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Nonlinear Transformation Containing Rotation and

Gaussian Measure

By Shigeo Kusuoka

Abstract. The author study the nonlinear transformation of a
Gaussian measure and its absolute continuity and singularity relative
to the original Gaussian measure. The nonlinear transformation con-
sidered contains a rotation part and is not a perturbation of a linear
transformation.

1. Introduction

Let (µ,H,B) be an abstract Wiener space, that is, B is a separable real

Banach space, H is a separable real Hilbert space which is densely embedded

in B, and µ is a Gaussian measure on B such that

∫
B

exp(
√
−1B〈z, u〉B∗)µ(dz) = exp(−1

2
‖ u ‖2

H), u ∈ B∗ ⊂ H.

Here B∗ denotes the dual space of the Banach space B. Then B∗ can be

regarded as a subset of H∗. In this paper, for simplicity of notation, we

identify the dual space H∗ of the Hilbert space H with H itself.

Let Φ : B → B be a measurable map. Our concern is the relation of

the measure µ and the image measure µ ◦ Φ−1. The case where there is a

measurable map F : B → H such that Φ = IB + F has been studied by

many authors ([3], [9], [4], [10], [5], [13], [15]). Here IB denotes the identity

in B. In this paper, we consider the case where Φ is not perturbation of

identity.

Let L∞(H;H) denote the Banch space consisting of bounded linear op-

erators with the operator norm ‖ · ‖op . Let O(H) denote the set of linear

isomorphisms in H, i.e.,

O(H) = {U ∈ L∞(H;H); U∗U = IH , UU∗ = IH}.
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We regard O(H) as a metric subspace of L∞(H;H).

Let U : B → O(H) and F : B → H be measurable maps. We think of

the case where Φ(z) = U(z)(z + F (z)), z ∈ B. Such a transformation was

already studied in [14]. But we think of this problem from quite different

viewpoint. Since it is not clear whether Φ is well-defined, we start with some

basic results. We study some regularity problems in Sections 2, 3, 4 and 5.

Then we study the relationship between rotation and these regularities in

Section 6. In Section 7 we introduce a new notion related to infinite dimen-

sional Lie groups. The main theorems are given in Section 9 (Theorems 49,

Corollary 51). We give an example in the last Section.

2. Preliminary from Malliavin Calculus

In this section, we remind some known results and make some prepara-

tions. Since we use the notions in Malliavin calculus, we will give definitions

of the Ornstein-Uhlenbeck semigroup, the Ornstein-Uhlenbeck generators,

and so on.

Let E be a separble real Hilbert space. Let Pt, t ∈ [0,∞), denote the

Ornstein-Uhlenbeck semigroup, i.e.,

Ptf(z) =

∫
B
f(e−tz + (1− e−2t)1/2w)µ(dw), z ∈ B,

for t ≥ 0 and f ∈ L1(B;E, dµ). Let L denote the infinitesimal generator

of the Ornstein-Uhlenbeck semigroup. Let Ds
p(E), s ≥ 0, p ∈ (1,∞), be

a Banach space defined by (I − L)−s/2Lp(B;E, dµ) with a norm ‖ u ‖s,p;E

=‖ (1 − L)s/2u ‖Lp(B;E,dµ) . Let Ds
p(E), s < 0, p ∈ (1,∞), be the dual

Banach space of D−s
q (E∗), 1/p + 1/q = 1. Then identifying D0

p(E) with

the dual space of D0
q(E

∗), we may regard Ds
p(E) as a subset of Dt

p(E),

−∞ < t < s <∞, p ∈ (1,∞). We denote
⋃

p∈(1,∞) D
s
p by Ds

1+, s ∈ R.

Also, one can define the gradient opertator D : Ds+1
p (E) → Ds

p(H ⊗E),

s ∈ R, p ∈ (1,∞), and the dual of the gradient operator D∗ : Ds+1
p (H ⊗

E) → Ds
p(E), s ∈ R, p ∈ (1,∞). Then we have L = −D∗D. We also denote

by Br the set {h ∈ H; ‖ h ‖H≤ r}, r > 0.

Lemma 1. Let E be a separable real Hilbert space.

(1) There is an absolute constant C > 0 such that

et(1− e−2t)1/2 ‖ DPtf ‖L∞(B;H⊗E)≤ C ‖ f ‖L∞(B;E),
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for any bounded measurable map f : B → E and t ∈ (0,∞).

(2) There are absolute constants γ > 0 and C > 0 satisfying the following.

If g : B → H ⊗ E is a measurable function satisfying

‖ g(z) ‖H⊗E≤ 1, z ∈ B, h ∈ H,

then

∫
B

exp((1− e−2t)γ ‖ (D∗Ptg)(z) ‖2
E)µ(dz) ≤ C, t > 0.

Proof. The assertion (2) is shown in [5] Theorem(4.8). So we only

prove the assertion (1). Let {hn} and {en} be a complete orthonormal

basis of H and E respectively. Let f : B → E and g : B → H ⊗ E

be arbitrary bounded measurable maps and let fj(z) = (f(z), ej)E , gij =

(g(z), hi ⊗ ej)H⊗E , z ∈ B. Then by [5] Theorem(4.4), we have

et(1− e−2t)1/2(DPtf(z), g(z))H⊗E

=
∑
i,j

∫
B

(w, hi)Hfj(e
−tz + (1− e−2t)1/2w)gij(z)µ(dw)

≤ (
∑

j

∫
B

((w,
∑

i

gij(z)hi)H)2µ(dw))1/2

× (
∑

j

∫
B
fj(e

−tz + (1− e−2t)1/2w)2µ(dw))1/2

≤‖ g(z) ‖H⊗E‖ f ‖L∞(B;E) µ− a.s.z.

This implies our assertion. �

Lemma 2. Let E be a separable real Hilbert space and f : B → E is a

measurable map.

(1) For any p ∈ (1,∞) and r > 0

sup{‖ Ptf(z + h) ‖E ; h ∈ H, ‖ h ‖H≤ r}
≤ exp((p− 1)−1t−1r2/4)Pt(‖ f ‖p

E)(z)1/p, t > 0, z ∈ B.
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(2) For any r > 0

sup{‖ Ptf(z + h) ‖; h ∈ H, ‖ h ‖H≤ r}
≤ 2Pt(exp(‖ f(·) ‖2

E /2))(z) + 8t−1/2r t ∈ (0, 1], z ∈ B.

Proof. First note that

‖ Ptf(z + h) ‖E≤
∫

B
‖ f(e−t(z + h) + (1− e−2t)1/2w) ‖E µ(dw)

=

∫
B
‖ f(e−tz + (1− e−2t)1/2w) ‖E exp(at(w, h)H̃ − a2

t ‖ h ‖2
H /2)µ(dw).

Here at = (e−2t(1− e−2t)−1)1/2 ≤ (2t)−1/2. Since

∫
B

exp(q(at(w, h)H̃ − a2
t ‖ h ‖2

H /2))µ(dw) = exp(q(q − 1)a2
t ‖ h ‖2

H /2),

we have the assertion (1) by Hölder’s inequality.

Note that xy ≤ ex + y log+ y, x, y ≥ 0. So we have

xy ≤ 2 exp(x2/2) + 4y(log+ y)1/2, x, y ≥ 0.

Note that
∫

B
((at(w, h)H̃ − a2

t ‖ h ‖2
H /2) ∨ 0)1/2 exp(at(w, h)H̃ − a2

t ‖ h ‖2
H /2)µ(dw)

=

∫
B

((at(w, h)H̃ + a2
t ‖ h ‖2

H /2) ∨ 0)1/2µ(dw)

≤ at ‖ h ‖H +a
1/2
t

∫
B
|(w, h)H̃ |µ(dw).

This implies the assetion (2). �

Corollary 3. For any r > 0, there is a Cr > 0 such that

∫
B

sup{‖ (PtD
∗Ptf)(z + h) ‖E ; h ∈ H, ‖ h ‖H≤ r}µ(dz)

≤ t−1Cr ‖ f ‖L∞(B;E)
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for any t ∈ (0, 1] and any bounded measurable map f : B → H ⊗ E.

Proof. We may assume that ‖ f(z) ‖H⊗E≤ 1, z ∈ B. Then by Lemma

2 we have∫
B

sup{‖ (PtD
∗Ptf)(z + h) ‖E ; h ∈ H, ‖ h ‖H≤ r}µ(dz)

≤ (1− e−2t)−1/2γ−1

× (2

∫
B

exp(
γ

2
(1− e−2t) ‖ D∗Ptf(z) ‖2

E)µ(dz) + 8t−1/2r).

By Lemma 1 (2), we have our assertion. �

Definition 4. Let r > 0. We say that (ϕ(0), ϕ(1)) is an r-pair, if the

following are satisfied.

(1) ϕ(i) : B → R is measurable, 0 ≤ ϕ(i) ≤ 1, and

|ϕ(i)(z + h)− ϕ(i)(z)| ≤‖ h ‖H , z ∈ B, h ∈ H,

for each i = 0, 1.

(2) There are σ-compact sets A0, A1 in B such that A0 +Br ⊂ A1, ϕ
(i)(z) =

0, µ− a.e.z ∈ A1, and ϕ(1−i)(z) = 0, µ− a.e.z ∈ B \A0, for i = 0 or 1.

Lemma 5. Let E be a separable real Hilbert space. Then for r, ε > 0,

σ = −1, 0, 1, and k = 0, 1, . . . there is a constant C > 0 such that

‖ ϕ(0)LkPt(ϕ
(1)u) ‖Dσ

2 (E)≤ C exp(−r2

2t
) ‖ u ‖Dσ

2 (E)

for any (r + ε)-pair (ϕ(0), ϕ(1)), u ∈ Dσ
2 (E) and t ∈ (0, 1].

Proof. Let (ϕ(0), ϕ(1)) be an (r + ε)-pair. Note that

2 ‖ u ‖2
D1

2(E)= 2 ‖ u ‖2
D0

2(E) + ‖ Du ‖2
D0

2(H⊗E), u ∈ D1
2(E).

So we have

‖ ϕ(i)u ‖2
D1

2(E) = 2 ‖ ϕ(i)u ‖2
D0

2(E) + ‖ Dϕ(i) ⊗ u + ϕ(i)Du ‖2
D0

2(H⊗E)

≤ 4 ‖ u ‖2
D1

2(E), u ∈ D1
2(E), i = 0, 1.
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Also we see that

‖ cos(s
√
−2L)u ‖D1

2(E) =‖ cos(s
√
−2L)(1− L)1/2u ‖D0

2(E)

≤‖ u ‖D1
2(E), u ∈ D1

2(E).

