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Formal Symbol Type Solutions of

Fuchsian Microdifferential Equations

By Kiyoomi Kataoka and Yoshiaki Satoh

Abstract. We construct a basis of solutions for a micro-differ-
ential equation with Fuchsian singularities in microfunctions with one
holomorphic parameter. More precisely, we construct solutions writ-
ten by formal symbols with one holomorphic parameter. For such an
equation of order m, we get (m−1)-regular formal symbols and one sin-
gular formal symbol; the latter is not holomorphic along the Fuchsian
singularities but has boundary values in the sense of microfunctions.

1. Introduction

Let X be a complex manifold Cw × C
n
z and Z,M be its submanifolds

Z = {(w, z) ∈ X; Im z = 0} � ZR ⊃M = {Imw = 0, Im z = 0}.

Here ZR is the underlying real manifold of Z. We denote by (w, z; τ, ζ) the

coordinates of T ∗X;

w = u + iv ∈ C, z = x + iy ∈ C
n, τ ∈ C, ζ = ξ + iη ∈ C

n.

Then the sheaf COZ on

T ∗
ZX = {(w, z; τ, ζ) ∈ T ∗X; τ = 0, Im z = 0,Re ζ = 0}

of microfunctions with a holomorphic parameter w is defined by

COZ := {f(u, v, x) ∈ CZR; ∂̄wf = 0}.

Here CZR is the sheaf of usual microfunctions on ZR, and it is well-known

that COZ is identified with the sheaf CZ|X of relative microfunctions as

EX -modules. Setting N = R
n
x ⊂ C

n
z = Y , we denote by ρ a projection:

ρ : T ∗
ZX � (w, x; iη) 
→ (x; iη) ∈ T ∗

NY.(1.1)
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Let us consider the following microdifferential equation for a section f(w, x)

of COZ around
◦
p = (0,

◦
x; i

◦
η) ∈ T ∗

ZX with
◦
η �= 0:

P (w, x,Dw, Dx)f(w, x) :=
( m∑
k=0

Ak(w, x,Dw, Dx)D
m−k
w

)
f = 0,(1.2)

where Dw = ∂/∂w and Dxj = ∂/∂xj (j = 1, ..., n). We suppose that

P (w, z,Dw, Dz) has Fuchsian singularities along {w = ϕ(x, iη)}; that is,

Ak(w, z,Dw, Dz)’s are microdifferential operators defined at
◦
p satisfying the

conditions: 
ord(Ak) ≤ 0 (k = 0, ...,m),

σ0(A0)(
◦
p) = 0, ∂wσ0(A0)(

◦
p) �= 0,

σ0(A1)(
◦
p)/∂wσ0(A0)(

◦
p) /∈ Z.

(1.3)

Therefore by the Späth type theorem for EX in Sato-Kawai-Kashiwara [13]

(hereafter, referred to as S-K-K [13]) we can write

A0(w, z,Dw, Dz) = α(w, z,Dw, Dz)(w − Φ(z,Dw, Dz)).(1.4)

Here α(w, z,Dw, Dz),Φ(z,Dw, Dz) ∈ EX |◦p are operators of order 0 with{
[Φ, Dw] = 0, σ0(Φ)(z, 0, ζ) ≡ ϕ(z, ζ),

σ0(α)(
◦
p) �= 0, ϕ(

◦
x, i

◦
η) = 0.

(1.5)

Since the equation (1.2) is microlocally equivalent to Dm
w f(w, x) = 0 in

{w − ϕ(x, iη) �= 0}, the solution sheaf in COZ of the equation (1.2) is

isomorphic to ρ−1CmN on {w − ϕ(x, iη) �= 0}. The subject of this article

is to study the behavior of solutions in COZ around the singular locus

K = {w − ϕ(x, iη) = 0}. Precisely, we have the following (Theorem 5.8):

Theorem. We can construct a system {U (�)(w, z,Dz); % = 1, ...,m} of

formal symbols of microdifferential operators defined around
◦
p satisfying the

following conditions:

(1) U (1) is a multivalued section of EX over {(w, x; iη) ∈ T ∗
ZX; 0 < |w −

ϕ(x, iη)| < r, |x − ◦
x| < r, |η − ◦

η| < r} for some small r > 0, and

U (�) ∈ EX |◦p for % = 2, ...,m.
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(2) U (�)(w, z,Dz) (% = 1, ...,m) commute with w.

(3) P (w, z,Dw, Dz)U
(�)(w, z,Dz) = 0 (mod EX ·Dw) for % = 1, ...,m.

(4) ord(U (�)) = 0 for % = 1, ...,m, and holomorphic functions

{σ0(U
(�))(w, x, iη); % = 1, ...,m} give a complete system of solutions in

{w − ϕ(x, iη) �= 0} of the following linear ordinary differential equa-

tion :

LU :=
( m∑
k=0

σ0(Ak)(w, x, 0, iη)
∂m−k

∂wm−k

)
U = 0(1.6)

(5) For any microfunction f(x) ∈ CN |ρ(◦p), U (1)(w, x,Dx)f(x) has a mi-

crofunction boundary value at w = ϕ(x, iη); that is, a microfunction

boundary value from any side of any R-conic and real analytic hyper-

surface H of T ∗
ZX passing through K = {w − ϕ(x, iη) = 0}.

The precise meaning of the condition (5) will be given in Section 3.

As a direct consequence, we have a unique decomposition of a solution

f(w, x) ∈ COZ around
◦
p of (1.2) into a sum:

f(w, x) =

m∑
�=1

U (�)(w, x,Dx)f�(x),(1.7)

where f�(x) ∈ CN |ρ(◦p) (% = 1, ...,m) are uniquely determined by f(w, x).

Further, we conclude from the condition 5 that any solution f(w, x) has a

microfunction boundary value at w = ϕ(x, iη); this fact will be applied to

a construction of microlocal solutions for some differential equations with

variable multiplicities discussed in Yamane [16], Kataoka [11].

This article consists of 5 sections as follows:

In Section 2, after giving a brief survey on formal symbols, we transform

our P into the normal form under some quantized contact transformation

preserving T ∗
ZX. Further we prepare some estimates for holomorphic so-

lutions of Fuchsian ordinary differential equations, which will be used in

Section 4.

Section 3 is devoted to give an elementary proof of the invariance of COZ

under quantized contact transformations preserving T ∗
ZX. The key theorem
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is Theorem 3.9 on the structure of holomorphic contact transformations

preserving T ∗
ZX: That is, holomorphic contact transformations preserving

T ∗
ZX are essentially generated by the holomorphic functions of the following

type:

z∗n = h0(z, z
∗′) + (Ψ(w, z, w∗, z∗′))2,

where z∗′ = (z∗1 , ..., z
∗
n−1), and holomorphic functions Ψ(w, z, w∗, z∗′),

h0(z, z
∗′) satisfy the following conditions:

(1) Ψ(
◦
w,

◦
x,

◦
w∗,

◦
x∗′) = 0, ∂wΨ �= 0, ∂w∗Ψ �= 0.

(2) h0 is real-valued for real (z, z∗′), and {x∗n−h0(x, x
∗′) = 0} gives a real

analytic contact transformation S′ : (x; η) 
→ (x∗; η∗).

At the same time, we justify our definition of microfunction boundary

values of sections of COZ from one side of an R-conic and real analytic

hypersurface H of T ∗
ZX. As direct consequences, we can reduce our P to

the normalized operator obtained in Section 2 for the equation Pf(w, x) = 0

in COZ .

In Section 4, we construct formal symbols U =
∑0

j=−∞ Uj(w, z, ζ) sat-

isfying PU = 0 (mod EX ·Dw) by successive approximation. The key idea

here is in applying some suitable formal norms of Boutet de Monvel and

Krée’s type to prove the convergence. Once we establish some inequali-

ties on those formal norms, we easily obtain a priori estimates for U . The

difficulty appears only when we construct the non-regular type formal sym-

bols related to Fuchsian singularities. To deal with this case, we introduce

weighted sup-norms for holomorphic functions with Fuchsian singularities

and modifications of the formal norms by these weighted sup-norms.

In Section 5, before we deal with our main theorem, we prove under some

growth order conditions near a boundary that a classical formal symbol of

pseudo-differential operators has a microfunction boundary value. That is,

the following is another main result of this article (Theorem 5.5):

Theorem. Let U =
∑0

j=−∞ Uj(w, z, ζ) be a classical formal symbol of

a pseudo-differential operator with order ≤ 0 defined in an R-conic open set

Wr ≡
{

(w, z; ∗, ζ) ∈ T ∗X; Imw > 0, |w| < r, |z| < κ,

|ζj | < ρ|ζn| (1 ≤ ∀j ≤ n− 1), |Re ζn| < δ Im ζn

}
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for some r, κ, ρ, δ > 0 (δ < 1). We suppose that Uj ∈ O(Wr) (∀j ≤ 0) and

that there exists some constants C, µ > 0 satisfying the following inequali-

ties:

|U−p(w, z, ζ)| ≤ Cp+1p!| Imw|−p−µ|ζ|−p on Wr (∀p ≥ 0).

Then for any microfunction f(x) ∈ CN |(0;idxn), a section U(w, x,Dx)f(x) ∈
Γ ({w ∈ C; Imw > 0, |w| < r} × {(0; idxn)}; COZ) has a microfunction

boundary value at (0, 0; idxn) from Imw > 0.

Further, we show by a counter-example that the growth condition above

is the best possible in some sense.

2. Preliminaries

2.1. Formal symbols and quantized contact transformations

Definition 2.1. A microdifferential operator Q(w, z,Dw, Dz) ∈ EX at
◦
q = (

◦
w,

◦
z;

◦
τ ,

◦
ζ) ∈ T ∗X of order ≤ m(∈ Z) is identified with a formal sum

Q(w, z,Dw, Dz) =
m∑

j=−∞
Qj(w, z,Dw, Dz).

of holomorphic functions {Qj(w, z, τ, ζ)}mj=−∞ satisfying the following:

There exist an R-conic neighborhood W of
◦
q in T ∗X and a positive constant

C such that each Qj(z, x, ζ, ξ) is holomorphic in W , and homogeneous of

degree j with respect to (τ, ζ) ∈ C × C
n, and that we have the following

estimates on W :

|Qj(w, z, τ, ζ)| ≤ (m− j)!C1+m−j(|τ |+ |ζ|)j (∀j ≤ m).(2.1)

The formal sum
∑m

j=−∞Qj(w, z, τ, ζ) is called the formal symbol of

Q(w, z,Dw, Dz). The composition of two formal symbols
∑m′

j=−∞Q′
j ,∑m′′

j=−∞Q′′
j is defined by a formal symbol

∑m′+m′′
j=−∞ Q′′′

j with

Q′′′
j (w, z, τ, ζ) =

∑
j′+j′′−k−|α|=j

1

k!α!

∂k+|α|Q′
j′

∂τk∂ζα
∂k+|α|Q′′

j′′

∂wk∂zα
,(2.2)
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where k ∈ N∪{0}, α = (α1, . . . , αn) ∈ (N∪{0})n. Note that the summation

is performed on some finite terms for each j and that {Q′′′
j }j satisfy some

estimates like (2.1). It is well-known that this composition rule is associative

and gives the operator product Q′(w, z,Dw, Dz)×Q′′(w, z,Dw, Dz) ([6, 5],

[13]).

Remark 2.2. This definition naturally extends to the classical defini-

tion of formal symbols of pseudo-differential operators Q ∈ ERX due to Boutet

de Monvel and Krée [6, 5]. That is, a formal sum
∑m

j=−∞Qj is said to be

a classical formal symbol at
◦
q = (

◦
w,

◦
z;

◦
τ ,

◦
ζ) ∈ T ∗X of pseudo-differential

operators of order ≤ m(∈ Z) if there exist an R-conic neighborhood W of
◦
q

in T ∗X and a positive constant C such that each Qj(z, x, ζ, ξ) is a holomor-

phic function in W satisfying (2.1) (not necessarily of homogeneous degree

j with respect to (ζ, ξ)). Then the most of arguments for formal symbols

of EX extend to the arguments for classical formal symbols of ERX . Only

one difference is the non-uniqueness of expressions; we cannot determine

the j-th order term for a pseudo-differential operator with finite order in

general.

Remark 2.3. We mean by a classical formal symbol of a pseudo-differ-

ential operator the following: The definition domain of j-th term of the

formal symbol does not depend on j, and that they satisfy some inequalities

like (2.1) there. On the other hand, in Aoki’s modern definition [2] of

formal symbols such domains may decrease when j → −∞. Indeed, their

intersection may be void. Aoki’s definition of formal symbols of pseudo-

differential operators is much simpler, and easy to handle. Further a classical

formal symbol canonically induces a formal symbol of Aoki’s type, and

for micro-differential operators these definitions coincide with each other.

However, one cannot define the formal norms for Aoki’s formal symbols,

which are successfully introduced by Boutet de Monvel and Krée [6] for the

theory of (classical) formal symbols. In our construction of formal symbol

type solutions we essentially use some variations of formal norms. Hence

we employ the classical definition of formal symbols for pseudo-differential

operators.

Before constructing the solutions of (1.2) we reduce P to a simpler

microdifferential operator by using some quantized contact transformation
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preserving T ∗
ZX.

Proposition 2.4. Let W ∗(w, z, τ, ζ) be a holomorphic function de-

fined at
◦
p of homogeneous degree 0 with respect to (τ, ζ) satisfying

W ∗(
◦
p) = 0, ∂wW

∗(
◦
p) �= 0.

Then there exists a holomorphic contact transformation:

S :

{
w∗ = W ∗(w, z, τ, ζ), τ∗ = τ∗(w, z, τ, ζ)

z∗k = z∗k(w, z, τ, ζ), ζ∗k = ζ∗k(w, z, τ, ζ) (k = 1, . . . , n)
(2.3)

defined in a neighborhood of
◦
p satisfying{

τ∗|τ=0 = 0, ∂ττ
∗(

◦
p) �= 0,

z∗k|τ=0 = zk, ζ∗k |τ=0 = ζk (k = 1, . . . , n).
(2.4)

Proof. Solve the following Cauchy problem for χ = χ(w, z, τ∗, ζ∗){
∂τ∗χ = W ∗(w, z, ∂wχ, ∂zχ),

χ|τ∗=0 = z · ζ∗.

Then the unique holomorphic solution χ at
◦
p is of homogeneous degree 0

with respect to (τ∗, ζ∗), and generates the desired contact transformation:

S :

{
w∗ = ∂τ∗χ = W ∗, τ = ∂wχ,

z∗k = ∂ζ∗kχ, ζk = ∂zkχ (k = 1, . . . , n). �

Applying Proposition 2.4 to W ∗ = w−σ0(Φ)(z, τ, ζ) for Φ at (1.4), we get

a holomorphic contact transformation S satisfying (2.3). Since the solution

χ has the form χ = wτ∗ + z · ζ∗ + ψ(z, τ∗, ζ∗) in this case, we know that

τ∗ = τ . Therefore by the theory of quantizations of contact transformations

due to S-K-K [13] we have an isomorphism between sheaves of rings

S : S−1EX ∼−→ EX
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such that

S(Dw∗) = Dw, S(w∗) = w − Φ(z,Dw, Dz).

Thus we obtain

S−1(P ) = α∗(w∗, z∗, Dw∗ , Dz∗)w
∗Dm

w∗ +

m∑
k=1

A∗
k(w

∗, z∗, Dw∗ , Dz∗)D
m−k
w∗ .

Here, α∗ = S−1(α), A∗
k = S−1(Ak) ∈ EX |S(

◦
p)

(k = 1, . . . ,m) are operators

of order ≤ 0, and α∗ is an elliptic operator at S(
◦
p) of order 0. Note that

S preserves T ∗
ZX = {(w, z; τ, ζ) ∈ T ∗X; τ = 0, Im z = 0,Re ζ = 0}; that

is, in a neighborhood of
◦
p we have S(T ∗

ZX) ⊂ T ∗
ZX. Further the ordinary

differential operator L at (1.6) associated with P is transformed into

L∗ =
m∑
k=0

σ0(A
∗
k)
( ∂

∂w∗

)m−k
=

m∑
k=0

(
σ0(Ak) ◦ S−1

)( ∂

∂w∗

)m−k
.

