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Non-uniqueness in an Overdetermined Cauchy

Problem for the Wave Equation

By Takashi Takiguchi

Abstract. In this paper, we prove non-uniqueness in an overde-
termined Cauchy problem for the wave equation in quasi-analytic ul-
tradistribution category. In our Cauchy problem we give initial values
at one space point. It is an inverse problem to reconstruct the wave
from observation at one space point.

§0. Introduction

In this paper, we study uniqueness in an overdetermined Cauchy prob-

lem 
∂2u

∂t2
− ∆u = 0,

∂αxu|x=x0 = uα(t) for any α,
(0.1)

where ∆ is the Laplacian on R
n, n ≥ 2.

This is an inverse problem to reconstruct the wave from observation at

one space point. This problem was first introduced by L.Ehrenpreis [E],

who called it “the Watergate Problem” for fun. He proved uniqueness in

this problem in distribution category, employing expansion by harmonic

functions. As for uniqueness, F.John [J] also proved it globally with respect

to general real analytic time-like curves. For distribution solutions, another

uniqueness result was proved by M.Nacinovich [N] in a different way.

In this paper, we study this uniqueness in more generalized classes of

functions. In 1993, S.Tanabe and T.Takiguchi [TT] proved that
∂2u

∂t2
− ∆u = 0,

∂αxu|x=x0 = 0 for any α
(0.2)
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would imply that u = 0 in a neighborhood of x = x0 if u is a non-quasi-

analytic (‘NQA’ for short) ultradistribution. In the same paper, they intro-

duced a counterexample by A.Kaneko which yields that uniqueness in this

Cauchy problem does not hold for hyperfunctions.

For uniqueness in the Cauchy problem (0.1), the case where u is a quasi-

analytic (‘QA’ for short) ultradistribution is left open, which we study in

this paper.

§1. Ultradistributions

In this section, we review the definition of ultradistributions. Let Ω ⊂ R
n

be an open subset and Mp, p = 0, 1, · · · , be a sequence of positive numbers.

Definition 1.1. f ∈ E(Ω) = C∞(Ω) is called an ultradifferentiable

function of class {Mp} (resp. (Mp)) if for any compact subset K ⊂ Ω there

exist constants h and C (resp. for any K and for any h > 0 there exists

some C) such that

sup
x∈K

|Dαϕ(x)| ≤ Ch|α|M|α| for all α(1.1)

holds. Denote the set of the ultradifferentiable functions of class {Mp} (resp.

(Mp)) on Ω by E{Mp}(Ω) (resp. E(Mp)(Ω)) and denote by D∗(Ω) the set of

all functions in E∗(Ω) with support compact in Ω, where ∗ = {Mp} or (Mp).

For a compact subset K ⊂ Ω let

D∗
K = {ϕ ∈ D∗(Rn) ; suppf ⊂ K},(1.2)

and we define

D{Mp},h
K = {ϕ ∈ D{Mp}

K ; ∃C such that sup
x∈K

|Dαϕ(x)| ≤ Ch|α|M|α|}.(1.3)

These spaces are endowed with natural structure of locally convex spaces.

For NQA classes, we impose the following conditions on Mp.

(M.0) (normalization)

M0 = M1 = 1.
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(M.1) (logarithmic convexity)

M2
p ≤ Mp−1Mp+1, p = 1, 2, · · · .

(M.2) (stability under ultradifferential operators)

∃G, ∃H such that Mp ≤ GHp min
0≤q≤p

MqMp−q, p = 0, 1, · · · .

(M.3) (strong non-quasi-analyticity)

∃G such that
∞∑

q=p+1

Mq−1

Mq
≤ Gp

Mp

Mp+1
, p = 1, 2, · · · .

(M.2) and (M.3) are often replaced by the following weaker conditions

respectively;

(M.2)′ (stability under differential operators)

∃G, ∃H such that Mp+1 ≤ GHpMp, p = 0, 1, · · · .

(M.3)′ (non-quasi-analyticity)

∞∑
p=1

Mp−1

Mp
< ∞.

We note that if σ > 1 then the Gevrey sequence

Mp = (p!)σ(1.4)

satisfies all the above conditions. For more details about NQA ultradiffer-

entiable functions and NQA ultradistributions confer [Ko1] and [Ko2].