Since the wave has finite propagation speed, we see that

ϕ(0) cos(s
√
−2L)ϕ(1)u = 0, |s| ≤ r + ε/2, u ∈ D1

2(E).

So we have

‖ ϕ(0)LkPt(ϕ
(1)u) ‖D1

2(E)

=‖ 2

∫ ∞

r+ε/2
(ϕ(0) cos(s

√
−2L)(ϕ(1)u)(2πt)−1/2Pk(s, t) exp(−s2

2t
)ds ‖D1

2(E)

≤ 8(

∫ ∞

r+ε/2
(2πt)−1/2|Pk(s, t)| exp(−s2

2t
)ds) ‖ u ‖D1

2(E) .

Here Pk(s, t) is a polynomial in s and 1/t of degree 2k. This proves the case

that σ = 1.

The proof of the case that σ = 0 is similar. Taking dual, we have the

case that σ = −1.

This completes the proof. �

For any θ ∈ [0, 1], we see from [7]that (Ds0
2 ,Ds1

p )[θ] = Ds
r. Here (·, ∗)[θ]

denotes the complex interpolation space (see [1]), s = (1 − θ)s0 + θs1 and

1/r = (1−θ)/2+θ/p. By virtue of Stein [11] we see that for each p ∈ (1,∞)

there is a constant C > 0 such that

‖ LPtu ‖D0
p(E)≤ Ct−1 ‖ u ‖D0

p(E), t ∈ (0, 1], u ∈ D0
p(E).(1)

Therefore we see that for any p ∈ (1,∞) −∞ < s <∞, + ≥ 0, we have

‖ Ptu ‖Ds+2�
p (E)≤ Ct−� ‖ u ‖Ds

p(E), t ∈ (0, 1], u ∈ Ds
p(E).(2)

In particular, there is a constant C ′ > 0 depending only on p ∈ (1,∞) and

k = 0, 1, . . . such that

‖ ϕ(0)LkPt(ϕ
(1)u) ‖D1

p(E)≤ C ′t−(k+1) ‖ u ‖D−1
p (E),
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for any t ∈ (0, 1], u ∈ D−1
p (E), and any r > 0 and r-pair (ϕ(0), ϕ(1)).

Therefore as an easy consequence of Lemma 5, we have the following.

Proposition 6. Let E be a separable real Hilbert space. For any p ∈
(1,∞), k = 0, 1, 2, . . . r, ε > 0 and γ ∈ (0, 2((1 − 1/p) ∧ (1/p))) there is a

constant C > 0 such that

‖ ϕ(0)LkPt(ϕ
(1)u) ‖D0

p(E)≤ C exp(−γr2

2t
) ‖ u ‖D−1

p (E),

for any (r + ε)-pair (ϕ(0), ϕ(1)), u ∈ D−1
p (E), and t ∈ (0, 1].

Proposition 7. Let E be a separable real Hilbert space. Then for any

r, ε > 0 and k, + = 0, 1, . . . , there is a constant C > 0 such that

‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D0

2(H⊗�⊗E)≤ C exp(− r2

2�+2t
) ‖ u ‖D−1

2 (E),

for any (r + ε)-pair (ϕ(0), ϕ(1)), u ∈ D−1
2 (E) and t ∈ (0, 1].

Proof. We prove the assertion by induction in +. By Proposition 6 we

see that the assetion holds in the case that + = 0. Suppose that the assertion

holds for +. We have

‖ ϕ(0)D�+1LkPt(ϕ
(1)u) ‖2

D0
2(H⊗(�+1)⊗E)

= −(ϕ(0)LD�LkPt(ϕ
(1)u), ϕ(0)D�LkPt(ϕ

(1)u))D0
2(H⊗�⊗E)

− (D�+1LkPt(ϕ
(1)u), Dϕ(0) ⊗ ϕ(0)D�LkPt(ϕ

(1)u))D0
2(H⊗(�+1)⊗E)

≤ (‖ ϕ(0)D�Lk+1Pt(ϕ
(1)u) ‖D0

2(H⊗�⊗E)

+ + ‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D0

2(H⊗�⊗E))

+ ‖ D�+1LkPt(ϕ
(1)u) ‖D0

2(H⊗(�+1)⊗E)) ‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D0

2(H⊗�⊗E)

Here we use the fact that DL = LD −D. So the induction is complete by

Inequality (2) and the assumption of induction. This completes the proof. �

For any subset A in B, let us define a function ρ(·;A) : B → [0,∞] by

ρ(z;A) = inf{‖ h ‖H ; z + h ∈ A}, z ∈ B.(3)



8 Shigeo Kusuoka

We remark that if K is a compact set in B, then ρ(·;K) : B → [0,∞] is

lower-semicontinuous, and that if A is a σ-compact set in B, then ρ(·;A) :

B → [0,∞] is measurable.

Proposition 8. Let r > 0 and (ϕ(0), ϕ(1)) be an (r + 2)-pair. Then

there is a ψ : B → R such that (ψ,ϕ(1)) be an (r + 1/2)-pair and that

(1− ψ(z))ϕ(0)(z) = 0 and (1− ψ)(z))Dϕ(0)(z) = 0 µ− a.e.z.

Proof. Form the assumption, there are σ-compact sets A0, A1 such

that A0 + Br+2 ⊂ A1, ϕ
(i)(z) = 0 µ − a.e.z ∈ A1 and ϕ(1−i)(z) = 0 µ −

a.e.z ∈ B \ A0 for i = 0 or 1. Let ψ(0)(z) = (1 − ρ(z;A0 + B1/4)) ∨ 0, and

ψ(1)(z) = (1− ρ(z;A0 +Br+7/4))∨ 0, z ∈ B. Then we see that ψ(i) satisfies

our condition for ψ. �

Proposition 9. Let E be a separable real Hilbert space. For k, + =

0, 1, . . . and r > 0, there is a constant C > 0 such that

‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D1

2(H⊗�⊗E)≤ C exp(− r2

2�+2t
) ‖ u ‖D−1

2 (E),

for any (r + 2)-pair (ϕ(0), ϕ(1)), u ∈ D−1
2 (E) and t ∈ (0, 1].

Proof. We have

D(ϕ(0)D�LkPt(ϕ
(1)u))

= Dϕ(0) ⊗ ψD�LkPt(ϕ
(1)u) + ϕ0

nψD
�+1LkPt(ϕ

(1)u).

Here ψ is as in Proposition 8. So we have

‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D1

2(H⊗�⊗E)

≤‖ ψD�LkPt(ϕ
(1)u) ‖D0

2(H⊗�⊗E)

+ 2 ‖ ψD�+1LkPt(ϕ
(1)u). ‖D0

2(H⊗(�+1)⊗E) .

So we have our assertion from Proposition 7. �

Lemma 10. Let E be a separable real Hilbert space. Then we have the

following.
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(1)For k, + = 0, 1, . . . , p ∈ (1,∞), r > 0 and γ ∈ (0, ((1 − 1/p) ∧
(1/p))2−(�+2)) there is a constant C > 0 such that

‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D1

p(H⊗�⊗E)≤ C exp(−γr2

t
) ‖ u ‖D−1

p (E)

for any (r + 2)-pair (ϕ(0), ϕ(1)), u ∈ D−1
2 (E) and t ∈ (0, 1].

(2)For k, + = 0, 1, . . . , p ∈ (1,∞), r > 0 and γ ∈ (0, (1− 1/p)2−(�+2)) there

is a constant C > 0 such that

‖ ϕ(0)(D∗)�LkPt(ϕ
(1)u) ‖D1

p(E)≤ C exp(−γr2

t
) ‖ u ‖D−1

p (H⊗�E)

for any (r + 2)-pair (ϕ(0), ϕ(1)), u ∈ D−1
2 (H⊗� ⊗ E) and t ∈ (0, 1].

Proof. Let us prove the assertion (1) for p ∈ (2,∞). Let p′ ∈ (p,∞),

and let θ = (2(p′ − p))/(p(p′ − 2)). Then we see that [Ds
2,D

s
p′ ]1−θ = Ds

p,

s ∈ R. By Proposition 9 and Equation 2, we see that there is a constant

C > 0 such that for any (r + 2)-pair (ϕ(0), ϕ(1)) and t ∈ (0, 1].

‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D1

2(H⊗�⊗E)

≤ C exp(− r2

2�+2t
) ‖ u ‖D−1

2 (E), u ∈ D−1
2 (E),

and

‖ ϕ(0)D�LkPt(ϕ
(1)u) ‖D1

p′ (H
⊗�⊗E)

≤ Ct−(�+2k)/2 ‖ u ‖D−1
p′ (E), u ∈ D−1

p′ (E).

Then we have the assertion (1) by the interpolation theory. The case that

p ∈ (1, 2) is similar.

We have the assertion (2) from the assertion (1) by using the duality.

This completes the proof. �

3. CH∞ Maps

Remind that Br = {h ∈ H; ‖ h ‖H≤ r}, r > 0. Then, endowing the

weak topology of H on Br, we may regard Br, r > 0, as a compact metric

space.
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Let K be a compact set in B. Then ρ(·;K) : B → [0,∞] defined in

Equation (3) is lower-semicontinuous. Let ϕK
n : B → R, n ≥ 1, be given by

ϕK
n (z) = 1− (ρ(z;K + Bn) ∧ 1), z ∈ B.(4)

Then one can easily see that (ϕK
n , 1 − ϕK

n+m+3) is an m + 1/2-pair for any

compact set K in B and n,m ∈ N.

Proposition 11. For any +, k = 0, 1, . . . , p ∈ (1, 2], m2(p − 1)2 >

2�+2pn2, n,m ∈ N, and any compact set K in B, there is a constant C > 0

such that

‖ sup{‖ (ϕ2nP2t(D
�Lk((1− ϕ3n+2m+9)u)))(·+ h) ‖H⊗�⊗E ;

h ∈ H, ‖ h ‖H≤ n} ‖Lp(B)

≤‖ u ‖D−1
p (E), t ∈ (0, 1], u ∈ D−1

p (E),

and that

‖ sup{‖ (ϕ2n(P2t(D
∗)�Lk((1− ϕ3n+2m+9)u)))(·+ h) ‖E ;

h ∈ H, ‖ h ‖H≤ n} ‖Lp(B)

≤‖ u ‖D−1
p (H⊗�⊗E), t ∈ (0, 1], u ∈ D−1

p (H⊗� ⊗ E).

Proof. Since the proofs are similar, we prove only the first assertion.

