Twining Character Formula of Borel-Weil-Bott Type

By Satoshi Naito

Abstract

We prove a twining character formula of Borel-WeilBott type for a connected, simply connected, simple affine algebraic group G over \mathbb{C}, by combining a Lefschetz type fixed point formula for the flag variety G / B and a Kostant type twining character formula for the complex simple Lie algebra \mathfrak{g} of G. Our proof is analogous to the well-known "geometric" proof of the Weyl character formula for finitedimensional irreducible G-modules.

1. Introduction

The geometric representation theory of a semi-simple affine algebraic group has been extensively studied, and nowadays it plays a central role in the representation theory. However, until recently, the main object of the study is a connected one, though there are various phenomena peculiar to the representation theory of a non-connected one (for example, see [M]).

The Borel-Weil-Bott theorem can surely be regarded as one of the most fundamental results in the geometric representation theory of a semi-simple affine algebraic group. In this paper, we prove a theorem of Borel-Weil-Bott type for a typical non-connected, simple affine algebraic group $\langle\omega\rangle \ltimes G$, which is the semi-direct product of a connected, simply connected, simple affine algebraic group G and the cyclic subgroup $\langle\omega\rangle$ of $\operatorname{Aut}(G)$ generated by (a lift of) a Dynkin diagram automorphism ω.

Let us explain our result more precisely. Let G be a connected, simply connected, simple affine algebraic group over \mathbb{C} with maximal torus T and Borel subgroup $B \supset T$. We denote by $\mathfrak{g}, \mathfrak{h}$, and \mathfrak{b} the Lie algebras of G, T, and B, respectively. The (rational) character group $X(T):=\operatorname{Hom}\left(T, \mathbb{C}^{*}\right)$ of T can be identified with the (additive) integral weight lattice $\mathfrak{h}_{\mathbb{Z}}^{*} \subset \mathfrak{h}^{*}$ by taking the differential at the identity element, i.e., by the map $\lambda \mapsto \mathrm{d} \lambda$.

[^0]We choose a set of positive roots $\Delta_{+} \subset X(T) \simeq \mathfrak{h}_{\mathbb{Z}}^{*}$ in such a way that the roots of B (hence of \mathfrak{b}) are the negative roots $\Delta_{-}=-\Delta_{+}$.

The graph automorphism ω of the Dynkin diagram of \mathfrak{g} induces (noncanonically) a certain automorphism ω of the Lie algebra \mathfrak{g}, which further lifts to an automorphism ω of the algebraic group G stabilizing both the subgroups T and B. We call these automorphisms ω (Dynkin) diagram automorphisms. Denote the naturally induced action of $\omega \in \operatorname{Aut}(G)$ on $X(T)$ again by ω, and set

$$
X(T)^{\omega}:=\{\lambda \in X(T) \mid \omega \cdot \lambda=\lambda\}
$$

Notice that, under the identification $X(T) \simeq \mathfrak{h}_{\mathbb{Z}}^{*}, X(T)^{\omega}$ is identified with $\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{Z}}^{*} \mid \omega^{*}(\lambda)=\lambda\right\}$, where $\omega^{*} \in G L\left(\mathfrak{h}^{*}\right)$ is the transposed map of the restriction of ω to \mathfrak{h}. Then the subgroup W^{ω} of the Weyl group $W \simeq N_{G}(T) / T$ consisting of all the elements fixed by the naturally induced action of $\langle\omega\rangle$ is given by:

$$
\begin{aligned}
W^{\omega} & =\left\{w \in W \mid\left(\omega^{*}\right)^{-1} w \omega^{*}=w\right\} \\
& =\left\{n T / T \in N_{G}(T) / T \mid n^{-1} \omega(n) \in T\right\}
\end{aligned}
$$

It is known that W^{ω} is a Coxeter group. Furthermore, we form the semidirect product $\langle\omega\rangle \ltimes G$ of G and the cyclic subgroup $\langle\omega\rangle$ of $\operatorname{Aut}(G)$ generated by ω, and then form its closed subgroups $\langle\omega\rangle \ltimes T$ and $\langle\omega\rangle \ltimes B$. It is clear that all these groups are closed subgroups of the affine algebraic group $\operatorname{Aut}(G) \ltimes G$, and hence are affine algebraic groups.

Let $\mathcal{B}:=G / B$ be the flag variety, which is an $\langle\omega\rangle \ltimes G$-variety as well as a G-variety since $\omega \in \operatorname{Aut}(G)$ stabilizes B. For a weight $\lambda \in X(T)$, we denote by $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda}\right)$ the (G-equivariant) sheaf of $\mathcal{O}_{\mathcal{B}}$-modules on \mathcal{B} associated to the one-dimensional B-module \mathbb{C}_{λ} on which B acts by the weight λ through the quotient $B \rightarrow T$. Then, for each $j \in \mathbb{Z}_{\geq 0}$, the cohomology group $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda}\right)\right)$ of the associated sheaf $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda}\right)$ on X is naturally equipped with a structure of rational G-module. If $\Lambda \in X(T)$ is a dominant weight and $v \in W \simeq N_{G}(T) / T$ is an element of the Weyl group, then the Borel-Weil-Bott theorem gives an identity of ordinary characters:

$$
\operatorname{ch} H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{v(\Lambda+\rho)-\rho}\right)\right)=\operatorname{ch} L(\Lambda)
$$

where $L(\Lambda)$ is the irreducible highest weight G-module of highest weight Λ, $\rho:=(1 / 2) \cdot \sum_{\alpha \in \Delta_{+}} \alpha \in X(T)^{\omega} \simeq\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)^{0}$ is the Weyl vector, and $\ell: W \rightarrow \mathbb{Z}_{\geq 0}$ is the length function of the Coxeter group W.

Now assume that $\lambda \in X(T)^{\omega}$ and fix an $\operatorname{ord}(\omega)$-th root of unity $\zeta \in \mathbb{C}^{*}$. We denote by $\mathbb{C}_{\lambda, \zeta}$ the one-dimensional $\langle\omega\rangle \ltimes B$-module on which B acts by the weight λ through the quotient $B \rightarrow T$ and ω by the scalar ζ. Then the sheaf $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)$ of $\mathcal{O}_{\mathcal{B}}$-modules on \mathcal{B} associated to $\mathbb{C}_{\lambda, \xi}$ becomes $\langle\omega\rangle \ltimes G$ equivariant, and hence each cohomology group $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)\right), j \geq 0$, naturally comes equipped with a structure of rational $\langle\omega\rangle \ltimes G$-module. Here we note that $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)$ is the (locally free) sheaf of local sections of the algebraic line bundle

$$
p: G \times^{B} \mathbb{C}_{\lambda, \xi} \rightarrow G / B=\mathcal{B},
$$

and that the following isomorphism of line bundles gives $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)$ a natural structure of $\langle\omega\rangle \ltimes G$-equivariant sheaf on \mathcal{B} (see $\S 4.1$ for details):

where $\Phi([g, z]):=[(1, g), z]$ and $\Psi(g B):=(1, g)(\langle\omega\rangle \ltimes B)$ for $g \in G$ and $z \in$ $\mathbb{C}_{\lambda, \xi}$. Thus, establishing a Borel-Weil-Bott theorem for the non-connected, simple affine algebraic group $\langle\omega\rangle \ltimes G$ is equivalent to determining the $\langle\omega\rangle \ltimes$ G-module structure of $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)\right)$ for each $j \geq 0$.

