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Twining Character Formula of Borel-Weil-Bott Type

By Satoshi Naito

Abstract. We prove a twining character formula of Borel-Weil-
Bott type for a connected, simply connected, simple affine algebraic
group G over C, by combining a Lefschetz type fixed point formula for
the flag variety G/B and a Kostant type twining character formula for
the complex simple Lie algebra g of G. Our proof is analogous to the
well-known “geometric” proof of the Weyl character formula for finite-
dimensional irreducible G-modules.

1. Introduction

The geometric representation theory of a semi-simple affine algebraic

group has been extensively studied, and nowadays it plays a central role in

the representation theory. However, until recently, the main object of the

study is a connected one, though there are various phenomena peculiar to

the representation theory of a non-connected one (for example, see [M]).

The Borel-Weil-Bott theorem can surely be regarded as one of the most

fundamental results in the geometric representation theory of a semi-simple

affine algebraic group. In this paper, we prove a theorem of Borel-Weil-Bott

type for a typical non-connected, simple affine algebraic group 〈ω〉 � G,

which is the semi-direct product of a connected, simply connected, simple

affine algebraic group G and the cyclic subgroup 〈ω〉 of Aut(G) generated

by (a lift of) a Dynkin diagram automorphism ω.

Let us explain our result more precisely. Let G be a connected, simply

connected, simple affine algebraic group over C with maximal torus T and

Borel subgroup B ⊃ T . We denote by g, h, and b the Lie algebras of G, T ,

and B, respectively. The (rational) character group X(T ) := Hom(T,C∗)
of T can be identified with the (additive) integral weight lattice h∗

Z
⊂ h∗

by taking the differential at the identity element, i.e., by the map λ �→ dλ.
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We choose a set of positive roots ∆+ ⊂ X(T ) � h∗
Z

in such a way that the

roots of B (hence of b) are the negative roots ∆− = −∆+.

The graph automorphism ω of the Dynkin diagram of g induces (non-

canonically) a certain automorphism ω of the Lie algebra g, which further

lifts to an automorphism ω of the algebraic group G stabilizing both the

subgroups T and B. We call these automorphisms ω (Dynkin) diagram

automorphisms. Denote the naturally induced action of ω ∈ Aut(G) on

X(T ) again by ω, and set

X(T )ω := {λ ∈ X(T ) | ω · λ = λ}.

Notice that, under the identification X(T ) � h∗
Z
, X(T )ω is identified with

(h∗
Z
)0 := {λ ∈ h∗

Z
| ω∗(λ) = λ}, where ω∗ ∈ GL(h∗) is the transposed map

of the restriction of ω to h. Then the subgroup Wω of the Weyl group

W � NG(T )/T consisting of all the elements fixed by the naturally induced

action of 〈ω〉 is given by:

Wω = {w ∈W | (ω∗)−1wω∗ = w}
= {nT/T ∈ NG(T )/T | n−1ω(n) ∈ T}.

It is known that Wω is a Coxeter group. Furthermore, we form the semi-

direct product 〈ω〉�G of G and the cyclic subgroup 〈ω〉 of Aut(G) generated

by ω, and then form its closed subgroups 〈ω〉 � T and 〈ω〉 � B. It is clear

that all these groups are closed subgroups of the affine algebraic group

Aut(G) �G, and hence are affine algebraic groups.

Let B := G/B be the flag variety, which is an 〈ω〉�G-variety as well as a

G-variety since ω ∈ Aut(G) stabilizes B. For a weight λ ∈ X(T ), we denote

by LB(Cλ) the (G-equivariant) sheaf of OB-modules on B associated to the

one-dimensional B-module Cλ on which B acts by the weight λ through

the quotient B � T . Then, for each j ∈ Z≥0, the cohomology group

Hj(B,LB(Cλ)) of the associated sheaf LB(Cλ) on X is naturally equipped

with a structure of rational G-module. If Λ ∈ X(T ) is a dominant weight

and v ∈ W � NG(T )/T is an element of the Weyl group, then the Borel-

Weil-Bott theorem gives an identity of ordinary characters:

chH�(v)(B,LB(Cv(Λ+ρ)−ρ)) = chL(Λ),
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where L(Λ) is the irreducible highest weight G-module of highest weight Λ,

ρ := (1/2)·
∑

α∈∆+
α ∈ X(T )ω � (h∗

Z
)0 is the Weyl vector, and � : W → Z≥0

is the length function of the Coxeter group W .

Now assume that λ ∈ X(T )ω and fix an ord(ω)-th root of unity ζ ∈ C
∗.

We denote by Cλ,ζ the one-dimensional 〈ω〉�B-module on which B acts by

the weight λ through the quotient B � T and ω by the scalar ζ. Then the

sheaf LB(Cλ,ξ) of OB-modules on B associated to Cλ,ξ becomes 〈ω〉 � G-

equivariant, and hence each cohomology group Hj(B,LB(Cλ,ξ)), j ≥ 0,

naturally comes equipped with a structure of rational 〈ω〉 � G-module.