Let

g(z) = sup{‖ (ϕ2nPtD
�LkPt((1− ϕ3n+2m+9)u))(z + h); ‖E ;

h ∈ H, ‖ h ‖H≤ n}

Then by Lemma 2 (1) we have

g(z) ≤ exp(
n2

2t(p− 1)
)ϕ3n+3(z)Pt(‖ D�LkPt((1−ϕ3n+2m+9)u))(·) ‖p

E)(z)1/p.

Note that

ϕ3n+3(z)Pt(‖ D�LkPt((1− ϕ3n+2m+9)u))(·) ‖p
E)(z)1/p

≤ 2ϕ3n+3(z)Pt((1− ϕ3n+m+6)(‖ D�LkPt((1− ϕ3n+2m+9)u)) ‖p
E)(z)1/p

+ 2Pt(‖ ϕ3n+m+6D
�LkPt((1− ϕ3n+2m+9)u)) ‖p

E)(z)1/p
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Therefore by Lemma 10 we have

‖ g ‖Lp(B)

≤ 2C exp(
n2

2t(p− 1)
)

× exp(−γm2

2t
)(‖ D�LkPt((1− ϕ3n+2m+9)u)) ‖D0

p
+ ‖ u ‖D−1

p
).

This completes the proof. �

Definition 12. Let M be a Polish space.

(1) We say that a measurable map f : B → M is a compact HC map, if

f(z + ·) : Br →M is continuous for any z ∈ B and r > 0.

(2) We say that a measurable map f : B → M is a CH map, if there is a

compact HC map f̃ : B →M such that f(z) = f̃(z) µ− a.e.z.

Definition 13. Let M be a Polishi space.

(1) We say that a map f : B → M is H-regular, if f is measurable and

if there is a compact set K in B with µ(K) > 0 such that f |K+Br is a

continuous map from K + Br into M for any r > 0.

(2) Let N be a separable metric space. We say that a map f : N ×B →M

is H-regular, if f is measurable and if there is a compact set K in B with

µ(K) > 0 such that f |N×(K+Br) is a continuous map from N × (K + Br)

into M for any r > 0.

Proposition 14. Let Mn, n ∈ N, be Polish spaces, and fn : B → H,

n ∈ N, be H-regular maps. Then there is a compact set K in B with

µ(K) > 0 such that fn|K+Br is a continuous map from K +Br into Mn for

all r > 0 and n ∈ N.

Proof. For each n ∈ N, there is a compact set Kn in B with µ(Kn) >

0 such that fn|Kn+Br is a continuous map from Kn + Br into Mn for any

r > 0. Because of H-ergordicity of µ we have µ(
⋃∞

m=1(Kn + Bm)) = 1. So

there is an mn ≥ 1 such that µ(Kn + Bmn) ≥ 1 − 2−n−1. Letting K =⋂∞
n=1(Kn + Bmn), we have our assertion. �

Proposition 15. If f : B → M is a CH-map, then there is an H-

regular map f̃ : B →M such that f(z) = f̃(z), µ− a.e.z.
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Proof. We may assume that f is a compact HC map. For any n ≥ 1

let fn : B → C(Bn;M) be given by fn(z)(h) = f(z + h), z ∈ B, h ∈ Bn.

Here C(Bn;M) denotes the Polish space consisting of continuous maps from

Bn into M. Since fn is measurable, there is a compact set Kn in B such

that µ(Kn) ≥ 1− 3−n and fn|Kn : Kn → C(Bn;M) is continuous. Then we

see that f is a continuous map from Kn +Bn into M. Letting K =
⋂∞

n=1 Kn

and f̃ = f, we have our assertion. �

Definition 16. Let E be a separable real Hilbert space. D(L;E)

(resp. D(D;E), D(D∗;H ⊗ E)) is defined to be a set of measurable maps

u : B → E ( resp. u : B → E, u : B → H ⊗ E ) such that there are a

compact set K in B with µ(K) > 0 and a measurable map v : B → E (

resp. v : B → H ⊗ E, v : B → E ) satisfying the following.

(1) For each n ≥ 1 ϕK
n u ∈ D1

1+(E), ( resp. ϕK
n u ∈ D1

1+(E), ϕK
n u ∈

D1
1+(H ⊗ E) ).

(2) For each n ≥ 1 ϕK
n v ∈ D0

1+(E), ( resp. ϕK
n v ∈ D0

1+(H ⊗ E), ϕK
n v ∈

D0
1+(E) ).

(3) ϕK
n L(ϕK

n+2u) = ϕK
n v, ( resp. ϕK

n D(ϕK
n+2u) = ϕK

n v, ϕK
n D∗(ϕK

n+2u) =

ϕK
n v ) in D−1

1+(E), n ≥ 1.

Proposition 17. v in Definition 16 is uniquely determined µ-a.s.

Proof. Let u ∈ D(L;E), Ki, i = 1, 2 are compact sets in B, and

vi : B → E are measurable maps such that ϕKi

n u ∈ D1
pi,n(E), ϕKi

n vi ∈
D0

pi,n(E), and ϕKi

n L(ϕKi

n+2u) = ϕKi

n vi, i = 1, 2, n ∈ N. We may assume that

µ(Ki) ≥ 2/3.

Let K = K1 ∩ K2. Then we have ϕK
n u = ϕK

n (ϕKi

n+2u). So we see that

ϕK
n−2v

i = ϕK
n−2L(ϕK

n u) = ϕKi

n vi, n ≥ 1. So we have v1 = v2. The proof for

D and D∗ are similar. �

We denote the v in Definition 16 by Lu, Du, and D∗u, respectively.

Proposition 18. D(L;E) ⊂ D(D;E) and D(L;E) ⊂ D(D∗;H ⊗E).

Proof. Let u ∈ D(L;E) and K is a compact set in B such that

ϕK
n u ∈ D1

1+(E), n ∈ N. Then we have ϕK
mD(ϕK

n+2u) = ϕK
mD(ϕK

m+2u) for

n ≥ m ≥ 1. Thus there is a measurable map v : B → H × E such that
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ϕK
n D(ϕK

n+2u) = ϕK
n v. So u ∈ D(D;E). This proves the first assertion. The

proof for the second assertion is similar. �

Proposition 19. Let E be a separable Hilbert space.

(1) Let u ∈ D(L;E) and suppose that Lu ∈ D(L;E). Then Du ∈ D(L;H ⊗
E) and DLu = LDu−Du.

(2) Let u ∈ D(L;H ⊗E) and suppose that Lu ∈ D(L;H ⊗E). Then D∗u ∈
D(L;E) and D∗Lu = LD∗u + D∗u.

Proof. Since the proofs of the assertions (1) and (2) are similar, we

prove only (1). Similarly to the proof of Proposition 14, we see that there

is a compact set K in B with µ(K) > 0 satisfying the following.

ϕK
n u, ϕK

n Lu ∈ D1
1+(E), ϕK

n Du ∈ D0
1+(H ⊗ E),

ϕK
n L(ϕK

n+2u) = ϕK
n Lu, ϕK

n L(ϕK
n+2Lu)

= ϕK
n Lu, and ϕK

n D(ϕK
n+2u) = ϕK

n Du

for all n ≥ 1. Note that

ϕK
n+8u = e−1P1(ϕ

K
n+8u) +

∫ 1

0
e−tPt((I − L)(ϕK

n+8u))dt

and so we have

ϕK
n Du = e−1ϕK

n DP1(ϕ
K
n+8u) + ϕK

n D(

∫ 1

0
e−tPt(ϕ

K
n+6(u− Lu))dt)

+

∫ 1

0
e−tϕK

n DPt((1− ϕK
n+6)(I − L)(ϕK

n+8u))dt.

Then by Lemma 10 and the fact that∫ 1

0
e−tPtdt = (I − L)−1(I − e−1P1),

we see that ϕK
n Du ∈ D1

1+(H ⊗ E).

Also, we see that

ϕK
n LPt(ϕ

K
n+6Du) = ϕK

n LPtD(ϕK
n+8u)− ϕK

n LPt(1− ϕK
n+6)D(ϕK

n+8u)

= etϕK
n DPt(ϕ

K
n+6(Lu− u))

+ etϕK
n DPt((1− ϕK

n+6)(L − I)(ϕK
n+8u))

− ϕK
n LPt(1− ϕK

n+6)D(ϕK
n+8u).
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Letting t→ 0, we see by Lemma 10 that

ϕK
n L(ϕK

n+6Du) = ϕK
n D(ϕK

n+6(Lu + u) = ϕK
n D(Lu + u)

in D−1
1+(H ⊗ E). Since ϕK

n L(ϕK
n+2 − ϕK

n+6) = 0 as an operator from D1
p to

D−1
p , we have

ϕK
n L(ϕK

n+2Du) = ϕK
n D(Lu + u) and ϕK

n D(Lu + u) ∈ D0
1+.

So we have our assertion. �

Definition 20. Let E be a separable real Hilbert space. We say that

f : B → E is a CH1 map, if f ∈ D(L;E) and f : B → E and Lf : B → E

are CH maps.

We say that f : B → E is a CHn map, n ≥ 2, if f is a CHn−1 map and

Lf : B → E is a CHn−1 map. Also, we say that f : B → E is a CH∞ map,

if f is a CHn map for all n ≥ 1.

Proposition 21. For any u ∈ Ds
p(E), p ∈ (1,∞), s ∈ R, and t > 0,

Ptu : B → E is a CH∞ map.

Proof. Since we have LnPtu = Pt/2(LnPt/2u)), it is sufficient to prove

that Ptf : B → E is CH map for any t > 0 and f ∈ D0
p(E). It is easy to see

that Ptf : B → E is continuous if f : B → E is continuous and bounded.

Since the set of bounded continuous functions is dense in D0
p(E), we have

our assertion by Lemma 2. �

Our main result in this section is the following.

Lemma 22. Let E be a separable real Hilbert space.

(1)If f : B → E be a CH1 map, then Df : B → H ⊗ E is a CH map.

(2)If f : B → H ⊗ E be a CH2 map, then D∗f : B → E is a CH map.

We have the following as an easy consequence of Lemma 22 and Propo-

sition 19.

Theorem 23. Let E be a separable real Hilbert space.

(1)If f : B → E be a CH∞ map, then Df : B → H ⊗ E is a CH∞ map.

(2)If f : B → H ⊗ E be a CH∞ map, then D∗f : B → E is a CH∞ map.
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Proof of Lemma 22. Since the proofs of the assertion (1) and (2)

are similar and the proof of the assertion (2) is more delicate, we prove the

assertion (2) only. Let f : B → H ⊗E be an CH2-map. By Proposition 15,

we may assume that there is a compact subset K in B with µ(K) > 0

satisfying the following.