Assume that Mp satisfy (M.0), (M.1) and (M.3)′. We denote by D∗′(Ω)

the strong dual space of D∗(Ω). D∗′(Ω) is called the space of NQA ultradis-

tributions of class ∗ defined on Ω, where ∗ = {Mp} or (Mp). E∗′(Ω) is the

space of compactly supported ultradistributions of class ∗ defined on Ω.

In this paper, we study QA ultradistributions. Let Np, p = 0, 1, · · · , be

a sequence of positive numbers. We impose the following conditions ((QA)

and (NA)) instead of (M.3) or (M.3)′;
(QA) (quasi-analyticity)

Np ≥ p!, p = 0, 1, · · · ,
∞∑
p=1

Np−1

Np
= ∞.
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Let Np be a sequence of positive numbers satisfying (QA). If

lim inf
p→∞

p

√
p!

Np
> 0(1.5)

then E{Np} is the class of analytic functions. We impose the condition that

Np would not define the analytic class, namely,

(NA) (non-analyticity)

lim
p→∞

p

√
p!

Np
= 0.

If the sequence Np satisfies (M.1) and (QA), the sets D(Np) and D{Np}

are {0} (cf. [C]), however, we define the sheaves D∗′ of QA ultradistributions

of class ∗, where ∗ = {Np} or (Np).

For a sequence Mp of positive numbers, we define its associated functions.

For t > 0, let

M̃(t) := sup
k

tk

Mk
,(1.6)

M(t) := sup
k

log
tk

Mk
.(1.7)

M∗(t) := sup
k

tkk!

Mk
.(1.8)

H.Komatsu [Ko1] proved that for Mp satisfying (M.1), (M.2) and (M.3),

it is necessary and sufficient for f ∈ D(Mp)′ (resp. f ∈ D{Mp}′) that

f(x) = F1(x + iΓ10) + · · · + Fm(x + iΓm0),(1.9)

where i :=
√
−1, Γj , j = 1, · · · ,m are open cones in R

n, Fj ∈ O({z ∈
C
n ; z ∈ R

n + iΓj , |Imz| < ∃ε}), j = 1, · · · ,m, for which, for any compact

set K ⊂ R
n there exist constants L and C (resp. for any L > 0 there exists

C) such that

sup
x∈K

|Fj(x + iy)| ≤ CM̃(L/|y|).(1.10)

We apply Komatsu’s idea to define QA ultradistributions.
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Definition 1.2. Let Np satisfy (M.1), (M.2), (QA) and (NA). We

define that f ∈ D∗′ if and only if f is expressed as a boundary value of

holomorphic functions (1.9) with the estimates (1.10).

Note that we have two ways to define E∗′ for QA case, both of which

coincide with each other.

For a function defined on R
n, its Fourier-Laplace transform is

f̂(ζ) :=

∫
Rn

f(x)e−ix·ζdx, ζ ∈ C
n.(1.11)

The Paley-Wiener theorem for NQA ultradistributions are proved by

H.Komatsu (Theorem 1.1 in [Ko2]). We extend this theorem for QA ul-

tradistributions which are not hyperfunctions. Note that the Paley-Wiener

theorem for hyperfunctions are known (Theorem 8.1.1 in [Ka]).

Proposition 1.3 (the Paley-Wiener theorem for ultradistributions).

Assume that a sequence Mp of positive numbers satisfies (M.0), (M.1),

(M.2)′ and (NA). For a compact convex set K ⊂ R
n, the following condi-

tions are equivalent.

i) f̂ is the Fourier-Laplace transform of f ∈ E(Mp)
K

′
( resp. f ∈ E{Mp}

K

′
),

where E∗
K

′ is the set of ultradistributions of the class ∗ whose supports are

contained in K.

ii) There exist L > 0 and C > 0 ( resp. for any L > 0, there exists C > 0)

such that

|f̂(ξ)| ≤ CM̃(L|ξ|), ξ ∈ R
n(1.12)

and for any ε > 0 there exists Cε such that

|f̂(ζ)| ≤ Cε exp(HK(ζ) + ε|ζ|), ζ ∈ C
n(1.13)

where

HK(ζ) := sup
x∈K

(x · Im ζ)(1.14)

is the support function of K.