Here we note that LB(Cλ,ξ) is the (locally free) sheaf of local sections of the

algebraic line bundle

p : G×B
Cλ,ξ → G/B = B,

and that the following isomorphism of line bundles gives LB(Cλ,ξ) a natural

structure of 〈ω〉 �G-equivariant sheaf on B (see §4.1 for details):

G×B
Cλ,ξ

Φ−−−→ (〈ω〉 �G) ×(〈ω〉�B)
Cλ,ξ

p

� �q
G/B −−−→

Ψ
(〈ω〉 �G)/(〈ω〉 �B),

where Φ([g, z]) := [(1, g), z] and Ψ(gB) := (1, g)(〈ω〉�B) for g ∈ G and z ∈
Cλ,ξ. Thus, establishing a Borel-Weil-Bott theorem for the non-connected,

simple affine algebraic group 〈ω〉�G is equivalent to determining the 〈ω〉�

G-module structure of Hj(B,LB(Cλ,ξ)) for each j ≥ 0.

For a rational 〈ω〉�T -module V with the T -weight space decomposition

V =
⊕

µ∈X(T ) Vµ, the twining character chω(V ) of V is defined by

chω(V ) :=
∑

µ∈X(T )ω

Tr(ω|Vµ) e(µ)

as an element of the group algebra C[X(T )ω] of X(T )ω over C with the

canonical basis e(µ), µ ∈ X(T )ω � (h∗
Z
)0. Note that the twining character

chω(V ) ∈ C[X(T )ω] can be viewed as the trace function:

T � t �→ Tr((ω, t) ; V ) ∈ C.
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In fact, we have for each t ∈ T ,

Tr((ω, t) ; V ) =
∑

µ∈X(T )ω

Tr(ω|Vµ) e(µ)(t) ∈ C,

where e(µ)(t) := µ(t) ∈ C
∗ for µ ∈ X(T )ω and t ∈ T . We know from [M,

Ch. 2] that the character (i.e., the trace function) of a rational 〈ω〉 � G-

module is completely determined by its values on 〈ω〉 � Tω = 〈ω〉 × Tω,

where Tω := {t ∈ T | ω(t) = t}. Therefore, the study of the 〈ω〉 � G-

module structure of Hj(B,LB(Cλ,ξ)) is reduced to the study of the twining

character chω(Hj(B,LB(Cλ,ξ))) for j ≥ 0. In fact, we obtain the following

theorem, which may be thought of as a Borel-Weil-Bott theorem for the

non-connected, simple affine algebraic group 〈ω〉 �G.

Theorem. Let Λ ∈ X(T )ω be a dominant weight fixed by ω and v ∈
Wω an element of the Weyl group W � NG(T )/T fixed by ω. Then we have

an identity of twining characters

chω(H�(v)(B,LB(Cv(Λ+ρ)−ρ,ζ))) = (−1)�(v)−�̂(v) × ζ × chω(L(Λ)),

where �̂ : Wω → Z≥0 is the length function of the Coxeter group Wω. Hence

we have an isomorphism of 〈ω〉 �G-modules

H�(v)(B,LB(Cv(Λ+ρ)−ρ,ζ)) � C
(−1)�(v)−�̂(v)ζ

⊗C L(Λ),

where C
(−1)�(v)−�̂(v)ζ

denotes a one-dimensional rational 〈ω〉�G-module on

which ω acts by the scalar (−1)�(v)−�̂(v)ζ and G trivially.

Remark. The scalar (−1)�(v)−�̂(v) in the theorem above, which does

not appear in the ordinary Borel-Weil-Bott theorem, seems to come from

the character of the cyclic group 〈ω〉.

Our proof of this theorem is analogous to the well-known “geometric”

proof in [AB, §5] (see also [CG, Ch. 6.1]) of the Weyl character formula for

the irreducible highest weight G-module L(Λ) of dominant highest weight
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Λ ∈ X(T ). But, unlike the case of an ordinary character, it is not so easy

to determine the alternating sum∑
j≥0

(−1)j chω(
∧j

(g/b)∗)

of the twining characters chω(
∧j(g/b)∗), j ≥ 0, whose description can be

given by a Kostant type twining character formula obtained in [Na3].

This paper is organized as follows. In Section 2, following [FSS], [FRS],

and [Na3], we recall the definition of a twining character, the twining char-

acter formula for L(Λ) with Λ ∈ X(T ) dominant, and a Kostant type

twining character formula. In Section 3, following [Ni] (and also [CG]), we

briefly review a Lefschetz type fixed point formula. In Section 4, we prove

our main theorem above, by combining a Lefschetz type fixed point formula

and a Kostant type twining character formula.

Acknowledgments. I am very grateful to the referee for some invaluable

comments on an earlier version of this paper.

2. Twining Characters

2.1. Diagram automorphisms

Let g be a (finite-dimensional) complex simple Lie algebra with Cartan

subalgebra h and Borel subalgebra b ⊃ h. We choose a set of positive roots

∆+ ⊂ h∗ := HomC(h,C) such that the roots of b are the negative roots

∆− = −∆+. Let {αi | i ∈ I} be the set of simple roots in ∆+, {hi | i ∈ I}
the set of simple coroots in h, A = (aij)i,j∈I the Cartan matrix with aij =

αj(hi), and W = 〈ri | i ∈ I〉 ⊂ GL(h∗) the Weyl group with ri a simple

reflection. We take and fix a Chevalley basis {eα, fα | α ∈ ∆+}∪{hi | i ∈ I}
of g so that gαi = C eαi , g−αi = C fαi , and [eαi , fαi ] = hi for each i ∈ I.