For a rational $\langle\omega\rangle \ltimes T$-module V with the T-weight space decomposition $V=\bigoplus_{\mu \in X(T)} V_{\mu}$, the twining character $\operatorname{ch}^{\omega}(V)$ of V is defined by

$$
\operatorname{ch}^{\omega}(V):=\sum_{\mu \in X(T)^{\omega}} \operatorname{Tr}\left(\left.\omega\right|_{V_{\mu}}\right) e(\mu)
$$

as an element of the group algebra $\mathbb{C}\left[X(T)^{\omega}\right]$ of $X(T)^{\omega}$ over \mathbb{C} with the canonical basis $e(\mu), \mu \in X(T)^{\omega} \simeq\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)^{0}$. Note that the twining character $\operatorname{ch}^{\omega}(V) \in \mathbb{C}\left[X(T)^{\omega}\right]$ can be viewed as the trace function:

$$
T \ni t \mapsto \operatorname{Tr}((\omega, t) ; V) \in \mathbb{C}
$$

In fact, we have for each $t \in T$,

$$
\operatorname{Tr}((\omega, t) ; V)=\sum_{\mu \in X(T)^{\omega}} \operatorname{Tr}\left(\left.\omega\right|_{V_{\mu}}\right) e(\mu)(t) \in \mathbb{C}
$$

where $e(\mu)(t):=\mu(t) \in \mathbb{C}^{*}$ for $\mu \in X(T)^{\omega}$ and $t \in T$. We know from [M, Ch. 2] that the character (i.e., the trace function) of a rational $\langle\omega\rangle \ltimes G$ module is completely determined by its values on $\langle\omega\rangle \ltimes T^{\omega}=\langle\omega\rangle \times T^{\omega}$, where $T^{\omega}:=\{t \in T \mid \omega(t)=t\}$. Therefore, the study of the $\langle\omega\rangle \ltimes G$ module structure of $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)\right)$ is reduced to the study of the twining character $\operatorname{ch}^{\omega}\left(H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \xi}\right)\right)\right)$ for $j \geq 0$. In fact, we obtain the following theorem, which may be thought of as a Borel-Weil-Bott theorem for the non-connected, simple affine algebraic group $\langle\omega\rangle \ltimes G$.

Theorem. Let $\Lambda \in X(T)^{\omega}$ be a dominant weight fixed by ω and $v \in$ W^{ω} an element of the Weyl group $W \simeq N_{G}(T) / T$ fixed by ω. Then we have an identity of twining characters

$$
\operatorname{ch}^{\omega}\left(H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{v(\Lambda+\rho)-\rho, \zeta}\right)\right)\right)=(-1)^{\ell(v)-\widehat{\ell}(v)} \times \zeta \times \operatorname{ch}^{\omega}(L(\Lambda))
$$

where $\widehat{\ell}: W^{\omega} \rightarrow \mathbb{Z}_{\geq 0}$ is the length function of the Coxeter group W^{ω}. Hence we have an isomorphism of $\langle\omega\rangle \ltimes G$-modules

$$
H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{v(\Lambda+\rho)-\rho, \zeta}\right)\right) \simeq \mathbb{C}_{(-1)^{\ell(v)-\hat{\ell}(v) \zeta}} \otimes_{\mathbb{C}} L(\Lambda)
$$

where $\mathbb{C}_{(-1)^{\ell(v)-\hat{\ell}(v) \zeta}}$ denotes a one-dimensional rational $\langle\omega\rangle \ltimes G$-module on which ω acts by the scalar $(-1)^{\ell(v)-\widehat{\ell}(v)} \zeta$ and G trivially.

Remark. The scalar $(-1)^{\ell(v)-\widehat{\ell}(v)}$ in the theorem above, which does not appear in the ordinary Borel-Weil-Bott theorem, seems to come from the character of the cyclic group $\langle\omega\rangle$.

Our proof of this theorem is analogous to the well-known "geometric" proof in [AB, §5] (see also [CG, Ch. 6.1]) of the Weyl character formula for the irreducible highest weight G-module $L(\Lambda)$ of dominant highest weight
$\Lambda \in X(T)$. But, unlike the case of an ordinary character, it is not so easy to determine the alternating sum

$$
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j}(\mathfrak{g} / \mathfrak{b})^{*}\right)
$$

of the twining characters $\operatorname{ch}^{\omega}\left(\bigwedge^{j}(\mathfrak{g} / \mathfrak{b})^{*}\right), j \geq 0$, whose description can be given by a Kostant type twining character formula obtained in [Na3].

This paper is organized as follows. In Section 2, following [FSS], [FRS], and [Na 3], we recall the definition of a twining character, the twining character formula for $L(\Lambda)$ with $\Lambda \in X(T)$ dominant, and a Kostant type twining character formula. In Section 3, following [Ni] (and also [CG]), we briefly review a Lefschetz type fixed point formula. In Section 4, we prove our main theorem above, by combining a Lefschetz type fixed point formula and a Kostant type twining character formula.

Acknowledgments. I am very grateful to the referee for some invaluable comments on an earlier version of this paper.

2. Twining Characters

2.1. Diagram automorphisms

Let \mathfrak{g} be a (finite-dimensional) complex simple Lie algebra with Cartan subalgebra \mathfrak{h} and Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$. We choose a set of positive roots $\Delta_{+} \subset \mathfrak{h}^{*}:=\operatorname{Hom}_{\mathbb{C}}(\mathfrak{h}, \mathbb{C})$ such that the roots of \mathfrak{b} are the negative roots $\Delta_{-}=-\Delta_{+}$. Let $\left\{\alpha_{i} \mid i \in I\right\}$ be the set of simple roots in $\Delta_{+},\left\{h_{i} \mid i \in I\right\}$ the set of simple coroots in $\mathfrak{h}, A=\left(a_{i j}\right)_{i, j \in I}$ the Cartan matrix with $a_{i j}=$ $\alpha_{j}\left(h_{i}\right)$, and $W=\left\langle r_{i} \mid i \in I\right\rangle \subset G L\left(\mathfrak{h}^{*}\right)$ the Weyl group with r_{i} a simple reflection. We take and fix a Chevalley basis $\left\{e_{\alpha}, f_{\alpha} \mid \alpha \in \Delta_{+}\right\} \cup\left\{h_{i} \mid i \in I\right\}$ of \mathfrak{g} so that $\mathfrak{g}_{\alpha_{i}}=\mathbb{C} e_{\alpha_{i}}, \mathfrak{g}_{-\alpha_{i}}=\mathbb{C} f_{\alpha_{i}}$, and $\left[e_{\alpha_{i}}, f_{\alpha_{i}}\right]=h_{i}$ for each $i \in I$.

A graph automorphism of the Dynkin diagram of \mathfrak{g} is a bijection $\omega: I \rightarrow$ I of the index set I of the simple roots α_{i} such that

$$
a_{\omega(i), \omega(j)}=a_{i j} \quad \text { for all } i, j \in I
$$

Let N be the order of ω, and N_{i} the number of elements of the ω-orbit I_{i} of $i \in I$:

$$
I_{i}:=\left\{\omega^{k}(i) \mid 0 \leq k \leq N_{i}-1\right\} .
$$

This ω can be extended (non-canonically) to an automorphism ω, called a diagram automorphism, of order N of the Lie algebra \mathfrak{g} in such a way that

$$
\begin{cases}\omega\left(e_{\alpha_{i}}\right):=e_{\alpha_{\omega(i)}} & \text { for } i \in I \\ \omega\left(f_{\alpha_{i}}\right):=f_{\alpha_{\omega(i)}} & \text { for } i \in I \\ \omega\left(h_{i}\right):=h_{\omega(i)} & \text { for } i \in I\end{cases}
$$

Note that we have

$$
(\omega(x) \mid \omega(y))=(x \mid y) \quad \text { for all } x, y \in \mathfrak{g}
$$

where $(\cdot \mid \cdot)$ is the Killing form on \mathfrak{g}.
The restriction of ω to the Cartan subalgebra \mathfrak{h} induces a transposed $\operatorname{map} \omega^{*}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ by $\omega^{*}(\lambda)(h):=\lambda(\omega(h))$ for $\lambda \in \mathfrak{h}^{*}$ and $h \in \mathfrak{h}$. We set

$$
\left(\mathfrak{h}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}^{*} \mid \omega^{*}(\lambda)=\lambda\right\}
$$

and call an element of $\left(\mathfrak{h}^{*}\right)^{0}$ a symmetric weight. Notice that the Weyl vector $\rho:=(1 / 2) \cdot \sum_{\alpha \in \Delta_{+}} \alpha$ is a symmetric weight.