iii) There exist L > 0 and C > 0 ( resp. for any L > 0, there exists C > 0)

such that

|f̂(ζ)| ≤ CM̃(L|ζ|)eHK(ζ), ζ ∈ C
n.(1.15)
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Proof. Equivalence of i) and ii) and details are discussed in [T].

i) ⇒ iii); Since f ∈ E∗
K

′(Rn) ⊂ E∗′(Rn), there exist constants h and C

(resp. for any h > 0, there is a constant C) such that

| 〈ϕ, f〉 | ≤ C sup
x∈K,α

Dαϕ(x)

h|α|M|α|
, ϕ ∈ E∗(Rn).(1.16)

Let

ϕ(x) = exp(−ix · ζ), ζ = ξ + iη ∈ C
n.(1.17)

Then we have

|f̂(ζ)| ≤ C sup
x∈K,α

|ζ||α|
h|α|M|α|

|e−ix·ξ+x·η| ≤ CeHK(ζ)M̃

( |ζ|
h

)
.(1.18)

iii) ⇒ ii); For any ε > 0 there exists m ∈ N such that

k! ≤ Mk

( ε

L

)k
(1.19)

for k > m by virtue of (NA). Therefore

M(L|ζ|) = sup
k

Lk|ζ|k
Mk

≤ C sup
k

(ε|ζ|)k
k!

≤ Ceε|ζ|.(1.20)

(1.20) and the Paley-Wiener theorem for hyperfunctions (Theorem 8.1.1 in

[Ka]) give ii). �

Remark 1.4. Note that our assumption on Mp is weaker than Theo-

rem 2.2 in [Ko2]. Proposition 1.3 contains Theorem 2.2 in [Ko2], however,

Proposition 1.3 does not mention hyperfunctions because of the assump-

tion (NA). As we mentioned above, for hyperfunctions, the Paley-Wiener

theorem is known.

§2. Summary of the Known Results

In this section, we review the known results on uniqueness for the Cauchy

problem (0.1). As we mentioned in Introduction, this problem was first
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treated by L.Ehrenpreis (cf. [E]). He proved uniqueness in this problem

in distribution category, however, it does not seem that we can find any

printed matter about his method. S.Tanabe and T.Takiguchi proved that

this uniqueness also holds in NQA ultradistribution category. We shortly

review their proof.

Lemma 2.1 (cf. Theorem 2.2 in [TT]). Let Mp satisfy (M.0), (M.1),

(M.2)′ and (M.3)′, f be an ultradistribution of class ∗ defined on R
n, where

∗ = {Mp} or (Mp), and N be a neighborhood of x = 0. Assume

(0;±dxn) �∈ WFA(f),(2.1)

where x = (x′, xn) ∈ R
n, xn ∈ R and WFA(f) is the analytic wave front set

of f . Assume furthermore that the restrictions to {xn = 0} ∩ N of f and

all its derivatives in xn vanish;

∂kxnf |{xn=0}∩N = 0 for all k ∈ N ∪ {0}.(2.2)

Then f = 0 in some neighborhood of x = 0.

This lemma is an extension of J.Boman’s local vanishing theorem for

distributions (cf. [B1]). With this lemma, S.Tanabe-T.Takiguchi proved

uniqueness in (0.1) in NQA ultradistribution category.

Theorem 2.2 (Theorem 6.2 in [TT]). Assume that u is a NQA ultra-

distribution satisfying (0.2). Then u = 0 in some neighborhood of {x = x0}.

The proof of this theorem is too short and easy to omit, which we in-

troduce.

Proof. Without loss of generality, we assume that x0 = 0. Since all

conormals to t-axis at 0 are non-characteristic, we have {(t, x; τ, ξ) | τ =

0, ξ �= 0} ∩WFA(u) = ∅. Therefore Lemma 2.1 gives the theorem. �

The proof of Theorem 2.2 yields a more generalized uniqueness theorem.
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Theorem 2.3. Let P (x,D) be a partial differential operator with QA

coefficients, S ⊂ R
n be a QA submanifold whose conormals are non-char-

acteristic with respect to P . Assume that Mp satisfy (M.0), (M.1), (M.2)′,
(M.3)′ and

(M.1)′ ( stability under compositions )

∃H such that

(
Mq

q!

