R_{0} \geq 4 e \sqrt{n} \max \{1,2 / \varepsilon\} A$, $\delta \leq 1 /\left(2 R_{0}\right), 2 \delta_{1}+\left(\rho+\delta_{2}\right)_{+} \leq 1 / R_{0}, \rho+\delta_{2} \leq 1 /(3 R)$ and $\delta \leq 1 /(12 R)-$ $\delta_{1}-\left(\rho+\delta_{2}\right) / 4$. This, together with (2.7), yields

$$
\left|\partial_{\xi}^{\alpha} \mathcal{F}\left[a\left(D_{x}, y, D_{y}\right) u\right](\xi)\right| \leq C_{R_{0}, \alpha}(u, a)\langle\xi\rangle^{m_{1}} e^{-\delta\langle\xi\rangle}
$$

if $R_{0} \geq 4 e \sqrt{n} \max \{1,2 / \varepsilon\} A, \delta_{2}+2\left(\delta_{1}+\delta\right)_{+}<c(\varepsilon, u) / 3,2 \delta_{1}+\left(\delta_{2}\right)_{+}<1 / R_{0}$, $\delta \leq 1 /\left(2 R_{0}\right)$ and $\delta+\delta_{1}+\delta_{2} / 4<c(\varepsilon, u) / 12$, where $c(\varepsilon, u)=\min \{1 /(2 e(1+$ $\left.\left.\left.\sqrt{n}\left(C_{*} / \varepsilon+A(u)\right)\right)\right), \varepsilon /\left(8 e \sqrt{n}\left(C_{*}+\widehat{C}+6(1+\sqrt{2})\right)\right)\right\}$, which proves the lemma.

Lemma 2.9. Let Γ be an open conic subset of $\mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ satisfying $\Gamma \Subset \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$, and let $a(\xi, y, \eta)$ be a symbol such that supp $a \subset \mathbb{R}^{n} \times \Gamma$ and $a(\xi, y, \eta)$ satisfies the estimates (2.5) if $\langle\xi\rangle \geq R_{0}|\beta|$ and $\langle\eta\rangle \geq R_{0}|\gamma|$. Let $\varepsilon>0$, and assume that $u \in \mathcal{F}_{0}$ and that $W F_{A}(u) \cap \Gamma_{\varepsilon}=\emptyset$. Then there are positive constants $R_{0}(\varepsilon), \delta(\varepsilon, u)$ and $\delta_{j}(\varepsilon, u)(j=1,2)$ such that $a\left(D_{x}, y, D_{y}\right) u \in \mathcal{S}_{\delta}$ if $R_{0} \geq R_{0}(\varepsilon) A, 2 \delta_{1}+\left(\delta_{2}\right)_{+}<1 / R_{0}, \delta_{j} \leq \delta_{j}(\varepsilon, u)$ $(j=1,2)$ and $\delta<\min \left\{1 /\left(2 R_{0}\right), \delta(\varepsilon, u)\right\}$.

Proof. One can prove the lemma in the same way as in the proof of Lemma 4.1.1 of [12], using Lemma 2.8 instead of Theorem 2.6.7 of [12].

It follows from Lemma 2.7 (ii) that $\left\{L_{1 / j, 1 / j}^{2}\right\}_{j \in \mathbb{N}}$ is a compact injective sequence of Hilbert spaces, i.e., the inclusion maps: $L_{1 / j, 1 / j}^{2} \ni u \mapsto u \in$ $L_{1 /(j+1), 1 /(j+1)}^{2}(j \in \mathbb{N})$ are compact. We denote by \mathcal{X} the inductive limit $\underset{\longrightarrow}{\lim } L_{1 / j, 1 / j}^{2}$ of the sequence $\left\{L_{1 / j, 1 / j}^{2}\right\}$ (as a locally convex space). Then \mathcal{X} is a separable complete bornologic (DF) Montel space and for any bounded subset B of \mathcal{X} there is $j \in \mathbb{N}$ such that $B \subset L_{1 / j, 1 / j}^{2}$ and B is bounded in $L_{1 / j, 1 / j}^{2}$ (see, e.g., Theorems 6 and 6^{\prime} in [4]). For terminology we refer to Schaefer [7]. Moreover, S is open (resp. closed) in \mathcal{X} if and only if $S \cap L_{1 / j, 1 / j}^{2}$ is open (resp. closed) in $L_{1 / j, 1 / j}^{2}$ for each $j \in \mathbb{N}$, i.e., the topology of \mathcal{X} is the inductive limit topology of $\left\{L_{1 / j, 1 / j}^{2}\right\}$ as a topological space (see Theorem 6 in [4]). By Theorem 9 of [4] we have