A graph automorphism of the Dynkin diagram of g is a bijection ω : I →
I of the index set I of the simple roots αi such that

aω(i),ω(j) = aij for all i, j ∈ I.

Let N be the order of ω, and Ni the number of elements of the ω-orbit Ii
of i ∈ I:

Ii := {ωk(i) | 0 ≤ k ≤ Ni − 1}.
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This ω can be extended (non-canonically) to an automorphism ω, called a

diagram automorphism, of order N of the Lie algebra g in such a way that
ω(eαi) := eαω(i)

for i ∈ I,
ω(fαi) := fαω(i)

for i ∈ I,
ω(hi) := hω(i) for i ∈ I.

Note that we have

(ω(x)|ω(y)) = (x|y) for all x, y ∈ g,

where (·|·) is the Killing form on g.

The restriction of ω to the Cartan subalgebra h induces a transposed

map ω∗ : h∗ → h∗ by ω∗(λ)(h) := λ(ω(h)) for λ ∈ h∗ and h ∈ h. We set

(h∗)0 := {λ ∈ h
∗ | ω∗(λ) = λ},

and call an element of (h∗)0 a symmetric weight. Notice that the Weyl

vector ρ := (1/2) ·
∑

α∈∆+
α is a symmetric weight.

2.2. Fixed point Weyl group

We define the fixed point subgroup Wω of the Weyl group W by

Wω := {w ∈W | (ω∗)−1wω∗ = w},

and call it the fixed point Weyl group. Notice that Wω stabilizes the sub-

space (h∗)0 of h∗. Choose and fix a complete set Î of representatives of the

ω-orbits in I, and set for each i ∈ Î,

wi :=



Ni/2−1∏
k=0

(rωk(i) rωk+Ni/2(i) rωk(i)) if

Ni−1∑
k=0

ai,ωk(i) = 1,

Ni−1∏
k=0

rωk(i) if

Ni−1∑
k=0

ai,ωk(i) = 2.

Note that for each i ∈ Î we have
∑Ni−1

k=0 ai,ωk(i) = 1 or 2, and that if∑Ni−1
k=0 ai,ωk(i) = 1 then Ni is an even integer. It is also known (see, for
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example, [FRS]) that the fixed point Weyl group Wω is a Coxeter group

with the canonical generator system {wi | i ∈ Î}. We denote the length

function of the Coxeter system (W, {ri | i ∈ I}) (resp. (Wω, {wi | i ∈ Î}))
by � : W → Z≥0 (resp. �̂ : Wω → Z≥0). Recall from [KN, Lemma 1.3.1]

that if w = wi1wi2 · · ·win ∈ Wω is a reduced expression of w ∈ Wω in the

Coxeter system (Wω, {wi | i ∈ Î}), i.e., �̂(w) = n, then

(2.2.1) �(w) = �(wi1) + �(wi2) + · · · + �(win).

2.3. Twining character formulas

We denote by 〈ω〉 the cyclic subgroup of Aut(g) generated by the dia-

gram automorphism ω ∈ Aut(g). A finite-dimensional vector space V over

C is called an h-module if V admits a weight space decomposition with

respect to h:

V =
⊕
µ∈h∗

Vµ.

Further, an h-module V is called an (h, 〈ω〉)-module if V admits a C-linear

〈ω〉-action such that

ω · (xv) = ω(x)(ω · v) for all x ∈ g and v ∈ V.

Notice that ω · Vµ = V(ω∗)−1(µ) for µ ∈ h∗. In view of this fact, we define

the twining character chω(V ) of V by

chω(V ) :=
∑

µ∈(h∗)0

Tr(ω|Vµ) e(µ)

as an element of the group algebra C[(h∗)0] of (h∗)0 over C with the canon-

ical basis {e(µ) | µ ∈ (h∗)0}.
Here we recall two kinds of formulas for twining characters, which have

been proved more generally for Kac-Moody algebras.

Formula 1. Let Λ ∈ h∗ be a symmetric dominant integral weight.

Then, as in [FSS], [FRS], and [Na3], the irreducible highest weight g-module

L(Λ) of highest weight Λ is equipped with a structure of (h, 〈ω〉)-module
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such that ω · vΛ = vΛ, where vΛ is a (nonzero) highest weight vector of

L(Λ). It is shown in [FRS] that

chω(L(Λ)) =

∑
w∈Wω

(−1)�̂(w) e(w(Λ + ρ))∑
w∈Wω

(−1)�̂(w) e(w(ρ))
.