)1/(q−1)

≤ H

(
Mp

p!

)1/(p−1)

, 2 ≤ q ≤ p.

If for x0 ∈ S and f ∈ D∗′(Rn), where ∗={Mp} or (Mp), P (x,D)f = 0

and that any derivatives along normals to x0 restricted to x0 vanish then

f = 0 in a neighborhood of x0.

The idea to prove this theorem is almost the same as Theorem 2.2,

however, in Theorem 2.3, the wave front set in (2.1) should be replaced by

the QA one. The counterpart of Theorem 2.2 for QA wave front set in (2.1)

is proved by J.Boman [B2].

A.Kaneko proved that there exists a hyperfunction u(t, x) �≡ 0 in a

neighborhood of {x = x0} satisfying (0.2), which implies that uniqueness

in (0.1) does not hold for hyperfunctions (cf. [TT]). We shortly review his

counterexample. Consider the Cauchy problem,
∂2u

∂t2
− ∆u = 0,

u|x1=0 = ϕ(t, x′),
∂u

∂x1

∣∣∣
x1=0

= 0,
(2.3)

where x = (x1, x
′) ∈ R

n, x1 ∈ R. ϕ is a famous counterexample by M.Sato

(cf. Note 3.3 in [Ka]) satisfying

ϕ contains x′ as holomorphic parameters at x′ = 0,(2.4)

∂αx′ϕ|x′=0 = 0 for all α,(2.5)

0 ∈ suppf,(2.6)

where (t, x′) ∈ R
n. Since the equation (0.1) is partially hyperbolic modulo

x′ = 0 and initial data contain x′ as holomorphic parameters, we have a

local hyperfunction solution u (cf. [LK]). Simple calculation yields

∂αx,tu|x=0 = 0, for any α.(2.7)

We modify A.Kaneko’s idea and prove that uniqueness in (0.1) does not

hold for QA ultradistributions neither.



An Overdetermined Cauchy Problem for the Wave Equation 553

§3. Ultradistribution Solution for Partially Hyperbolic Partial

Differential Equations

In this section, we study solvability of partially hyperbolic partial dif-

ferential equations in ultradistribution category. This solvability is one of

the main tools to prove non-uniqueness in the Cauchy problem (0.1) in QA

ultradistribution category.

We denote x = (x1, x
′) = (x1, x

′′, x′′′) ∈ R
n, where x′′ = (x2, · · · , xk+1),

x′′′ = (xk+2, · · · , xn). Let P (D) be an m-th order linear partial differential

operator with constant coefficients and pm(D) be its principal part. We

assume that {x1 = 0} is non-characteristic with respect to P . We consider

the complexification z = x + iy of x ∈ R
n and apply similar notations for

x′′ and x′′′. We put

ΩA := {x′′ ∈ R
k ; |x′′| < A},(3.1)

UA := {z′′′ ∈ C
n−k−1 ; |z′′′| < A},(3.2)

TA := {x1 ∈ R ; |x1| < A}.(3.3)

Let Mp, p = 0, 1, · · · , be a sequence of positive numbers satisfying

(M.0), (M.1) and (M.2)′. We denote by D∗′O(ΩA × UA) the space of ul-

tradistributions of the class ∗ defined on ΩA × UA ⊂ R
k × C

n−k−1 contain-

ing z′′′ ∈ UA as holomorphic parameters. For the definition of hyperfunc-

tions and holomorphic parameters, confer [Ka]. In the same way, we define

D∗′O(TA × ΩA × UA). We apply the same notations for E∗′O.

Our main purpose in this section is to prove the following theorem.

Theorem 3.1. Let P be a partial differential operator defined above.

Assume that the sequence Mp satisfies (M.0), (M.1), (M.2) and (NA).