2.2. Fixed point Weyl group

We define the fixed point subgroup W^{ω} of the Weyl group W by

$$
W^{\omega}:=\left\{w \in W \mid\left(\omega^{*}\right)^{-1} w \omega^{*}=w\right\}
$$

and call it the fixed point Weyl group. Notice that W^{ω} stabilizes the subspace $\left(\mathfrak{h}^{*}\right)^{0}$ of \mathfrak{h}^{*}. Choose and fix a complete set \widehat{I} of representatives of the ω-orbits in I, and set for each $i \in \widehat{I}$,

$$
w_{i}:= \begin{cases}\prod_{k=0}^{N_{i} / 2-1}\left(r_{\omega^{k}(i)} r_{\omega^{k+N_{i} / 2}(i)} r_{\omega^{k}(i)}\right) & \text { if } \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1 \\ \prod_{k=0}^{N_{i}-1} r_{\omega^{k}(i)} & \text { if } \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=2\end{cases}
$$

Note that for each $i \in \widehat{I}$ we have $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1$ or 2 , and that if $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1$ then N_{i} is an even integer. It is also known (see, for
example, [FRS]) that the fixed point Weyl group W^{ω} is a Coxeter group with the canonical generator system $\left\{w_{i} \mid i \in \widehat{I}\right\}$. We denote the length function of the Coxeter system $\left(W,\left\{r_{i} \mid i \in I\right\}\right)$ (resp. ($\left.W^{\omega},\left\{w_{i} \mid i \in \widehat{I}\right\}\right)$) by $\ell: W \rightarrow \mathbb{Z}_{\geq 0}$ (resp. $\hat{\ell}: W^{\omega} \rightarrow \mathbb{Z}_{\geq 0}$). Recall from [KN, Lemma 1.3.1] that if $w=w_{i_{1}} w_{i_{2}} \cdots w_{i_{n}} \in W^{\omega}$ is a reduced expression of $w \in W^{\omega}$ in the Coxeter system $\left(W^{\omega},\left\{w_{i} \mid i \in \widehat{I}\right\}\right)$, i.e., $\widehat{\ell}(w)=n$, then

$$
\begin{equation*}
\ell(w)=\ell\left(w_{i_{1}}\right)+\ell\left(w_{i_{2}}\right)+\cdots+\ell\left(w_{i_{n}}\right) \tag{2.2.1}
\end{equation*}
$$

2.3. Twining character formulas

We denote by $\langle\omega\rangle$ the cyclic subgroup of $\operatorname{Aut}(\mathfrak{g})$ generated by the diagram automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$. A finite-dimensional vector space V over \mathbb{C} is called an \mathfrak{h}-module if V admits a weight space decomposition with respect to \mathfrak{h} :

$$
V=\bigoplus_{\mu \in \mathfrak{h}^{*}} V_{\mu}
$$

Further, an \mathfrak{h}-module V is called an $(\mathfrak{h},\langle\omega\rangle)$-module if V admits a \mathbb{C}-linear $\langle\omega\rangle$-action such that

$$
\omega \cdot(x v)=\omega(x)(\omega \cdot v) \quad \text { for all } x \in \mathfrak{g} \text { and } v \in V
$$

Notice that $\omega \cdot V_{\mu}=V_{\left(\omega^{*}\right)^{-1}(\mu)}$ for $\mu \in \mathfrak{h}^{*}$. In view of this fact, we define the twining character $\operatorname{ch}^{\omega}(V)$ of V by

$$
\operatorname{ch}^{\omega}(V):=\sum_{\mu \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{Tr}\left(\left.\omega\right|_{V_{\mu}}\right) e(\mu)
$$

as an element of the group algebra $\mathbb{C}\left[\left(\mathfrak{h}^{*}\right)^{0}\right]$ of $\left(\mathfrak{h}^{*}\right)^{0}$ over \mathbb{C} with the canonical basis $\left\{e(\mu) \mid \mu \in\left(\mathfrak{h}^{*}\right)^{0}\right\}$.

Here we recall two kinds of formulas for twining characters, which have been proved more generally for Kac-Moody algebras.

Formula 1. Let $\Lambda \in \mathfrak{h}^{*}$ be a symmetric dominant integral weight. Then, as in [FSS], [FRS], and [Na3], the irreducible highest weight \mathfrak{g}-module $L(\Lambda)$ of highest weight Λ is equipped with a structure of $(\mathfrak{h},\langle\omega\rangle)$-module
such that $\omega \cdot v_{\Lambda}=v_{\Lambda}$, where v_{Λ} is a (nonzero) highest weight vector of $L(\Lambda)$. It is shown in [FRS] that

$$
\operatorname{ch}^{\omega}(L(\Lambda))=\frac{\sum_{w \in W^{\omega}}(-1)^{\hat{\ell}(w)} e(w(\Lambda+\rho))}{\sum_{w \in W^{\omega}}(-1)^{\hat{\ell}(w)} e(w(\rho))}
$$

Formula 2. Let \mathfrak{n}_{-}(resp. \mathfrak{n}_{+}) be the sum of all negative (resp. positive) root spaces $\mathfrak{g}_{\alpha}, \alpha \in \Delta_{-}$(resp. $\left.\alpha \in \Delta_{+}\right)$. Then $\mathfrak{g}=\mathfrak{b} \oplus \mathfrak{n}_{+}, \mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}_{-}$, and \mathfrak{n}_{+}all become $(\mathfrak{h},\langle\omega\rangle)$-modules under the adjoint action of \mathfrak{h} and the natural action of $\omega \in \operatorname{Aut}(\mathfrak{g})$ since ω stabilizes $\mathfrak{n}_{-}, \mathfrak{h}$, and \mathfrak{n}_{+}. Notice that the quotient module $\mathfrak{g} / \mathfrak{b}$ is isomorphic to \mathfrak{n}_{-}as an $(\mathfrak{h},\langle\omega\rangle)$-module. Moreover, since the Killing form $(\cdot \mid \cdot)$ on \mathfrak{g} is nondegenerate and $\langle\omega\rangle$-invariant, we have an isomorphism of $(\mathfrak{h},\langle\omega\rangle)$-modules

$$
(\mathfrak{g} / \mathfrak{b})^{*} \simeq \mathfrak{n}_{-}
$$

where $(\mathfrak{g} / \mathfrak{b})^{*}$ is the dual $(\mathfrak{h},\langle\omega\rangle)$-module of $\mathfrak{g} / \mathfrak{b}$. Hence, by taking the exterior power, we obtain that

$$
\operatorname{ch}^{\omega}\left(\bigwedge^{j}(\mathfrak{g} / \mathfrak{b})^{*}\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)
$$

for each $j \geq 0$. It is shown in $[\mathrm{Na} 3]$ that in $\mathbb{C}\left[\left(\mathfrak{h}^{*}\right)^{0}\right]$,

$$
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)=\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, \mathbb{C}\right)\right)
$$

and

$$
\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, \mathbb{C}\right)\right)=\sum_{\substack{w \in W^{\omega} \\ \ell(w)=j}}(-1)^{\hat{\ell}(w)-j} e(w(\rho)-\rho)
$$

for each $j \geq 0$, where $H_{j}\left(\mathfrak{n}_{-}, \mathbb{C}\right)$ is the usual Lie algebra homology module of \mathfrak{n}_{-}with coefficients in the trivial module \mathbb{C}.

3. Lefschetz Type Fixed Point Formula

In this section, following [Ni, §4] (see also [CG, Ch. 5]), we review briefly a special case of (a K-theoretic version of) the Lefschetz fixed point formula that suffices for our purpose. Here we often identify an algebraic vector bundle over a smooth algebraic variety with the locally free coherent sheaf of local sections of it.