(i) f,Lf,L2f are continuous on K + Bn,

(ii) ϕK
n f, ϕK

n Lf ∈ D1
1+,

and

(iii) ϕK
n Lf = ϕK

n L(ϕK
n+2f) and ϕK

n L2f = ϕK
n L(ϕK

n+2Lf) for any n ≥ 1.

Then we see that ϕK
n f, ϕK

n Lf and ϕK
n L2f are bounded. Note that

ϕK
2nD

∗f = ϕK
2nD

∗(ϕK
3n+2m+8f)

= 4

∫ ∞

0
te−2tϕK

2nD
∗(I − L)2P2t(ϕ

K
3n+2m+8f)dt.

Let

un,m,k = 4

∫ ∞

2−k

te−2tD∗(I − L)2P2t(ϕ
K
3n+2m+8f)dt

= 4P2−k+1(

∫ ∞

2−k

te−2t+2−k+2
D∗(I − L)2P2t−2−k+1(ϕK

3n+2m+8f)dt).

Then we see that un,m,k : B → E, k ∈ N, are HC0 maps and so we may

assume that un,m,k is compact HC map. Note that

(I − L)2Pt(ϕ
K
3n+2m+8f)

= (I − L)Pt(ϕ
K
3n+2m+6(f − Lf))

+ (I − L)Pt((1− ϕ3n+2m+6)(I − L)(ϕK
3n+2m+8f))

= Pt(ϕ
K
3n+2m+4(f − 2Lf + L2f))

+ Pt((1− ϕK
3n+2m+4)(I − L)(ϕK

3n+2m+6(f − Lf)))

+ (I − L)Pt((1− ϕK
3n+2m+6)(I − L)(ϕK

3n+2m+8f)).

Let

vn,m(z; t) = 4tP2tD
∗((1− ϕK

3n+2m+4)(I − L)(ϕK
3n+2m+6(f − Lf)))

+ 4tP2tD
∗((1− ϕK

3n+2m+4)(I − L)((1− ϕK
3n+2m+6)

× (I − L)(ϕK
3n+4m+8f)))(z).
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and

wn,m(z; t) = 4te−tPtD
∗Pt(ϕ3n+2m+4 K(f − 2Lf + L2f))

Note that (I − L)(ϕK
3n+2m+6(f − Lf)) and (I − L)(ϕK

3n+4m+8f) belongs to

D−1
2 (H ⊗ E). Then we have

ϕK
2nD

∗f = ϕK
2nun,m,k +

∫ 2−k

0
ϕK

2n(vn,m(·, t) + wn,m(·, t))dt

Let

v∗n,m(z; t) = sup{‖ ϕK
2nvn,m(z + h; t) ‖E ;h ∈ Bn},

and

w∗
n,m(z; t) = sup{‖ wn,m(z + h; t) ‖E ;h ∈ Bn}, z ∈ B, t > 0.

Since ϕ3n+2m+4(f − 2Lf + L2f) is bounded, we have by Corollary 3

∫ 2−k

0
w∗

n(z; t)dt→ 0, µ− a.e.z, k →∞.

By Proposition 11, if (m− 3)2 > 16n2, there is a C1 > 0 such that

‖ ϕ2n(·)v∗n(·; t) ‖L2≤ C1, t ∈ (0, 1].

Thus we see that

ϕ2n(z)

∫ 2−k

0
v∗n(z; t)dt→ 0, µ− a.e.z, k →∞.

Let mn = 4n + 4. These imply that

ϕ2n(z) sup{|un,mn,k(z + h)− un,mn,k′(z + h)|;
h ∈ H, ‖ h ‖H≤ n} → 0, k, k′ →∞, µ− a.e.z,

for any n ∈ N. Let

An = {z ∈ K + Bn; sup{|un,mn,k(z + h)− un,mn,k′(z + h)|;
h ∈ H, ‖ h ‖H≤ n} → 0, k, k′ →∞},

n ∈ N. Then we see that µ(An) = µ(K + Bn) → 1. Let Kn be a compact

suset of An satisfying µ(An \ Kn) ≤ 2−n. Let un : B → E be given by
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un(z) = limk→∞ un,mn,k(z), z ∈ Kn +Bn and un(z) = 0, z ∈ B \ (Kn +Bn)

Then we see that D∗f(z + h) = un(z + h), µ− a.e.z ∈ Kn for each h ∈ Bn,

and that un(z + ·) : Bn → E is continuous for each z ∈ Kn.

Let us take a subsequence {nk} such that µ(Knk
) ≥ 1 − 2−k. Let A =⋃∞

j=1(
⋂∞

k=j Knk
), and V be a dense subset of H. Let

Ã� = {z ∈ A; sup{|unk
(z + h)− unk′ (z + h)|;

h ∈ V, ‖ h ‖H≤ +} → 0, k, k′ →∞}.

Then we see that µ(Ã�) = 1. Let Ã =
⋂∞

�=1 Ã�, and let u : B → E be given

by u(z) = limk→∞ unk
(z), z ∈ Ã and u(z) = 0, z ∈ B \ Ã. Then we see that

u is a compact HC-map and D∗f(z) = u(z), µ− a.e.z. So we see that D∗f
is an HC map. This completes the proof. �

For separable real Hilbert spaces Ei, i = 0, 1, let C∞(E0;E1) be the

space of smooth maps from E0 to E1, i.e., C∞(E0;E1) is the space of con-

tinuous maps F : E0 → E1 such that for all n ≥ 1, e0, e1, . . . , en ∈ E0, the

map (x1, . . . , xn) → F (e0 +
∑n

k=1 xkek) is a smooth map from Rn to E1

and that there is a continuous map F (n) from E0 to the space of continuous

n-multilinear maps Mn(En
0 ;E1) for which

∂

∂x1 · · · ∂xn
F (e0 +

n∑
k=1

xiei)|x1=···=xn=0 = F (n)(e0)(e1, . . . , en).

Let F ∈ C∞(E0, E1), and (e0, ẽ1, ẽ2) ∈ E1×L2(H;E1)
2 = E1×(H⊗E1)

2.

Then for any complete orthnormal basis {hj}∞j=1, we see that∑∞
j=1 F

(2)(e0)(ẽ1(hj), ẽ2(hj)) converges in E1 and does not depend on the

choice of basis {hj}∞j=1. Thus, we can define 〈F (2)〉 : E0 →M2((H⊗E0)
2;E1)

to be the sum of this series. Then the map (e0, ẽ1, ẽ2) → 〈F (2)〉(e0)(ẽ1, ẽ2)

can be an element of C∞(E0 ⊕ (H ⊗ E0)⊕ (H ⊗ E0);E1).

Theorem 24. Let Ei, i = 0, 1 be separable real Hilbert spaces and

F ∈ C∞(E0;E1). If u : B → E0 is a CH∞ map, then F ◦u : B → E1 is also

a CH map and we have

D(F ◦ u)(z) = F (1)(u(z))(Du(z)),
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and

L(F ◦ u)(z) = F (1)(u(z))(Lu(z)) +
1

2
〈F (2)〉(u(z))(Du(z), Du(z)), µ-a.e.z.

Proof. Let u : B → E0 is a CH∞ map. Then it is obvious that

F ◦ u : B → E1 is a CH map. Let K be a compact set in B such that

ϕK
n u ∈ D1

1+(E0), ϕ
K
n u ∈ D1

1+(H ⊗E0) and ϕK
n D(ϕK

n+2u) = ϕK
n Du, n ∈ N.

Then one can easily see that

ϕK
n D(ϕK

n+2(F ◦ u)) = ϕK
n F (1)(ϕK

n+2u)(D(ϕK
n+2u)).

So we see that F ◦ u ∈ D(D;E1) and D(F ◦ u) = F (1) ◦ uDu. Similarly we

have D(F ◦ u) ∈ D(D∗;H ⊗ E1) and

D∗D(F ◦ u) = F (1) ◦ u(D∗Du)− 〈F (2)〉 ◦ u(Du,Du).

(See the proof of [8] Theorem(1.9).)

By a little discussion we see that F ◦ u ∈ D(L, E1) and

L(F ◦ u) = (F (1) ◦ u)(Lu) +
1

2
(〈F (2)〉 ◦ u)(Du,Du).(5)

So we see that F ◦ u : B → E1 is a CH1 map. By Equation (5) and

Theorem 23, we see that F ◦ u : B → E1 is a CHn map, n ≥ 1, inductively.

This completes the proof. �

4. Continuity of Stochastic Processes

Let M be a totally bounded metric space with a metric function dM .

For any t > 0, N(t;M,dM ) denote the minimum of cardinals of t-dM nets

of M. Let us define ε(M,dM ) to be

ε(M,dM ) = lim sup
t↓0

log logN(t;M,dM )

log(1/t)
.

We call ε(M,dM ) an ε-entropy of the metric space M.

The following is somehow well-known, but we give a proof.
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Lemma 25. Let (Ω,F , P ) be a probability space, E be a separable

Banch space and X : M × Ω → E be a measurable map. Suppose that

α > ε(M,dM ), and that there are γ > 0 and C <∞ such that

sup
x,y∈M,x �=y

EP [exp(γ
‖ X(x)−X(y) ‖2

E

dM (x, y)α
)] ≤ C.

Then there is a sequence {cn}∞n=1 of positive numbers depending only on the

metric space (M,dM ) and α, γ, C such that cn → 0, n→∞, and that

E[ sup
x,y∈A

{‖ X(x)−X(y) ‖E ; dM (x, y) ≤ 2−n}] ≤ cn, n ≥ 1

for any countable subset A of M.

Proof. Let Nn = N(2−n;M,dM ), n = 1, 2, . . . We see that

P (‖ X(x)−X(y) ‖E> t) ≤ C exp(− γt2

dM (x, y)α
), t > 0, x, y ∈M.

Let B(x, r) = {y ∈ M ; dM (y, x) < r}, x ∈ M, r > 0. Then there are xn,k,

n ≥ 1, k = 1, 2, . . . , Nn, such that

Nn⋃
k=1

B(xn,k, 2
−n) = M.

Let Zn, n ≥ 1, be given by

Zn = max
k=1,... ,Nn

max
�=1,... ,Nn+1

{ ‖ X(xn,k)−X(xn+1,�) ‖E ;

dM (xn,k, xn+1,�) ≤ 2−(n−1)}

Then we have

P (Zn > t) ≤ NnNn+1C exp(−γt22α(n−1)).