Formula 2. Let n− (resp. n+) be the sum of all negative (resp. posi-

tive) root spaces gα, α ∈ ∆− (resp. α ∈ ∆+). Then g = b⊕n+, b = h⊕n−,

and n+ all become (h, 〈ω〉)-modules under the adjoint action of h and the

natural action of ω ∈ Aut(g) since ω stabilizes n−, h, and n+. Notice that

the quotient module g/b is isomorphic to n− as an (h, 〈ω〉)-module. More-

over, since the Killing form (·|·) on g is nondegenerate and 〈ω〉-invariant,

we have an isomorphism of (h, 〈ω〉)-modules

(g/b)∗ � n−,

where (g/b)∗ is the dual (h, 〈ω〉)-module of g/b. Hence, by taking the

exterior power, we obtain that

chω(
∧j

(g/b)∗) = chω(
∧j

n−)

for each j ≥ 0. It is shown in [Na3] that in C[(h∗)0],

∑
j≥0

(−1)j chω(
∧j

n−) =
∑
j≥0

(−1)j chω(Hj(n−,C))

and

chω(Hj(n−,C)) =
∑

w∈Wω

�(w)=j

(−1)�̂(w)−j e(w(ρ) − ρ)

for each j ≥ 0, where Hj(n−,C) is the usual Lie algebra homology module

of n− with coefficients in the trivial module C.
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3. Lefschetz Type Fixed Point Formula

In this section, following [Ni, §4] (see also [CG, Ch. 5]), we review briefly

a special case of (a K-theoretic version of) the Lefschetz fixed point formula

that suffices for our purpose. Here we often identify an algebraic vector

bundle over a smooth algebraic variety with the locally free coherent sheaf

of local sections of it.

Let A be a (not necessarily connected) diagonalizable algebraic group

over C. We denote by X(A) the (rational) character group Hom(A,C∗) of

A, by R(A) the group ring Z[X(A)] of X(A) with the canonical basis {e(χ) |
χ ∈ X(A)}, and by S−1R(A) the localization of R(A) with respect to the

multiplicative subset of R(A) generated by elements of the form 1−e(χ) for

nontrivial χ ∈ X(A). Note that the group algebra C[X(A)] = C⊗ZZ[X(A)]

is identified with the algebra Mor(A,C) of regular algebraic functions on A

by: e(χ)(a) = χ(a) ∈ C
∗ for χ ∈ X(A) and a ∈ A.

For a (finite-dimensional) rational A-module V , we set

Tr(V ) :=
∑

χ∈X(A)

(dimC Vχ) e(χ) ∈ R(A),

where Vχ := {v ∈ V | a v = χ(a)v for all a ∈ A} for χ ∈ X(A). Note that

the evaluation map (at a ∈ A) eva : X(A) → C given by χ �→ χ(a) gives

rise to a ring homomorphism eva : R(A) → C such that eva(Tr(V )) is equal

to the usual trace Tr(a ;V ) ∈ C for the operation of a ∈ A on V . Also, for

an algebraic vector bundle E over Z and a point z ∈ Z, we denote by E|{z}
the fiber of E at the point z.

The following is a special case of the Lefschetz fixed point formula (see

[Ni, §4], and also [CG, Ch. 5]).

Theorem 3.1. Let Z be a smooth projective A-variety (i.e., a variety

with an algebraic action of A) such that all the A-fixed points ZA of Z form

a variety of finite set. For an A-equivariant algebraic vector bundle E over

Z (viewed as a locally free coherent sheaf on Z), we have in S−1R(A),

(♥)
∑
j≥0

(−1)j Tr(Hj(Z,E)) =
∑
z∈ZA

Tr(E|{z}) ×
(

Tr(λA|{z})
)−1

.
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Here

Tr(λA|{z}) :=
∑
j≥0

(−1)j Tr(
∧j

T ∗
z Z),

where
∧j T ∗

z Z is the j-th exterior power of the (Zariski) cotangent space

T ∗
z Z to Z at the point z.

4. Twining Character Formula of Borel-Weil-Bott Type

4.1. Geometric setting

Let G be a connected, simply connected, simple affine algebraic group

over C with maximal torus T and Borel subgroup B ⊃ T , so that the

Lie algebra g = Lie(G) of G is a complex simple Lie algebra with Cartan

subalgebra h = Lie(T ) and Borel subalgebra b = Lie(B) ⊃ h. Thus we can

use the (algebraic) setting in Section 2. Recall that the (rational) character

group X(T ) = Hom(T,C∗) of T is identified with the (additive) integral

weight lattice h∗
Z
⊂ h∗ by taking the differential at the identity element,

i.e., by the map λ �→ dλ. Recall also that the Weyl group W ⊂ GL(h∗) is

identified with the quotient group NG(T )/T , where NG(T ) is the normalizer

of T in G. For each w ∈ W � NG(T )/T , we denote by ẇ ∈ NG(T ) a right

coset representative of w. Notice that if V is a rational G-module and Vµ is

a T -weight space corresponding to µ ∈ X(T ), then we have ẇVµ = Vw(µ).

Since the affine algebraic group G is simply connected, there exists an

automorphism (of order N) of G whose differential at the identity element

coincides with the diagram automorphism ω ∈ Aut(g) in §2.1. By abuse

of notation, we denote by ω this automorphism of G and by 〈ω〉 the cyclic

subgroup of Aut(G) generated by the ω ∈ Aut(G). Note that, under the

isomorphism of algebraic groups Aut(G)→̃Aut(g) given by taking the dif-

ferential at the identity element, the two cyclic groups 〈ω〉 are isomorphic.

We define the fixed point subgroup

X(T )ω := {λ ∈ X(T ) | ω · λ = λ}

of X(T ) by the naturally induced action of ω, which coincides with the

restriction of (ω−1)∗ = (ω∗)−1 ∈ GL(h∗) under the identification X(T ) �
h∗

Z
. Hence we have an identification:

X(T )ω � (h∗Z)0 := {λ ∈ h
∗
Z | ω∗(λ) = λ}.
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Furthermore, it is easy to check that for w ∈ W , the element ω(ẇ) ∈
NG(T ) is a right coset representative of (ω∗)−1wω∗ ∈ W � NG(T )/T .