Let A be a (not necessarily connected) diagonalizable algebraic group over \mathbb{C}. We denote by $X(A)$ the (rational) character group $\operatorname{Hom}\left(A, \mathbb{C}^{*}\right)$ of A, by $R(A)$ the group ring $\mathbb{Z}[X(A)]$ of $X(A)$ with the canonical basis $\{e(\chi) \mid$ $\chi \in X(A)\}$, and by $S^{-1} R(A)$ the localization of $R(A)$ with respect to the multiplicative subset of $R(A)$ generated by elements of the form $1-e(\chi)$ for nontrivial $\chi \in X(A)$. Note that the group algebra $\mathbb{C}[X(A)]=\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{Z}[X(A)]$ is identified with the algebra $\operatorname{Mor}(A, \mathbb{C})$ of regular algebraic functions on A by: $e(\chi)(a)=\chi(a) \in \mathbb{C}^{*}$ for $\chi \in X(A)$ and $a \in A$.

For a (finite-dimensional) rational A-module V, we set

$$
\operatorname{Tr}(V):=\sum_{\chi \in X(A)}\left(\operatorname{dim}_{\mathbb{C}} V_{\chi}\right) e(\chi) \in R(A)
$$

where $V_{\chi}:=\{v \in V \mid a v=\chi(a) v$ for all $a \in A\}$ for $\chi \in X(A)$. Note that the evaluation map (at $a \in A$) $\mathrm{ev}_{a}: X(A) \rightarrow \mathbb{C}$ given by $\chi \mapsto \chi(a)$ gives rise to a ring homomorphism $\mathrm{ev}_{a}: R(A) \rightarrow \mathbb{C}$ such that $\mathrm{ev}_{a}(\operatorname{Tr}(V))$ is equal to the usual trace $\operatorname{Tr}(a ; V) \in \mathbb{C}$ for the operation of $a \in A$ on V. Also, for an algebraic vector bundle E over Z and a point $z \in Z$, we denote by $\left.E\right|_{\{z\}}$ the fiber of E at the point z.

The following is a special case of the Lefschetz fixed point formula (see [Ni, §4], and also [CG, Ch. 5]).

Theorem 3.1. Let Z be a smooth projective A-variety (i.e., a variety with an algebraic action of A) such that all the A-fixed points Z^{A} of Z form a variety of finite set. For an A-equivariant algebraic vector bundle E over Z (viewed as a locally free coherent sheaf on Z), we have in $S^{-1} R(A)$,

$$
\sum_{j \geq 0}(-1)^{j} \operatorname{Tr}\left(H^{j}(Z, E)\right)=\sum_{z \in Z^{A}} \operatorname{Tr}\left(\left.E\right|_{\{z\}}\right) \times\left(\operatorname{Tr}\left(\left.\lambda_{A}\right|_{\{z\}}\right)\right)^{-1}
$$

Here

$$
\operatorname{Tr}\left(\left.\lambda_{A}\right|_{\{z\}}\right):=\sum_{j \geq 0}(-1)^{j} \operatorname{Tr}\left(\bigwedge^{j} T_{z}^{*} Z\right)
$$

where $\bigwedge^{j} T_{z}^{*} Z$ is the j-th exterior power of the (Zariski) cotangent space $T_{z}^{*} Z$ to Z at the point z.

4. Twining Character Formula of Borel-Weil-Bott Type

4.1. Geometric setting

Let G be a connected, simply connected, simple affine algebraic group over \mathbb{C} with maximal torus T and Borel subgroup $B \supset T$, so that the Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$ of G is a complex simple Lie algebra with Cartan subalgebra $\mathfrak{h}=\operatorname{Lie}(T)$ and Borel subalgebra $\mathfrak{b}=\operatorname{Lie}(B) \supset \mathfrak{h}$. Thus we can use the (algebraic) setting in Section 2. Recall that the (rational) character group $X(T)=\operatorname{Hom}\left(T, \mathbb{C}^{*}\right)$ of T is identified with the (additive) integral weight lattice $\mathfrak{h}_{\mathbb{Z}}^{*} \subset \mathfrak{h}^{*}$ by taking the differential at the identity element, i.e., by the map $\lambda \mapsto \mathrm{d} \lambda$. Recall also that the Weyl group $W \subset G L\left(\mathfrak{h}^{*}\right)$ is identified with the quotient group $N_{G}(T) / T$, where $N_{G}(T)$ is the normalizer of T in G. For each $w \in W \simeq N_{G}(T) / T$, we denote by $\dot{w} \in N_{G}(T)$ a right coset representative of w. Notice that if V is a rational G-module and V_{μ} is a T-weight space corresponding to $\mu \in X(T)$, then we have $\dot{w} V_{\mu}=V_{w(\mu)}$.

Since the affine algebraic group G is simply connected, there exists an automorphism (of order N) of G whose differential at the identity element coincides with the diagram automorphism $\omega \in \operatorname{Aut}(\mathfrak{g})$ in $\S 2.1$. By abuse of notation, we denote by ω this automorphism of G and by $\langle\omega\rangle$ the cyclic subgroup of $\operatorname{Aut}(G)$ generated by the $\omega \in \operatorname{Aut}(G)$. Note that, under the isomorphism of algebraic groups $\operatorname{Aut}(G) \underset{\rightarrow}{\sim} \operatorname{Aut}(\mathfrak{g})$ given by taking the differential at the identity element, the two cyclic groups $\langle\omega\rangle$ are isomorphic. We define the fixed point subgroup

$$
X(T)^{\omega}:=\{\lambda \in X(T) \mid \omega \cdot \lambda=\lambda\}
$$

of $X(T)$ by the naturally induced action of ω, which coincides with the restriction of $\left(\omega^{-1}\right)^{*}=\left(\omega^{*}\right)^{-1} \in G L\left(\mathfrak{h}^{*}\right)$ under the identification $X(T) \simeq$ $\mathfrak{h}_{\mathbb{Z}}^{*}$. Hence we have an identification:

$$
X(T)^{\omega} \simeq\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{Z}}^{*} \mid \omega^{*}(\lambda)=\lambda\right\} .
$$

Furthermore, it is easy to check that for $w \in W$, the element $\omega(\dot{w}) \in$ $N_{G}(T)$ is a right coset representative of $\left(\omega^{*}\right)^{-1} w \omega^{*} \in W \simeq N_{G}(T) / T$. Hence we see that, under the identification $W \simeq N_{G}(T) / T=\{\dot{w} T / T \mid$ $w \in W\}, W^{\omega}$ is identified with $\left\{\dot{w} T / T \mid \dot{w}^{-1} \omega(\dot{w}) \in T\right\}$. In fact, for each $w \in W^{\omega}$, we can (and will) take a right coset representative $\dot{w} \in N_{G}(T)$ of w such that $\omega(\dot{w})=\dot{w}$ (see [Sp, Ch. 9.3]).

We form the semi-direct product $\langle\omega\rangle \ltimes G$ of G and $\langle\omega\rangle \subset \operatorname{Aut}(G)$, and then its closed subgroups $\langle\omega\rangle \ltimes B$ and $\langle\omega\rangle \ltimes T$, all of which are closed subgroups of the affine algebraic group $\operatorname{Aut}(G) \ltimes G$, and hence are affine algebraic groups. Notice that a (finite-dimensional) rational $\langle\omega\rangle \ltimes T$-module obviously becomes an $(\mathfrak{h},\langle\omega\rangle)$-module in $\S 2.3$.