Therefore the conditions (1.3) are also satisfied for S−1(P ) because(
σ0(A

∗
1)/∂w∗σ0(A

∗
0)
)
(S(

◦
p)) = σ0(A1)(

◦
p)/σ0(α

∗)(S(
◦
p))

= σ0(A1)(
◦
p)/σ0(α)(

◦
p) =
(
σ0(A1)/∂wσ0(A0)

)
(
◦
p).

We strengthen this reduction as follows:

Lemma 2.5. Set K = {σ0(A0) = 0} ∩ T ∗
ZX = {(w, x; iη) ∈ T ∗

ZX;w =

ϕ(x, iη)}. Let H be any R-conic and real analytic hypersurface in T ∗
ZX

passing through K. Then there exist a holomorphic contact transformation

S and a quantization S of S defined in a neighborhood
◦
p such that{

S(K) = {w∗ = 0} ∩ T ∗
ZX ⊂ S(H) = {Imw∗ = 0} ∩ T ∗

ZX,

S(T ∗
ZX) ⊂ T ∗

ZX
(2.5)

and that

S−1(Dw) ∈ EX ·Dw∗ ,(2.6)

S−1(P ) = α∗w∗Dm
w∗ +

m∑
k=1

A∗
kD

m−k
w∗ .(2.7)
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Here, α∗, A∗
k ∈ EX |S(

◦
p)

(k = 1, . . . ,m) are operators of order ≤ 0, and α∗

is an elliptic operator at S(
◦
p) of order 0. Further S−1(P ) also satisfies the

conditions (1.3) at S(
◦
p).

Remark 2.6. As a direct consequence of (2.6) we have the following

equivalence for a microdifferential operator U ∈ EX |◦p of order ≤ 0:

PU = 0 (mod EX ·Dw) ⇐⇒ S−1(P )U∗ = 0 (mod EX ·Dw∗)

with U∗ = S−1(U). In particular, we get

σ0(U)(w, x, 0, iη) = σ0(U
∗)(w∗, x∗, 0, iη∗)

under the correspondence S : (w, x; 0, iη) 
→ (w∗, x∗, 0, iη∗) and the ordinary

differential equations:

L(σ0(U)|τ=0) = 0, L∗(σ0(U
∗)|τ∗=0) = 0.

Proof. By the arguments above we may suppose that A0 = α ·w with

an elliptic operator α(w, z,Dw, Dz) ∈ EX |◦p of order 0. Hence K = {w =

0} ∩ T ∗
ZX and H is written locally as

H = {w = T (t, x, η); t ∈ R}

in T ∗
ZX. Here T (t, x, η) is some C-valued real analytic function defined at

(0,
◦
x,

◦
η) of homogeneous degree 0 with respect to η such that

T (0, x, η) ≡ 0 and ∂tT (0,
◦
x,

◦
η) �= 0.

Find a holomorphic function F (w, z, ζ) of homogeneous degree 0 with re-

spect to ζ satisfying T (F (w, x, iη), x, η) ≡ w by the implicit function theo-

rem. Then we apply Proposition 2.4 to W ∗ = F (w, z, ζ). Hence we get a

holomorphic contact transformation S satisfying (2.5) and

w∗ = F (w, z, ζ) = β(w, z, ζ)w, τ∗ = γ(w, z, τ, ζ)τ
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with some non-vanishing holomorphic functions β, γ of homogeneous degree

0 with respect to (τ, ζ). Choose a quantization S : S−1EX ∼→ EX of S such

that {
S(w∗) = w · β(w, z,Dz) + δ(w, z,Dw, Dz),

S(Dw∗) = γ(w, z,Dw, Dz)Dw,
(2.8)

where δ ∈ EX |◦p is an operator of order ≤ −1. Then, we have

S−1(P ) = α∗λ∗(G∗Dw∗)m +

m∑
k=1

A∗
k(G

∗Dw∗)m−k,

where α∗ = S−1(α), λ∗ = S−1(w), G∗ = S−1(γ−1), A∗
k = S−1(Ak) (k =

1, . . . ,m) are operators of order ≤ 0. Write

(G∗Dw∗)j = (G∗)jDj
w∗ +

j−1∑
�=0

Gj�D
�
w∗

with some Gj� ∈ EX |S(
◦
p)

of order ≤ 0. Therefore we have

S−1(P ) =

m∑
k=0

A∗′
k D

m−k
w∗

with

A∗′
0 = α∗λ∗(G∗)m,

A∗′
k = A∗

k(G
∗)m−k +

k−1∑
j=1

A∗
jGm−j,m−k + α∗λ∗Gm,m−k

for k = 1, . . . ,m. Since σ0(A
∗′
0 ) = w∗σ0(α

∗)σ0(S−1(β))−1σ0(G
∗)m, we can

write A∗′
0 as follows:

A∗′
0 = α∗′(w∗, z∗, Dw∗ , Dz∗)

(
w∗ + Ψ(z∗, Dw∗ , Dz∗)

)
,

where α∗′ ,Ψ ∈ EX |S(
◦
p)

, ord(α∗′) = 0, ord(Ψ) ≤ −1 and α∗′ is an elliptic

operator. Find an elliptic operator κ(z∗, Dw∗ , Dz∗) ∈ EX |S(
◦
p)

of order 0

satisfying

κ−1
(
w∗ + Ψ(z∗, Dw∗ , Dz∗)

)
κ = w∗,
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and define a modification S ′ of S:

S ′(Q) := S(κQκ−1).(2.9)

Then, S ′ is also a quantization of S and S ′−1(P ) gives the normalized

form (2.7) of P . Further, since σ0(A
∗′
1 ) = σ0(A

∗
1)σ0(G

∗)m−1 +

w∗σ(α∗)σ0(S−1(β))−1σ0(Gm,m−1), we have(
σ0(A

∗′
1 )/∂w∗σ0(A

∗′
0 )
)
(S(

◦
p))

=
(
σ0(A

∗
1)/(σ0(α

∗)σ0(S−1(β))−1σ0(G
∗))
)
(S(

◦
p))

=
(
σ0(A1)σ0(β)σ0(γ)/σ0(α)

)
(
◦
p) =
(
σ0(A1)/∂wσ0(A0)

)
(
◦
p).

We used at the last step that
(
σ0(β)σ0(γ)

)
(
◦
p) = 1, which is a conclu-

sion from the commutation relation [Dw∗ , w∗] = 1 for the equations (2.8).

Therefore S ′−1(P ) also satisfies the conditions (1.3). This completes the

proof. �

2.2. Fuchsian ordinary differential operators

For an ε > 0 we set D, Ω ⊂ C as follows:

D = {w ∈ C; |w| ≤ 1},(2.10)

Ω = {z ∈ C; 0 < |w| ≤ 1, | argw| ≤ π − ε}.(2.11)

Let L be an m-th order ordinary differential operator of the form

L =
m∑
k=0

ak(w)∂m−k
w ,

where a0(w) = w and each ak(w) is holomorphic in a neighborhood of D.

Then, we obtain estimations for solutions of

LU = f

for two cases: Holomorphic functions f(w) on D and also on Ω.

Definition 2.7. For a holomorphic function U(w) in a neighborhood

of D, we define two norms as follows:

‖U‖ = sup
D
|U(w)|, ‖U‖′ = sup

w∈D,0≤j≤m
|U (j)(w)|(2.12)
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and define another two norms with weight µ ∈ R by

‖U‖µ = sup
w∈Ω

|w|µ|U(w)|,(2.13)

‖U‖′µ = sup
w∈Ω,0≤j≤m

|w|µ−m+1+j |U (j)(w)|(2.14)

for a holomorphic function U(w) defined in a neighborhood of Ω .

Lemma 2.8. We suppose that a1(0) �= 0,−1,−2, . . . . Set

M = 1 + sup
w∈D

m∑
k=1

|ak(w)| < +∞,(2.15)

δ = min{|p + a1(0)|; p = 0, 1, 2, . . . } > 0.(2.16)

Then we have a positive constant C depending only on M and δ, which

satisfies the following estimations:

(1) Regular case: For a f(w) ∈ O(D), any solution U(w) ∈ O(D) of

LU = f satisfies

‖U‖′ ≤ C{‖f‖+ |U(0)|+ · · ·+ |U (m−2)(0)|}.(2.17)

(2) Non-regular case: For a f(w) ∈ O(Ω), any solution U(w) ∈ O(Ω)

of LU = f satisfies

‖U‖′µ ≤ C{‖f‖µ + |U(1)|+ · · ·+ |U (m−1)(1)|}(2.18)

with ∀µ ≥M + m + 1.

Remark 2.9. It is well known by the theory of Fuchsian differential

equations that under the assumption a1(0) �= 0,−1,−2, . . . , there exists a

unique solution for any given (U(0), . . . , U (m−2)(0)) or (U(1), ...,

U (m−1)(1)) for both cases.

Proof. Put an m×m-matrix

A(w) =


0 w 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 w

−am(w) · · · · · · · · · −a1(w)

 ,
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and two m-dimensional vectors

X(w) =


U(w)

U ′(w)
...

U (m−1)(w)

 , B(w) =


0
...

0

f(w)

 .

Then, LU = f reduces to

dX(w)

dw
=

1

w
A(w)X(w) +

1

w
B(w).

Hence,

X(w) = X(w0) +

∫ w

w0

1

s
A(s)X(s)ds +

∫ w

w0

1

s
B(s)ds.(2.19)

Firstly we consider the non-regular case. We introduce the following norms

for m×m matrix X = (Xjk)
m
j,k=1 and m-vector B = (Bj)

m
j=1:

|X| ≡ max
j=1,... ,m

( m∑
k=1

|Xjk|
)
, |B| ≡ max

j=1,... ,m
|Bj |.

Therefore we have |A(w)| ≤M on D. We put w = eiθ and w0 = 1 in (2.19)

and we get the following integral inequality for θ ∈ [0, π − ε]:

|X(eiθ)| ≤ |X(1)|+
∫ θ

0
M |X(eiϕ)|dϕ +

∫ θ

0
|f(eiϕ)|dϕ(2.20)

≤ |X(1)|+ π‖f‖µ +

∫ θ

0
M |X(eiϕ)|dϕ.

Further putting w = reiθ and w0 = eiθ we get the following for |θ| ≤ π − ε

and r ∈ (0, 1]:

|X(reiθ)| ≤ |X(eiθ)|+
∫ 1

r

M

s
|X(seiθ)|ds +

∫ 1

r

|f(seiθ)|
s

ds(2.21)

≤ |X(eiθ)|+ r−µ − 1

µ
‖f‖µ +

∫ 1

r

M

s
|X(seiθ)|ds.
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Now we apply Gronwall’s lemma to (2.21) for µ ≥M + m + 1:

|X(reiθ)| ≤ |X(eiθ)|+ r−µ − 1

µ
‖f‖µ

+

∫ 1

r

{
|X(eiθ)|+ t−µ − 1

µ
‖f‖µ
}M

t
exp

(∫ t

r

M

s
ds

)
dt

≤ r−M |X(eiθ)|+ r−µ

µ−M
‖f‖µ ≤ r−M |X(eiθ)|+ r−µ‖f‖µ.

In the same way, we obtain from (2.20) that

|X(eiθ)| ≤ |X(1)|+ π‖f‖µ +

∫ θ

0
{|X(1)|+ π‖f‖µ}MeM(θ−ϕ)dϕ

≤ eMπ{|X(1)|+ π‖f‖µ}.

The last inequality holds for |θ| ≤ π − ε. Therefore we have

|X(reiθ)| ≤ r−MeMπ|X(1)|+ (r−MπeMπ + r−µ)‖f‖µ
≤ r−µ(1 + πeMπ)(‖f‖µ + |X(1)|).

Thus we obtain the inequalities:

|U (m)(w)| = |w|−1 ·
∣∣− a1(w)U (m−1)(w)− · · · − am(w)U(w) + f(w)

∣∣
≤ |w|−µ−1M(1 + πeMπ)

(
‖f‖µ + |X(1)|

)
,

and

|U (j)(w)| ≤ |X(w)| ≤ |w|−µ
(
1 + πeMπ

)(
‖f‖µ + |X(1)|

)
(2.22)

for j = 0, 1, ...,m−1. Hence for j = m,m−1 we have the uniform estimates

of |w|µ+j−m+1U (j)(w). Further by using (2.22) for j = m− 1,m− 2 and an

integral expression

U (m−2)(reiθ) = U (m−2)(eiθ)−
∫ 1

r
U (m−1)(seiθ)eiθds,

we get a similar uniform estimate for j = m− 2. Hence by repetitive argu-

ments we have the estimate (2.18).
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To deal with the regular case we expand A(w), B(w), X(w) into power

series:

A(w) =
∞∑
p=0

Apw
p, B(w) =

∞∑
p=0

Bpw
p, X(w) =

∞∑
p=0

Xpw
p.

Hence we have the following equations for the coefficients:{
a1(0)U (m−1)(0) + · · ·+ am(0)U (0)(0) = f(0),

(p−A0)Xp =
∑p

q=1 AqXp−q + Bp (p ≥ 1).
(2.23)

By the Cauchy estimates we obtain |Ap| ≤ M, |Bp| ≤ ‖f‖ (p ≥ 0). Further

(p−A0)
−1 is given by

(p−A0)
−1 =

1

p(p + a1(0))


p + a1(0) 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 p + a1(0) 0

−am(0) · · · · · · −a2(0) p

 .

for p ≥ 1. Therefore we have

|Xp| ≤ |(p−A0)
−1|
( p∑
q=1

|Aq||Xp−q|+ |Bp|
)

≤ max

{
1

p
,
p + |a2(0)|+ · · ·+ |am(0)|

p|p + a1(0)|

}( p∑
q=1

M |Xp−q|+ ‖f‖
)

≤ K

(
M

p−1∑
q=0

|Xq|+ ‖f‖
)

with K = max{1,M/δ}. Thus, adding
∑p−1

q=0 |Xq| to both sides we get

p∑
q=0

|Xq| ≤ (KM + 1)

p−1∑
q=0

|Xq|+ K‖f‖

≤ (KM + 1)p − 1

M
‖f‖+ (KM + 1)p|X0|.
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Since we obtain from the first equation of (2.23) that |U (m−1)(0)| ≤
(1/δ)(M |U (m−2)(0)|+ · · ·+ M |U (0)(0)|+ ‖f‖), we have

|X0| ≤ K(|U (m−2)(0)|+ · · ·+ |U (0)(0)|+ ‖f‖).

Consequently

|Xp| ≤ (KM + 1)p
{( 1

M
+ K
)
‖f‖+ K

(
|U(0)|+ · · ·+ |U (m−2)(0)|

)}
for ∀p ≥ 0, and so we have

sup

{
|X(z)|; |z| ≤ 1

2(KM + 1)

}
≤ 2

(
K +

1

M

)(
‖f‖+

m−2∑
j=0

|U (j)(0)|
)
.

Putting r0 = 1/{2(MK + 1)} < 1, we get an integral inequality similar to

(2.21) for r ≥ r0 :

|X(reiθ)| ≤ |X(r0e
iθ)|+ ‖f‖ log

1

r0
+

∫ r

r0

M

s
|X(seiθ)|ds.

Hence by Gronwall’s lemma we obtain for r ∈ [r0, 1] that

|X(reiθ)| ≤
(

r

r0

)M{
2(K +

1

M
) + log

1

r0

}(
‖f‖+

m−2∑
j=0

|U (j)(0)|
)

Therefore,

sup
D
|X(w)| ≤

(
1

r0

)M{
2(K +

1

M
) + log

1

r0

}(
‖f‖+

m−2∑
j=0

|U (j)(0)|
)

Note that

sup
w∈D

|U (m)(w)| = sup
|w|=1

∣∣∣∣−
∑m

j=1 aj(w)U (m−j)(w) + f(w)

w

∣∣∣∣
≤M sup

w∈D
|X(w)|+ ‖f‖.

Therefore since M ≥ 1,

‖U‖′ ≤M sup
w∈D

|X(w)|+ ‖f‖ ≤ C

(
‖f‖+

m−2∑
j=0

|U (j)(0)|
)
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with

C = M

{
2(KM + 1)

}M[
2
(
K +

1

M

)
+ log
{
2(KM + 1)

}]
+ 1

and

K = max{1,M/δ}.
This completes the proof of Lemma 2.8. �

3. Quantized Contact Transformations for Sheaf COZ

Before introducing quantized contact transformations for sheaf COZ , we

investigate the structure of holomorphic contact transformations preserving

T ∗
ZX.