Then we have

E[Zn] ≤ 1

n2
+

∫ ∞

1/n2

P (Zn > t)dt

≤ 1

n2
+ NnNn+1CC0 exp(−γ 2α(n−1)

n4
),
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where

C0 =

∫ ∞

0
exp(−γt2)dt.

Let Z ′
n, n ≥ 1, be given by

Z ′
n = max

k,�=1,... ,Nn

{‖ X(xn,k)−X(xn,�) ‖E ; dM (xn,k, xn,�) ≤ 2−(n−2)}

Then we have

E[Z ′
n] ≤ 1

n2
+ N2

nCC1 exp(−γ 2α(n−2)

n4
),

where

C1 =

∫ ∞

0
exp(−γ2−αt2/2)dt.

One can easily see that for any countable subset A of B

sup
x,y∈A

{‖ X(x)−X(y) ‖E ; dM (x, y) ≤ 2−n}

≤ sup{‖ X(x)−X(y) ‖E ;

x, y ∈
∞⋃

m=n

{xm,k; k = 1, . . . , Nm}, dM (x, y) ≤ 2−n}

≤ Z ′
n + 2

∞∑
k=n

Zk, a.s. n ≥ 1.

So we have our assertion. �

The following is an easy consequence of the previous Lemma.

Theorem 26. Let (Ω,F , P ) be a probability space, E be a separable

Banach space and X : M × Ω → E be a measurable map. Suppose that

α > ε(M,dM ), and there are γ,C > 0 such that

sup
x,y∈M,x �=y

EP [exp(γ
‖ X(x)−X(y) ‖2

E

dM (x, y)α
)] <∞,

Then there is a measurable map X̃ : M × Ω → E satisfying the following.

(1) X̃(·, ω) : M → E is continuous for all ω ∈ Ω.

(2) P (X̃(x) = X(x)) = 1, for all x ∈M.
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Also, we have the following.

Theorem 27. Let (Ω,F , P ) be a probability space. Let X : M × Ω →
[0,∞) be a measurable map such that X(·, ω) : M → [0,∞) is lower semi-

continuous. Let α > ε(M,dM ). If there is a γ > 0 such that

sup
x,y∈M,x �=y

EP [exp(γ
|X(x)−X(y)|2

dM (x, y)α
)] <∞,

then

P ( sup
x∈M

X(x) <∞) = 1.

Proof. Let A be a countable dense subset of M. Then we see

that supx∈M X(x) = supx∈A X(x). Then we have our assertion from

Lemma 25. �

Lemma 28. Let H0, H1 be separable real Hilbert spaces such that H0

is densely continuously embedded in H1. Let U = {h ∈ H0; ‖ h ‖H0≤ 1}.
Assume that ε(U ; ‖ · ‖H1) < 2. Then the inclusion map i : H0 → H1 is a

Hilbert-Schmidt operator.

Proof. Let (Ω,F , P ) be a probability space and let X(h), h ∈ H0 be

mean zero Gaussian system of random variables such that E[X(h)X(h′)] =

(i(h), i(h′))H1 , h, h
′ ∈ H0. Then we see that

E[exp(
|X(h)−X(h′)|2
4 ‖ h− h′ ‖2

H1

)] ≤ 2, h, h′ ∈ H0

Since ε(nU ; ‖ · ‖H1) < 2 for any n ∈ N, by Theorem 26 we see that there

is a X̃ : H0 × Ω → R such that P (X̃(h) = X(h)) = 1, h ∈ H0, and that

X̃(·, ω) : H0 → R is continuous for all ω ∈ Ω. One can easily check that

P (X̃(ah + bh′) = aX̃(h) + bX̃(h′) for all h, h′ ∈ H0, a, b ∈ R) = 1.

So we may regard X̃ as a H∗
0 -valued random variable. Let ν be a probability

law in H∗
0 of X̃. Then (ν,H∗

1 , H
∗
0 ) is an abstract Wiener space. Therefore

i∗ : H∗
1 → H∗

0 is a Hilbert-Schmidt operator. This implies our assertion. �
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Lemma 29. Let H0, E be separable real Hilbert spaces and B0 be a

Banach space such that H0 is densely continuously embedded in B0. Let

T : B0 → E be a bounded linear operator. Let U = {h ∈ H0; ‖ h ‖H0≤ 1}
and assume that ε(U ; ‖ · ‖B0) < 2. Then T |H0 : H0 → E is a Hilbert-Schmidt

operator.

Proof. Let H ′
0 be the orthogonal subspace of H ∩ kerT in H0. Define

an inner product (·, ·)1 on H ′
0 by (h1, h2)1 = (Th1, Th2)E , h1, h2 ∈ H ′

0. Then

this inner product is closable. Let H1 be the completion of H ′
0 with respect

to the inner product (·, ·)1. Then we see that ‖ h ‖H1 ≤‖ Th ‖E ≤ C ‖ h ‖B0 ,

h ∈ H ′
0 for some constant C > 0. Therefore we have ε(U ∩H ′

0, ‖ · ‖H1) < 2.

So we see that the inclusion map i : H ′
0 → H1 is Hilbert-Schmidt type. Let

{e′n} and {en} be complete orthonormal bases of H ′
0 and H0 ∩ kerT. Then

we see that

∑
n

‖ Te′n ‖2
E +

∑
n

‖ Ten ‖2
E=

∑
n

‖ e′n ‖2
H1

<∞.

So we have our assertion. �

5. Continuity of Stochastic Extension

Remind that L∞(H;H) is the Banach space consisting of bounded linear

operators in H with an operator norm ‖ · ‖op . Let {Pn}∞n=1 be a sequence

of orthogonal projections such that the image of Pn, n ≥ 1, is a finite

dimensional vector subspace in B∗ and Pn ↑ IH , strongly as n →∞. Then

we can extend the operator Pn to a bounded linear operator P̃n from B into

H. We may assume that

∫
B
‖ z − P̃nz ‖2

B µ(dz) ≤ 2−n, n = 1, 2, . . . .

Let A ∈ L∞(H;H). Then by [7] Theorem(1.14), we see that there is a

measurable map Ã : B → B such that

‖ Ã(z)−AP̃nz ‖B→ 0, µ− a.s.z

By the argument [7] Lemma(1.11), Theorems (1.13) and (1.14), we have the

following.
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Theorem 30. There is a γ > 0 such that

sup{
∫

B
exp(γ ‖ Ã(z) ‖2

B)µ(dz); A ∈ L∞(H;H), ‖ A ‖op≤ 1} <∞.

Moreover, we have the following.

Theorem 31. Let M be a compact subset in L∞(H;H), and assume

that ε(M, ‖ · ‖op) < 2. Then there is a measurable mapping Ψ : M ×B → B

and a compact set K in B satisfying the following.

(1) Ψ(A, z) = Ã(z), µ− a.e.z, for any A ∈M.

(2) Ψ(·, z + ·) : M ×H → B is continuous for all z ∈ B.

(3) µ(K) > 0 and Ψ(A, z + h) = Ψ(A, z) + Ah for all A ∈ M, z ∈ K and

h ∈ H.

(4) Ψ(·, ·) : M × (K + Br) → B is continuous for all r > 0.

Proof. Let M0 be a countable dense subset in M. Let Ω0 be the set

of z ∈ B such that {AP̃nz}∞n=1 is a Cauchy sequence in B for all A ∈ M0.

Then we see that µ(Ω0) = 1 and Ω0 + H = Ω0.

Let F : M0 × Ω0 → B be given by

F (A, z) = lim
n→∞

AP̃nz, A ∈M0, z ∈ Ω0.

By Theorem 30 we see that there is a γ > 0 such that

sup{
∫

B
exp(γ

‖ Ã(z)− Ã′(z) ‖2
B

‖ A−A′ ‖2
op

)µ(dz); A,A′ ∈M} <∞.

So there is a measurable map X : M × B → B such that X(A, z) = Ã(z),

µ−a.e.z, for any A ∈M, and X(·, z) : M → B is continuous. Let Ω1 be the

set of z ∈ Ω0 such that F (A, z) = X(A, z) for all A ∈ M0. Then µ(Ω1) = 1

and F (·, z) : M0 → B is uniformly continuous for all z ∈ Ω1. Let Ω2 be a σ-

compact subset of Ω1 such that µ(Ω2) = 1. Since F (A, z+h) = F (A, z)+Ah,

z ∈ Ω2, h ∈ H, we see that F (·, z) : M0 → B is uniformly continuous for

all z ∈ Ω2 + H. So we can extend F (·, z) to be a continuous map from

M to B for all z ∈ Ω2 + H. Let Ψ : M × B → B by Ψ(A, z) = F (A, z),

A ∈ M, z ∈ Ω2 + H, and Ψ(A, z) = 0, A ∈ M, z ∈ B \ (Ω2 + H). Then

Ψ can be regarded as a measurable map from B into C(M ;B). Let K be
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a compact set in B such that µ(K) > 0, K ⊂ Ω2, and Ψ is a continuous

map from K into C(M ;B). Then we see that the assertions (1), (2) and (3)

hold. Also, by the compactness of Br in B and the assertion (3), we see

that Ψ : M × (K + Br) → B is continuous.

This completes the proof. �

6. Rotation

Remind that O(H) denotes the set of linear isomorphism in H. Let

A(H) denote the set of anti-symmetric bounded linear operators in H, that

is, A ∈ A(H) if A is a bounded linear operator in H satisfying A∗ = −A.

Proposition 32. Let U ∈ O(H). Then the probability law of Ũ(z)

under µ(dz) is µ.

Proof. Note that for any ξ ∈ B∗

∫
B

exp(
√
−1B〈Ũ(z), ξ〉B∗)µ(dz)

= lim
n→∞

∫
B

exp(
√
−1(P̃nz, U

∗ξ)H)µ(dz) = exp(−1

2
‖ ξ ‖2

H).

Thus we have our proposition. �

Let U ∈ O(H) and E be a separable real Hilbert space. Then by Propo-

sition 32, we can define an isometric linear operator TU in Ds
p(E), p ∈ (1,∞),

s ∈ R, by

(TUu)(z) = u(Ũz), z ∈ B.

Proposition 33. Let E be a separable real Hilbert space.

(1) For any U ∈ O(H),

PtTU = TUPt and (1− L)−sTU = TU (1− L)−s

in Lp(B;E, dµ), p ∈ (1,∞), t, s > 0.