Remark 4.1.1. Let V be a rational $\langle\omega\rangle \ltimes T$-module with the T-weight space decomposition $V=\bigoplus_{\mu \in X(T)} V_{\mu}$. Then, for each $t \in T$, we have

$$
\operatorname{Tr}((\omega, t) ; V)=\sum_{\mu \in X(T)^{\omega}} \operatorname{Tr}\left(\left.\omega\right|_{V_{\mu}}\right) e(\mu)(t) \in \mathbb{C}
$$

where $e(\mu)(t):=\mu(t) \in \mathbb{C}^{*}$ for $\mu \in X(T)^{\omega}$ and $t \in T$. Hence the twining character $\operatorname{ch}^{\omega}(V) \in \mathbb{C}\left[\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)^{0}\right] \simeq \mathbb{C}\left[X(T)^{\omega}\right]$ can be thought of as the trace function:

$$
T \ni t \mapsto \operatorname{Tr}((\omega, t) ; V) \in \mathbb{C}
$$

Let $\mathcal{B}:=G / B$ be the flag variety and $\pi: G \rightarrow G / B=\mathcal{B}$ the quotient morphism. It is well-known that \mathcal{B} is a smooth projective G-variety and $\pi: G \rightarrow \mathcal{B}$ has local sections. To each (finite-dimensional) rational B module M, we can associate a G-equivariant vector bundle $p: L_{\mathcal{B}}(M) \rightarrow \mathcal{B}$ over \mathcal{B} by setting

$$
L_{\mathcal{B}}(M):=G \times{ }^{B} M=(G \times M) / B \quad \text { and } \quad p([g, m]):=g B / B \in \mathcal{B}
$$

where B acts from the right on the direct product $G \times M$ by

$$
(g, m) b:=\left(g b, b^{-1} m\right) \quad \text { for } g \in G, m \in M, \text { and } b \in B
$$

and where G acts from the left on $G \times{ }^{B} M$ via left multiplication on the first factor. (The quotient $(G \times M) / B$ actually is a smooth algebraic variety since $\pi: G \rightarrow \mathcal{B}$ has local sections.) Note that the sheaf $\mathcal{L}_{\mathcal{B}}(M)$, called the
associated sheaf to M on \mathcal{B}, of local sections of the algebraic vector bundle $L_{\mathcal{B}}(M)$ is a locally free G-equivariant (or G-linearized) sheaf of $\mathcal{O}_{\mathcal{B}}$-modules (see [J, Part I. Ch. 5] and [CG, Ch. 5]).

Furthermore, if M is a (finite-dimensional) rational $\langle\omega\rangle \ltimes B$-module, then the vector bundle $p: L_{\mathcal{B}}(M) \rightarrow \mathcal{B}$ comes equipped with a structure of $\langle\omega\rangle \ltimes G$-equivariant algebraic vector bundle by the rational $\langle\omega\rangle$-action:

$$
\omega \cdot([g, m]):=[\omega(g), \omega \cdot m] \quad \text { for } g \in G \text { and } m \in M
$$

on $L_{\mathcal{B}}(M)$ and the natural algebraic action of $\langle\omega\rangle$ on \mathcal{B}. Hence the associated sheaf $\mathcal{L}_{\mathcal{B}}(M)$ of $\mathcal{O}_{\mathcal{B}}$-modules becomes $\langle\omega\rangle \ltimes G$-equivariant (cf. [KN, §2.3]).

Remark 4.1.2. To each (finite-dimensional) rational $\langle\omega\rangle \ltimes B$-module M, we can associate an $\langle\omega\rangle \ltimes G$-equivariant algebraic vector bundle

$$
q:(\langle\omega\rangle \ltimes G) \times{ }^{(\langle\omega\rangle \ltimes B)} M \rightarrow(\langle\omega\rangle \ltimes G) /(\langle\omega\rangle \ltimes B)
$$

by replacing G and B in the definition of $L_{\mathcal{B}}(M)$ above with $\langle\omega\rangle \ltimes G$ and $\langle\omega\rangle \ltimes B$, respectively. (Note that the canonical morphism $\langle\omega\rangle \ltimes G \rightarrow(\langle\omega\rangle \ltimes$ $G) /(\langle\omega\rangle \ltimes B)$ has local sections since $\pi: G \rightarrow G / B$ does.) Then we have the following isomorphism of $\langle\omega\rangle \ltimes G$-equivariant vector bundles:

where $\Phi([g, m]):=[(1, g), m]$ and $\Psi(g B):=(1, g)(\langle\omega\rangle \ltimes B)$ for $g \in G$ and $m \in M$.

The quotient $\mathfrak{g} / \mathfrak{b}$ is viewed as a rational B-module by the adjoint representation Ad: $B \rightarrow G L(\mathfrak{g} / \mathfrak{b})$. In addition, since $\omega \in \operatorname{Aut}(\mathfrak{g})$ and hence $\omega \in \operatorname{Aut}(G)$ stabilize $\mathfrak{b} \subset \mathfrak{g}$, the quotient $\mathfrak{g} / \mathfrak{b}$ can be made into a rational $\langle\omega\rangle \ltimes B$-module. Moreover, we can check the following lemma.

Lemma 4.1.3. The cotangent bundle $T^{*} \mathcal{B}$ over the flag variety \mathcal{B} is isomorphic to the vector bundle $L_{\mathcal{B}}\left((\mathfrak{g} / \mathfrak{b})^{*}\right)$ over \mathcal{B} associated to the dual
$\langle\omega\rangle \ltimes B$-module $(\mathfrak{g} / \mathfrak{b})^{*}$ of $\mathfrak{g} / \mathfrak{b}$ as $\langle\omega\rangle \ltimes G$-equivariant vector bundles over \mathcal{B}.

Proof. Cf. the proof of [CG, Lemma 1.4.9].

4.2. Proof of the formula

Let $\lambda \in X(T)^{\omega}$ and $\zeta \in \mathbb{C}^{*}$ an N-th root of unity. We denote by $\mathbb{C}_{\lambda, \zeta}$ the one-dimensional rational $\langle\omega\rangle \ltimes B$-module on which B acts by the weight λ through the quotient $B \rightarrow T$ and ω by the scalar ζ. Then, for each $j \geq 0$, the cohomology group $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)$ of the associated sheaf $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)$ on \mathcal{B} naturally comes equipped with a rational $\langle\omega\rangle \ltimes G$-module structure, since $\mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)$ is a locally free $\langle\omega\rangle \ltimes G$-equivariant sheaf of $\mathcal{O}_{\mathcal{B}}$-modules (cf. [J, Part I. Ch. 5] and also [KN, §2.3]).

Let $\Lambda \in X(T)^{\omega}$ be dominant and $v \in W^{\omega}$. We set

$$
\lambda:=v \circ \Lambda=v(\Lambda+\rho)-\rho \in X(T)^{\omega}
$$

where $\rho=(1 / 2) \cdot \sum_{\alpha \in \Delta_{+}} \alpha \in X(T)^{\omega}$ is the Weyl vector. The Borel-WeilBott theorem tells us that $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)=0$ unless $j \neq \ell(v)$, and that $H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)$ is isomorphic, as a G-module, to the irreducible highest weight module $L(\Lambda)$ of highest weight Λ.

Now we are ready to state our main result, which, in view of Remarks 4.1.1 and 4.1.2, may be thought of as a Borel-Weil-Bott theorem for the non-connected, simple affine algebraic group $\langle\omega\rangle \ltimes G$.

Theorem 4.2.1. Let $\Lambda \in X(T)^{\omega}$ be a dominant weight fixed by the diagram automorphism $\omega, v \in W^{\omega}$, and $\zeta \in \mathbb{C}^{*}$ an N-th root of unity. Set $\lambda:=v \circ \Lambda=v(\Lambda+\rho)-\rho$. Then we have the following identity of twining characters:

$$
\operatorname{ch}^{\omega}\left(H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)\right)=(-1)^{\ell(v)-\widehat{\ell}(v)} \times \zeta \times \operatorname{ch}^{\omega}(L(\Lambda))
$$

in the group algebra $\mathbb{C}\left[X(T)^{\omega}\right]$ of $X(T)^{\omega}$ over \mathbb{C} with the canonical basis $\left\{e(\mu) \mid \mu \in X(T)^{\omega}\right\}$. Here $L(\Lambda)$ is the irreducible highest weight G-module of highest weight Λ. Hence we have an isomorphism of $\langle\omega\rangle \ltimes G$-modules

$$
H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right) \simeq \mathbb{C}_{(-1)^{\ell(v)-\hat{\ell}(v) \zeta}} \otimes_{\mathbb{C}} L(\Lambda)
$$

where $\mathbb{C}_{(-1)^{\ell(v)-\hat{\ell}(v) \zeta}}$ denotes a one-dimensional rational $\langle\omega\rangle \ltimes G$-module on which ω acts by the scalar $(-1)^{\ell(v)-\widehat{\ell}(v)} \zeta$ and G trivially.