$$
\begin{equation*}
L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}=\underset{\longrightarrow}{\lim }\left(L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}\right), \tag{2.8}
\end{equation*}
$$

where the inductive limit on the right-hand side is the inductive limit as a locally convex space.

LEmma 2.10. Let F be a closed subspace of $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$, and put

$$
F_{j}=F \cap\left(L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}\right)
$$

Then we have $F=\underline{\longrightarrow} F_{j}$ (as a locally convex space) .

Proof. By Proposition 8.6.8(i) of [6] it suffices to show that S is open in $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$ if $S \cap L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}$ is open in $L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}$ for each $j \in \mathbb{N}$, i.e., the topology of $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$ is the inductive limit topology of a sequence $\left\{L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}\right\}$ of topological spaces. We note that (2.8) is also valid if the inductive limits $\xrightarrow[\longrightarrow]{\lim } L_{1 / j, 1 / j}^{2}(=\mathcal{X})$ and $\xrightarrow[\longrightarrow]{\lim }\left(L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}\right)$ are replaced by the inductive limits as topological spaces. Recall that the topology of \mathcal{X} coincides with the inductive limit topology of $\left\{L_{1 / j, 1 / j}^{2}\right\}$ as a topological space. Therefore, the topology of $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$ coincides with the inductive limit topology of $\left\{L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}\right\}$ as a topological space, which proves the lemma.

3. Proof of Theorems 1.5 and 1.6

First we shall prove Theorem 1.5. Assume that $p(x, D)$ is analytic microhypoelliptic at z^{0}. Let $\Gamma_{j}(0 \leq j \leq 2)$ be open conic subsets of Γ such that $z^{0} \in \Gamma_{0} \Subset \Gamma_{1} \Subset \Gamma_{2} \Subset \Gamma$. By assumption we may assume that

$$
\begin{equation*}
\operatorname{supp} p(x, D) u=\operatorname{supp} u \quad \text { for } u \in \mathcal{C}\left(\Gamma_{0}^{0}\right) \tag{3.1}
\end{equation*}
$$

where $\Gamma_{0}^{0}=\Gamma_{0} \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$. Choose $\Phi^{R}(\xi, y, \eta) \in S^{0,0,0,0}\left(R, C_{*}, C\left(\Gamma_{1}, \Gamma_{2}\right)\right.$, $\left.C\left(\Gamma_{1}, \Gamma_{2}\right)\right)(R \geq 4)$ so that $0 \leq \Phi^{R}(\xi, y, \eta) \leq 1$, supp $\Phi^{R} \subset \mathbb{R}^{n} \times \Gamma_{2}$ and $\Phi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Gamma_{1}$ with $\langle\eta\rangle \geq R$. We put

$$
p^{R}(\xi, y, \eta)=\Phi^{R}(\xi, y, \eta) \sum_{j=0}^{\infty} \phi_{j}^{R / 2}(\eta) p_{j}(y, \eta)
$$

where $R>\max \left\{4, C_{0}\right\}$. Then we have

$$
p^{R}(\xi, y, \eta) \in S^{+}\left(R, C_{*}, 2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), 2 A+3 \widehat{C}+C\left(\Gamma_{1}, \Gamma_{2}\right)\right)
$$