(2) Let Un ∈ O(H), n ≥ 1, and U ∈ O(H), and assume that Un → U

strongly in H as n → ∞. Then TUn → TU strongly in Ds
p(E) as n → ∞,

p ∈ (1,∞), s ∈ R.
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Proof. The assertion (1) follows from the following computation.

Pt(TUf)(z) =

∫
B
f(Ũ(e−tz + (1− e−2t)1/2w))µ(dw)

=

∫
B
f(e−tŨ(z) + (1− e−2t)1/2w)µ(dw) = TU (Ptf)(z).

To prove the assertion (2), it suffices us to prove the case that s = 0

because of the assertion (1). Let V be the set of E-valued functions u such

that there is an m ≥ 1 and a bounded continuous function f : B → E such

that u(z) = f(P̃mz), z ∈ B. Then V is dense in Lp(B;E, dµ), p ∈ (1,∞).

Since we have
∫

B
|(ξ, Ũ(z))− (ξ, Ũn(z))|2µ(dz) =‖ U∗ξ−U∗

nξ ‖2
H→ 0, n→∞, ξ ∈ B∗,

we see that TUnu converges to TUu in probability and so in Lp for any u ∈ V.
Since TU is isometric, we have our assertion (2). �

Proposition 34. Let E be a separable real Hilbert space and let u ∈
D2

p(E) for some p ∈ (1,∞). Also let A ∈ A(H). Then we have

(TeAu)(z) = u(z)−
∫ 1

0
(TetA(D∗(ADu)))(z)dt, µ− a.e.z.

Proof. Let A ∈ A. Let m ≥ 1 and Vm be the image of Pm. Let

f : Vm → E be a bounded smooth function with bounded derivatives of any

order, and u : B → E be given by u(z) = f(P̃mz), z ∈ B.

Let An = PnAPn, n ≥ m. Then we have

(TeAnu)(z) = f(PmeAnP̃nz), µ− a.e.z.

Also, we see that

d

dt
f(PmetAnP̃nz) = (PmAne

tAnP̃nz,∇f(PmetAnP̃nz))H

= −B〈(etAn) z,An∇f(PmetAnP̃nz)〉B∗

= −(TetAn (D∗(AnDu)))(z),
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since Du(z) = ∇f(Pmz) and trace(D(AnDu)(z)) = trace(AnD
2u(z)) = 0.

So we have

(TeAnu)(z) = u(z)−
∫ 1

0
(TetAn (D∗(AnDu)))(z)dt, µ− a.e.z.(6)

Then we see that Equation (6) hold for all u ∈ D2
p. Since An → A strongly

in H as n → ∞, we have our assertion from Proposition 33(2) by letting

n→∞ in Equation (6). �

Proposition 35. There are γ > 0 and C > 0 satisfying the following.

If ϕ : B → R is a measurable function satisfying

|ϕ(z + h)− ϕ(z)| ≤‖ h ‖H , z ∈ B, h ∈ H,

then ∫
B

exp(γt−1|ϕ(z)− (Ptϕ)(z)|2)µ(dz) ≤ C, t ∈ (0, 1].

Proof. Note that

d

dt
Ptϕ = −D∗DPtϕ = −e−tD∗Pt(Dϕ).

Note that

1− e−t =

∫ t

0
e−sds ≥ t

4
, t ∈ [0, 1].

So we have

t−1/2|ϕ− Ptϕ|

≤ 4(2t1/2)−1(

∫ t

0
s−1/2(1− e−s)1/2|D∗Ps(Dϕ)|ds), t ∈ (0, 1].

Observing ‖ Dϕ ‖H≤ 1, we have

∫
B

exp(ct−1|ϕ− Ptϕ|2)dµ

≤ (2t1/2)−1(

∫ t

0
s−1/2ds

∫
B

exp(16c(1− e−s)|D∗Ps(Dϕ)|2)dµ),

t ∈ (0, 1].
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So by Lemma 1 we have our assertion. �

Lemma 36. There are γ > 0 and C > 0 satisfying the following. If

ϕ : B → R is a measurable function satisfying

|ϕ(z + h)− ϕ(z)| ≤‖ h ‖H , z ∈ B, h ∈ H,

then ∫
B

exp(γ ‖ A ‖−1
op |ϕ(ẽA(z))− ϕ(z)|2)|)µ(dz) ≤ C

for any A ∈ A(H) with A "= 0 and ‖ A ‖op≤ 1.

Proof. Let A ∈ A(H) such that A "= 0 and ‖ A ‖op≤ 1, and let

t =‖ A ‖op . Then we have

|ϕ(ẽA(z))− ϕ(z)|
≤ |ϕ(ẽA(z))− (Ptϕ)(ẽA(z))|+ |ϕ(z)− Ptϕ(z)|

+ |(Ptϕ)(ẽA(z))− Ptϕ(z)|

and

|(Ptϕ)(ẽA(z))− Ptϕ(z)| ≤
∫ 1

0
t|D∗Pt(t

−1ADϕ)( ˜esA(z))|ds

So we have
∫

B
exp(ct−1|ϕ(ẽA(z))− ϕ(z)|2)|)µ(dz)

≤ 2

∫
B

exp(3ct−1|ϕ− Ptϕ|2))µ(dz) +

∫
B

exp(3ct|D∗Pt(t
−1ADϕ)|2)µ(dz)

Since ‖ t−1ADϕ ‖H≤ 1, we have our assetion from Lemma 1(2) and Propo-

sition 35. �

By [7]Theorem(4.9) and Proposition 32, we have the following.

Proposition 37. There are γ > 0 and C > 0 satisfying the following.

If ϕ : B → R is a measurable function satisfying

|ϕ(z + h)− ϕ(z)| ≤‖ h ‖H , z ∈ B, h ∈ H,
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then ∫
B

exp(γ|ϕ(Ũ(z))− ϕ(z)|2)µ(dz) ≤ C

for any U ∈ O(H).

By Lemma 36 and Proposition 37, we have the following.

Theorem 38. There is a γ > 0 satisfying the following. If ϕ : B → R

is a measurable function satisfying

|ϕ(z + h)− ϕ(z)| ≤‖ h ‖H , z ∈ B, h ∈ H,

then

sup{
∫

B
exp(γ ‖ U − IH ‖−1

op |ϕ(Ũ(z))− ϕ(z)|2)µ(dz);

U ∈ O(H), U "= IH} <∞.

Corollary 39. Let K be a compact set in B with µ(K) > 0. Let M

be a totally bounded subset of O(H) such that ε(M ; ‖ · ‖op) < 1. Then

sup{ρ(Ψ(U, z);K); U ∈M} <∞, µ− a.s.z.

Here Ψ is as in Theorem 31.

Proof. Since ρ(·;K) : B → [0,∞] is lower semi-continuous, we see

that ρ(Ψ(·, z);K) : M → [0,∞] is lower semi-continuous. We also see that

|ρ(z + h;K)− ρ(z;K)| ≤‖ h ‖H .

So by Theorem 38 we see that there is a γ > 0 such that

sup{
∫

B
exp(γ ‖ U1 − U0 ‖−1

op |ρ(Ψ(U1; z);K)− ρ(Ψ(U0; z);K)|2)µ(dz);

U0, U1 ∈M,U1 "= U0} <∞.

Then by Theorem 27, we have our assertion. �

Theorem 40. Let M be a totally bounded subset of O(H) such that

ε(M ; ‖ · ‖op) < 1. Let N be a Polish space and f : B → N be a CH map.
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Then there is a H-regular map f̃ : M×B → N such that f̃(U, z) = f(Ũ(z)))

µ− a.e.z for all U ∈M.

Proof. Since f : B → N is CH map, we may assume that there

is a compact set K ′ in B such that µ(K ′) > 0 and f : K ′ + Br → N

is continuous for all r > 0. Also by Theorem 27 we may assume that Ψ :

M×(K ′+Br) → B is continuous for all r > 0. Then by Corollary 39 we have

sup{ρ(Ψ(U, z);K ′);U ∈M} <∞ µ−a.e.z. Let R > 0 and K be a compact

subset of K ′ such that µ(K) > 0 and sup{ρ(Ψ(U, z);K ′);U ∈ M, z ∈ K}
≤ R. Then we see that Ψ(U, z) ∈ K ′ + BR+r for any U ∈ M, z ∈ K + Br

and r > 0. Let f̃(U, z) = f(Ψ(U, z)), U ∈ M, z ∈ B. Then we see that

f̃ : M × (K + Br) → N is continuous for all r > 0.

This completes the proof. �

7. Polish Subgroups

Definition 41. We say that G is a Polish subgroup of O(H), if the

following are satisfied.

(1) G is a subgroup of O(H).

(2) G has a metric function dG such that (G, dG) is a Polish space, the

inclusion map from G into O(H) is continuous, and

dG(g1, g2) = dG(IH , g−1
1 g2), g1, g2 ∈ G.

For a Polish subgroup G of O(H), we define ε(G) by

ε(G) = lim
δ↓0

ε({g ∈ G; dG(IH , g) ≤ δ}, ‖ · ‖op).

Definition 42. We say that G is a Hilbert-Lie subgroup of O(H), if

G is a Polish subgroup of O(H) and if there is a Hilbert space G satisfying

the following.

(1) G is continuously embedded in A(H) as a vector space.

(2) There are neighborhood U0 of 0 in G and a neighborhood U1 of IH in G

such that

(i) ψ : U0 → U1 given by ψ(A) = exp(A), A ∈ U0 ⊂ A, is a homeomorphism

and that
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(ii) for any g ∈ G the map ψ−1(gψ(·)) : ψ−1(U1 ∩ gU1) → G is smooth.

We call G the Lie algebra of G.

Remark. A Hilbert-Lie subgroup G of O(H) is a C∞ Hilbert manifold

(c.f.[12]).

Theorem 43. Let G be a Polish subgroup of O(H) such that ε(G) < 2.

Then there is a measurable mapping Ψ : G× B → B and a compact set K

in B satisfying the following.

(1) Ψ(g, z) = g̃(z), µ− a.e.z, for any g ∈ G.

(2) Ψ(·, z + ·) : G×H → B is continuous for all z ∈ B.

(3) µ(K) > 0 and Ψ(g, z + h) = Ψ(g, z) + gh for all g ∈ G and z ∈ K.

(4) Ψ(·, ·) : G× (K + Br) → B is continuous for all r > 0.

Proof. By the definition of ε(G), we see that there is a δ > 0 such

that ε(U, ‖ · ‖op) < 2, where U = {g ∈ G; dG(IH , g) ≤ δ}. Let {gn}∞n=1 be a

dense subset of G. It is easy to see that ε(gnU, ‖ · ‖op) = ε(U, ‖ · ‖op) < 2.