Then the following conditions are equivalent.

i) For any A > 0, there exist such 0 < a, 0 < B < A that the initial value

problem {
P (D)u(x) = 0,

∂jx1u|x1=0 = uj(x
′′, z′′′), j = 0, 1, · · · ,m− 1,

(3.4)

where uj ∈ E∗′O(ΩA×UA), allows an ultradistribution solution u(x1, x
′′, z′′′)

of class ∗ = (Mp) ( resp. {Mp} ) defined on Ta × ΩB × UB, whose support

is compact in x′′, which contains z′′′ ∈ UB as holomorphic parameters.
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ii) There exist constants β, γ, C, l ( resp. there exist β, γ and for any l

there exists C ) such that

|Imζ1| ≤ β|Imζ ′′| + γ|ζ ′′′| + M(l|ζ ′′|) + C,(3.5)

for P (ζ) = 0.

Proof. The proof of i) ⇒ ii);

By virtue of Holmgren’s uniqueness theorem, the solution to (3.4) is

compactly supported in x′′ when x1 is bounded. Sato’s fundamental theorem

yields that the solution u contains x1 as a real analytic parameter. Hence

u|x1=a′ , (|a′| < a) is defined as an element of E∗′ in x′′. We have a mapping{(
E∗′[K]⊗̂O(UA)

)m →
(
E∗′[L]⊗̂O(UB)

)m
{uj}m−1

j=0 �→ {∂jx1u|x1=a′}m−1
j=0 ,

(3.6)

where |a′| < a, K,L ⊂ R
n are compact and K ⊂⊂ L. E∗′[K]⊗̂O(UA) is the

space of QA ultradistributions, with support in K in x′′, containing z′′′ ∈ UA

as holomorphic parameters. By virtue of Proposition 1.3, E∗′[K]⊗̂O(UA) is

a Fréchet space with the semi-norms

‖v‖K,A′ := sup
ζ′′∈Ck, |z′′′|<A′

∣∣∣v̂(ζ ′′, z′′′) 1

M̃(l|ζ ′′|)
e−HK(ζ′′)

∣∣∣,(3.7)

for A′ < A (for {Mp} class, l > 0 is also a parameter of the semi-norms).

(3.6) is continuous by the closed graph theorem. In fact, our Cauchy

problem (3.4) admits O(L̃)′⊗̂O(UB)-valued solution, where L̃ ⊂ C
k is a

polydisc. This solution depends continuously on the initial data. Therefore

we obtain a continuous inclusion

E∗′[L]⊗̂O(UB) ⊂ O(L̃)′⊗̂O(UB)(3.8)

for L ⊂ L̃. Hence (3.6) has a closed graph.

For ∀B′ < B, there exist A′ < A, C such that

m−1∑
j=1

‖∂jx1
u|x1=a′‖L,B′ ≤ C

m−1∑
j=0

‖uj‖K,A′ .(3.9)
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Let

(u0, · · · , um−1) = (0, · · · , 0, δ(x′′)eiz′′′·ζ′′′),(3.10)

and suppose that v(x1, x
′′, ζ ′′′) be the solution of a Cauchy problem

P (D1, D
′′, ζ ′′′)v(x1, x

′′, ζ ′′′) = 0,

∂jx1v|x1=0 = 0, j = 0, · · · ,m− 2

∂m−1
x1

v|x1=0 = δ(x′′).

(3.11)

As for solvability of (3.11), consider the Fourier-Laplace transform

v̂(x1, ζ
′′, ζ ′′′) of v with respect to x′′ and solve the Cauchy problem{

P (D1, ζ
′′, ζ ′′′)v̂(x1, ζ

′′, ζ ′′′) = 0,

∂jx1 v̂|x1=0 = v̂j(ζ
′′) j = 0, · · · ,m− 1,

(3.12)

for fixed ζ ′′ ∈ C
k, ζ ′′′ ∈ C

n−k−1. Uniqueness of (3.12) implies that the

solution to (3.4) with initial data (3.10) has the form

u(x1, x
′′, z′′′) = v(x1, x

′′, ζ ′′′)eiz
′′′·ζ′′′ .(3.13)

We have

P (D1, D
′′, ζ ′′′)

(
Y (a′ − x1)Y (x1)v(x1, x

′′, ζ ′′′)
)

(3.14)

= (−i)mpm(N)δ(x1)δ(x
′′) +

+ i

m−1∑
k=0

m−k−1∑
j=0

Pj(D
′′, ζ ′′′)(Dm−k−1−j

1 δ(a′ − x1)D
k
1v|x1=a′)

= (−i)mpm(N)δ(x1)δ(x
′′) + fa′(x1, x

′′, ζ ′′′),

where N = (1, 0, · · · , 0), Pj(D
′) is the coefficients of Dm−j

1 in P (D) and fa′

is defined in (3.14).