Hence we see that, under the identification W � NG(T )/T = {ẇT/T |
w ∈ W}, Wω is identified with {ẇT/T | ẇ−1ω(ẇ) ∈ T}. In fact, for each

w ∈Wω, we can (and will) take a right coset representative ẇ ∈ NG(T ) of

w such that ω(ẇ) = ẇ (see [Sp, Ch. 9.3]).

We form the semi-direct product 〈ω〉 � G of G and 〈ω〉 ⊂ Aut(G), and

then its closed subgroups 〈ω〉 � B and 〈ω〉 � T , all of which are closed

subgroups of the affine algebraic group Aut(G) � G, and hence are affine

algebraic groups. Notice that a (finite-dimensional) rational 〈ω〉�T -module

obviously becomes an (h, 〈ω〉)-module in §2.3.

Remark 4.1.1. Let V be a rational 〈ω〉�T -module with the T -weight

space decomposition V =
⊕

µ∈X(T ) Vµ. Then, for each t ∈ T , we have

Tr((ω, t) ; V ) =
∑

µ∈X(T )ω

Tr(ω|Vµ) e(µ)(t) ∈ C,

where e(µ)(t) := µ(t) ∈ C
∗ for µ ∈ X(T )ω and t ∈ T . Hence the twining

character chω(V ) ∈ C[(h∗
Z
)0] � C[X(T )ω] can be thought of as the trace

function:

T � t �→ Tr((ω, t) ; V ) ∈ C.

Let B := G/B be the flag variety and π : G → G/B = B the quotient

morphism. It is well-known that B is a smooth projective G-variety and

π : G → B has local sections. To each (finite-dimensional) rational B-

module M , we can associate a G-equivariant vector bundle p : LB(M) → B
over B by setting

LB(M) := G×B M = (G×M)/B and p([g,m]) := gB/B ∈ B,

where B acts from the right on the direct product G×M by

(g,m)b := (gb, b−1m) for g ∈ G, m ∈M, and b ∈ B,

and where G acts from the left on G ×B M via left multiplication on the

first factor. (The quotient (G×M)/B actually is a smooth algebraic variety

since π : G→ B has local sections.) Note that the sheaf LB(M), called the
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associated sheaf to M on B, of local sections of the algebraic vector bundle

LB(M) is a locally free G-equivariant (or G-linearized) sheaf of OB-modules

(see [J, Part I. Ch. 5] and [CG, Ch. 5]).

Furthermore, if M is a (finite-dimensional) rational 〈ω〉 � B-module,

then the vector bundle p : LB(M) → B comes equipped with a structure of

〈ω〉 �G-equivariant algebraic vector bundle by the rational 〈ω〉-action:

ω · ([g,m]) := [ω(g), ω ·m] for g ∈ G and m ∈M

on LB(M) and the natural algebraic action of 〈ω〉 on B. Hence the asso-

ciated sheaf LB(M) of OB-modules becomes 〈ω〉 �G-equivariant (cf. [KN,

§2.3]).

Remark 4.1.2. To each (finite-dimensional) rational 〈ω〉 � B-module

M , we can associate an 〈ω〉 �G-equivariant algebraic vector bundle

q : (〈ω〉 �G) ×(〈ω〉�B) M → (〈ω〉 �G)/(〈ω〉 �B)

by replacing G and B in the definition of LB(M) above with 〈ω〉 � G and

〈ω〉�B, respectively. (Note that the canonical morphism 〈ω〉�G→ (〈ω〉�

G)/(〈ω〉 � B) has local sections since π : G → G/B does.) Then we have

the following isomorphism of 〈ω〉 �G-equivariant vector bundles:

G×B M
Φ−−−→ (〈ω〉 �G) ×(〈ω〉�B) M

p

� �q
G/B −−−→

Ψ
(〈ω〉 �G)/(〈ω〉 �B),

where Φ([g,m]) := [(1, g),m] and Ψ(gB) := (1, g)(〈ω〉 � B) for g ∈ G and

m ∈M .

The quotient g/b is viewed as a rational B-module by the adjoint rep-

resentation Ad: B → GL(g/b). In addition, since ω ∈ Aut(g) and hence

ω ∈ Aut(G) stabilize b ⊂ g, the quotient g/b can be made into a rational

〈ω〉 �B-module. Moreover, we can check the following lemma.

Lemma 4.1.3. The cotangent bundle T ∗B over the flag variety B is

isomorphic to the vector bundle LB((g/b)∗) over B associated to the dual
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〈ω〉 � B-module (g/b)∗ of g/b as 〈ω〉 � G-equivariant vector bundles over

B.

Proof. Cf. the proof of [CG, Lemma 1.4.9]. �

4.2. Proof of the formula

Let λ ∈ X(T )ω and ζ ∈ C
∗ an N -th root of unity. We denote by Cλ,ζ the

one-dimensional rational 〈ω〉 �B-module on which B acts by the weight λ

through the quotient B � T and ω by the scalar ζ. Then, for each j ≥ 0,

the cohomology group Hj(B,LB(Cλ,ζ)) of the associated sheaf LB(Cλ,ζ) on

B naturally comes equipped with a rational 〈ω〉�G-module structure, since

LB(Cλ,ζ) is a locally free 〈ω〉 � G-equivariant sheaf of OB-modules (cf. [J,

Part I. Ch. 5] and also [KN, §2.3]).