By definition there is $R\left(A, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right)>\max \left\{4, C_{0}\right\}$ such that

$$
\begin{align*}
& \left.\left(p^{R}\left(D_{x}, y, D_{y}\right) v\right)\right|_{\Gamma_{0}^{0}}=p(x, D)\left(\left.v\right|_{\Gamma_{0}^{0}}\right) \quad \text { in } \mathcal{C}\left(\Gamma_{0}^{0}\right) \\
& W F_{A}\left(p^{R}\left(D_{x}, y, D_{y}\right) v\right) \cap \Gamma_{0}=W F_{A}(v) \cap \Gamma_{0} \tag{3.2}
\end{align*}
$$

if $R \geq R\left(A, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right)$ and $v \in \mathcal{F}_{0}$. Let $\Omega_{j}(j=1,2)$ be open conic neighborhoods of z^{0} satisfying $\Omega_{2} \Subset \Omega_{1} \Subset \Gamma_{0}$, and let $\Psi^{R}(\xi, y, \eta) \in$
$S^{0,0,0,0}\left(R, C_{*}, C\left(\Omega_{2}, \Omega_{1}\right), C\left(\Omega_{2}, \Omega_{1}\right)\right)(R \geq 4)$ satisfy supp $\Psi^{R} \subset \mathbb{R}^{n} \times \Omega_{1}$ and $\Psi^{R}(\xi, y, \eta)=1$ for $(\xi, y, \eta) \in \mathbb{R}^{n} \times \Omega_{2}$ with $\langle\eta\rangle \geq R$. We assume that $R \geq \max \left\{R\left(A, \Gamma_{0}, \Gamma_{1}, \Gamma_{2}\right), 25 e \sqrt{n} \max \left\{2 A+C\left(\Gamma_{1}, \Gamma_{2}\right), C\left(\Omega_{2}, \Omega_{1}\right)\right\}\right\}$. Let \mathcal{X} be the locally convex space defined in $\S 2$, i.e., $\mathcal{X}=\underline{\longrightarrow} L_{1 / j, 1 / j}^{2}$. We define an operator $T: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{X} \times \mathcal{X}$ as follows;
(i) the domain $D(T)$ of T is given by
$D(T)=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right) ;\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f \in \mathcal{X}\right.$ and $\left.p^{R}\left(D_{x}, y, D_{y}\right) f \in \mathcal{X}\right\}$,
(ii) $T f=\left(\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f, p^{R}\left(D_{x}, y, D_{y}\right) f\right) \quad$ for $f \in D(T)$.

It follows from Lemma 2.9 and the analytic microhypoellipticity of p that $\mathcal{X}=D(T)$ if $R \geq R\left(\Omega_{2}, \Omega_{1}, \Gamma_{0}\right)$, where $R\left(\Omega_{2}, \Omega_{1}, \Gamma_{0}\right)$ is a positive constant depending on Ω_{2}, Ω_{1} and Γ_{0}. Indeed, let $u \in D(T)$. Then $u \in L^{2}\left(\mathbb{R}^{n}\right)$ and there is $j \in \mathbb{N}$ such that $\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) u \in L_{1 / j, 1 / j}^{2}$. Since $p^{R}\left(D_{x}, y, D_{y}\right) u$ is analytic in \mathbb{R}^{n}, (3.2) gives $W F_{A}(u) \cap \Gamma_{0}=\emptyset$. It follows from Lemma 2.9 that there are $R\left(\Omega_{2}, \Omega_{1}, \Gamma_{0}\right)>0$ and $\delta\left(u, \Omega_{1}, \Gamma_{0}\right)>$ 0 such that $\Psi^{R}\left(D_{x}, y, D_{y}\right) u \in L_{\delta, \nu}^{2}$ if $R \geq R\left(\Omega_{2}, \Omega_{1}, \Gamma_{0}\right), \nu \in \mathbb{R}, \delta<$ $\min \left\{1 /(2 R), \delta\left(u, \Omega_{1}, \Gamma_{0}\right)\right\}$. This implies that $u \in \mathcal{X}$.