Remark 4.2.2. We know from the Borel-Weil-Bott theorem (see, for example, [J, Part II. Ch. 5]) that each $\lambda \in X(T)$ such that $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda}\right)\right) \neq$ 0 for some $j \in \mathbb{Z}_{\geq 0}$ can be written uniquely in the form $\lambda=v \circ \Lambda$ for some $v \in W$ and dominant $\Lambda \in X(T)$. It is obvious that if this $\lambda=v \circ \Lambda$ is an element of $X(T)^{\omega}$, then $v \in W^{\omega}$.

Remark 4.2.3. It follows from Equality (2.2.1) that for $v \in W^{\omega}$, the scalar $(-1)^{\ell(v)-\widehat{\ell}(v)}$ is not equal to 1 in general. Hence Theorem 4.2.1 implies that, as $\langle\omega\rangle \ltimes G$-modules, $H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, 1}\right)\right)$ and $L(\Lambda)$ are not necessarily isomorphic. This scalar $(-1)^{\ell(v)-\widehat{\ell}(v)}$ seems to come from the character of the cyclic group $\langle\omega\rangle$. In fact, when G is of type D_{4} and ω is of order 3 , we see by $(2.2 .1)$ that $(-1)^{\ell(v)-\widehat{\ell}(v)}=1$ for all $v \in W^{\omega}$.

The rest of this subsection is devoted to the proof of Theorem 4.2.1. Now we set $V:=H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)$ and compute the twining character

$$
\operatorname{ch}^{\omega}(V)=\sum_{\mu \in X(T)^{\omega}} \operatorname{Tr}\left(\left.\omega\right|_{V_{\mu}}\right) e(\mu)
$$

of the rational $\langle\omega\rangle \ltimes T$-module V with the T-weight space decomposition $V=\bigoplus_{\mu \in X(T)} V_{\mu} . \quad$ Because we already know from the Borel-Weil-Bott theorem that $V=H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)$ is a simple module of highest weight Λ as a G-module (and hence simple as an $\langle\omega\rangle \ltimes G$-module), it suffices to prove the equality

$$
\begin{equation*}
\operatorname{ch}^{\omega}(V)=(-1)^{\ell(v)-\widehat{\ell}(v)} \times \zeta \times \operatorname{ch}^{\omega}(L(\Lambda)) \tag{4.2.1}
\end{equation*}
$$

in the group algebra $\mathbb{C}\left[X(T)^{\omega}\right] \subset \mathbb{C}[X(T)]$. (Here we recall that $\mathbb{C}[X(T)]=$ $\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{Z}[X(T)]$ is identified with the algebra $\operatorname{Mor}(T, \mathbb{C})$ of regular algebraic functions on T by: $e(\mu)(t)=\mu(t) \in \mathbb{C}^{*}$ for $\mu \in X(T)$ and $t \in T$.)

We define the fixed point torus $T^{\omega} \subset T$ by

$$
T^{\omega}:=\{t \in T \mid \omega(t)=t\} .
$$

The Lie algebra $\operatorname{Lie}\left(T^{\omega}\right)$ of $T^{\omega} \subset T$ is

$$
\mathfrak{h}^{0}:=\{h \in \mathfrak{h} \mid \omega(h)=h\} .
$$

It is known (see [St, §8]) that T^{ω} is, in fact, connected. Hence T^{ω} is a subtorus of T. Furthermore, it easily follows from the canonical isomorphism $\left(\mathfrak{h}^{*}\right)^{0} \simeq\left(\mathfrak{h}^{0}\right)^{*}$ that the group homomorphism

$$
\text { Res: } X(T)^{\omega} \rightarrow X\left(T^{\omega}\right):=\operatorname{Hom}\left(T^{\omega}, \mathbb{C}^{*}\right)
$$

given by the restriction to $T^{\omega} \subset T$ is injective. So the induced algebra homomorphism

$$
\text { Res: } \mathbb{C}\left[X(T)^{\omega}\right] \rightarrow \mathbb{C}\left[X\left(T^{\omega}\right)\right] \simeq \operatorname{Mor}\left(T^{\omega}, \mathbb{C}\right)
$$

is also injective. Thus it suffices for us to show Equality (4.2.1) in the group algebra $\mathbb{C}\left[X\left(T^{\omega}\right)\right]$.

Here we remark that the semi-direct product $\langle\omega\rangle \ltimes T$ itself is not abelian, but its closed subgroup $\langle\omega\rangle \ltimes T^{\omega}$ splits into the direct product $\langle\omega\rangle \times T^{\omega}$, and hence that $\langle\omega\rangle \ltimes T^{\omega}=\langle\omega\rangle \times T^{\omega}$ is a (not necessarily connected) diagonalizable algebraic group. Thus the (closed) embedding $T^{\omega} \sim \sim\{\omega\} \times T^{\omega} \subset$ $\langle\omega\rangle \times T^{\omega}$ induces the evaluation map (at $\omega \in\langle\omega\rangle$)

$$
\mathrm{ev}_{\omega}: \mathbb{Z}\left[X\left(\langle\omega\rangle \times T^{\omega}\right)\right] \rightarrow \mathbb{C}\left[X\left(T^{\omega}\right)\right]
$$

By Remark 4.1.1, we see that for a (finite-dimensional) rational $\langle\omega\rangle \ltimes T$ module U,

$$
\begin{equation*}
\operatorname{ev}_{\omega}(\operatorname{Tr}(U))=\operatorname{ch}^{\omega}(U) \tag{4.2.2}
\end{equation*}
$$

in the group algebra $\mathbb{C}\left[X\left(T^{\omega}\right)\right] \simeq \operatorname{Mor}\left(T^{\omega}, \mathbb{C}\right)$, where the rational $\langle\omega\rangle \ltimes T$ module U is regarded as a rational $\langle\omega\rangle \times T^{\omega}$-module by restriction. Note that $\operatorname{ch}^{\omega}(U)$ is, in fact, an element of the group algebra $\mathbb{C}\left[X(T)^{\omega}\right] \hookrightarrow \mathbb{C}\left[X\left(T^{\omega}\right)\right]$, since U is a rational $\langle\omega\rangle \ltimes T$-module.

In order to compute $\operatorname{ev}_{\omega}(\operatorname{Tr}(V)) \in \mathbb{C}\left[X\left(T^{\omega}\right)\right]$, we want to apply Theorem 3.1 to the flag variety $\mathcal{B}=G / B$, which is a smooth projective $\langle\omega\rangle \ltimes T$ variety.

Lemma 4.2.4. We have

$$
\mathcal{B}^{\langle\omega\rangle \times T^{\omega}}=\left(\mathcal{B}^{T}\right)^{\langle\omega\rangle} .
$$

Proof. Take a regular semi-simple element $t \in T^{\omega}$ such that $t^{N} \in T^{\omega}$ is also regular. Let $x \in \mathcal{B}$ be a point fixed by $(\omega, t) \in\langle\omega\rangle \times T^{\omega}$. Then we have

$$
x=(\omega, t)^{N} x=\left(\omega^{N}, t^{N}\right) x=\left(1, t^{N}\right) x=t^{N} x
$$

Thus it suffices to show that if $t \in T$ is a regular semi-simple element, then we have $\mathcal{B}^{t}=\mathcal{B}^{T}$. Let $t \in T$ be a regular semi-simple element and $g B / B \in \mathcal{B}^{t}$ with $g \in G$, i.e., $\operatorname{tg} B=g B$. Then we have $g^{-1} t g \in B$, so that $t \in g B g^{-1} \cap T$. Since $g B g^{-1}$ is also a Borel (i.e., maximal closed connected solvable) subgroup of G, there exists a maximal torus (i.e., closed connected diagonalizable subgroup) T^{\prime} of $g B g^{-1}$ such that $t \in T^{\prime} \subset g B g^{-1}$. So we get $t \in T \cap T^{\prime}$. Note that T^{\prime} is also a maximal torus of G. Since $t \in T$ is a regular semi-simple element, it belongs to a unique maximal torus. Therefore, it follows that $T^{\prime}=T$, and hence $T \subset g B g^{-1}$, i.e., $g^{-1} T g \subset B$. Consequently, we see that $\left(g^{-1} T g\right) B=B$, so that $T g B=g B$. Hence we have shown that $g B / B \in \mathcal{B}^{T}$, which proves the lemma.