So by Theorem 31 there are Φn : (gnU) × B → B and compact sets Kn in

B, n = 1, 2 . . . , satisfying the following.

(1) Ψn(g, z) = g̃(z), µ− a.e.z, for any g ∈ gnU,

(2) µ(Kn) > 0 and Ψn(g, z + h) = Ψ(g, z) + gh for all g ∈ gnU and z ∈ K.

(3) Ψ(·, ·) : (gnU)× (Kn + Br) → B is continuous for all r > 0.

We may assume that µ(Kn) ≥ 1− 2−(n+1), n = 1, 2, . . . . Let An,m, n,m =

1, 2, . . . , be the set of z ∈ B such that Ψn(gk, z) = Ψm(gk, z) for all gk ∈
(gnU) ∩ (gmU). Then we see that µ(An,m) = 1.

Let A = (
⋂∞

n,m=1 An,m) ∩ (
⋂∞

n=1 Kn). Then we have µ(A) > 0. Also we

see the following.

Ψn(g, z) = Ψm(g, z) for g ∈ (gnU) ∩ (gmU), z ∈ A, and n,m = 1, 2, . . . ,

Ψn(g, z + h) = Ψn(g, z) + gh for g ∈ (gnU), z ∈ A, and n = 1, 2, . . . , and

Ψn(·, z + ∗) : (gnU)×H → B is continuous for z ∈ A.

Let K be a compact set in B such that µ(K) > 0 and K ⊂ A. Let Ψ :

G × B → B be given by Ψ(g, z) = 0, if g ∈ G and z ∈ B \ (K + H),

and Ψ(g, z) = Ψn(g, z), if g ∈ (gnU), and z ∈ K + H. Then we have our

assetion. �

We have the following by a similar proof of Theorems 40 and 43.
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Theorem 44. Let G1 be a Polish subgroup of O(H) such that ε(G1) <

2 and a measurable mapping Ψ : G1 ×B → B be as in Theorem 43. Let G0

be a Hilbert-Lie subgroup of O(H) such that G0 is continuously imbedded

in G1 and that ε(G0) < 1. Let M be a Polish space and f : B → M be an

H-regular map. Then for any g1 ∈ G1 the map (g, z) → f(Ψ(gg1, z)) is an

H-regular map from G0 ×B to M.

Lemma 45. Let G be a Hilbert-Lie subgroup of O(H) with its Lie al-

gebra G such that ε(G) < 1. Let E be a separable real Hilbert space. Then

we have the following.

(1) There is a bounded linear operator T : H ⊗ E → H ⊗ G∗ ⊗ E ∼=
L2(G;H ⊗ E) such that T (h ⊗ u)(A) = (Ah) ⊗ u, h ∈ H, u ∈ E, and

A ∈ G ⊂ A(H).

(2) For any CH∞ map f : B → E there is an CH map F : B → G∗ ⊗ E

such that

f((eA) (z + h)) = f(z) +

∫ 1

0
(F ((etA) (z + th))(A)

+ Df((etA) (z + th))(h))dt µ− a.e.z

F (z)(A) = D∗(ADf)(z), µ− a.e.z

for any A ∈ G and h ∈ H.

Proof. (1) For each h ∈ H let S(h) be a map from L∞(H;H) into H

given by S(h)(A) = Ah, A ∈ L∞(H;H). Then S(h) is obviously a bounded

linear operator.

Let U = {A ∈ G; ‖ A ‖G≤ 1}. Then by the definition of Hilbert-

Lie subgroup and the assumption, we see that ε(U ; ‖ · ‖op) < 1. So by

Lemma 29 we see that the restriction of S(h) on G is a Hilbert-Schmidt

type for each h ∈ H.

Let S be a map from H into L2(G;H) ∼= H ⊗ G∗. Then by Banach-

Steinhaus’ Theorem, we see that S is a bounded operator. So S ⊗ IE is a

bounded linear operator from H⊗E into (H×G∗)⊗E. Letting T = S⊗IE ,

we have the assertion (1).
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(2) Similarly to the proof of Proposition 34, we see that

f((eA) (z + h)) = f(z) +

∫ 1

0
(D∗ADf)((etA) (z + th))

+ Df((etA) (z + th))(h))dt µ− a.e.z

for any A ∈ G and h ∈ H. By Theorem 23 we see that Df : B → H ⊗ E is

an CH∞ map. So we see that T (Df) : B → H ⊗ G∗ ⊗ E is an CH∞ map.

Thus again by Theorem 23 we see that D∗(T (Df)) : B → G∗ ⊗ E is an

CH∞ map. Letting F = D∗(T (Df)), we have our assertion.

This completes the proof. �

Definition 46. We say that a Hilbert-Lie subgroup G0 of O(H) is

admissible, if there are a Polish subgroup G1 of O(H), an abstract Wiener

space (ν,H0,W ), a diffeomorphism R00 : G0 → H0, and H0-regular maps

S : W → G1, R0 : G0 ×W → H0, and R1 : H0 ×W → G0, satisfying the

following.

(1) G0 is included in G1 continuously, ε(G0) < 1 and ε(G1) < 2.

(2) S(w + R0(g, w)) = gS(w), ν − a.e.w, for any g ∈ G0.

(3) R0(·, w + ·) : G0 × H0 → H0 and R1(·, w + ·) : H0 × H → G0, are

continuously Frechét differentiable, R0(R1(h,w), w) = h, w ∈ W, h ∈ H0,

and R1(R0(g, w), w) = g, w ∈W, g ∈ G0.

The following is an easy consequence of Theorem 43 and Lemma 45.

Theorem 47. Let G0 be an admissible Hilbert-Lie subgroup of O(H).

Let (ν,H0,W ) be an abstract Wiener space, G1 be a Polish subgroup of

O(H) and an H0-regular map S : W → G1 be as in Definition 46. Let

Ψ : G1×B → B be as in Theorem 43. Let E be a separable real Hilbert space

and f : B → E be an H-regular CH∞-map. Then the map f(Ψ(S(·), ·)) :

W ⊕B → E is an (H0 ⊕H)-regular CH1-map.

8. Main Theorems

For a map Φ : B → B and a subset A in B, let N(· ;A,Φ) : B → [0,∞]

be given by

N(z;A,Φ) = #{z′ ∈ A; Φ(z′) = z}, z ∈ B.



Nonlinear Transformation Containing Rotation and Gaussian Measure 33

Here #A denotes the cardinal of the set A.

Then we have the following.

Theorem 48. Let F : B → H be an H-regular and CH1-map, and let

Φ : B → B be given by Φ = IB + F. Then we have
∫

A
f(Φ(z))|d(z;F )|µ(dz) =

∫
B
N(z;A,Φ)f(z)µ(dz),

for any non-negative measurable function f : B → R and a Borel set A in

B. Here

d(z;F ) = det2(IH + DF (z)) exp(−D∗F (z)− 1

2
‖ F (z) ‖2

H), z ∈ B.

Proof. We give only a sketch of a proof, because this theorem is a

version of a change of variables formula and the Sard theorem (c.f. [15]

and its references). Since F is an H regular and CH1-map, DF : B → H

is a CH-map by Lemma 22. So there are a compact set K in B and a

measurable map G : B → L2(H;H) such that F : K + Br → H, and

G : K + Br → L2(H;H) are continuous for all R > 0, and that

lim
t→0

1

t
(F (z + th)− F (z)− tG(z)h) = 0, z ∈ K + H.

Let M1 be the set of z ∈ K+H for which IH +DF (z) : H → H is bijective,

M0 = (K +H) \M1 and let N0 = B \ (K +H). Then by the Sard theorem

(c.f.[6]), we have µ(Φ(M0)) = 0. Also, by the change of variables formula,

we see that∫
A∩M1

f(Φ(z))|d(z;F )|µ(dz) =

∫
B
N(z;A ∩M1,Φ)f(z)µ(dz).

Noting that Φ(N0) ⊂ N0 and µ(N0) = 0, we have our assertion. �

In this section, we extend this theorem.

Let G0 be an admissible Hilbert Lie subgroup of O(H) Let (ν,H0,W )

be an abstract Wiener space, G1 be a Polish subgroup of O(H), an H0-

regular map S : W → G1 and a diffeomorphism R00 : G0 → H0 be as in

Definition 46. Let Ψ : G1 ×B → B be as in Theorem 43.
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Let U : B → G0 and F : B → H be H-regular maps such that R00 ◦U :

B → H0 and F are CH∞-maps. Let Φ : B → B be given by Φ(z) =

Ψ(U(z), z + F (z)), z ∈ B.

The following is our main thereom.

Theorem 49. Suppose that Ω̃0 be a Borel set in W ×B satisfying the

following.

(1) Ω̃0 + (H0 ⊗H) = Ω̃0, and (ν ⊗ µ)(Ω̃0) = 1.

(2) Ψ(g,Ψ(S(w), z)) = Ψ(gS(w), z) for any g ∈ G0 and (w, z) ∈ Ω̃0.

(3) Ω0 = {(Ψ(S(w), z)); (w, z) ∈ Ω̃0} is a Borel set in B.

Then there is a measurable map δ : B → [0,∞] such that∫
A
f(Φ(z))δ(z)µ(dz) =

∫
B
N(z;A ∩ Ω0,Φ)f(z)µ(dz),

for any non-negative measurable function f : B → R and a Borel set A in

B.

Proof.

Step 1. Let π : W × B → B be defined by π(w, z) = Ψ(S(w), z),

(w, z) ∈W×B. Since µ◦Ψ(g, ·)−1 = µ, g ∈ G1, we see that (ν⊗µ)◦π−1 = µ.

Also, let G̃ : W × B → H0, and F̃ : W × B → H be given by G̃(w, z) =

R0(U(π(w, z)), w), and F̃ (w, z) = S(w)−1F (π(w, z)), (w, z) ∈W ×B. Then

we see that G̃ and F̃ are (H0 ⊕H)-regular CH1-maps.

Let Φ̃ : W×B →W×B be given by Φ̃(w, z) = (w+G̃(w, z), z+F̃ (w, z)).

Then by Theorem 48, we see that there is a measurable map δ̃ : W ×B →
[0,∞) such that∫

Ã
f̃(Φ̃(w, z))δ̃(w, z)ν(dw)⊗ µ(dz)

=

∫
W×B

N((w, z); Ã, Φ̃)f̃(w, z)ν(dw)⊗ µ(dz)

for any measurable function f̃ : W × B → [0,∞) and any Borel set Ã in

W ×B.