Definition 3.1. Let S : T ∗X
∼→ T ∗X be a holomorphic contact trans-

formation defined in a neighborhood of
◦
p ∈ T ∗X \X. Then the anti-graph

of S is defined by the following G:

G = {(w, z, w∗, z∗; τ, ζ,−τ∗,−ζ∗) ∈ T ∗(X ×X)},
π : T ∗(X ×X) ⊃ G→ π(G) ⊂ X ×X.

Here (w∗, z∗; τ∗, ζ∗) = S((w, z; τ, ζ)) and (w, z; τ, ζ) moves over a neighbor-

hood of
◦
p, and π denotes the natural projection. It is clear that G becomes

an R-conic and complex Lagrangian submanifold of T ∗(X ×X).

S is said to be of generic type if and only if the projection π(G) becomes

a complex hypersurface of X ×X; more precisely, there exists either one of

coordinates z∗1 , . . . , z
∗
n, for example z∗n, such that we have

π(G) = {g ≡ z∗n − h(w, z, w∗, z∗′) = 0}(3.1)

with some holomorphic function h. Here z∗′ = (z∗1 , . . . , z
∗
n−1).

Remark 3.2. We can get such an expression (3.1) if the complex sub-

manifold G with dimension 2n+2 has (w, z, w∗, z∗′, ζ∗n) as a local coordinate

system in a neighborhood of (
◦
w,

◦
z,

◦
w∗,

◦
z∗;

◦
τ ,

◦
ζ,−◦

τ∗,−
◦
ζ∗). It is the most im-

portant in this case that G coincides with the conormal (line) bundle of

π(G):

G = T ∗
π(G)(X ×X).
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That is, we have the equations:
z∗n = h(w, z, w∗, z∗′)

τ∗ = −ζ∗n∂w∗h, ζ∗k = −ζ∗n∂z∗kh (k = 1, . . . , n− 1),

τ = ζ∗n∂wh, ζj = ζ∗n∂zjh (j = 1, . . . , n).

(3.2)

Further, a holomorphic function h(w, z, w∗, z∗′) in (3.1) induces a local con-

tact transformation if and only if

det

(
∂w∂w∗h, ∂w∂z∗′h, ∂wh

∂z∂w∗h, ∂z∂z∗′h, ∂zh

)
�= 0.(3.3)

A contact transformation preserving T ∗
ZX also preserves {τ = 0}. As

for these transformations we have the following lemma:

Lemma 3.3. Let S : T ∗X � (w, z; τ, ζ) 
→ (w∗, z∗; τ∗, ζ∗) ∈ T ∗X

be a holomorphic contact transformation defined in a neighborhood
◦
p =

(
◦
w,

◦
z; 0,

◦
ζ) with

◦
ζ �= 0. We suppose that S preserves {τ = 0}; that is,

S({τ = 0}) ⊂ {τ∗ = 0}. Let S be given by the holomorphic functions{
w∗ = W (w, z, τ, ζ), τ∗ = T (w, z, τ, ζ),

z∗j = Zj(w, z, τ, ζ), ζj = Ξj(w, z, τ, ζ) (j = 1, ..., n).

Then, Zj(w, z, 0, ζ),Ξj(w, z, 0, ζ) do not depend on w for j = 1, ..., n. Hence

S induces a holomorphic contact transformation

S′ : T ∗Y � (z; ζ) 
→ (Z(∗, z, 0, ζ); Ξ(∗, z, 0, ζ)) ∈ T ∗Y.(3.4)

Proof. By the assumption we have
n∑
j=1

dΞj(w, z, 0, ζ) ∧ dZj(w, z, 0, ζ) =

n∑
j=1

dζj ∧ dzj .

Therefore we obtain a system of equations for k = 1, ..., n:
n∑
j=1

(∂Zj
∂zk

∂Ξj
∂w

− ∂Ξj
∂zk

∂Zj
∂w

)∣∣∣
τ=0

= 0,

n∑
j=1

(∂Zj
∂ζk

∂Ξj
∂w

− ∂Ξj
∂ζk

∂Zj
∂w

)∣∣∣
τ=0

= 0.
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Since the (2n)× (2n)-matrix(
∂Zj/∂zk, ∂Ξj′/∂zk
∂Zj/∂ζk′ , ∂Ξj′/∂ζk′

)
kk′,jj′

is non-singular, we have that

∂Ξk
∂w

(w, z, 0, ζ) = 0,
∂Zk
∂w

(w, z, 0, ζ) = 0 (k = 1, ..., n). �

Example 3.4. Let α ∈ C be a non-zero constant. Set 2 generating

functions g0, g1 by

g0 ≡ z∗n − zn +

n−1∑
j=1

zjz
∗
j +

1

2α
(w∗ − w)2 (n ≥ 1),(3.5)

g1 ≡ z∗n − zn +

n−1∑
j=2

zjz
∗
j + (z∗1 − z1)(w

∗ − w) (n ≥ 2).(3.6)

Then the contact transformations S0, S1 corresponding to {g0 = 0}, {g1 =

0} respectively are given as follows:

S0 :


τ∗ = τ, w∗ = w + α(τ/ζn),

ζ∗j = ζnzj , z∗j = −ζj/ζn (j = 1, . . . , n− 1),

ζ∗n = ζn, z∗n = zn + (
∑n−1

k=1 ζkzk)/ζn − α
2 (τ/ζn)

2.

(3.7)

S1 :


τ∗ = τ, w∗ = w + (ζ1/ζn),

ζ∗1 = ζ1, z∗1 = z1 + (τ/ζn),

ζ∗j = ζnzj , z∗j = −ζj/ζn (j = 2, . . . , n− 1),

ζ∗n = ζn, z∗n = zn + (
∑n−1

k=2 ζkzk)/ζn − (τζ1/ζ
2
n).

(3.8)

It is clear that S0, S1 are holomorphic contact transformations of generic

type preserving T ∗
ZX. Further if α ∈ R \ {0}, S0, S1 also preserve T ∗

MX;

that is, real contact transformations.

As we see in the next theorem, S0 is a typical example of the generic

and normal case, and S1 is a typical example of the generic and non-normal

case.
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Theorem 3.5. Let S : T ∗X
∼→ T ∗X be a holomorphic contact trans-

formation defined in a neighborhood of
◦
p = (

◦
w,

◦
x; 0, i

◦
η) ∈ T ∗

ZX with
◦
η �= 0

preserving T ∗
ZX. We assume that S is of generic type and that the anti-

graph is given by the conormal bundle of {z∗n = h(w, z, w∗, z∗′)} like (3.1).

Set S(
◦
p) =

◦
p∗ = (

◦
w∗,

◦
x∗; 0, i

◦
η∗). We suppose

◦
η∗n �= 0 and the following

condition (the normal case condition):

∂2
w∗h(

◦
w,

◦
x,

◦
w∗,

◦
x∗′) �= 0.

Then h has a form:

h = h0(z, z
∗′) + Ψ(w, z, w∗, z∗′)2,(3.9)

where holomorphic functions Ψ(w, z, w∗, z∗′), h0(z, z
∗′) satisfy the following

conditions:

(1) Ψ(
◦
w,

◦
x,

◦
w∗,

◦
x∗′) = 0, ∂wΨ �= 0, ∂w∗Ψ �= 0.

(2) h0 is real-valued for real (z, z∗′), and {x∗n − h0(x, x
∗′) = 0} gives a

real analytic contact transformation S′ : (x; η) 
→ (x∗; η∗), which is

the induced transformation in the sense of Lemma 3.3.

Conversely, if Ψ, h0 satisfy these conditions, then the hypersurface {z∗n =

h0(z, z
∗′) + Ψ(w, z, w∗, z∗′)2} generates a holomorphic contact transforma-

tion preserving T ∗
ZX.

Proof. Since S preserves T ∗
ZX, we have a nowhere-vanishing holo-

morphic function φ(w, z, w∗, z∗′) satisfying

∂wh = φ∂w∗h.(3.10)

Here we note that ∂wh = ∂w∗h = 0 at (
◦
w,

◦
x,

◦
w∗,

◦
x∗′). By the assumption

∂2
w∗h(

◦
w,

◦
x,

◦
w∗,

◦
x∗′) �= 0 we can find a holomorphic function w∗ = ψ(w, z, z∗′)

satisfying

∂w∗h|w∗=ψ = 0, ψ(
◦
w,

◦
z,

◦
z∗′) =

◦
w∗.

Thus, by expanding h into a power series of w∗−ψ(w, z, z∗′), we know that

any branch

Ψ(w, z, w∗, z∗′) ≡ ±
√
h− (h|w∗=ψ)
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is a holomorphic function satisfying ∂w∗Ψ �= 0 at (
◦
w,

◦
z,

◦
w∗,

◦
z∗′). We note

here that the critical value

h0 ≡ h(w, z,Ψ(w, z, z∗′), z∗′)

does not depend on w. Because

∂wh0 = (∂wh)|w∗=Ψ + (∂w∗h)|w∗=Ψ · ∂wΨ

= (φ|w∗=Ψ + ∂wΨ)(∂w∗h)|w∗=Ψ = 0.

Therefore we can write h in the form (3.9). Further, on {Ψ = 0} we know

that the determinant of the matrix (3.3) is equal to

ΨwΨw∗ det
(
∂z∂z∗′h0, ∂zh0

)
.

Hence we directly obtain the conditions (1), (2) and the converse state-

ment. �

Lemma 3.6. Let S : T ∗X → T ∗X be any holomorphic contact trans-

formation defined in a neighborhood of
◦
p = (

◦
w,

◦
x; 0, i

◦
η) ∈ T ∗

ZX with
◦
η �= 0

preserving T ∗
ZX. Suppose that the induced transformation S′ : T ∗Y → T ∗Y

for S is equal to the identity map. Then for the contact transformation S0 in

(3.7) with a sufficiently large positive number α, the composition S0 ◦ S be-

comes a holomorphic contact transformation preserving T ∗
ZX of the generic

and normal case type in the sense of Theorem 3.5.

Proof. We may assume that
◦
ηn �= 0. We write

S : (w, z; τ, ζ) 
→ (w∗, z∗; τ∗, ζ∗),

S0 : (w∗, z∗; τ∗, ζ∗) 
→ (w∗∗, z∗∗; τ∗∗, ζ∗∗).

In order to get an expression {z∗∗n −h(w, z, w∗∗, z∗∗′) = 0} for the projection

of the anti-graph of S0 ◦ S, It is sufficient to show that

I ≡ det

(
∂τw

∗∗, ∂τz
∗∗′, ∂τζ

∗∗
n

∂ζw
∗∗, ∂ζz

∗∗′, ∂ζζ
∗∗
n

)
�= 0(3.11)

at
◦
p. Here z∗∗′ = (z∗∗1 , ..., z∗∗n−1) is a row vector, and ∂ζ denotes the column

vector of the gradient here. For any function F (w∗, z∗, τ∗, ζ∗) we have that

∂ζj (F ◦ S) = ∂ζjw
∗ · ∂w∗F + ∂ζ∗j F (j = 1, ..., n)



586 Kiyoomi Kataoka and Yoshiaki Satoh

on {τ = 0}. Therefore at
◦
p we have

I = det

(
∂τw

∗ + (α∂ττ
∗)/ζ∗n, ∂τζ

∗∂ζ∗(−ζ∗′/ζ∗n), ∂τζ
∗
n

∂ζw
∗, ∂ζ∗(−ζ∗′/ζ∗n), ∂ζ∗ζ

∗
n

)
= det

(
∂τw

∗ + (α∂ττ
∗)/ζ∗n − ∂ζnw

∗∂τζ∗n, −(∂τζ
∗′)/ζ∗n

∂ζ′w
∗, −En−1/ζ

∗
n

)
= (−ζ∗n)1−n

(
∂τw

∗ + (α∂ττ
∗)/ζ∗n −

n∑
j=1

∂ζjw
∗∂τζ

∗
j

)
.

Here En−1 is the identity matrix of size n − 1. Since ∂ττ
∗(

◦
p) �= 0, we have

I �= 0 for any sufficiently large α > 0. Note that ∂2
w∗∗h(

◦
w,

◦
x,

◦
w∗∗,

◦
x∗∗′) �=

0 is equivalent to ∂̃w∗∗τ∗∗ �= 0, where ∂̃ means the differentiation in the

coordinates (w, z, w∗∗, z∗∗′, ζ∗∗n ). On the other hand we have

∂ττ
∗∗ = ∂τw

∗∗∂̃w∗∗τ∗∗ +

n−1∑
j=1

∂τz
∗∗
j ∂̃z∗∗j τ∗∗ + ∂τζ

∗∗
n ∂̃ζ∗∗n τ∗∗,

∂ζτ
∗∗ = ∂ζw

∗∗∂̃w∗∗τ∗∗ +
n−1∑
j=1

∂ζz
∗∗
j ∂̃z∗∗j τ∗∗ + ∂ζζ

∗∗
n ∂̃ζ∗∗n τ∗∗.

Hence we obtain

∂̃w∗∗τ∗∗ =
1

I
det

(
∂ττ

∗∗, ∂τz
∗∗′, ∂τζ

∗∗
n

∂ζτ
∗∗, ∂ζz

∗∗′, ∂ζζ
∗∗
n

)
.

Since ∂ζτ
∗∗ = 0 on {τ = 0}, we get

∂̃w∗∗τ∗∗ =
∂ττ

∗∗

I
det
(
∂ζ∗(−ζ∗′/ζ∗n), ∂ζ∗ζ

∗
n

)
=

∂ττ
∗∗

I(−ζ∗n)n−1
�= 0

at
◦
p. This completes the proof. �

Theorem 3.7. Let S be a holomorphic contact transformation defined

in a neighborhood of
◦
p ∈ T ∗

ZX\Z preserving T ∗
ZX, and S be any quantization

of S. Then, there exists a sheaf isomorphism

TS : S−1COZ
∼−→ COZ
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satisfying

TS(Qf) = S(Q)TS(f)

at any point q near
◦
p for any germs f ∈ COZ |S(q), Q ∈ EX |S(q). Further

such a TS is determined up to a constant by S.

Remark 3.8. This result is proven in a general situation in [8, 9]. We

introduce here a more elementary proof based on Theorem 4.2.17 of [10] for

clarifying a definition given later.

Proof. We have only to prove this theorem for some quantization S
of S because other quantizations are written as the composition of S and

some inner automorphisms similar to (2.9). Further by the preceding lemma

we can reduce S to the following 3 cases:

(1) S is of the generic and normal case type.

(2) S = S−1
0 , where S0 is the one at (3.7).

(3) S is induced by a (tangential) real analytic contact transformation

S′ : T ∗
NY → T ∗

NY ; that is, w∗ ≡ w, τ∗ ≡ τ.

The third case is a trivial case. Further the second case belongs to the first

case because S−1
0 is generated by

g1 = z∗n − zn −
n−1∑
j=1

zjz
∗
j −

1

2α
(w∗ − w)2.(3.12)

Hence we have only to deal with the first case. Using the form (3.9) for h,

we consider the following integral transformation

(T f)(w, x) =

∫
δ(x∗n − h(w, x,w∗, x∗′))f(w∗, x∗)dw∗dx∗(3.13)

for a section f(w∗, x∗) of COZ . This integral has no meaning because the

values of h are not limited to real numbers when w, x,w∗, x∗1, . . . , x
∗
n−1 move.
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However we can formally modify this integral as follows:

T f =

∫
f(w∗, x∗′, h(w, x,w∗, x∗′))dw∗dx∗′(3.14)

=

∫
f(w∗, x∗′, h0(x, x

∗′) + Ψ(w, x,w∗, x∗′)2)dw∗dx∗′

=

∫
f(W ∗(w, x, t, x∗′), x∗′, h0(x, x

∗′) + t2)∂tW
∗dtdx∗′,

where W ∗(w, z, t, z∗′) is a holomorphic function satisfying

t = Ψ(w, z, w∗, z∗′)|w∗=W ∗ , W ∗(
◦
w,

◦
x, 0,

◦
x∗′) =

◦
w∗.