Remark 4.2.5. The set of regular elements t such that t^{N} is also regular are clearly dense in $T^{\omega} \subset T$, since the restriction of any positive root $\alpha \in \Delta_{+} \subset X(T)$ to $T^{\omega} \subset T$ is not identically equal to 1 .

Put $A:=\langle\omega\rangle \times T^{\omega}$ and $E:=L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)$, where $\lambda=v \circ \Lambda$ with $\Lambda \in X(T)^{\omega}$ dominant and $v \in W^{\omega}$. We recall the well-known fact that $\mathcal{B}^{T}=\{\dot{w} B / B \mid$ $w \in W\}$. Hence we see by Lemma 4.2.4 that

$$
\begin{aligned}
\mathcal{B}^{A} & =\left(\mathcal{B}^{T}\right)^{\langle\omega\rangle}=\left\{\dot{w} B / B \mid \dot{\omega}^{-1} \omega(\dot{\omega}) \in T, w \in W\right\} \\
& =\left\{\dot{w} B / B \mid w \in W^{\omega}\right\}
\end{aligned}
$$

In particular, \mathcal{B}^{A} is a variety of finite set. Therefore, we can apply Theorem 3.1 to our setting.

Let S be the multiplicative subset of $\mathbb{Z}\left[X\left(\langle\omega\rangle \times T^{\omega}\right)\right]$ generated by elements of the form $1-e(\chi)$ for nontrivial $\chi \in X\left(\langle\omega\rangle \times T^{\omega}\right)$ as in $\S 3$. Then an
easy consideration shows that $0 \notin \mathrm{ev}_{\omega}(S) \subset \mathbb{C}\left[X\left(T^{\omega}\right)\right]$. Hence the evaluation map ev $\omega: \mathbb{Z}\left[X\left(\langle\omega\rangle \times T^{\omega}\right)\right] \rightarrow \mathbb{C}\left[X\left(T^{\omega}\right)\right]$ lifts to a ring homomorphism

$$
S^{-1} \mathrm{ev}_{\omega}: S^{-1} \mathbb{Z}\left[X\left(\langle\omega\rangle \times T^{\omega}\right)\right] \rightarrow \operatorname{Frac}\left(\mathbb{C}\left[X\left(T^{\omega}\right)\right]\right)
$$

where $\operatorname{Frac}\left(\mathbb{C}\left[X\left(T^{\omega}\right)\right]\right)$ is the fraction field of $\mathbb{C}\left[X\left(T^{\omega}\right)\right]$. Therefore, by applying $S^{-1} \mathrm{ev}_{\omega}$ to both sides of (Ω) in Theorem 3.1, we obtain the following formula in the fraction field $\operatorname{Frac}\left(\mathbb{C}\left[X(T)^{\omega}\right]\right) \hookrightarrow \operatorname{Frac}\left(\mathbb{C}\left[X\left(T^{\omega}\right)\right]\right)$,

$$
\begin{align*}
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)\right)= & \sum_{w \in W^{\omega}} \operatorname{ch}^{\omega}\left(\left.L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right|_{\{\dot{w} B / B\}}\right) \times \tag{4.2.3}\\
& \times\left(\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} T_{\dot{w} B / B}^{*} \mathcal{B}\right)\right)^{-1}
\end{align*}
$$

Since $H^{j}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)=0$ unless $j=\ell(v)$ by the Borel-Weil-Bott theorem, the left-hand side of (4.2.3) becomes

$$
(-1)^{\ell(v)} \times \operatorname{ch}^{\omega}\left(H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right)\right)
$$

We now compute the right-hand side of (4.2.3).
Lemma 4.2.6. Let $\lambda \in X(T)^{\omega}$ and $w \in W^{\omega}$. Then the fiber $\left.L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right|_{\{\dot{w} B / B\}}$ of the line bundle $p: L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right) \rightarrow \mathcal{B}$ at the point $\dot{w} B / B \in \mathcal{B}$ is isomorphic to $\mathbb{C}_{w(\lambda), \zeta}$ as an $\langle\omega\rangle \ltimes T$-module.

Proof. Let $[\dot{w}, z] \in G \times{ }^{B} \mathbb{C}_{\lambda, \zeta}$ with $z \in \mathbb{C}_{\lambda, \zeta}$ be an element of the fiber $\left.L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right|_{\{\dot{w} B / B\}}$ of the line bundle $L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)$ at the point $\dot{w} B / B \in \mathcal{B}$. For $t \in T$, we have

$$
\begin{aligned}
t \cdot[\dot{w}, z] & =[t \dot{w}, z] \\
& =\left[\dot{w}\left(\dot{w}^{-1} t \dot{w}\right), z\right]=\left[\dot{w},\left(\dot{w}^{-1} t \dot{w}\right) z\right] \quad \text { since } \dot{w}^{-1} t \dot{w} \in T \\
& =\left[\dot{w}, \lambda\left(\dot{w}^{-1} t \dot{w}\right) \times z\right]=[\dot{w},(w(\lambda))(t) \times z] .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
\omega([\dot{w}, z]) & =[\omega(\dot{w}), \omega \cdot z] \\
& =[\dot{w}, \zeta \times z]
\end{aligned}
$$

since the right coset representative $\dot{w} \in N_{G}(T)$ of $w \in W^{\omega}$ is chosen in such a way that $\omega(\dot{w})=\dot{w}$. This proves the lemma.

By this lemma, we get

$$
\operatorname{ch}^{\omega}\left(\left.L_{\mathcal{B}}\left(\mathbb{C}_{\lambda, \zeta}\right)\right|_{\{\dot{w} B / B\}}\right)=\zeta \times e(w(\lambda)) \in \mathbb{C}\left[X(T)^{\omega}\right]
$$

On the other hand, we see by Lemma 4.1.3 that the (Zariski) cotangent space $T_{\dot{w} B / B}^{*} \mathcal{B}$ to \mathcal{B} at the point $\dot{w} B / B$ for $w \in W^{\omega}$ is isomorphic to the dual $\langle\omega\rangle \ltimes T$-module $(\mathfrak{g} / \operatorname{Ad}(\dot{w}) \mathfrak{b})^{*}$ of $\mathfrak{g} / \operatorname{Ad}(\dot{w}) \mathfrak{b}$ as an $\langle\omega\rangle \ltimes T$-module, and hence is isomorphic to $\operatorname{Ad}(\dot{w}) \mathfrak{n}_{-}$as an $\langle\omega\rangle \ltimes T$-module. Therefore, we deduce that for each $w \in W^{\omega}$ and $j \geq 0$,

$$
\operatorname{ch}^{\omega}\left(\bigwedge^{j} T_{\dot{w} B / B}^{*} \mathcal{B}\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{j}\left(\operatorname{Ad}(\dot{w}) \mathfrak{n}_{-}\right)\right)
$$

Here we note that the following diagram commutes for each $w \in W^{\omega}$:

since we have

$$
\omega(\operatorname{Ad}(\dot{y}) x)=\operatorname{Ad}(\omega(\dot{y})) \omega(x)
$$

for all $y \in W$ and $x \in \mathfrak{g}$. From this commutative diagram, we see that for each $j \geq 0$,

$$
\operatorname{ch}^{\omega}\left(\bigwedge^{j}\left(\operatorname{Ad}(\dot{w}) \mathfrak{n}_{-}\right)\right)=w\left(\operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)\right)
$$