Step 2. We will prove the following.

Claim. (i) If (w′, z′) ∈ W × B and (w, z) = Φ̃(w′, z′) ∈ Ω̃0, then

(w′, z′) ∈ Ω̃0 and Φ(π(w′, z′)) = π(w, z) ∈ Ω0.
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(ii) If (w, z) ∈ Ω̃0, ξ ∈ Ω0 and Φ(ξ) = π(w, z), then there is a unique

(k, h) ∈ H0 ⊕H such that π(w+ k, z + h) = ξ and Φ̃(w+ k, z + h) = (w, z).

Let (w′, z′) ∈ W × B, and (w, z) = Φ̃(w′, z′) ∈ Ω̃0. Then we see that

(w′, z′) ∈ Ω̃0 + (H0 ⊕H) = Ω̃0. So we have

π(w, z) = π(Φ̃(w′, z′)) = Ψ(U(π(w′, z′))S(w′), z + S(w′)−1F (π(w′, z′)))

= Ψ(U(π(w′, z′)),Ψ(S(w′), z + S(w′)−1F (π(w′, z′))))

= Ψ(U(π(w′, z′)), π(w′, z′) + F (π(w′, z′))) = Φ(π(w′, z′)).

Thus we have the Claim (i).

Let (w, z) ∈ Ω̃0, ξ ∈ Ω0, and assume that Φ(ξ) = π(w, z). Then there is

a (w0, z0) ∈ Ω̃0 such that ξ = π(w0, z0). Let w′ = w + R0(U(ξ)−1, w), and

z′ = z−S(w′)−1F (ξ). Then we see that (w′, z′) ∈ Ω̃0. Moreover we see that

π(w′, z′) = Ψ(U(ξ)−1S(w), z)− F (ξ) = Ψ(U(ξ)−1, π(w, z))− F (ξ)

= Ψ(U(ξ)−1,Ψ(U(ξ),Ψ(S(w0), z0) + F (ξ)))− F (ξ)

= π(w0, z0) = ξ.

Note that

S(w) = U(ξ)S(w′) = S(w′ + R0(U(ξ), w′))

= R1(w
′ − w + R0(U(ξ), w′), w)S(w).

Since R0(·, w) : H0 → O(H) is one to one, we see that w = w′+R0(U(ξ), w′).
So we have

Φ̃(w′, z′) = (w′ + R0(U(π(w′, z′), w′), z′ + S(w′)−1F (π(w′, z′)) = (w, z)

So we see that the existence of such (k, h) ∈ H0 ⊕H in the Claim (ii).

Let (k, h) ∈ H0 ⊗H and suppose that π(w + k, z + h) = ξ and Φ̃(w +

k, z + h) = (w, z). Then we have

S(w) = S((w + k) + R0(U(π(w + k, z + h)), w + k)) = U(ξ)S(w + k).

So we have

S(w + k) = U(ξ)−1S(w) = S(w + R0(U(ξ)−1, w)).

So we see that k = R0(w,U(ξ)−1). Also, we see that

z = (z + h) + S(w + k)−1F (π(w + k, z + h)) = z + h + S(w + k)−1F (ξ).
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So we see that h = −S(w + k)−1F (ξ). This shows the uniqueness of (k, h).

This completes the proof of our Claim.

Step 3. Now we prove our theorem. Let A be a Borel set in B and

f : B → [0,∞) be a measurable function. Let Ã = π−1(A), and f̃ = f ◦ π.
Then our Claim implies that

N((w, z); Ã ∩ Ω̃0, Φ̃) = N(π(w, z);A ∩ Ω0,Φ)

for any (w, z) ∈ Ω̃0. Then we have∫
B
N(z;A ∩ Ω0,Φ)f(z)µ(dz)

=

∫
W×B

N(π(w, z);A ∩ Ω0,Φ)f(π(w, z))ν(dw)⊗ µ(dz)

=

∫
W×B

N((w, z); Ã ∩ Ω̃0, Φ̃)f̃(w, z)ν(dw)⊗ µ(dz)

=

∫
Ã
f̃(Φ̃(w, z))δ̃(w, z)ν(dw)⊗ µ(dz) =

∫
A
f(Φ(z))δ(z)µ(dz).

Here δ : B → [0,∞] is given by δ ◦ π = Eν⊗µ[δ̃|π(·)].
This completes the proof. �

Theorem 50. There is a σ-compact set Ω̃0 in W × B satisfying the

following.

(1) Ω̃0 + (H0 ⊕H) = Ω̃0, and (ν ⊗ µ)(Ω̃0) = 1.

(2) Ψ(g,Ψ(S(w), z)) = Ψ(gS(w), z) for any g ∈ G0 and (w, z) ∈ Ω̃0.

(3) Ω0 = {(Ψ(S(w), z)); (w, z) ∈ Ω̃0} is a σ-compact set in B.

Proof. We see that there is a compact set K1 in B such that µ(K1) >

0, Ψ : G1 × (K1 + Br) → B is continuous for any r > 0, and Ψ(g, z + h)

= Ψ(g, z) + gh, g ∈ G1, z ∈ K1, h ∈ H. Also, there is a compact set K0

in W such that ν(K0) > 0, S : K0 + B′
r → G1 is continuous for r > 0 and

S(w + k) = R1(k,w)S(w), w ∈ K0, k ∈ H0. Here B′
r = {k ∈ H0; ‖ k ‖H0≤

r}.
From the definition of ε(G0), we see that there is a countable open

covering {Un}∞n=1 of G0 such that ε(Un; ‖ · ‖op) < 1. Then similarly to the

proof of Corollary 39, we see that

µ(sup{ρ(Ψ(gg̃, z),K1); g ∈ Un} <∞, for all n ≥ 1) = 1,
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for any g̃ ∈ G1. So we see that

(ν ⊗ µ)(sup{ρ(Ψ(gS(w), z),K1); g ∈ Un} <∞, for all n ≥ 1) = 1.

Hence there is a compact set K̃ in W × B such that (ν ⊗ µ)(K̃) > 0, K̃

⊂ K0 × K1 and sup{ρ(Ψ(gS(w), z),K1); g ∈ Un} < ∞ for any n ≥ 1 and

(w, z) ∈ K̃. Then we see that a map Ψ(·,Ψ(S(·), ·)) : G1×(K̃+(B′
r×Br)) →

B is continuous for any r > 0. It is obvious that

Ψ(gS(w + k), z + h) = Ψ(g,Ψ(S(w + k), z + h)), ν ⊗ µ− a.e.(w, z)

for all (g, k, h) ∈ G1 ×H0 ×H.

So there is a compact set K̃0 in W × B such that (ν ⊗ µ)(K̃0) > 0, K̃0

⊂ K̃ and

Ψ(gS(w), z) = Ψ(g,Ψ(S(w), z)),

for all (g, k, h) ∈ G1 × K̃0 + (B′
r ×Br), r > 0. Letting Ω̃0 = K̃0 + (H0 ⊕H),

we have our assertion. �

From Theorems 49 and 50, we have the following.

Corollary 51. There is a σ compact set Ω0 and a measurable map

δ : B → [0,∞] satisfying the following.

(1) µ(Ω0) = 1 and Ω0 + H = Ω0.

(2) For any non-negative measurable function f : B → R and a Borel set

A in B,

∫
A
f(Φ(z))δ(z)µ(dz) =

∫
B
N(z;A ∩ Ω0,Φ)f(z)µ(dz).

9. Example

Let d be an integer. Let B = {z ∈ C([0, 1];Rd); z(0) = 0}, µ be the

standard Wiener measure in B and H be the Cameron-Martin space of µ,

i.e.,

H = {h ∈ B;h(t) is absolutely continuous in t,

∫ 1

0
|dh
dt

(t)|2dt <∞}.
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Then (µ,H,B) is an abstract Wiener space. We take this as a basic abstract

Wiener space.

Let O(d) be the set of d× d orthogonal matrices, and o(d) be the space

of d × d skew symmetric matrices. We introduce an inner product on o(d)

by (A0, A1) = trace (A∗
0A1). Let W = {w ∈ C([0, 1]; o(d)); w(0) = 0} and ν

be the standard Wiener measure on W, i.e., ν is a mean 0 Gaussian measure

with
∫

W
(w(t), A0)(w(s), A1)ν(dw) = (A0, A1)(t ∧ s),

t, s ∈ [0, 1], A0, A1 ∈ o(d).

Let H0 be the Cameron-Martin space of ν, i.e.,

H0 = {h ∈W ;h(t) is absolutely continuous in t,

∫ 1

0
|dh
dt

(t)|2dt <∞}.

For each g ∈ C1([0, 1];O(d)), we denote g(t)−1 dg
dt by Dg

dt . Then Dg
dt ∈

C([0, 1]; o(d)). Let G1 denotes the set of g ∈ C1([0, 1];O(d)) such that

g(0) = Id and Dg
dt ∈W. For each h ∈ H and g ∈ G1, we define

(gh)(t) =

∫ t

0
g(s)

dh

ds
(s)ds, t ∈ [0, 1].

Then we may regard G1 as a Polish subgroup of O(H). Moreover, we see

that the map h → gh in H can be extended a bounded linear operator in

B. Let G0 be the set of g ∈ G1 such that Dg
dt ∈ H0. Then we see that G0

is a Hilbert-Lie subgroup of O(H). By [2], we see that ε(G0) = 1/2, and

ε(G1) = 1. Let S(w) = {St(w); t ∈ [0, 1]}, w ∈ W, be the solution of the

following ODE.

d

dt
St(w) = St(w)w(t), t ∈ [0, 1], S0(w) = 0.

Then the map S : W → G1 is continuous. Note that

d

dt
(g(t)St(w)) = (g(t)St(w))(w(t) + St(w)−1Dg

dt
(t)St(w)),

g ∈ G0, w ∈W.
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So we see that

S(w + S·(w)−1Dg

dt
(·)S·(w)) = gS(w), g ∈ G0, w ∈W.

These show that G0 is admissible. So we have the following from Theo-

rem 49.

Corollary 52. Let U : B → G0 and F : B → H be H-regular maps

such that DU
dt : B → H0 and F : B → H are CH∞-maps. Let Ψ : B → B

be defined by Ψ(z) = U(z)(z + F (z)), z ∈ B. Then there is a measurable

function δ : B → [0,∞] such that

∫
A
f(Φ(z))δ(z)µ(dz) =

∫
B
N(z;A,Φ)f(z)µ(dz),

for any non-negative measurable function f : B → R and a Borel set A in

B.
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