Then the last integral of (3.14) has a meaning as an integral for microfunc-

tions of (Rew, Imw, x, t, x∗′) with respect to (t, x∗′). Further it is clear that

this integral becomes a section of COZ as a microfunction of (Rew, Imw, x).

Then, by the well-known method in [13], we can show the following: There

exists a quantization S of S such that this integral transformation T induces

a desired sheaf isomorphism TS : S−1COZ
∼→ COZ for S. �

We give here the precise meaning concerning boundary values of sections

of COZ . Let K be a real analytic submanifold of T ∗
ZX with codimension 2,

and H be a real analytic hypersurface in T ∗
ZX passing through K given as

follows:

K = {(w, x; iη) ∈ T ∗
ZX;w = ψ(x, η)}

⊂ H = {(u + iv, x; iη) ∈ T ∗
ZX; Φ(u, v, x, η) = 0}.

Here ψ(x, η) is a complex valued analytic function of (x, η) with homoge-

neous degree 0 with respect to η, and Φ(u, v, x, η) is a real-valued analytic

function of (u, v, x, η) of homogeneous degree 0 with respect to η satisfying

the following:

∇Φ �= 0 on Φ = 0, Φ ◦ ψ = 0.

By Lemma 2.5, we can choose a holomorphic contact transformation S

defined in a neighborhood
◦
p ∈ K such that{

S(K) = {w∗ = 0} ∩ T ∗
ZX ⊂ S(H) = {Imw∗ = 0} ∩ T ∗

ZX,

S(T ∗
ZX) ⊂ T ∗

ZX.
(3.15)
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Set σ = the signature of S∗(d Imw∗)/dΦ, where S∗(ω) denotes the pull-back

of a differential form ω by S. We denote by π : T ∗X → X the canonical

projection, and by BOZ = COZ |Z the sheaf on Z of hyperfunctions with a

holomorphic parameter w.

Definition 3.9. Let
◦
p = (

◦
w,

◦
x; i

◦
η) be a point of K, and f(w, x) be a

section of COZ on {Φ > 0} ∩U with an R-conic neighborhood U ⊂ T ∗
ZX of

◦
p. Then, f(w, x) is said to have a boundary value at

◦
p from Φ > 0 if there

exist a small neighborhood U ′ of
◦
p and a section F (w∗, x∗) ∈ Γ ({σ Imw∗ >

0} ∩ π(S(U ′));BOZ) satisfying

(T −1
S f)(w∗, x∗) = [F (w∗, x∗)]

as sections of Γ ({σ Imw∗ > 0} ∩ S(U ′); COZ). Here TS is a quantization of

S introduced in Theorem 3.7.

Though the boundary value [F (u∗ + iσ0, x∗)] itself depends on a choice

of TS , this definition neither depends on a choice of S nor TS (shown as

below).

Remark 3.10. A germ of COZ is represented by a germ of BOZ . How-

ever it is well-known that a section of COZ cannot be represented globally

by a section of BOZ in general. Indeed, the cohomological boundary value

(T −1
S f)(u∗+ iσ0, x∗) defines a second hyperfunction on Σ = {(w∗, x∗; iη∗) ∈

T ∗
ZX; Imw∗ = 0}. On the other hand the sheaf B2

Σ of second hyperfunctions

is essentially larger than the sheaf CM |Σ. Here M = {(w, z) ∈ X; Imw =

0, Im z = 0}. Hence the definition above is equivalent to the following:

(T −1
S f)(u∗ + iσ0, x∗) ∈ CM |S(

◦
p)
.

Further this boundary value is equal to [F (u∗ + iσ0, x∗)] as a microfunction

of (u∗, x∗) at S(
◦
p). The uniqueness of this boundary value [F (u∗+iσ0, x∗)] ∈

CM |S(
◦
p)

for a section (T −1
S f)(w∗, x∗) is justified by Schapira’s N -regularity

property of ∂w-operator. We refer to [3, 4] as for the second microlocal

analysis, and to [14] as for the N -regularity of ∂w-operator. Further as for

a self-contained proof of the equivalent fact, see Proposition 4.1.11 of [10].

A holomorphic contact transformation S generated by (3.9) preserves

H = {Imw = 0} if and only if the holomorphic function Ψ(w, z, w∗, z∗′) is



590 Kiyoomi Kataoka and Yoshiaki Satoh

real-valued on {Imw = Imw∗ = 0, Im z = 0, Im z∗′ = 0}. Hence the explicit

formula in (3.14) for T together with the partial flabbiness of BOZ leads to

the following lemma, which is also due to Theorem 4.2.17 of [10].

Lemma 3.11. Let H = {(w, x; iη) ∈ T ∗
ZX; Imw = 0}, and S : T ∗X

∼→
T ∗X be a holomorphic contact transformation defined in a neighborhood of
◦
p ∈ H. We assume that S preserves T ∗

ZX,H respectively. Let F±(w∗, x∗)
be sections of BOZ on {± Imw∗ > 0} ∩ π(U) for a neighborhood U in T ∗

ZX

of
◦
p, respectively. Then for any quantization TS : S−1COZ

∼→ COZ of

S, each (TS [F±])(w, x) has a boundary value at S−1(
◦
p) from ± Imw > 0.

That is, there exist a neighborhood U ′ of S−1(
◦
p) and sections G±(w, x) ∈

Γ ({± Imw > 0} ∩ π(U ′);BOZ) such that

(TS [F±])(w, x) = [G±(w, x)] on {± Imw > 0} ∩ U ′.

By Lemma 2.5 and this lemma, we can reduce our equation Pf = 0 to

the case

P = wDm
w +

m∑
k=1

Ak(w, z,Dw, Dz)D
m−k
w(3.16)

with some operators Ak ∈ EX |◦p (k = 1, . . . ,m) of order ≤ 0.

4. Construction of Solutions of Formal Symbol Type

4.1. An iteration scheme

As seen in Section 3 we can assume P has the form (3.16); that is,

A0(w, z,Dw, Dz) ≡ w. Write

Ak(w, z,Dw, Dz) =
0∑

j=−∞
Ajk(w, z,Dw, Dz),

where Ajk(w, z, τ, ζ) is the j-th order part of Ak with homogeneous degree

j in (τ, ζ) for each k. Hence the ordinary differential operator defined at

(1.6) is given by

L = w∂mw +

m∑
k=1

A0
k(w, z, ζ)∂

m−k
w .
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Here A0
k(w, z, ζ) ≡ A0,k(w, z, 0, ζ) satisfying

A0
1(0,

◦
x, i

◦
η) �∈ Z.

Definition 4.1. For a formal symbol U =
∑0

j=−∞ Uj(w, z, ζ) of order

≤ 0 at
◦
p, we define linear operators L,L by

LU =
0∑

j=−∞
(LUj)(w, z, ζ),(4.1)

LU =

0∑
j=−∞

( ∑
−|α|+q=j
0≤k≤m

1

α!
∂αζ A

0
k(w, z, ζ)∂

m−k
w ∂αz Uq(w, z, ζ)

)
.(4.2)

Here L operates on each holomorphic function Uj as an ordinary differential

operator with parameters (z, ζ). It is easy to see that the results of these

operations also become formal symbols of type V =
∑0

j=−∞ Vj(w, z, ζ).

Indeed, LU coincides with the operator composition (mod. EXDw):( m∑
k=0

A0
k(w, z,Dz)D

m−k
w

)
U(w, z,Dz) ≡ (LU)(w, z,Dz).

Further let R be a microdifferential operator of the form{
R(w, z,Dw, Dz) =

∑m
k=0 Rk(w, z,Dw, Dz)D

m−k
w ,

Rk(w, z, τ, ζ) =
∑−1

j=−∞Rjk(w, z, τ, ζ).
(4.3)

Here each Rk is a formal symbol of order ≤ −1 defined at
◦
p. Then we define

an operator R◦ by

R ◦ U =
−1∑

j=−∞

( ∑
−|α|−s+�+q=j

0≤k≤m

(∂sτ∂
α
ζ R�k)(w, z, 0, ζ)

s!α!
∂m−k+s
w ∂αz Uq(w, z, ζ)

)
.

Indeed R ◦ U becomes a formal symbol of type V =
∑−1

j=−∞ Vj(w, z, ζ) of

order ≤ −1 satisfying

R ◦ U ≡ R(w, z,Dw, Dz)U(w, z,Dz) (mod. EXDw).
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Then, our successive approximation process for formal symbols Uk =∑0
j=−∞ Ujk(w, z, ζ) (k = 0, 1, 2, . . . ) is formulated as follows:{

LU0 = 0,

LUk+1 = {(L− L)−R◦}Uk (k = 0, 1, 2, . . . ).
(4.4)

Indeed, if
∑∞

k=0 Uk converges as a formal symbol, the sum U(w, z, ζ)

satisfies the following equation (mod. EXDw):( m∑
k=0

A0
k(w, z,Dz)D

m−k
w + R(w, z,Dw, Dz)

)
U(w, z,Dz) ≡ 0.(4.5)

Further since we have

ord((L − L)U) ≤ ord(U)− 1, ord(R ◦ U) ≤ ord(U)− 1,(4.6)

we can choose Uk’s satisfying ord(Uk) ≤ −k (∀k ≥ 0). That is, the j-degree

component of
∑∞

k=0 Uk is determined only by U0, . . . , U|j|.
We set

RA
jk =


A−1,k(w, z, τ, ζ) +

(
A0,k+1(w, z, τ, ζ)−A0,k+1(w, z, 0, ζ)

)
/τ

(j = −1),

Ajk(w, z, τ, ζ) (j ≤ −2).

(4.7)

Then RA =
∑m

k=0

∑−1
j=−∞RA

jk(w, z,Dw, Dz)D
m−k
w is a microdifferential op-

erator at
◦
p satisfying the conditions in (4.3). Further if we set R = RA

in our successive approximation process (4.4), the corresponding equation

(4.5) is just equal to P (w, z,Dw, Dz)U(w, z,Dz) ≡ 0. Consequently our

program reduces to a construction of ‘convergent series’
∑∞

k=0 Uk of formal

symbols satisfying (4.4).

4.2. Formal norms

Boutet de Monvel and Krée introduced so-called a formal norm N(Q; t)

for a formal symbol Q of analytic pseudo-differential operators [6]. N(Q; t)

is a formal power series of a variable t with real non-negative coefficients
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depending Q. In particular the following properties are the most important

for Q1, Q2 ∈ EX of order ≤ 0:

N(Q1 + Q2; t) & N(Q1; t) + N(Q2; t),

N(Q1Q2; t) & N(Q1; t)N(Q2; t),

where F1(t) & F2(t) means that F2(t) is a majorant series for F1(t). To

show the convergence of our formal symbols, we introduce some variants

of formal norms for U =
∑0

j=−∞ Uj(w, z, ζ). We may assume that each

Ak(w, z,Dw, Dz) is defined in a neighborhood of

Dν = {(w, z; τ, ζ) ∈ T ∗X; |w| ≤ 1 + ν, |z − ◦
x| ≤ ν,

|τ |
|ζ| +
∣∣∣ ζ|ζ| − i

◦
η

|◦η|

∣∣∣ ≤ ν}

with some small ν > 0.

Definition 4.2 (Regular type). When each component Uj(w, z, ζ) of

U =
∑0

j=−∞ Uj is holomorphic in Dν , we define a formal power series

Nm′(U ; t) in t with parameters z, ζ for each m′ = 0, 1, 2, . . . by

Nm′(U ; t) ≡
∑
p,α,β,�

p!t2p+�+|α+β||ζ|p+|β|

(p + % + |α|)!(p + |β|)! max
0≤k≤m′

‖∂k+�w ∂αz ∂
β
ζ U−p‖.

Here ‖ · ‖ is the sup-norm in w ∈ D introduced at (2.12). Indeed, if U is

a section of Γ (D×{(◦x; i
◦
η)}; EX), Nm′(U ; t) has a convergent majorant series

independent of (z, ζ). Conversely, if the formal norm Nm′(U ; t) for a set of

homogeneous holomorphic functions Uj(w, z, ζ) ∈ O(Dν) has a convergent

majorant series independent of (z, ζ), then U =
∑0

j−∞ Uj(w, z,Dz) becomes

a section of Γ (D × {(◦x; i
◦
η)}; EX).

Definition 4.3 (Non-regular type). When each component

Uj(w, z, ζ) of U is holomorphic in a neighborhood of {w ∈ Ω} ∩Dν with

Ω = {w ∈ C; 0 < |w| ≤ 1, | argw| ≤ π − ε},
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we define a formal power series Nµ
m′(U ; t) in t with parameters z, ζ for each

m′ = 0, 1, 2, . . . and a positive constant µ by

Nµ
m′(U ; t) ≡

∑
p,α,β,�

p!t2p+�+|α+β|

(p + % + |α|)!(p + |β|)!(4.8)

× |ζ|p+|β| max
0≤k≤m′

‖∂k+�w ∂αz ∂
β
ζ U−p‖µ+k+�+|α+β|+p−κ(m′)

with κ(0) = 0, κ(m′) = m′−1 (∀ m′ ≥ 1). Here ‖·‖µ is the sup-norm in w ∈
Ω with some weight introduced at (2.13). Further, when each component

Uj(w, z, ζ) ≡ Uj(z, ζ) is not depending on w, we define

K(U ; t) ≡
∑
p,α,β

p!t2p+|α+β|

(p + |α|)!(p + |β|)! |ζ|
p+|β||∂αz ∂βζ U−p|.(4.9)

In the approximation process, we need some a priori estimates for

Nm(Uk; t) or Nµ
m(Uk; t). In the next subsections we get our main estimates

by these formal norms.

4.3. Estimates for L

Let us consider the following equation for formal symbols U =∑0
j=−∞ Uj(w, z, ζ), F =

∑0
j=−∞ Fj(w, z, ζ):

LU = F ⇐⇒ LUj = Fj (j = 0,−1,−2, . . . ).

We estimate Nm(U ; t) by N0(F ; t) and
∑m−2

k=0 K(∂kwU(0, z, ζ); t) for regu-

lar type formal symbols. Further, we estimate Nµ
m(U ; t) by Nµ

0 (F ; t) and∑m−1
k=0 K(∂kwU(1, z, ζ); t) for non-regular type formal symbols.

To derive such estimates we apply ∂�w∂
α
z ∂

β
ζ to both sides of LU−p = F−p.

Then we obtain

L(∂�w∂
α
z ∂

β
ζ U−p) = ∂�w∂

α
z ∂

β
ζ F−p

−
∑
�′,α′,β′

�′′,α′′,β′′

m∑
k=0

(
%

%′

)(
α

α′

)(
β

β′

)
∂�

′
w∂

α′
z ∂β

′

ζ A0
k · ∂�

′′+m−k
w ∂α

′′
z ∂β

′′

ζ U−p

(% = %′ + %′′, α = α′ + α′′, β = β′ + β′′, (%′, α′, β′) �= 0).
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Here we employ Lemma 2.8. For a sufficiently small ν > 0 we set

Mν = 1 + sup
(w,z;0,ζ)∈Dν

m∑
k=1

|A0
k(w, z, ζ)| < +∞

and

δν = inf{|p + A0
1(0, z, ζ)|; p = 0, 1, 2, . . . , (z; ζ) ∈ Vν} > 0

with

Vν = {(z; ζ) ∈ C
n × C

n; |z − ◦
x| ≤ ν,

∣∣ζ/|ζ| − i
◦
η/|◦η|
∣∣ ≤ ν}.

Then there exists a positive constant C0 depending only on Mν and δν ,

which satisfies the estimates (2.17), (2.18) for

L =
m∑
k=0

A0
k(w, z, ζ)∂

m−k
w .

In particular we have the following estimates:

|∂�w∂αz ∂βζ A0
k(w, z, ζ)| ≤ %!α!β!(2n/ν)�+|α|+|β||ζ|−|β|Mν

for |w| ≤ 1, (z, ζ) ∈ Vν/2. Hereafter we fix a (z, ζ) ∈ Vν/2 and set

C1 = max{Mν , 2n/ν}.