Consequently, we obtain in $\mathbb{C}\left[X(T)^{\omega}\right]$,

$$
\begin{aligned}
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} T_{\dot{w} B / B}^{*} \mathcal{B}\right) & =\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j}\left(\operatorname{Ad}(\dot{w}) \mathfrak{n}_{-}\right)\right) \\
& =\sum_{j \geq 0}(-1)^{j}\left(w\left(\operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)\right)\right) \\
& =w\left(\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)\right)
\end{aligned}
$$

We put

$$
H:=\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)
$$

as an element in $\mathbb{C}\left[X(T)^{\omega}\right] \simeq \mathbb{C}\left[\left(\mathfrak{h}_{\mathbb{Z}}^{*}\right)^{0}\right]$. It follows from Formula 2 that

$$
H=e(-\rho) \cdot\left(\sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho))\right)
$$

So we have for each $w \in W^{\omega}$,

$$
w(H)=e(-w(\rho)) \cdot w\left(\sum_{y \in W^{\omega}}(-1)^{\widehat{\ell}(y)} e(y(\rho))\right)
$$

Here, since for each $y \in W^{\omega}$

$$
(-1)^{\widehat{\ell}(w)}(-1)^{\hat{\ell}(y)}=(-1)^{\widehat{\ell}(w)+\hat{\ell}(y)}=(-1)^{\hat{\ell}(w y)} \text {, }
$$

we deduce that

$$
\begin{align*}
w\left(\sum_{y \in W^{\omega}}(-1)^{\widehat{\ell}(y)} e(y(\rho))\right) & =\sum_{y \in W^{\omega}}(-1)^{\widehat{\ell}(y)} e(w y(\rho)) \tag{4.2.4}\\
& =(-1)^{\widehat{\ell}(w)} \times \sum_{y \in W^{\omega}}(-1)^{\widehat{\ell}(w)}(-1)^{\widehat{\ell}(y)} e(w y(\rho)) \\
& =(-1)^{\widehat{\ell}(w)} \times \sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(w y)} e(w y(\rho)) \\
& =(-1)^{\hat{\ell}(w)} \times \sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho)) .
\end{align*}
$$

Hence we get

$$
w(H)=(-1)^{\hat{\ell}(w)} \times e(-w(\rho)) \cdot\left(\sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho))\right)
$$

To sum up, the right-hand side of (4.2.3) is

$$
\begin{aligned}
F & :=\sum_{w \in W^{\omega}} \frac{\zeta \times e(w(\lambda))}{(-1)^{\widehat{\ell}(w)} \times e(-w(\rho)) \cdot\left(\sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho))\right)} \\
& \in \operatorname{Frac}\left(\mathbb{C}\left[X(T)^{\omega}\right]\right) .
\end{aligned}
$$

Since $\lambda=v \circ \Lambda$, we have $w(\lambda)=w v(\Lambda+\rho)-w(\rho)$ for each $w \in W^{\omega}$. Hence we get

$$
\begin{aligned}
& F=\left(\sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho))\right)^{-1} \times \\
& \times\left(\zeta \times \sum_{w \in W^{\omega}}(-1)^{\hat{\ell}(w)} e(w(\rho)) \cdot e(w v(\Lambda+\rho)-w(\rho))\right) \\
&=\left(\sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho))\right)^{-1} \cdot\left(\zeta \times \sum_{w \in W^{\omega}}(-1)^{\hat{\ell}(w)} e(w v(\Lambda+\rho))\right) .
\end{aligned}
$$

As in (4.2.4), we deduce that

$$
\sum_{w \in W^{\omega}}(-1)^{\widehat{\ell}(w)} e(w v(\Lambda+\rho))=(-1)^{\widehat{\ell}(v)} \times \sum_{w \in W^{\omega}}(-1)^{\widehat{\ell}(w)} e(w(\Lambda+\rho)) .
$$

Hence we have in $\operatorname{Frac}\left(\mathbb{C}\left[X(T)^{\omega}\right]\right)$,

$$
\begin{aligned}
F & =\zeta \times(-1)^{\hat{\ell}(v)} \times \frac{\sum_{w \in W^{\omega}}(-1)^{\hat{\ell}(w)} e(w(\Lambda+\rho))}{\sum_{y \in W^{\omega}}(-1)^{\hat{\ell}(y)} e(y(\rho))} \\
& =\zeta \times(-1)^{\hat{\ell}(v)} \times \operatorname{ch}^{\omega}(L(\Lambda)) \quad \text { by Formula } 1
\end{aligned}
$$

Thus, by Equality (4.2.3), we obtain Equality (4.2.1):

$$
\operatorname{ch}^{\omega}(V)=(-1)^{\ell(v)-\widehat{\ell}(v)} \times \zeta \times \operatorname{ch}^{\omega}(L(\Lambda)) \in \mathbb{C}\left[X(T)^{\omega}\right]
$$

Recall that $V=H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{v \circ \Lambda, \zeta}\right)\right)$. Thus we have proved that

$$
\operatorname{ch}^{\omega}\left(H^{\ell(v)}\left(\mathcal{B}, \mathcal{L}_{\mathcal{B}}\left(\mathbb{C}_{v \circ \Lambda, \zeta}\right)\right)\right)=(-1)^{\ell(v)-\widehat{\ell}(v)} \times \zeta \times \operatorname{ch}^{\omega}(L(\Lambda))
$$

as desired.

References

[AB] Atiyah, M. F. and R. Bott, A Lefschetz fixed point theorem for elliptic complexes: II. Applications, Ann. of Math. 87 (1968), 451-491.
[B] Borel, A., Linear Algebraic Groups (2nd enlarged edition), Graduate Texts in Math. Vol. 126, Springer-Verlag, Berlin, 1991.
[CG] Chriss, N. and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997.
[FRS] Fuchs, J., Ray, U. and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), 518-540.
[FSS] Fuchs, J., Schellekens, B. and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), 39-97.
[H] Humphreys, J. E., Linear Algebraic Groups, Graduate Texts in Math. Vol. 21, Springer-Verlag, Berlin, 1987.
[J] Jantzen, J. C., Representations of Algebraic Groups, Pure Appl. Math. Vol. 131, Academic Press, Boston, 1987.
[K] Kac, V. G., Infinite Dimensional Lie Algebras (3rd edition), Cambridge Univ. Press, Cambridge, 1990.
[KN] Kaneda, M. and S. Naito, A twining character formula for Demazure modules, Transform. Groups 7 (2002), 321-341.
[KK] Kang, S.-J. and J.-H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc. 81 (2000), 675-724.
[M] Mohrdieck, S., Conjugacy classes of non-connected semisimple algebraic groups, Ph.D. dissertation, Hamburg University, 2000.
[MFK] Mumford, D., Fogarty, J. and F. Kirwan, Geometric Invariant Theory (3rd enlarged edition), Springer-Verlag, Berlin, 1994.
[Na1] Naito, S., Embedding into Kac-Moody algebras and construction of folding subalgebras for generalized Kac-Moody algebras, Japan. J. Math. (New Series) 18 (1992), 155-171.
[Na2] Naito, S., Twining character formula of Kac-Wakimoto type for affine Lie algebras, Represent. Theory 6 (2002), 70-100 (electronic).
[Na3] Naito, S., Twining characters and Kostant's homology formula, to appear in Tôhoku Math. J. (Second Series).
[Ni] Nielsen, H. A., Diagonalizably linearized coherent sheaves, Bull. Soc. Math. France 102 (1974), 85-97.
[Sp] Springer, T. A., Linear Algebraic Groups (2nd edition), Progr. Math. Vol. 9, Birkhäuser, Boston, 1998.
[St] Steinberg, R., Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).

[^0]: 1991 Mathematics Subject Classification. Primary 20G05; Secondary 17B10, 20G10, 14M15.

 Key words: Twining character, Borel-Weil-Bott theorem.