Let Λ ∈ X(T )ω be dominant and v ∈Wω. We set

λ := v ◦ Λ = v(Λ + ρ) − ρ ∈ X(T )ω,

where ρ = (1/2) ·
∑

α∈∆+
α ∈ X(T )ω is the Weyl vector. The Borel-Weil-

Bott theorem tells us that Hj(B,LB(Cλ,ζ)) = 0 unless j �= �(v), and that

H�(v)(B,LB(Cλ,ζ)) is isomorphic, as a G-module, to the irreducible highest

weight module L(Λ) of highest weight Λ.

Now we are ready to state our main result, which, in view of Remarks

4.1.1 and 4.1.2, may be thought of as a Borel-Weil-Bott theorem for the

non-connected, simple affine algebraic group 〈ω〉 �G.

Theorem 4.2.1. Let Λ ∈ X(T )ω be a dominant weight fixed by the

diagram automorphism ω, v ∈ Wω, and ζ ∈ C
∗ an N -th root of unity. Set

λ := v ◦ Λ = v(Λ + ρ) − ρ. Then we have the following identity of twining

characters:

chω(H�(v)(B,LB(Cλ,ζ))) = (−1)�(v)−�̂(v) × ζ × chω(L(Λ))

in the group algebra C[X(T )ω] of X(T )ω over C with the canonical basis

{e(µ) | µ ∈ X(T )ω}. Here L(Λ) is the irreducible highest weight G-module

of highest weight Λ. Hence we have an isomorphism of 〈ω〉 �G-modules

H�(v)(B,LB(Cλ,ζ)) � C
(−1)�(v)−�̂(v)ζ

⊗C L(Λ),
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where C
(−1)�(v)−�̂(v)ζ

denotes a one-dimensional rational 〈ω〉�G-module on

which ω acts by the scalar (−1)�(v)−�̂(v)ζ and G trivially.

Remark 4.2.2. We know from the Borel-Weil-Bott theorem (see, for

example, [J, Part II. Ch. 5]) that each λ ∈ X(T ) such thatHj(B,LB(Cλ)) �=
0 for some j ∈ Z≥0 can be written uniquely in the form λ = v ◦Λ for some

v ∈ W and dominant Λ ∈ X(T ). It is obvious that if this λ = v ◦ Λ is an

element of X(T )ω, then v ∈Wω.

Remark 4.2.3. It follows from Equality (2.2.1) that for v ∈ Wω, the

scalar (−1)�(v)−�̂(v) is not equal to 1 in general. Hence Theorem 4.2.1 implies

that, as 〈ω〉 �G-modules, H�(v)(B,LB(Cλ,1)) and L(Λ) are not necessarily

isomorphic. This scalar (−1)�(v)−�̂(v) seems to come from the character of

the cyclic group 〈ω〉. In fact, when G is of type D4 and ω is of order 3, we

see by (2.2.1) that (−1)�(v)−�̂(v) = 1 for all v ∈Wω.

The rest of this subsection is devoted to the proof of Theorem 4.2.1.

Now we set V := H�(v)(B,LB(Cλ,ζ)) and compute the twining character

chω(V ) =
∑

µ∈X(T )ω

Tr(ω|Vµ) e(µ)

of the rational 〈ω〉 � T -module V with the T -weight space decomposition

V =
⊕

µ∈X(T ) Vµ. Because we already know from the Borel-Weil-Bott

theorem that V = H�(v)(B,LB(Cλ,ζ)) is a simple module of highest weight

Λ as a G-module (and hence simple as an 〈ω〉 � G-module), it suffices to

prove the equality

(4.2.1) chω(V ) = (−1)�(v)−�̂(v) × ζ × chω(L(Λ))

in the group algebra C[X(T )ω] ⊂ C[X(T )]. (Here we recall that C[X(T )] =

C ⊗Z Z[X(T )] is identified with the algebra Mor(T,C) of regular algebraic

functions on T by: e(µ)(t) = µ(t) ∈ C
∗ for µ ∈ X(T ) and t ∈ T .)

We define the fixed point torus Tω ⊂ T by

Tω := {t ∈ T | ω(t) = t}.
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The Lie algebra Lie(Tω) of Tω ⊂ T is

h
0 := {h ∈ h | ω(h) = h}.

It is known (see [St, §8]) that Tω is, in fact, connected. Hence Tω is a

subtorus of T . Furthermore, it easily follows from the canonical isomor-

phism (h∗)0 � (h0)∗ that the group homomorphism

Res: X(T )ω → X(Tω) := Hom(Tω,C∗)

given by the restriction to Tω ⊂ T is injective. So the induced algebra

homomorphism

Res: C[X(T )ω] → C[X(Tω)] � Mor(Tω,C)

is also injective. Thus it suffices for us to show Equality (4.2.1) in the group

algebra C[X(Tω)].