(1) Regular type case: Firstly for m′ = m we consider

max
0≤k≤m

‖∂k+�w ∂αz ∂
β
ζ U−p‖

≤ C0

(
‖∂�w∂αz ∂βζ F−p‖+

m−2∑
k=0

|∂k+�w ∂αz ∂
β
ζ U−p(0, z, ζ)|

+
∑

(�′,α′,β′) �=0

(m + 1)%!α!β!C
�′+|α′|+|β′|+1
1 |ζ|−|β′|

%′′!α′′!β′′!
max

0≤k≤m
‖∂k+�′′w ∂α

′′
z ∂β

′′

ζ U−p‖
)
.
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Then, we obtain

Nm(U ; t) & C0

{
N0(F ; t) +

m−2∑
k=0

K(∂kwU(0, z, ζ); t)

+
∑
p,α,β
�>0

p!t2p+�+|α+β||ζ|p+|β|(m− 1)

(p + % + |α|)!(p + |β|)! max
0≤k≤m−2

∣∣∣∂k+�w ∂αz ∂
β
ζ U−p|w=0

∣∣∣
+
∑
p,�,α,β

(�′,α′,β′) �=0

p!t2p+�+|α+β||ζ|p+|β|

(p + % + |α|)!(p + |β|)!

× (m + 1)%!α!β!C
�′+|α′|+|β′|+1
1 |ζ|−|β′|

%′′!α′′!β′′!
max

0≤k≤m
‖∂k+�′′w ∂α

′′
z ∂β

′′

ζ U−p‖
}

& C0

{
N0(F ; t) +

m−2∑
k=0

K(∂kwU(0, z, ζ); t) + (m− 1)t ·Nm(U ; t)

+
∑
p,�,α,β

(�′,α′,β′) �=0

(m + 1)C1%!α!β!(p + %′′ + |α′′|)!(p + |β′′|)!
%′′!α′′!β′′!(p + % + |α|)!(p + |β|)! (C1t)

�′+|α′+β′|

× p!t2p+�
′′+|α′′+β′′||ζ|p+|β′′|

(p + %′′ + |α′′|)!(p + |β′′|)! max
0≤k≤m

‖∂k+�′′w ∂α
′′

z ∂β
′′

ζ U−p‖
}
.

We recall here an inequality for r ≥ r′ ≥ 0, s ≥ s′ ≥ 0:

(
r

r′

)(
s

s′

)
≤
(
r + s

r′ + s′

)
.(4.10)

Therefore

%!α!β!(p + %′′ + |α′′|)!(p + |β′′|)!
%′′!α′′!β′′!(p + % + |α|)!(p + |β|)!

=
%′!α′!β′!

(%′ + |α′|)!|β′|!

(
%

%′

)(
α

α′

)(
β

β′

)(
p + % + |α|
%′ + |α′|

)−1(
p + |β|
|β′|

)−1

≤ 1.
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Hence we have

Nm(U ; t) & C0

{
N0(F ; t) +

m−2∑
k=0

K(∂kwU(0, z, ζ); t)

+ (m− 1)tNm(U ; t) + (m + 1)C1Nm(U ; t)
∑

(l′,α′,β′) �=0

(C1t)
�′+|α′+β′|

}
.

Set

ψ(t) ≡
∑

(�′,α′,β′) �=0

(C1t)
�′+|α′+β′|,

Φ(t) ≡ C0

1− (m + 1){C0C1ψ(t) + C0t}
.

Since ψ(0) = 0, we get the following proposition:

Proposition 4.4. If each component of F and U is holomorphic on a

neighborhood of {|w| ≤ 1} with respect to w, we have

Nm(U ; t) & Φ(t)

{
N0(F ; t) +

m−2∑
k=0

K(∂kwU(0, z, ζ); t)

}
.

Here Φ(t) is a convergent power series of t with non-negative coefficients

independent of F,U .

(2) Non-regular type case: For m′ = m ≥ 1 and µ ≥ Mν + m + 1, we

obtain

max
0≤k≤m

‖∂k+�w ∂αz ∂
β
ζ U−p‖µ+k+�+p+|α+β|−m+1

≤ C0

{
‖∂�w∂αz ∂βζ F−p‖µ+�+|α+β|+p +

m−1∑
k=0

|∂k+�w ∂αz ∂
β
ζ U−p(1, z, ζ)|

+
∑

(�′,α′,β′) �=0

(m + 1)%!α!β!C
�′+|α′|+|β′|+1
1 |ζ|−|β′|

%′′!α′′!β′′!

× max
0≤k≤m

‖∂k+�′′w ∂α
′′

z ∂β
′′

ζ U−p‖µ+�+|α+β|+p

}
.
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Note that µ + % + |α + β| + p ≥ µ + k + %′′ + |α′′ + β′′| + p −m + 1 in the

last term because %′ + α′ + β′ ≥ 1. Hence we obtain

max
0≤k≤m

‖∂k+�′′w ∂α
′′

z ∂β
′′

ζ U−p‖µ+�+|α+β|+p

≤ max
0≤k≤m

‖∂k+�′′w ∂α
′′

z ∂β
′′

ζ U−p‖µ+k+�′′+|α′′+β′′|+p−m+1.

In the same way as the regular type case (replace max0≤k≤m ‖ · ‖ by the

norms above), we obtain the following proposition:

Proposition 4.5. If each component of F and U is holomorphic on a

neighborhood of Ω with respect to w, for ∀µ ≥Mν + m + 1 we have

Nµ
m(U ; t) & Φ(t)

{
Nµ

0 (F ; t) +
m−1∑
k=0

K(∂kwU(1, z, ζ); t)

}
.

Here Φ(t) is a convergent power series of t with non-negative coefficients

independent of F,U .

4.4. Estimates for L − L

We estimate N0((L − L)U ; t) by Nm(U ; t) and Nµ
0 ((L − L)U ; t) by

Nµ
m(U ; t) respectively.

Proposition 4.6. Set a convergent power series of t with positive co-

efficients with value 0 at t = 0:

ψ1(t) ≡ mC1

∞∑
�′=0

(C1t)
�′
∑
α′≥0

(C1t)
|α′|∑

β′≥0

(C1t)
|β′| ∑

|γ|≥1

(C1t)
|γ|.

(1) Regular type case: If each component of U is holomorphic on a neigh-

borhood of {|w| ≤ 1} with respect to w, we have

N0((L − L)U ; t) & ψ1(t)Nm(U ; t).(4.11)

(2) Non-regular type case: If each component of U is holomorphic on a

neighborhood of Ω with respect to w, for ∀µ ≥ 0 we have

Nµ
0 ((L − L)U ; t) & ψ1(t)N

µ
m(U ; t).(4.12)
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Proof. (1) Regular type case:

N0((L − L)U ; t) =
∑
p,α,β,�

p!t2p+�+|α+β|

(p + % + |α|)!(p + |β|)! |ζ|
p+|β|

×
∥∥∥∂�w∂αz ∂βζ ( ∑

p=|γ|+q,|γ|>0,1≤k≤m

1

γ!
∂γζA

0
k · ∂m−k

w ∂γzU−q

)∥∥∥
&

∑
�′,�′′,α′,α′′,β′,β′′,q,|γ|>0

p!t2p+�+|α+β|

(p + % + |α|)!(p + |β|)!
1

γ!

(
%

%′

)(
α

α′

)(
β

β′

)
m

× %′!α′!(β′ + γ)!C
|α′+β′+γ|+�′+1
1 |ζ|q+|β′′| max

0≤k≤m−1
‖∂k+�′′w ∂α

′′+γ
z ∂β

′′

ζ U−q‖

&
∑

�′,�′′,α′,α′′,β′,β′′,q,|γ|>0,α′′∗=α′′+γ

(∗)mC1(C1t)
�′+|α′+β′+γ|

× q!t2q+�
′′+|α′′∗+β′′||ζ|q+|β′′|

(q + %′′ + |α′′∗|)!(q + |β′′|)! max
0≤k≤m

‖∂k+�′′w ∂α
′′∗

z ∂β
′′

ζ U−q‖.

Here (∗) is given by

p!(p + %′′ + |α′′|)!(q + |β′′|)!%!α!β!(β′ + γ)!

(p + % + |α|)!(p + |β|)!γ!q!%′′!α′′!β′!β′′!

=
%′!α′!β′!

(%′ + |α′|)!|β′|!

(
β′ + γ

β′

)(
p

|γ|

)(
β

β′

)(
%

%′

)(
α

α′

)
×
(
|β′ + γ|
|β′|

)−1(
p + |β|
|γ + β′|

)−1(
p + % + |α|
%′ + |α′|

)−1

≤ 1,

where we used the inequality (4.10). Therefore, we obtain the estimate

(4.11) for the regular type case.

(2) Non-regular type case: In the same way as above, we have

Nµ
0 ((L − L)U ; t) &

∑
�′,�′′,α′,α′′,β′,β′′,q,|γ|>0

p!t2p+�+|α+β|

(p + % + |α|)!(p + |β|)!

× 1

γ!

(
%

%′

)(
α

α′

)(
β

β′

)
m%′!α′!(β′ + γ)!C

|α′+β′+γ|+�′+1
1

× |ζ|q+|β′′| max
0≤k≤m−1

‖∂k+�′′w ∂α
′′+γ

z ∂β
′′

ζ U−q‖µ+p+�+|α+β|.
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Since µ+ p+ %+ |α+ β| ≥ µ+ k+ %′′ + |α′′ + γ|+ |β′′|+ q−m+ 1, we have

max
0≤k≤m−1

‖ · ‖µ+p+�+|α+β| ≤ max
0≤k≤m

‖ · ‖µ+k+�′′+|α′′+γ|+|β′′|+q−(m−1).

Therefore the same argument as in the regular type case leads to the con-

clusion (4.12). �

4.5. Estimates for R ◦ ∗
We estimate N0(R ◦ U ; t), Nµ

0 (R ◦ U ; t) by Nm(U ; t), Nµ
m(U ; t) respec-

tively. Here R =
∑m

k=0 Rk(w, z,Dw, Dz)D
m−k
w with ord(Rk) ≤ −1(k =

0, 1, . . . ,m) is supposed to be a microdifferential operator defined in Dν for

some ν > 0. Therefore we have a constant C2 > 0 satisfying the following

estimates for each j-th degree component Rjk of Rk on Dν/2:

|∂�w∂αz ∂sτ∂βζ R−p,k| ≤ C
1+p+�+s+|α+β|
2 %!α!s!β!p!|ζ|−p−s−|β|.

Proposition 4.7. Set a convergent power series of t with positive co-

efficients with value 0 at t = 0:

ψ2(t) ≡ (m + 1)
∑

�′,α′,β′,γ≥0
r≥1,s≥0

C1−r
2 (C2t)

s+2r+�′+|γ+α′+β′|.

(1) Regular type case: If each component of U is holomorphic on a neigh-

borhood of {|w| ≤ 1} with respect to w, we have

N0((R ◦ U ; t) & ψ2(t)Nm(U ; t).(4.13)

(2) Non-regular type case: If each component of U is holomorphic on a

neighborhood of Ω with respect to w, for ∀µ ≥ 0 we have

Nµ
0 (R ◦ U ; t) & ψ2(t)N

µ
m(U ; t).(4.14)
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Proof. Firstly we consider the regular type case:

N0(R ◦ U ; t) &
∑
p,α,β,�

p!t2p+�+|α+β||ζ|p+|β|

(p + % + |α|)!(p + |β|)!

(
%

%′

)(
α

α′

)(
β

β′

)

×
∑

|γ|+s+r+q=p
0≤k≤m

∥∥∥(∂�′w∂α′
z ∂sτ∂

β′+γ
ζ R−r,k)|τ=0

s!γ!
∂m−k+s+�′′
w ∂α

′′+γ
z ∂β

′′

ζ U−q
∥∥∥

&
∑

|γ|+s+r+q=p
r≥1,p,α,β,�,

p!t2p+�+|α+β||ζ|p+|β|

(p + % + |α|)!(p + |β|)!

(
%

%′

)(
α

α′

)(
β

β′

)

× (C
1+r+s+�′+|α′+β′+γ|
2 r!%′!α′!s!(β′ + γ)!|ζ|−s−r−|β′+γ|

s!γ!

× (m + 1) max
0≤k≤m

∥∥∥∂k+s+�′′w ∂α
′′+γ

z ∂β
′′

ζ U−q
∥∥∥

&
∑

|γ|+s+r+q=p
r≥1,p,α,β,�

(∗)(m + 1)C1−r
2 (C2t)

s+2r+�′+|γ+α′+β′|

× q!t2q+�
′′∗+|α′′∗+β′′||ζ|q+|β′′|

(q + %′′∗ + |α′′∗|)!(q + |β′′|)! max
0≤k≤m

∥∥∥∂k+�′′∗w ∂α
′′∗

z ∂β
′′

ζ U−q
∥∥∥.

Here %′′∗ = %′′ + s, α′′∗ = α′′ + γ and (∗) is given by

p!(q + s + %′′ + |α′′ + γ|)!(q + |β′′|)!r!%!α!β!(β′ + γ)!

(p + % + |α|)!(p + |β|)!q!γ!%′′!α′′!β′!β′′!

=
r!%′!α′!β′!

(r + %′ + |α′|)!|β′|!

(
%

%′

)(
α

α′

)(
p

|γ|+ s + r

)(
β

β′

)(
β′ + γ

β′

)
×
(
p + % + |α|
r + %′ + |α′|

)−1(
p + |β|

|γ|+ s + r + |β′|

)−1(
s + r + |β′ + γ|

|β′|

)−1

≤ 1,

where we used the inequality (4.10). Therefore we obtain the estimate

(4.13).

Secondly we consider the non-regular type case. The proof for the reg-

ular type case is also available in this case if we check the following:

max
0≤k≤m

∥∥∥∂k+s+�′′w ∂α
′′+γ

z ∂β
′′

ζ U−q
∥∥∥
µ+�+|α+β|+p

≤ max
0≤k≤m

∥∥∥∂k+s+�′′w ∂α
′′+γ

z ∂β
′′

ζ U−q
∥∥∥
µ+k+s+�′′+|α′′+γ+β′′|+q−m+1

.
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Indeed this inequality holds since (µ + % + |α + β|+ p)− (µ + k + s + %′′ +
|α′′ + γ + β′′|+ q −m+ 1) = %′ + |α′ + β′|+ r − k +m− 1 ≥ 0 (use r ≥ 1).

This completes the proof. �

4.6. A construction of solutions

We recall our approximation process:{
LU0 = 0,

LUk+1 = {(L− L)−R◦}Uk (k = 0, 1, 2, . . . ).
(4.15)

We assume that the coefficients A0
k(w, z, ζ) (k = 0, 1, . . . ,m;A0

0 ≡ w) of L

and L are holomorphic functions defined in Dν of homogeneous degree 0

with respect to ζ for some ν > 0. Further we also assume that the microd-

ifferential operator R =
∑m

k=0 Rk(w, z,Dw, Dz)D
m−k
w with ord(Rk) ≤ −1 is

defined in Dν .

Theorem 4.8. Let U0 ≡ U00 be any holomorphic solution of LU0 = 0

in Dν(⊃ {|w| ≤ 1} × {(◦x; i
◦
η)}) with homogeneous degree 0 concerning ζ.

We can choose a series Uk (k = 1, 2, . . . , ) of solutions of (4.15) such that

each Uk =
∑0

j=−∞ Ujk is a formal symbol defined in a neighborhood of Dν/2

satisfying

∂�wUk|w=0 = 0 (% = 0, 1, . . . ,m− 2, k ≥ 1).

Then U ≡
∑∞

k=0 Uk converges in Nm(·; t)-norm uniformly on {(z; ζ) ∈
Vν/2}, and it gives a solution of

LU + R ◦ U = 0.

Further ord(Uk) ≤ −k (∀k ≥ 0). In particular, σ0(U) = U0.

Proof. As seen at (2.23), under the condition A0
1(0,

◦
x, i

◦
η) �= 0,−1,

−2, · · · we can construct Uk successively at least in a neighborhood of w =

0. Then each Uk extends analytically to Dν/2 because it satisfies a linear

ordinary differential equation. Then by Propositons 4.4, 4.6, 4.7 we obtain
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the following estimates:

Nm(Uk+1; t)

& Φ(t)
{
N0(R ◦ Uk; t) + N0((L − L)Uk; t) +

m−2∑
j=0

K(∂jwUk+1|w=0; t)
}

& Φ(t){(ψ1(t) + ψ2(t))Nm(Uk; t)}
& · · · & {Φ(t)(ψ1(t) + ψ2(t))}k+1Nm(U0; t).