We next show that T is a closed operator. Assume that $R \geq$ $R\left(\Omega_{2}, \Omega_{1}, \Gamma_{0}\right)$. Let A be a directed set, and let $\left\{w_{a}\right\}_{a \in A}$ be a directed family of points in $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$ satisfying $w_{a} \rightarrow w \equiv(f, g, h)$ in $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$, where $w_{a}=\left(f_{a},\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f_{a}, p^{R}\left(D_{x}, y, D_{y}\right) f_{a}\right) \in \operatorname{graph}(T)$. Define $\mathcal{Z}=\lim _{\leftrightarrows} L_{-1 / j,-1 / j}^{2}$. Then \mathcal{Z} is a reflexive Fréchet space and $\mathcal{Z}^{\prime}=\mathcal{X}$ with obvious identification (see, e.g., Theorems 1 and 11 of [4]). Moreover, we have also $\mathcal{X} \subset \mathcal{Z} \subset \mathcal{F}_{0}$ with obvious identification and the inclusion map $\iota: \mathcal{X} \ni v \mapsto v \in \mathcal{Z}$ is continuous. Indeed, let B be a bounded subset of \mathcal{X}. Then there is $j \in \mathbb{N}$ such that B is bounded in $L_{1 / j, 1 / j}^{2}$ (see Theorem 6 of [4]). This implies that there is $C_{B}>0$ such that $\left\|\langle x\rangle^{1 / j} e^{\langle D\rangle / j} v\right\| \leq C_{B}$ for $v \in B$, where $\|f\|$ denotes the L^{2}-norm of $f \in L^{2}\left(\mathbb{R}^{n}\right)$. Therefore, B is bounded in \mathcal{Z}. Since \mathcal{X} is bornologic, the inclusion map ι is continuous (see Theorem 6 in [4]). Noting that \mathcal{Z} and $L^{2}\left(\mathbb{R}^{n}\right)$ are metric spaces and that $\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f_{a} \rightarrow g$ in \mathcal{Z} and $f_{a} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{n}\right)$, we have $\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f=g($ in $\mathcal{Z})$. Similarly, we have $p^{R}\left(D_{x}, y, D_{y}\right) f=h$. This implies that $f \in D(T)$ and $T f=\left(\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f, p^{R}\left(D_{x}, y, D_{y}\right) f\right)$. Therefore, T is a closed operator.

Let $\left\{p_{i}\right\}_{i \in I}$ be a fundamental system of semi-norms on \mathcal{X}, i.e., for any continuous semi-norm q on \mathcal{X} there are $i \in I$ and $C>0$ satisfying $q(f) \leq$ $C p_{i}(f)$ for $f \in \mathcal{X} . \operatorname{graph}(T)$ is a closed subspace of $L^{2}\left(\mathbb{R}^{n}\right) \times \mathcal{X} \times \mathcal{X}$ and its topology (the induced topology) is generated by a family of semi-norms $\left\{q_{i}\right\}_{i \in I}$, where

$$
q_{i}(w)=\|f\|+p_{i}\left(\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f\right)+p_{i}\left(p^{R}\left(D_{x}, y, D_{y}\right) f\right)
$$

for $w=\left(f,\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f, p^{R}\left(D_{x}, y, D_{y}\right) f\right) \in \operatorname{graph}(T)$. From Lemma 2.10 we have

$$
\operatorname{graph}(T)=\underline{\longrightarrow}\left(\operatorname{graph}(T) \cap\left(L^{2}\left(\mathbb{R}^{n}\right) \times L_{1 / j, 1 / j}^{2} \times L_{1 / j, 1 / j}^{2}\right)\right)
$$