Here we remark that the semi-direct product 〈ω〉�T itself is not abelian,

but its closed subgroup 〈ω〉 � Tω splits into the direct product 〈ω〉 × Tω,

and hence that 〈ω〉 � Tω = 〈ω〉 × Tω is a (not necessarily connected) diag-

onalizable algebraic group. Thus the (closed) embedding Tω→̃{ω} × Tω ⊂
〈ω〉 × Tω induces the evaluation map (at ω ∈ 〈ω〉)

evω : Z[X(〈ω〉 × Tω)] → C[X(Tω)].

By Remark 4.1.1, we see that for a (finite-dimensional) rational 〈ω〉 � T -

module U ,

(4.2.2) evω(Tr(U)) = chω(U)

in the group algebra C[X(Tω)] � Mor(Tω,C), where the rational 〈ω〉 � T -

module U is regarded as a rational 〈ω〉×Tω-module by restriction. Note that

chω(U) is, in fact, an element of the group algebra C[X(T )ω] ↪→ C[X(Tω)],

since U is a rational 〈ω〉 � T -module.

In order to compute evω(Tr(V )) ∈ C[X(Tω)], we want to apply Theorem

3.1 to the flag variety B = G/B, which is a smooth projective 〈ω〉 � T -

variety.
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Lemma 4.2.4. We have

B〈ω〉×Tω
= (BT )〈ω〉.

Proof. Take a regular semi-simple element t ∈ Tω such that tN ∈ Tω

is also regular. Let x ∈ B be a point fixed by (ω, t) ∈ 〈ω〉 × Tω. Then we

have

x = (ω, t)N x = (ωN , tN )x = (1, tN )x = tN x.

Thus it suffices to show that if t ∈ T is a regular semi-simple element,

then we have Bt = BT . Let t ∈ T be a regular semi-simple element and

gB/B ∈ Bt with g ∈ G, i.e., tgB = gB. Then we have g−1tg ∈ B, so that

t ∈ gBg−1 ∩T . Since gBg−1 is also a Borel (i.e., maximal closed connected

solvable) subgroup of G, there exists a maximal torus (i.e., closed connected

diagonalizable subgroup) T ′ of gBg−1 such that t ∈ T ′ ⊂ gBg−1. So we

get t ∈ T ∩ T ′. Note that T ′ is also a maximal torus of G. Since t ∈ T

is a regular semi-simple element, it belongs to a unique maximal torus.

Therefore, it follows that T ′ = T , and hence T ⊂ gBg−1, i.e., g−1Tg ⊂ B.

Consequently, we see that (g−1Tg)B = B, so that TgB = gB. Hence we

have shown that gB/B ∈ BT , which proves the lemma. �

Remark 4.2.5. The set of regular elements t such that tN is also reg-

ular are clearly dense in Tω ⊂ T , since the restriction of any positive root

α ∈ ∆+ ⊂ X(T ) to Tω ⊂ T is not identically equal to 1.

Put A := 〈ω〉×Tω and E := LB(Cλ,ζ), where λ = v ◦Λ with Λ ∈ X(T )ω

dominant and v ∈ Wω. We recall the well-known fact that BT = {ẇB/B |
w ∈W}. Hence we see by Lemma 4.2.4 that

BA = (BT )〈ω〉 = {ẇB/B | ω̇−1ω(ω̇) ∈ T, w ∈W}
= {ẇB/B | w ∈Wω}.

In particular, BA is a variety of finite set. Therefore, we can apply Theorem

3.1 to our setting.

Let S be the multiplicative subset of Z[X(〈ω〉 × Tω)] generated by ele-

ments of the form 1−e(χ) for nontrivial χ ∈ X(〈ω〉×Tω) as in §3. Then an
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easy consideration shows that 0 /∈ evω(S) ⊂ C[X(Tω)]. Hence the evalua-

tion map evω : Z[X(〈ω〉 × Tω)] → C[X(Tω)] lifts to a ring homomorphism

S−1evω : S−1
Z[X(〈ω〉 × Tω)] → Frac(C[X(Tω)]),

where Frac(C[X(Tω)]) is the fraction field of C[X(Tω)]. Therefore, by ap-

plying S−1evω to both sides of (♥) in Theorem 3.1, we obtain the following

formula in the fraction field Frac(C[X(T )ω]) ↪→ Frac(C[X(Tω)]),

∑
j≥0

(−1)j chω
(
Hj(B,LB(Cλ,ζ))

)
=

∑
w∈Wω

chω
(
LB(Cλ,ζ)|{ẇB/B}

)
×

(4.2.3)

×
(∑

j≥0

(−1)j chω(
∧j

T ∗
ẇB/BB)

)−1

.

Since Hj(B,LB(Cλ,ζ)) = 0 unless j = �(v) by the Borel-Weil-Bott theorem,

the left-hand side of (4.2.3) becomes

(−1)�(v) × chω(H�(v)(B,LB(Cλ,ζ))).

We now compute the right-hand side of (4.2.3).

Lemma 4.2.6. Let λ ∈ X(T )ω and w ∈ Wω. Then the fiber

LB(Cλ,ζ)|{ẇB/B} of the line bundle p : LB(Cλ,ζ) → B at the point ẇB/B ∈ B
is isomorphic to Cw(λ),ζ as an 〈ω〉 � T -module.