Therefore
∑∞

k=0 Nm(Uk; t) has a convergent majorant series

[1− Φ(t){ψ1(t) + ψ2(t)}]−1Nm(U0; t).

This completes the proof. �

Theorem 4.9. Let U0 ≡ U00 be any holomorphic solution of LU0 =

0 in {w ∈ Ω} ∩ Dν(⊃ {w ∈ Ω} × {(◦x; i
◦
η)}) with homogeneous degree 0

concerning ζ. We can choose a series Uk (k = 1, 2, . . . , ) of solutions of

(4.15) such that each Uk =
∑0

j=−∞ Ujk is a formal symbol defined in a

neighborhood of {w ∈ Ω} ∩Dν/2 satisfying

∂�wUk|w=1 = 0 (% = 0, 1, . . . ,m− 1, k ≥ 1).

Then U ≡
∑∞

k=0 Uk converges in Nµ
m(·; t)-norm uniformly on {(z; ζ) ∈ Vν/2}

for any sufficiently large µ, and it gives a solution of

LU + R ◦ U = 0.

Further ord(Uk) ≤ −k (∀k ≥ 0). In particular, σ0(U) = U0.

Proof. We can construct Uk successively in a neighborhood of w = 1,

then each Uk extends analytically to {w ∈ Ω} ∩ Dν/2. By using Proposi-

tions 4.5, 4.6, 4.7 we obtain the following estimates in the same way as

above:

Nµ
m(Uk+1; t) & {Φ(t)(ψ1(t) + ψ2(t))}k+1Nµ

m(U0; t),

∞∑
k=0

Nµ
m(Uk; t) & [1− Φ(t){ψ1(t) + ψ2(t)}]−1Nµ

m(U0; t).

This completes the proof. �
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5. Boundary Values and the Main Theorems

To state the main theorems, we need some theorem concerning boundary

values for operators obtained in Section 4.

The non-regular type solution constructed in Theorem 4.9 is written as

U =
0∑

j=−∞
Uj(w, z,Dz).

If A0
1(0, z, ζ) �≡ any integer, we can take a singular solution at w = 0 of

LU0 = 0 as the principal symbol U0 of U ; that is, a solution of the form

U0(w, z, ζ) = wm−1−A0
1(0,z,ζ)

(
1 +

∞∑
�=1

c�(z, ζ)w
�
)
,

where A0
1(0, z, ζ), c�(z, ζ) (% ≥ 1) are holomorphic functions of homogeneous

degree 0 with respect to ζ. Then the lower order terms also have stronger

singularities at w = 0 in general. Since Nµ
m(U ; t) has a convergent majorant

series, we have the estimates

|U−p| ≤ Cp+1p!|w|−µ−p|ζ|−p (w ∈ Ω, p ≥ 0),

for some fixed µ,C > 0. We show that the operators of this type have

boundary values on any R-conic and real analytic hypersurface H passing

through w = 0. To simplify the situation, by using Lemma 2.5 we reduce H

to H = {Imw = 0} under some quantized contact transformation preserving

COZ .

The main idea of the proof is in decomposing the kernel function of

U into 2 kernel functions with double phases. We prepare an elementary

inequality about integrations of holomorphic functions of w:

Lemma 5.1. Let f(w) be a holomorphic function defined in a neigh-

borhood of G = {w ∈ C; r0 < Imw ≤ r1, |Rew| < r1} satisfying an estimate

|f(w)| ≤ C| Imw|−µ (∀w ∈ G)

for some constants C, µ, r1 > 0 and r0 (0 ≤ r0 < r1 ≤ 1). Choose an

positive integer p as µ < p ≤ µ + 1. Then the (p + 1)-times integration

gp(w) ≡
∫ w

ir1

(w − w′)p

p!
f(w′)dw′
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is holomorphic in a neighborhood of G, continuous up to Imw = r0, and

satisfies

|gp(w)| ≤ C(2p + 1)/p! (∀w ∈ G).

Proof.

|gp(w)| ≤
∣∣∣ ∫ u+ir1

ir1

(w − w′)p

p!
f(w′)dw′

∣∣∣+ ∣∣∣ ∫ u+iv

u+ir1

(w − w′)p

p!
f(w′)dw′

∣∣∣
≤ r1

(2r1)
p

p!
Cr−µ1 +

∫ r1

v

|v′ − v|p
p!

C|v′|−µdv′

≤ (2r1)
p

p!
Cr1−µ

1 +

∫ r1

v

C

p!
|v′|p−µdv′ ≤ C

(2p + 1)

p!
. �

Theorem 5.2. Let U =
∑0

j=−∞ Uj(w, z, ζ) be a classical formal sym-

bol of a pseudo-differential operator with order ≤ 0 defined in an R-conic

open set

Wr ≡
{

(w, z; ∗, ζ) ∈ T ∗X; Imw > 0, |w| < r, |z| < κ,(5.1)

|ζj | < ρ|ζn| (1 ≤ ∀j ≤ n− 1), |Re ζn| < δ Im ζn

}
for some r, κ, ρ, δ > 0 (δ < 1). We suppose that Uj ∈ O(Wr) (∀j ≤ 0) and

that there exists some constants C, µ > 0 satisfying the following inequali-

ties:

|U−p(w, z, ζ)| ≤ Cp+1p!| Imw|−p−µ|ζ|−p on Wr (∀p ≥ 0).(5.2)

Then, for a sufficiently large number

λ > max{1, 2560C/r}(5.3)

we have 2 holomorphic functions E(k)(w, z, z − z∗, s) (k = 1, 2) defined in

W(1) ≡
{

(w, z, z − z∗, s) ∈ C× C
n × C

n × C; |w| < r/40,(5.4)

max{0,−80 Imw/λr} < Im s ≤ λ−1, |Re s| < λ−1,

|z| < κ, |zj − z∗j | > ρ−1|zn − z∗n| (j = 1, . . . , n− 1)
}
,
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and

W(2) ≡
{

(w, z, z − z∗, s) ∈ C× C
n × C

n × C; |Re s| < λ−1,(5.5)

|w − ir/80| < r/320, −(320λ)−1 < Im s ≤ λ−1,

|z| < κ, |zj − z∗j | > ρ−1|zn − z∗n| (j = 1, . . . , n− 1)
}
.

respectively satisfying the following:

2∑
k=1

E(k)(w, z, z − z∗, s) =
∑

|α′|≥0,p≥0

α′!

|α′|!
( n−1∏
j=1

(zn − z∗n)
αj

(z∗j − zj)αj+1

)
(5.6)

×
∫ s

i/λ

(s− s∗)p+ν+3

(p + ν + 3)!
ds∗
∫ ∞

λ
U−p,α′(w, z, it) · (it)p−2eits

∗ dt

2π

on W(1) ∩W(2) ≡ W(3):

W(3) =
{

(w, z, z − z∗, s) ∈ C× C
n × C

n × C;(5.7)

0 < Im s ≤ λ−1, |Re s| < λ−1, |w − ir/80| < r/320,

|z| < κ, |zj − z∗j | > ρ−1|zn − z∗n| (j = 1, . . . , n− 1)
}
.

Here we expand each U−p in Wr as follows:

U−p(w, z, ζ) =
∑
α′≥0

U−p,α′(w, z, ζn)(ζ
′/ζn)

α′
,

with ζ ′/ζn = (ζ1/ζn, . . . , ζn−1/ζn). Further ν is some positive integer.

Proof. Each U−p,α′(w, z, ζn) is holomorphic in W
(1)
r ≡

{(w, z; ζn) ∈ C
n+1 × C; Imw > 0, |w| < r, |z| < κ, |Re ζn| < δ Im ζn}

and satisfies

|U−p,α′(w, z, ζn)| ≤ p!Cp+1ρ−|α′|| Imw|−p−µ|ζn|−p(5.8)

on W
(1)
r . By the preceding lemma, we get holomorphic functions

Vp,α′(w, z, ζn) ∈ O(W
(1)
r/2) satisfying{

∂p+ν+1
w Vp,α′(w, z, ζn) = U−p,α′(w, z, ζn),

|Vp,α′(w, z, ζn)| ≤ Cp+12p+ν+1ρ−|α′||ζn|−p
(5.9)
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on W
(1)
r/2 for all p, α′. Here ν is the integer satisfying µ < ν ≤ µ + 1. Take a

conformal mapping w̃ = ϕ(w):

ϕ : {w ∈ C; Imw > 0, |w| < r/2} −̃→ {w̃ ∈ C; |w̃| < 1}

such that ϕ(0) = 1; for example,

ϕ(w) =
{
i
(r + 2w

r − 2w

)2
+ 1
}/{(r + 2w

r − 2w

)2
+ i
}

(5.10)

= Φ
(
− 2i(

√
2− 1)w/r

)
Φ
(
2i(
√

2 + 1)w/r
)
,

where Φ(t) = (1 + t)(1− t)−1. Then by expanding Vp,α′(ϕ−1(w̃), z, ζn) into

a power series of w̃, we have expansions

Vp,α′(w, z, ζn) =
∞∑
�=0

Vp,α′,�(z, ζn)ϕ(w)� (∀(w, z, ζn) ∈W
(1)
r/2).(5.11)

Here Vp,α′,�(z, ζn)’s are holomorphic functions in

W (2) ≡ {ζn ∈ C; |z| < κ, |Re ζn| < δ Im ζn}

satisfying

|Vp,α′,�(z, ζn)| ≤ 2ν(2C)p+1ρ−|α′||ζn|−p

on W (2) for all p, α′, %. Therefore we have

U−p =
∑
α′,�

∂p+ν+1
w {ϕ(w)�} · (ζ ′/ζn)α

′
Vp,α′,�(z, ζn).(5.12)

Now for a large positive constant λ > 1 we introduce 2 kernel functions for

Vp,α′,�(z, ζn)ζ
p−2
n :

A
(1)
p,α′,�(z, s) ≡

∫ ∞

λ(�+1)
Vp,α′,�(z, it) · (it)p−2eits

dt

2π
,(5.13)

A
(2)
p,α′,�(z, s) ≡

∫ λ(�+1)

λ
Vp,α′,�(z, it) · (it)p−2eits

dt

2π
,(5.14)

which are holomorphic functions defined in

W (3) ≡ {s ∈ C; |z| < κ, Im s > −δ|Re s| }
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with the estimates:

|A(1)
p,α′,�(z, s)| ≤ 2ν(2C)p+1ρ−|α′|e−λ(�+1) Im s/π(5.15)

on W (3) for all p, α′, %. Further A
(2)
p,α′,�(z, s) are entire functions satisfying

|A(2)
p,α′,�(z, s)| ≤ 2ν(2C)p+1ρ−|α′|eλ(�+1)(− Im s)+/π(5.16)

on {s ∈ C} for all p, α′, %. Here (t)+ = t (∀t ≥ 0), = 0 (∀t < 0). Therefore

for each k = 1, 2 and each p, α′ the series

A
(k)
p,α′(w, z, s) ≡

∞∑
�=0

A
(k)
p,α′,�(z, s)ϕ(w)�(5.17)

converges locally uniformly in{
{|ϕ(w)| < eλ Im s} (∀s ∈W (3)) for k = 1,

{|ϕ(w)|eλ(− Im s)+ < 1} (∀s ∈ C) for k = 2.
(5.18)

We note that ϕ(w) at (5.10) is holomorphic in |w| < (
√

2− 1)r/2 and

log |Φ(t)| = 1

2
log
(
Φ
( 2 Re t

1 + |t|2
))

=
∞∑
�=0

1

2% + 1

( 2 Re t

1 + |t|2
)2�+1

(5.19)

≤ 4(Re t)+ − (−Re t)+

for ∀t (|t| ≤ 1/4). Consequently if |w| < (
√

2− 1)r/8, we have

log |ϕ(w)| ≤ (6
√

2 + 10)(− Imw)+/r − (10− 6
√

2)(Imw)+/r.

Hence A
(1)
p,α′(w, z, s)’s are holomorphic in

{(w, z, s) ∈ C×W (3); |w| < (
√

2− 1)r/8, |z| < κ,(5.20)

(10 + 6
√

2)(− Imw)+ < λr Im s/2}
⊃{(w, z, s) ∈ C

n+1 × C; |w| < r/20, |z| < κ,

(− Imw)+ <
λr

40
Im s} ≡W

(4)
λ
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because |ϕ(w)|e−λ Im s ≤ e−λ Im s/2 < 1 on W
(4)
λ . At the same time we have

the following estimates:

|A(1)
p,α′(w, z, s)| ≤

2ν(2C)p+1

πρ|α′|(1− e−λ Im s/2)
≤ e2ν+1(2C)p+1

πλρ|α′|Im s

on W
(4)
λ ∩ {0 < Im s ≤ 1/λ}. Consequently we obtain

|∂p+ν+1
w A

(1)
p,α′(w, z, s)| ≤ (p + ν + 1)!

re2ν+1(2C)p+1

80πρ|α′|

( 80

λr Im s

)p+ν+2

on

W
(5)
λ ≡ {(w, z, s) ∈ C

n+1 × C; |w| < r/40, |z| < κ,(5.21)

max{0,−80 Imw/(λr)} < Im s ≤ 1/λ, |Re s| < λ−1}.

Further A
(2)
p,α′(w, z, s)’s are holomorphic in

{(w, z, s) ∈ C
n+1 × C; |w| < (

√
2− 1)r/8, |z| < κ,(5.22)

λ(− Im s)+ − (10− 6
√

2) Imw/(2r) < 0}
⊃{(w, z, s) ∈ C

n+1 × C; |w| < r/20, |z| < κ,

Imw > 0,− Imw/(2λr) < Im s} ≡W
(6)
λ

and satisfy the following estimates

|A(2)
p,α′(w, z, s)| ≤

2ν(2C)p+1

πρ|α′|(1− e− Imw/(2r))
≤ re2ν+1(2C)p+1

πρ|α′|Imw

on W
(6)
λ because |ϕ(w)|eλ(− Im s)+ ≤ e− Imw/(2r) < 1 on W

(6)
λ . Consequently,

setting

W
(6)
λ ⊃W

(7)
λ ≡ {(w, z, s) ∈ C

n+1 × C; |z| < κ,(5.23)

|w − ir/80| < r/320, Im s > −(320λ)−1},

we get the following estimates:

|∂p+ν+1
w A

(2)
p,α′(w, z, s)| ≤ (p + ν + 1)!

re2ν+1(2C)p+1

πρ|α′|(r/320)p+ν+2
(5.24)
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on W
(7)
λ . Fixing the initial point s = i/λ, we apply again the preceding

lemma to ∂p+ν+1
w A

(k)
p,α′(w, z, s) for k = 1, 2. That is, we have holomorphic

functions E
(1)
p,α′(w, z, s) ∈ O(W

(5)
λ ) satisfying

∂p+ν+4
s E

(1)
p,α′(w, z, s) = ∂p+ν+1

w A
(1)
p,α′(w, z, s),

|E(1)
p,α′(w, z, s)| ≤

2p+ν+4re2ν+1(2C)p+1

80πρ|α′|

(80

λr

)p+ν+2
(5.25)

on W
(5)
λ for all p, α′, and E

(2)
p,α′(w, z, s) ∈ O(W

(7)
λ ∩ {|s − i/λ| < 2/λ})

satisfying 
∂p+ν+4
s E

(2)
p,α′(w, z, s) = ∂p+ν+1

w A
(2)
p,α′(w, z, s),

|E(2)
p,α′(w, z, s)| ≤

re2ν+1(2C)p+1

πρ|α′|(r/320)p+ν+2
(2/λ)p+ν+4

(5.26)

on W
(7)
λ ∩ {|s− i/λ| < 2/λ}) for all p, α′. Choose λ (> 1) as

1280C/(λr) ≤ 1/2.(5.27)

Then we can introduce 2 kernel functions E(k)(w, z, z− z∗, s) for k = 1, 2 as

follows:

E(k) ≡
∑

|α′|≥0,p≥0

α′!

|α′|!E
(k)
p,α′(w, z, s)

n−1∏
j=1

(zn − z∗n)
αj

(z∗j − zj)αj+1 .(5.28)

Here, E(k) are holomorphic in W(k) at (5.4), (5.5), respectively for k = 1, 2.