It is obvious that the projection: $\operatorname{graph}(T) \ni\left(f,\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f\right.$, $\left.p^{R}\left(D_{x}, y, D_{y}\right) f\right) \mapsto f \in \mathcal{X}$ is closed. Since the injective limit of (weakly) compact sequence of locally convex spaces is barreled, the strong dual of a reflexive Fréchet space and B-complete, it follows from the closed graph theorem that for any $i \in I$ there are $j \in I$ and $C>0$ such that

$$
\begin{align*}
& p_{i}(f) \leq C q_{j}(w) \tag{3.3}\\
& \text { for } w=\left(f,\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f, p^{R}\left(D_{x}, y, D_{y}\right) f\right) \in \operatorname{graph}(T)
\end{align*}
$$

For terminology and the closed graph theorem we refer to $\S 8$ of chapter IV in [7].

Lemma 3.1. For any $i \in I$ there are $j \in I$ and $C>0$ such that

$$
\begin{aligned}
p_{i}(f) \leq C & \left(p_{j}\left(\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f\right)+p_{j}\left(p^{R}\left(D_{x}, y, D_{y}\right) f\right)\right. \\
& \left.+\left\|e^{-\langle D\rangle} f\right\|\right) \quad \text { for } f \in \mathcal{X}
\end{aligned}
$$

Proof. The inclusion map $\iota: \mathcal{X} \ni f \mapsto f \in H^{1}\left(\mathbb{R}^{n}\right)$ is continuous, where $H^{1}\left(\mathbb{R}^{n}\right)$ denotes the Sobolev space of order 1 . Indeed, let B be a bounded subset of \mathcal{X}. Then there are $j \in \mathbb{N}$ and $C_{B}>0$ such that $\left\|\langle x\rangle^{1 / j} e^{\langle D\rangle / j} f\right\| \leq C_{B}$ for $f \in B$. It is obvious that $\|\langle D\rangle f\| \leq$ $(j / e)\left\|\langle x\rangle^{1 / j} e^{\langle D\rangle / j} f\right\|$ for $f \in L_{1 / j, 1 / j}^{2}$. So B is bounded in $H^{1}\left(\mathbb{R}^{n}\right)$ and ι is continuous. Thus there are $i_{0} \in I$ and $C_{0}>0$ satisfying

$$
\begin{equation*}
\|\langle D\rangle f\| \leq C_{0} p_{i_{0}}(f) \quad \text { for } f \in \mathcal{X} \tag{3.4}
\end{equation*}
$$

On the other hand, for any $\varepsilon>0$ there is $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\|f\| \leq \varepsilon\|\langle D\rangle f\|+C_{\varepsilon}\left\|e^{-\langle D\rangle} f\right\| \quad \text { for } f \in H^{1}\left(\mathbb{R}^{n}\right) \tag{3.5}
\end{equation*}
$$

Therefore, from (3.3) with $i=i_{0}$, (3.4) and (3.5) there are $j_{0} \in I$ and $C_{1}>0$ such that

$$
\begin{aligned}
& \|f\| \leq C_{0} p_{i_{0}}(f) \\
& \leq C_{1}\left(p_{j_{0}}\left(\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) f\right)+p_{j_{0}}\left(p^{R}\left(D_{x}, y, D_{y}\right) f\right)+\left\|e^{-\langle D\rangle} f\right\|\right)
\end{aligned}
$$

for $f \in \mathcal{X}$. This, together with (3.3), proves the lemma.
Let $f \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right)$. We shall show that there are an open neighborhood \mathcal{U} of $\left(x^{0}, \xi^{0} /\left|\xi^{0}\right|\right)$ in $\mathbb{R}^{n} \times S^{n-1}$, which is independent of f, and $u \in \mathcal{X}^{\prime}$ such that $\left({ }^{t} p\right)(x, D)\left(\left.u\right|_{\mathcal{U}}\right)=\left.f\right|_{\mathcal{U}}$ in $\mathcal{C}(\mathcal{U})$. We note that $f \in \mathcal{A}^{\prime}\left(\mathbb{R}^{n}\right) \subset \mathcal{X}^{\prime} \subset \mathcal{F}_{0} \subset \mathcal{S}_{\delta}^{\prime}$ and $\mathcal{S}_{\infty} \subset \mathcal{S}_{\delta} \subset \mathcal{X}$ for $\delta>0$. Moreover, we have