Proof. Let [ẇ, z] ∈ G×B
Cλ,ζ with z ∈ Cλ,ζ be an element of the fiber

LB(Cλ,ζ)|{ẇB/B} of the line bundle LB(Cλ,ζ) at the point ẇB/B ∈ B. For

t ∈ T , we have

t · [ẇ, z] = [tẇ, z]

= [ẇ(ẇ−1tẇ), z] = [ẇ, (ẇ−1tẇ)z] since ẇ−1tẇ ∈ T
= [ẇ, λ(ẇ−1tẇ) × z] = [ẇ, (w(λ))(t) × z].

Also, we have

ω([ẇ, z]) = [ω(ẇ), ω · z]
= [ẇ, ζ × z]
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since the right coset representative ẇ ∈ NG(T ) of w ∈Wω is chosen in such

a way that ω(ẇ) = ẇ. This proves the lemma. �

By this lemma, we get

chω
(
LB(Cλ,ζ)|{ẇB/B}

)
= ζ × e(w(λ)) ∈ C[X(T )ω].

On the other hand, we see by Lemma 4.1.3 that the (Zariski) cotangent

space T ∗
ẇB/BB to B at the point ẇB/B for w ∈Wω is isomorphic to the dual

〈ω〉�T -module (g/Ad(ẇ)b)∗ of g/Ad(ẇ)b as an 〈ω〉�T -module, and hence

is isomorphic to Ad(ẇ)n− as an 〈ω〉�T -module. Therefore, we deduce that

for each w ∈Wω and j ≥ 0,

chω(
∧j

T ∗
ẇB/BB) = chω(

∧j
(Ad(ẇ)n−)).

Here we note that the following diagram commutes for each w ∈Wω:

n−
ω−−−→ n−

Ad(ẇ)

� �Ad(ẇ)

Ad(ẇ)n− −−−→
ω

Ad(ẇ)n−,

since we have

ω(Ad(ẏ)x) = Ad(ω(ẏ))ω(x)

for all y ∈ W and x ∈ g. From this commutative diagram, we see that for

each j ≥ 0,

chω(
∧j

(Ad(ẇ)n−)) = w
(
chω(

∧j
n−)
)
.

Consequently, we obtain in C[X(T )ω],∑
j≥0

(−1)j chω(
∧j

T ∗
ẇB/BB) =

∑
j≥0

(−1)j chω(
∧j

(Ad(ẇ)n−))

=
∑
j≥0

(−1)j
(
w
(
chω(

∧j
n−)
))

= w

(∑
j≥0

(−1)j chω(
∧j

n−)

)
.
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We put

H :=
∑
j≥0

(−1)j chω(
∧j

n−)

as an element in C[X(T )ω] � C[(h∗
Z
)0]. It follows from Formula 2 that

H = e(−ρ) ·

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))

 .
So we have for each w ∈Wω,

w(H) = e(−w(ρ)) · w

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))

 .
Here, since for each y ∈Wω

(−1)�̂(w)(−1)�̂(y) = (−1)�̂(w)+�̂(y) = (−1)�̂(wy),

we deduce that

w

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))

 =
∑

y∈Wω

(−1)�̂(y) e(wy(ρ))

(4.2.4)

= (−1)�̂(w) ×
∑

y∈Wω

(−1)�̂(w)(−1)�̂(y) e(wy(ρ))

= (−1)�̂(w) ×
∑

y∈Wω

(−1)�̂(wy) e(wy(ρ))

= (−1)�̂(w) ×
∑

y∈Wω

(−1)�̂(y) e(y(ρ)).

Hence we get

w(H) = (−1)�̂(w) × e(−w(ρ)) ·

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))

 .
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To sum up, the right-hand side of (4.2.3) is

F :=
∑

w∈Wω

ζ × e(w(λ))

(−1)�̂(w) × e(−w(ρ)) ·

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))


∈ Frac(C[X(T )ω]).

Since λ = v ◦Λ, we have w(λ) = wv(Λ+ρ)−w(ρ) for each w ∈Wω. Hence

we get

F =

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))

−1

×

×
(
ζ ×

∑
w∈Wω

(−1)�̂(w) e(w(ρ)) · e(wv(Λ + ρ) − w(ρ))

)

=

 ∑
y∈Wω

(−1)�̂(y) e(y(ρ))

−1

·
(
ζ ×

∑
w∈Wω

(−1)�̂(w) e(wv(Λ + ρ))

)
.

As in (4.2.4), we deduce that∑
w∈Wω

(−1)�̂(w) e(wv(Λ + ρ)) = (−1)�̂(v) ×
∑

w∈Wω

(−1)�̂(w) e(w(Λ + ρ)).

Hence we have in Frac(C[X(T )ω]),

F = ζ × (−1)�̂(v) ×

∑
w∈Wω

(−1)�̂(w) e(w(Λ + ρ))∑
y∈Wω

(−1)�̂(y) e(y(ρ))

= ζ × (−1)�̂(v) × chω(L(Λ)) by Formula 1.

Thus, by Equality (4.2.3), we obtain Equality (4.2.1):

chω(V ) = (−1)�(v)−�̂(v) × ζ × chω(L(Λ)) ∈ C[X(T )ω].

Recall that V = H�(v)(B,LB(Cv◦Λ,ζ)). Thus we have proved that

chω(H�(v)(B,LB(Cv◦Λ,ζ))) = (−1)�(v)−�̂(v) × ζ × chω(L(Λ)),

as desired.
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