On the other hand, from (5.13), (5.14) and (5.11) we obtain the following:

2∑
k=1

∂p+ν+1
w A

(k)
p,α′(w, z, s) = ∂p+ν+1

w

( ∞∑
�=0

2∑
k=1

A
(k)
p,α′,�(z, s)ϕ(w)�

)
(5.29)

= ∂p+ν+1
w

(∫ ∞

λ
Vp,α′(w, z, it) · (it)p−2eits

dt

2π

)
=

∫ ∞

λ
U−p,α′(w, z, it) · (it)p−2eits

dt

2π
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for any (w, z, s) ∈W
(5)
λ ∩W

(7)
λ ∩ {|s− iλ−1| < 2λ−1}

={(w, z, s) ∈ C
n+1 × C; |w − ir/80| < r/320,

|z| < κ, 0 < Im s ≤ λ−1, |Re s| < λ−1}.

Hence we have our conclusion (5.6). �

By using the expressions of the kernel functions obtained in the preced-

ing theorem, we prove that U(w, x,Dx)f(x) has a boundary value at w = 0

from Imw > 0 for any microfunction f(x). To do so, we introduce actions

of E(∗)(w, z, z − z∗, s) on holomorphic functions F (z) similar to the Bony-

Schapira actions of microdifferential operators on holomorphic functions [4]

(also see [7] concerning the action of ERX).

Definition 5.3. We inherit the notation from the preceding theorem.

Let F (z) be a holomorphic function defined in

Ω ≡{z ∈ C
n; |z′| < r′, |Re zn| < (3λ)−1 + r′, r′ > Im zn > k| Im z′|}(5.30)

∪ ∪σ=±1{z ∈ C
n; |z′| < r′, |zn − σ/(3λ)| < r′}

for positive small constants r′ (r′ < 1/(3λ)), and k (< ρ/(2n)). Let

E(w, z, z− z∗, s) be a holomorphic kernel function defined in W(1) at (5.4).

For a sufficiently small ε > 0, we define a holomorphic function (E ∗
F )λ,ε(w, z) depending on λ, ε by∫ zn

iε
dz∗n

∫
γ
dz∗′
∫ 1/(3λ)

−1/(3λ)
E(w, z, z − z∗, z∗n − z∗∗n )F (z∗′, z∗∗n )dz∗∗n .(5.31)

Here the path for z∗n is the line segment

z∗n(t) = zn + t(iε− zn) (0 ≤ t ≤ 1)

combining zn with iε, γ = {z∗j = zj + R(zn, z
∗
n(t))e

iθj (0 ≤ θj ≤ 2π); j =

1, . . . , n−1} with some R(zn, z
∗
n(t)) > ρ−1|zn−z∗n(t)| = tρ−1|zn−iε|. Further

the path for z∗∗n is the line graph passing through

−(3λ)−1, −(3λ)−1 + ih Im z∗n(t), (3λ)−1 + ih Im z∗n(t), (3λ)−1
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for a constant h (1/2 < h < 1). That is,

z∗∗n (θ; t) =


−1/(3λ) + 3ihθ Im z∗n(t) (0 ≤ θ ≤ 1/3),

(2θ − 1)/λ + ih Im z∗n(t) (1/3 ≤ θ ≤ 2/3),

1/(3λ) + 3ih(1− θ) Im z∗n(t) (2/3 ≤ θ ≤ 1)

Indeed this integral is well-defined if Imw > 0, |w| < r/40, |z| < κ,

|Re zn| < (3λ)−1, 0 < Im zn ≤ ε < r′ and the following sets are contained

in Ω :{
(z1 + tω1, . . . , zn−1 + tωn−1, q + ih(Im zn + t(ε− Im zn))); 0 ≤ t ≤ 1,

|q| ≤ (3λ)−1 (q ∈ R), |ω1| ≤ ρ−1|zn − iε|, . . . , |ωn−1| ≤ ρ−1|zn − iε|
}
,

{
(z1 + tω1, . . . , zn−1 + tωn−1,±(3λ)−1 + iq(Im zn + t(ε− Im zn)));

0 ≤ t ≤ 1, 0 ≤ q ≤ h, |ω1| ≤ ρ−1|zn − iε|, . . . , |ωn−1| ≤ ρ−1|zn − iε|
}
.

The former set is contained in Ω if ε < r′ and

|Re zn| < (2h− 1)(ε− Im zn), Im zn > (k/h)| Im z′|,
|z′|+ (n/ρ)|zn − iε| < r′.

The latter set is contained in Ω if | Im zn| ≤ ε < r′ and

|z′|+ (n/ρ)|zn − iε| < r′.

Hence we obtain the following lemma:

Lemma 5.4. Let ε (> 0) be smaller than min{κ/2, (1 + 2n/ρ)−1r′}.
Then (E ∗ F )λ,ε(w, z) is holomorphic in{

Imw > 0, |w| < r/40, |z′| < ε, |zn| < ε,(5.32)

Im zn > k| Im z′|, |Re zn| < ε− Im zn

}
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Further let E′(w, z, z − z∗, s) be a holomorphic kernel function defined in

W(2) at (5.5). Then (E′ ∗ F )λ,ε(w, z) is holomorphic in a neighborhood of{
|w − ir/80| < r/320, z = 0

}
.

Proof. We have only to prove the latter statement. In this case we

modify the paths of integrations as follows:

z∗n(t) = zn + t(iε− zn) (0 ≤ t ≤ 1),

z∗∗n (θ; t) =


−1/(3λ) + 3iθψ(t) (0 ≤ θ ≤ 1/3),

(2θ − 1)/λ + iψ(t) (1/3 ≤ θ ≤ 2/3),

1/(3λ) + 3i(1− θ)ψ(t) (2/3 ≤ θ ≤ 1),

where ψ(t) = max{Im z∗n(t), ε} with some small ε > 0. If we choose ε <

min{(640λ)−1, ε}, for any zn = iyn (yn ∈ (−ε, ε)) and t ∈ [0, 1] we have

ψ(t) = max{yn + t(ε− yn), ε} >
t

2
(ε− yn) ≥

nk

ρ
t(ε− yn).

Therefore (E′ ∗ F )λ,ε(w, z) is holomorphic in a neighborhood of{
|w − ir/80| < r/320, z′ = 0,Re zn = 0,−ε < Im zn < ε

}
.

This completes the proof. �

The following is our secondary main result. K. Uchikoshi [15] used a

similar method (Bronshtein’s method) of considering boundary values of

holomorphic pseudodifferential operators for constructing fundamental so-

lutions of weakly hyperbolic microdifferential operators. However the situa-

tions are different from each other, and the proofs and results are completely

independent.

The most part of the proof is devoted to the proof of the compatibility

of actions of pseudo-differential operators.

Theorem 5.5. Let U =
∑0

j=−∞ Uj(w, z, ζ) be the classical formal

symbol of the pseudo-differential operator treated in Theorem 5.2. Then for

any microfunction f(x) ∈ CN |(0;idxn), a section U(w, x,Dx)f(x) ∈ Γ ({w ∈
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C; Imw > 0, |w| < r}×{(0; idxn)}; COZ) has a boundary value at (0, 0; idxn)

from Imw > 0 in the sense of Definition 3.9.

Proof. Choose a large positive number λ as indicated in Theorem 5.2.

Let f(x) be any germ of CN at (0; idxn). Then by the flabbiness of the

sheaf of microfunctions, we can take a defining function F (z) ∈ O(Ω) for

(2πi)1−n∂ν+7
xn f(x) with a sufficiently small r′ > 0, where Ω at (5.30) satisfies

a tighter condition (because 0 < δ < 1):

0 < k < min{1, ρδ/(8n)}.(5.33)

Choose a small positive number ε as indicated in Lemma 5.4:

0 < ε < min{κ/2, (1 + 2n/ρ)−1r′},(5.34)

which will be replaced by a tighter condition. Then, by Lemma 5.4 we

conclude that the boundary value g(w, x) ≡ (E(1) ∗F )λ,ε(w, x
′, xn + i0) is a

section of

Γ ({Imw > 0, |w| < r/40, |x| < ε};BOZ).

On the other hand, by the latter result in Lemma 5.4 we have [g(w, x)] =

[((E(1) +E(2))∗F )λ,ε(w, x
′, xn+ i0)] as a section of COZ over {|w− ir/80| <

r/320}×{(0; idxn)}. Therefore considering Theorem 5.2 and the unique con-

tinuation property of sections of COZ , we have only to show that

U(w, x,Dx)f(x) = [(E(0) ∗F )λ,ε(w, x
′, xn+ i0)] on a neighborhood of {|w−

ir/80| < r/320} × {(0; idxn)}. Here

E(0)(w, z, z − z∗, s) ≡
∑

|α′|≥0,p≥0

α′!

|α′|!
( n−1∏
j=1

(zn − z∗n)
αj

(z∗j − zj)αj+1

)
×
∫ s

i/λ

(s− s∗)p+ν+3

(p + ν + 3)!
ds∗
∫ ∞

λ
U−p,α′(w, z, it) · (it)p−2eits

∗ dt

2π
.

Set

Kp,α′(w, z, s) ≡
∫ ∞

λ
U−p,α′(w, z, it) · (it)p−2eits

dt

2π
.(5.35)

Noting the estimates (5.8), we obtain the following: Kp,α′(w, z, s)’s are holo-

morphic in

W ′ ≡ {|w − ir/80| < r/320, |z| < κ, Im s > −δ|Re s|},(5.36)
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and continuous up to s = 0 with estimates

|Kp,α′(w, z, s)| ≤ p!Cp+1ρ−|α′|(160/r)p+µ/π on W ′.

Hence for % = 0, 1, 2, . . .

K
(�)
p,α′(w, z, s) ≡

∫ s

0

(s− s′)�

%!
Kp,α′(w, z, s′)ds′(5.37)

are holomorphic functions in W ′ with estimates

|K(�)
p,α′(w, z, s)| ≤

p!|s|�+1

π(% + 1)!ρ|α′|C
p+1(160/r)p+µ on W ′.(5.38)

Therefore we have

E(0)(w, z, z − z∗, s) =
∑

|α′|≥0,p≥0

α′!

|α′|!
( n−1∏
j=1

(zn − z∗n)
αj

(z∗j − zj)αj+1

)
(5.39)

×
(
K

(p+ν+3)
p,α′ (w, z, s)−

∫ i/λ

0

(s− s∗)p+ν+3

(p + ν + 3)!
Kp,α′(w, z, s∗)ds∗

)
.

Since λ−1 < r/(2560C), the first term of (5.39) is holomorphic in

W(4) ≡
{

(w, z, z − z∗, s) ∈ C× C
n × C

n × C; |s| < 16λ−1,(5.40)

|w − ir/80| < r/320, Im s > −δ|Re s|, |z| < κ,

|zj − z∗j | > ρ−1|zn − z∗n| (j = 1, . . . , n− 1)
}
.

Further the second term of (5.39) is holomorphic in

W(5) ≡
{

(w, z, z − z∗, s) ∈ C× C
n × C

n × C;(5.41)

|w − ir/80| < r/320, |s| < 15λ−1, |z| < κ,

|zj − z∗j | > ρ−1|zn − z∗n| (j = 1, . . . , n− 1)
}
.

Since W(5) includes W(2) at (5.5), the contribution of the second term to

[(E(0) ∗ F )λ,ε(w, x
′, xn + i0)] is 0. Thus, our problem reduces to the action

of the following operator on F (z):

G(w, z, z − z∗, s) =
∑

|α′|≥0,p≥0

α′!

|α′|!
( n−1∏
j=1

(zn − z∗n)
αj

(z∗j − zj)αj+1

)
K

(p+ν+3)
p,α′ (w, z, s),

(5.42)
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which is holomorphic in W(4) and continuous up to s = 0. For any small

positive numbers c < (3λ)−1 and δ′ (δ/2 ≤ δ′ < δ), we put

(G ∗ F )c,δ′,ε(w, z) =(5.43)∫ zn

iε
dz∗n

∫
γ
dz∗′
∫ c(1+iδ′)

−c(1−iδ′)
G(w, z, z − z∗, z∗n − z∗∗n )F (z∗′, z∗∗n )dz∗∗n .

Here the path z∗n = zn + t(iε − zn) (0 ≤ t ≤ 1) for z∗n and γ are chosen in

the same way with Definition 5.3. Further the path z∗∗n = z∗∗n (θ; t) for z∗∗n
is the line graph passing through

−c(1− iδ′), z∗n, c(1 + iδ′)

That is, for −1 ≤ θ ≤ 1, 0 ≤ t ≤ 1 we have

z∗∗n (θ; t) = (1− |θ|)(zn + t(iε− zn)) + cθ + icδ′|θ|(5.44)

= cθ + (1− |θ|)(1− t) Re zn

+ i(cδ′|θ|+ (1− |θ|)(εt + (1− t) Im zn)).

This integral is well-defined if |w − ir/80| < r/320, |z| < κ, |zn|+ ε + 2c <

16λ−1, δ|Re zn| − Im zn < (δ − δ′)c and the following set is contained in Ω :{
(z1 + tω1, . . . , zn−1 + tωn−1, z

∗∗
n (θ; t)); −1 ≤ θ ≤ 1,

0 ≤ t ≤ 1, |ω1| ≤ ρ−1|zn − iε|, . . . , |ωn−1| ≤ ρ−1|zn − iε|
}
,

Indeed, this set is contained in Ω if |z′|+ (n/ρ)|zn − iε| < r′, |Re zn|+ c <

(3λ)−1 and if for any θ ∈ [−1, 1], t ∈ [0, 1] we have

k| Im z′|+ nkt

ρ
|zn − iε| < cδ′|θ|+ (1− |θ|)(εt + (1− t) Im zn) < r′

⇐⇒


k| Im z′|+ nkt|zn − iε|/ρ < Im zn + t(ε− Im zn) (∀t ∈ [0, 1]),

k| Im z′|+ nk|zn − iε|/ρ < cδ′,

cδ′|θ|+ (1− |θ|)(εt + (1− t) Im zn) < r′ (∀t,∀|θ| ∈ [0, 1]).

Hence, these conditions are all satisfied under (5.33),(5.34) and δ/2 ≤ δ′ < δ

if

ε + c < min{(3λ)−1, r′}, ε < (ρ/n + 2)−1c,

|w − ir/80| < r/320, |z′| < ε, |zn| < ε,

k| Im z′| < Im zn, |Re zn| < ε− Im zn.
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Replace the condition (5.34) by

c <
min{(3λ)−1, r′}

2 + 3n/ρ
, ε < min

{κ
2
,

r′

1 + 2n/ρ
,

c

ρ/n + 2

}
.(5.45)

Therefore (G ∗ F )c,δ′,ε(w, z) is holomorphic in

{|w − ir/80| < r/320, |z′| < ε, |zn| < ε,

k| Im z′| < Im zn, |Re zn| < ε− Im zn}.

We claim here that

[(G ∗ F )λ,ε(w, x
′, xn + i0)] = [(G ∗ F )c,δ′,ε(w, x

′, xn + i0)]

on a neighborhood of {|w− ir/80| < r/320} × {(0; idxn)}. To prove this, it

is sufficient to show that the functions∫ zn

iε
dz∗n

∫
γ
dz∗′
∫ σ(3λ)−1

cσ+icδ′
G(w, z, z − z∗, z∗n − z∗∗n )F (z∗′, z∗∗n )dz∗∗n

extend holomorphically to {|w − ir/80| < r/320} × {z = 0} for all σ = ±1.

Take the line graph Γσ passing through

cσ + icδ′, σ(3λ)−1 + icδ′, σ(3λ)−1

as the paths of integration. Indeed, these integrals are well-defined for

(w, z) ∈ {|w − ir/80| < r/320} × {z = 0} because Ω includes{
(tω1, . . . ,tωn−1, z

∗∗
n ); z∗∗n ∈ Γσ, 0 ≤ t ≤ 1,

|ω1| ≤ ρ−1ε, . . . , |ωn−1| ≤ ρ−1ε
}

under the conditions (5.45). This proves our claim above.