$$
\begin{array}{ll}
\langle g, v\rangle_{\mathcal{X}^{\prime}, \mathcal{X}}=\langle g, v\rangle_{\mathcal{S}_{\delta}^{\prime}, \mathcal{S}_{\delta}} & \text { for } \delta>0, g \in \mathcal{X}^{\prime} \text { and } v \in \mathcal{S}_{\delta}, \\
\langle g, v\rangle_{\mathcal{S}_{\varepsilon}^{\prime}, \mathcal{S}_{\varepsilon}}=\langle g, v\rangle_{\mathcal{S}_{\delta}^{\prime}, \mathcal{S}_{\delta}} & \text { for } \varepsilon \geq \delta, g \in \mathcal{S}_{\delta}^{\prime} \text { and } v \in \mathcal{S}_{\varepsilon},
\end{array}
$$

where $\langle\cdot, \cdot\rangle_{\mathcal{X}^{\prime}, \mathcal{X}}\left(\operatorname{resp} .\langle\cdot, \cdot\rangle_{\mathcal{S}_{\delta}^{\prime}, \mathcal{S}_{\mathcal{S}}}\right)$ denotes the duality between \mathcal{X}^{\prime} and \mathcal{X} (resp. $\mathcal{S}_{\delta}^{\prime}$ and \mathcal{S}_{δ}). Therefore, we denote simply by $\langle\cdot, \cdot\rangle$ these dualities. Define

$$
\begin{aligned}
& \mathcal{M}:=L_{-1}^{2} \times \mathcal{X} \times \mathcal{X} \\
& \mathcal{N}:=\left\{\left(v,\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) v, p^{R}\left(D_{x}, y, D_{y}\right) v\right) \in \mathcal{M} ; v \in \mathcal{S}_{\infty}\right\}
\end{aligned}
$$

where $L_{\varepsilon}^{2}=L_{\varepsilon, 0}^{2}$. Let F be a linear functional on \mathcal{N} defined by $F(w)=$ $\left\langle f, v_{1}\right\rangle$ for $w=\left(v_{1}, v_{2}, v_{3}\right) \in \mathcal{N}$. Note that there are $i_{1} \in I$ and $C_{2}>0$ satisfying $\left|\left\langle f, v_{1}\right\rangle\right| \leq C_{2} p_{i_{1}}\left(v_{1}\right)$ for $v_{1} \in \mathcal{X}$. By Lemma 3.1 there are $j_{1} \in I$ and $C_{3}>0$ such that

$$
|F(w)| \leq C_{3}\left(p_{j_{1}}\left(v_{2}\right)+p_{j_{1}}\left(v_{3}\right)+\left\|e^{-\langle D\rangle} v_{1}\right\|\right) \quad \text { for } w \equiv\left(v_{1}, v_{2}, v_{3}\right) \in \mathcal{N}
$$

Therefore, it follows from the Hahn-Banach theorem that there is $\widetilde{F} \equiv$ $(-\psi,-\varphi, u) \in \mathcal{M}^{\prime}\left(=L_{1}^{2} \times \mathcal{X}^{\prime} \times \mathcal{X}^{\prime}\right)$ such that $\left.\widetilde{F}\right|_{\mathcal{N}}=F$, i.e.,

$$
\begin{aligned}
\langle f, v\rangle= & -\langle\psi, v\rangle-\left\langle\varphi,\left(1-\Psi^{R}\left(D_{x}, y, D_{y}\right)\right) v\right\rangle \\
& +\left\langle u, p^{R}\left(D_{x}, y, D_{y}\right) v\right\rangle \quad \text { for } v \in \mathcal{S}_{\infty}
\end{aligned}
$$

This yields

$$
\left\langle{ }^{t} p^{R}\left(D_{x}, y, D_{y}\right) u, v\right\rangle=\left\langle f+\psi+\left(1-{ }^{t} \Psi^{R}\left(D_{x}, y, D_{y}\right)\right) \varphi, v\right\rangle
$$

for $v \in \mathcal{S}_{\infty}$, i.e.,

$$
{ }^{t} p^{R}\left(D_{x}, y, D_{y}\right) u=f+\psi+\left(1-{ }^{t} \Psi^{R}\left(D_{x}, y, D_{y}\right)\right) \varphi \quad \text { in } \mathcal{F}_{0}
$$

Note that $\psi \in \mathcal{A}\left(\mathbb{R}^{n}\right)$. Let Ω_{3} be an open conic neighborhood of $\left(x^{0},-\xi^{0}\right)$ satisfying $\Omega_{3} \Subset \check{\Omega}_{2}$, where $\check{\Omega}_{2}=\left\{(x, \xi) ;(x,-\xi) \in \Omega_{2}\right\}$. From Lemma 2.1 there is $R_{1}\left(\Omega_{3}, \Omega_{2}, \Omega_{1}\right)>0$ such that

$$
W F_{A}\left(\left(1-{ }^{t} \Psi^{R}\left(D_{x}, y, D_{y}\right)\right) \varphi\right) \cap \Omega_{3}=\emptyset \quad \text { if } R \geq R_{1}\left(\Omega_{3}, \Omega_{2}, \Omega_{1}\right)
$$

Therefore, Lemma 2.6 gives

$$
\left({ }^{t} p\right)(x, D)\left(\left.u\right|_{\Omega_{3}^{0}}\right)=\left.f\right|_{\Omega_{3}^{0}} \quad \text { in } \mathcal{C}\left(\Omega_{3}^{0}\right)
$$

where $\Omega_{3}^{0}=\Omega_{3} \cap\left(\mathbb{R}^{n} \times S^{n-1}\right)$, which proves Theorem 1.5.
Similarly, one can prove Theorem 1.6 if one choose $\Gamma=X \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$.

References

[1] Albanese, A. A., Corli, A. and L. Rodino, Hypoellipticity and local solvability in Gevrey classes, Math. Nachr. 242 (2002), 5-16.
[2] Cordaro, P. D. and J.-M. Trépreau, On the solvability of linear partial differential equations in spaces of hyperfunctions, Ark. Mat. 36 (1998), 41-71.
[3] Hörmander, L., The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[4] Komatsu, H., Projective and injective limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan 19 (1967), 366-383.
[5] Kumano-go, H., Pseudo-Differential Operators, MIT Press, Cambridge, 1982.
[6] Pérez Carreras, P. and J. Bonet, Barrelled Locally Convex Spaces, NorthHolland Math. Studies 131, Amsterdam, 1987.
[7] Schaefer, H. H., Topological Vector Spaces, Macmillan, New York, 1966.
[8] Schapira, P., Solution hyperfonctions des équations aux dérivées partielles du premier ordre, Bull. Soc. Math. France 97 (1969), 243-255.
[9] Schapira, P., Théorie des Hyperfonctions, Lecture Notes in Math. vol. 126, Springer, 1970.
[10] Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
[11] Wakabayashi, Generalized flows and their applications, Proc. NATO ASI on Advances in Microlocal Analysis, Series C, D. Reidel, 1986, 363-384.
[12] Wakabayashi, S., Classical Microlocal Analysis in the Space of Hyperfunctions, Lecture Notes in Math. vol. 1737, Springer, 2000.
[13] Yoshikawa, A., On the hypoellipticity of differential operators, J. Fac. Sci. Univ. Tokyo, Sect. IA 14 (1967), 81-88.
(Received June 3, 2002)

> Institute of Mathematics
> University of Tsukuba
> Tsukuba, Ibaraki $305-8571$
> Japan

[^0]: 2000 Mathematics Subject Classification. Primary 35G05; Secondary 35A07, 35H10, 35 A 20 .