As a last step of the proof, we eliminate the variable z∗n from the integral

expression (5.43). When we restrict the variables (w, z) to a neighborhood

of {|w − ir/80| < r/320} × {z′ = 0, zn = 3iε/4}, we can deform the path

z∗∗n (θ; t) at (5.44) for z∗∗n to the line graph passing through

−c + icδ′, iε/2, c + icδ′.
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Indeed, this deformation is possible if ε + 2c < 16λ−1 and the following set

is contained in Ω :{
(ω1, . . . , ωn−1, cθ + i(cδ′|θ|+ (1− |θ|)ε/2));

− 1 ≤ θ ≤ 1, |ω1| ≤ ρ−1ε/4, . . . , |ωn−1| ≤ ρ−1ε/4
}
.

Hence, all of these conditions are satisfied under (5.45) because nε/(4ρ) < r′

and

nkε/(4ρ) < cδ′|θ|+ (1− |θ|)ε/2 < r′ (∀|θ| ∈ [0, 1])

⇐⇒
{
nkε/(4ρ) < min{cδ′, ε/2},
max{cδ′, ε/2} < r′.

Since this new path for z∗∗n does not depend on z∗n, we can exchange the

order of integration in the integral (G∗F )c,δ′,ε(w, z) : That is, for any (w, z)

as above, we have

(G ∗ F )c,δ′,ε(w, z)(5.46)

=

∫ c(1+iδ′)

−c(1−iδ′)
dτ

∫
γ
dz∗′F (z∗′, τ)

∫ zn−τ

iε−τ
G(w, z, z′ − z∗′, zn − τ − s, s)ds

=

∫ c(1+iδ′)

−c(1−iδ′)
dτ

∫
γ
F (z∗′, τ)(H(w, z′ − z∗′, zn − τ, zn − τ)

−H(w, z′ − z∗′, zn − τ, iε− τ))dz∗′

Here

H(w, z′ − z∗′, s1, s2) ≡
∫ s2

0
G(w, z, z′ − z∗′, s1 − s, s)ds(5.47)

is holomorphic in

W(6) ≡
{

(w, z, z′ − z∗′, s1, s2) ∈ C× C
n × C

n−1 × C
2; |s2| < 16λ−1,

|w − ir/80| < r/320, Im s2 > −δ|Re s2|, |z| < κ,

|zj − z∗j | > ρ−1 max{|s1 − s2|, |s1|} (j = 1, . . . , n− 1)
}
.

Therefore the second term of (5.46) extends holomorphically to

{|w − ir/80| < r/320} × {(z′, zn); z′ = 0, zn = it (0 ≤ t ≤ 3ε/4)}
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if the following sets are contained in Ω for all t ∈ [0, 3ε/4]:{
(ω1, . . . , ωn−1, cθ + i(cδ′|θ|+ (1− |θ|)ε/2)); −1 ≤ θ ≤ 1,

max
1≤j≤n−1

|ωj | ≤
max{|t− ε|, c|θ|+ |t− (cδ′|θ|+ (1− |θ|)ε/2|}

ρ

}
⊂
{

(ω1, . . . , ωn−1, cθ + i(cδ′|θ|+ (1− |θ|)ε/2));

− 1 ≤ θ ≤ 1, max
1≤j≤n−1

|ωj | ≤
ε + 2c|θ|

ρ

}
Hence these sets are contained in Ω if n(ε + 2c)/ρ < r′ and

nk(ε + 2c|θ|)/ρ < cδ′|θ|+ (1− |θ|)ε/2 < r′ (∀|θ| ∈ [0, 1])

⇐⇒
{
nkε/ρ < ε/2, nk(ε + 2c)/ρ < cδ′,

max{cδ′, ε/2} < r′.

Indeed all these conditions are fullfilled under the conditions (5.45); we

essentially required the tight condition (5.33) for nk(ε + 2c)/ρ < cδ′.
Further we deform the path of integration for the first term of (5.46) to

the line graph passing through

−c + icδ′, zn, c + icδ′.

Then we can extend the first term of (5.46) holomorphically to

{|w − ir/80| < r/320, |z′| < ε, |zn| < ε,

k| Im z′| < Im zn, |Re zn| < ε− Im zn}

by the same estimates of domains with ones for (G ∗ F )c,δ′,ε(w, z); indeed,

the present estimates for domains exactly correspond to the case t = 0 at

(5.43). Consequently the boundary value of∫ c(1+iδ′)

−c(1−iδ′)
dτ

∫
γ
H(w, z′ − z∗′, zn − τ, zn − τ)F (z∗′, τ)dz∗′

coincides with [(E(0) ∗ F )λ,ε(w, x
′, xn + i0)] as a section of COZ in a neigh-

borhood of {|w − ir/80| < r/320} × {(0; idxn)}. On the other hand it is
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clear that

H(w, z, z − z∗′, s, s) =
∑

|α′|≥0,p≥0

K
(p+|α′|+ν+4)
p,α′ (w, z, s)

n−1∏
j=1

αj !

(z∗j − zj)αj+1

is the kernel function for (2πi)n−1U(w, z,Dz)D
−ν−7
zn (see [1]). Thus we have

[(E(0) ∗ F )λ,ε(w, x
′, xn + i0)] =

(2πi)n−1U(w, x,Dx)D
−ν−7
xn ((2πi)1−nDν+7

xn f(x)) = U(w, x,Dx)f(x)

on a neighborhood of {|w − ir/80| < r/320} × {(0; idxn)}. This completes

the proof. �

Remark 5.6. The growth order condition (5.2) for the lower order

terms of
∑0

j=−∞ Uj(w, z, ζ) is the best possible in the following sense: For

any constant k (1 < k < 2) there exists a classical formal symbol U =∑0
j=−∞ Uj(w, z, ζ) satisfying the following (1)−(3):

(1) Uj ∈ O(Wr) (∀j ≤ 0).

(2) For some constants C, µ > 0 we have

|U−p(w, z, ζ)| ≤ Cp+1p!| Imw|−kp−µ|ζ|−p on Wr (∀p ≥ 0).

(3) U(w, x,Dx)δ(xn) does not have a boundary value at (0, 0; idxn) in

microfunctions of (Rew, x) from Imw > 0.

Indeed, we can give an explicit example as follows:

U−p(w, z, ζ) ≡ p!{−i(w/i)k}−p−1ζ−p−1
n ,(5.48)

where p = 0, 1, 2, . . . and | arg(w/i)| < π/2. It is easy to see that the above

conditions 1, 2 are satisfied and that

U(w, x,Dx)δ(xn) =
[ ∞∑
p=0

− 1

2πi
{−i(w/i)k}−p−1zpn log zn

]
=
[ 1

2πi
· log zn
zn + i(w/i)k

]
.
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Here the equalities are valid for sections of COZ over {Imw > ε} ×
{(0; idxn)} with any small positive ε. Then by the following lemma we

get the condition (3) above for U.

The following example is a variant of the example in [12] of second

hyperfunctions:

Lemma 5.7. Let k be a constant satisfying 1 < k < 2. Then the micro-

function f(w, x) =
log(x + i0)

x + i(w/i)k
extends to {(w, x; iηdx) ∈ C× T ∗

R
C; Imw >

0, η > 0} as a microfunction with holomorphic parameter w. However

f(w, x) never has a microfunction boundary value at (0, 0; idx) from Imw >

0.

Proof. Consider a holomorphic function

F1(w, z) =
log z − log{(w/i)k/i}

z + i(w/i)k

defined in {(w, z) ∈ C
2; Im z > 0, π(1 − k−1)/2 < argw < π}, where −π <

arg{(w/i)k/i} < π(k − 1)/2 < π/2. Further set

F2(w, z) = F1(w, z) +
−2πi

z + i(w/i)k
.

Then F2(w, z) ∈ O({(w, z) ∈ C
2; Im z > 0, 0 < argw < π(1 + k−1)/2}).

Hence the extension of f(w, x) is given by

f(w, x) =

{
[F1(w, x + i0)] (π(1− k−1)/2 < argw < π),

[F2(w, x + i0)] (0 < argw < π(1 + k−1)/2)

as microfunctions with holomorphic parameter w. We suppose here that

f(w, x) has a microfunction boundary value at (0, 0; idx) from Imw > 0.

Therefore, we have a holomorphic function G(w, z) defined in {Imw >

0, Im z > 0, |w|+ |z| < ε} with some ε > 0 satisfying

f(w, x) = [G(w, x + i0)]

as sections of microfunctions with holomorphic parameter w in

{(w, x; iηdx) ∈ C× T ∗
RC; |w|+ |x| < ε, Imw > 0, η > 0}.
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Since

0 = {x + i(w/i)k}
(
f(w, x)− [G(w, x + i0)]

)
= [log(x + i0)− {x + i(w/i)k}G(w, x + i0)],

we conclude that

A(w, z) ≡ log z − {z + i(w/i)k}G(w, z)

∈ O({Imw > 0, Im z > 0, |w|+ |z| < ε})

extends holomorphically to {|w| + |z| < ε′, Im z = 0, Imw > 0} with some

smaller ε′ > 0. Therefore by Kashiwara’s theorem on the local version of

Bochner’s tube theorem we can extend A(w, z) to a holomorphic function

Ã(w, z) in

Ω = {|w|+ |z| < ε′′, | Im z| < ε′′ Imw}

for some smaller ε′′ > 0. Set

P (r, θ) = (reiθ, rkei(kθ−π(k+1)/2)) ∈ {(w, z) ∈ C
2; z + i(w/i)k = 0}

for r > 0, 0 < θ < π. We note that P (r, θ) ∈ Ω for any θ ∈ (0, π) with any

sufficiently small r > 0 because k > 1. Therefore H(w) ≡ Ã(w,−i(w/i)k)
is a holomorphic function in

W = {w ∈ C; 0 < argw < π, 0 < |w| < ϕ(argw)}

with a positive valued continuous function ϕ(θ) on (0, π). On the other hand,

we have that

H(reiθ) = A(reiθ, rkeik{θ−π(1+k−1)/2}) = k log r + ik{θ − π(1 + k−1)/2}

for π(1 + k−1)/2 < θ < π, and that

H(reiθ) = A(reiθ, rkeik{θ+π(3k−1−1)/2}) = k log r + ik{θ + π(3k−1 − 1)/2}

for 0 < θ < π(1 − k−1)/2. That is, H(w) − k logw ∈ O(W ) coincides with

2 different constants −π(k + 1)i/2 and −π(k− 3)i/2 in the above domains,

respectively. This contradicts with the connectedness of W . Thus f(w, x)

never have a microfunction boundary value at (0, 0; idx) from Imw > 0. �
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Here we return to our original subject for solving a microdifferential

equation (1.2) in COZ .

Theorem 5.8. We have a system {U (�)(w, z,Dz); % = 1, ...,m} of for-

mal symbols of microdifferential operators defined around
◦
p satisfying the

conditions 1 ∼ 5 in Introduction:

(1) U (1) is a multivalued section of EX over {(w, x; iη) ∈ T ∗
ZX; 0 < |w −

ϕ(x, iη)| < r, |x − ◦
x| < r, |η − ◦

η| < r} for some small r > 0, and

U (�) ∈ EX |◦p for % = 2, ...,m.

(2) U (�)(w, z,Dz) (% = 1, ...,m) commute with w.

(3) P (w, z,Dw, Dz)U
(�)(w, z,Dz) = 0 (mod EX ·Dw) for % = 1, ...,m.

(4) ord(U (�)) = 0 for % = 1, ...,m, and holomorphic functions

{σ0(U
(�))(w, x, iη); % = 1, ...,m} give a complete system of solutions in

{w − ϕ(x, iη) �= 0} of the following linear ordinary differential equa-

tion :

LU :=
( m∑
k=0

σ0(Ak)(w, x, 0, iη)
∂m−k

∂wm−k

)
U = 0

(5) For any microfunction f(x) ∈ CN |ρ(◦p), U (1)(w, x,Dx)f(x) has a mi-

crofunction boundary value at w = ϕ(x, iη); that is, a microfunction

boundary value from any side of any R-conic and real analytic hyper-

surface H of T ∗
ZX passing through K = {w − ϕ(x, iη) = 0}.

Proof. Let H be any R-conic and real analytic hypersurface passing

through K = {w − ϕ(x, iη) = 0} in T ∗
ZX. Then, by Lemma 2.5, we can

reduce the triple (K,H,P ) to the case that K = {w = 0}, H = {Imw = 0}
and P with A0(w, z,Dw, Dz) ≡ w under a quantized contact transformation

S, which preserves COZ and satisfies

S−1(Dw) ∈ EX ·Dw∗ .

Further by taking the multiple of w by some non-zero constant as a new

variable, we can suppose the coefficients Ak(w, z,Dw, Dz) (k = 1, ...,m) are
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defined in some neighborhood of {|w| ≤ 1} × {◦p}. Therefore under the

assumption σ0(A1)(
◦
p) �∈ Z we can construct a system {U (�)

0 ; % = 1, ..., n} of

solutions of LU = 0 satisfying the following:

(1) U
(1)
0 (w, z, ζ) has the following form in a neighborhood of w = 0:

U
(1)
0 (w, z, ζ) = wm−1−A0

1(0,z,ζ)
(
1 +

∞∑
k=1

ck(z, ζ)w
k
)
,

where A0
1(0, z, ζ) = σ0(A1)(0, z, 0, ζ), ck(z, ζ) are holomorphic func-

tions of homogeneous degree 0 with respect to ζ.

(2) U
(�)
0 (w, z, ζ) (2 ≤ % ≤ m) are holomorphic solutions in a neighborhood

of w = 0 such that

∂kwU
(�)
0 (0, z, ζ) = δk,�−2 (0 ≤ ∀k ≤ m− 2).

It is clear that these solutions are of homogeneous degree 0 with respect to

ζ, and that they uniquely extend to the solutions defined in a neighborhood

of {|w| ≤ 1} × {◦p} (for % = 2, ...,m), or a neighborhood of the universal

covering of {0 < |w| ≤ 1}×{◦p} (for % = 1). Therefore by Theorems 4.8, 4.9

we get the formal symbols {
∑0

j=−∞ U
(�)
j ; % = 1, ...,m} of microdifferential

operators satisfying the conditions (1)−(4). Further by Theorem 5.5 we also

get the condition (5) for U (1).

On the other hand, as for the relationship with the original equation,

we know the following: Let S be any quantized contact transformation

satisfying S−1(Dw) ∈ EX · Dw∗ . If the original operator P is transformed

into P ∗ = S−1(P ), for the solutions U (�) of P ∗U = 0 mod EX ·Dw∗ S(U (�))

also become solutions of PU = 0 mod EX ·Dw. Considering Remark 2.6, we

complete the proof. �

As a direct corollary, under the same notation with the preceding theo-

rem we have the following:

Theorem 5.9. Let q = (w′,
◦
x; i

◦
η) (w′ �= ◦

w) be a point of T ∗
ZX suf-

ficiently close to
◦
p, and f(w, x) ∈ COZ |q be a solution of Pf = 0 in a

neighborhood of q. Then there exists uniquely an m-vector

(f1(x), ..., fm(x)) ∈ CmN |(◦x;i◦η)
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of microfunctions of x such that f(w, x) =
∑m

�=1 U
(�)(w, x,Dx)f�(x) in a

neighborhood of q. In particular, f(w, x) extends uniquely to a multi-valued

COZ-soltuion of Pf = 0 around
◦
p with microfunction boundary values at

◦
p.

Proof. We have only to show the following: The matrix(
∂k−1
w U (�)(w′, x,Dx)

)
k,�=1,...,m

of microdifferential operators in EY is invertible at q as a morphism CmN →
CmN . Further this invertibility reduces to that of the matrix(

∂k−1
w σ0(U

(�))(w′, x, iη)
)
k,�=1,...,m

.

Indeed, since σ0(U
(�))(w, x, iη) (% = 1, ...,m) are linearly independent solu-

tions of LU = 0 from each other, we have the invertibility of this matrix.

Thus the proof is complete. �

References

[1] Aoki, T., Kataoka, K. and S. Yamazaki, Construction of kernel functions of
pseudodifferential operators of infinite order. In Actual problems in Mathe-
matical Analysis , Proceedings of the conference dedicated to the seventieth
birthday of Professor Yu. F. Korobeinik”, GinGo Publisher, Rostov on Don,
2000, 28–40.

[2] Aoki, T., Symbols and formal symbols of pseudodifferential operators. In
Group representations and systems of differential equations (Tokyo, 1982),
North-Holland, Amsterdam, 1984, 181–208.
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