For (ζ1, ζ
′′) satisfying P (ζ1, ζ

′′, ζ ′′′) = 0, take the Fourier-Laplace trans-

form of (3.14) with respect to x1. Then we have

(−i)mpm(N) + f̂a′(ζ1, ζ
′′, ζ ′′′) = 0.(3.15)



556 Takashi Takiguchi

Since there holds

f̂a′(ζ1, ζ
′′, ζ ′′′) = ie−ia′ζ1

m−1∑
k=0

m−k−1∑
j=0

Pj(ζ
′)ζm−k−1−j

1 D̂k
1v(a

′, ζ ′′, ζ ′′′),(3.16)

we have∣∣∣eia′ζ1 f̂a′(ζ1, ζ ′′, ζ ′′′)∣∣∣ ≤ C(1 + |ζ1| + |ζ ′|)m−1
∣∣∣m−1∑
j=0

D̂j
1v(a

′, ζ ′′, ζ ′′′)
∣∣∣.(3.17)

In view of (3.13), we obtain

sup
ζ1∈C, ζ′′∈Ck, |ζ′′′|≤B′

1

(1 + |ζ1| + |ζ ′|)m−1
×(3.18)

×
∣∣∣eia′ζ1 f̂a′(ζ1, ζ ′′, ζ ′′′) eiz

′′′·ζ′′′

M̃(l|ζ ′′|)eHL(ζ′′)

∣∣∣
≤ C

m−1∑
j=0

∥∥∂jx1
u|x1=a′

∥∥
L,B′

≤ C ′
m−1∑
j=0

∥∥uj∥∥K,A′ = C ′∥∥δ(x′′)eiz′′′·ζ′′′∥∥
K,A′

= C ′ sup
ζ′′∈Ck, |z′′′|<A′

∣∣eiz′′′·ζ′′′∣∣ ≤ C ′eA
′|ζ′′′|.

Assume that L ⊂ {|x′′| ≤ r}. Then

1

(1 + |ζ1| + |ζ ′|)m−1

∣∣f̂a′(ζ1, ζ ′′, ζ ′′′)∣∣e−r|Imζ′′|−B′|ζ′′′|+a′|Imζ1| 1

M̃(l|ζ ′′|)
(3.19)

≤ C ′eA
′|ζ′′′|.

Let ζ = (ζ1, ζ
′′, ζ ′′′) satisfy P (ζ) = 0. It holds that there exists such

C > 0 that

|ζ1| ≤ C(1 + |ζ ′′| + |ζ ′′′|),(3.20)

by the non-characteristic property. Therefore, we obtain

e−r|Imζ′′|−(A′+B′)|ζ′′′|+a′|Imζ1| ≤ CM̃(l|ζ ′′|)(1 + |ζ ′′| + |ζ ′′′|)m−1,(3.21)
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hence

|Imζ1| ≤ β|Imζ ′′| + γ|ζ ′′′| + M(l|ζ ′′|) + C.(3.22)

The proof of ii) ⇒ i);

Fix a compact set K ⊂ ΩA and for a fixed ζ ′′′ ∈ C
n−k−1 let

uj(x
′′, z′′′) = vj(x

′′)eiz
′′′·ζ′′′ , vj ∈ E∗′[K].(3.23)

Consider a Cauchy problem{
P (D1, D

′′, ζ ′′′)v(x1, x
′′, ζ ′′′) = 0,

∂jx1v|x1=0 = vj(x
′′), j = 0, 1, · · · ,m− 1.

(3.24)

The support of the solution to this problem is compact in x′′ if x1

is bounded. Consider the Fourier-Laplace transform in x′′ and we ob-

tain a Cauchy problem (3.12) for an ordinary differential equation. For

l = 0, · · · ,m− 1 there exists a solution to a Cauchy problem{
P (D1, ζ

′′, ζ ′′′)fl = 0,

∂jx1fl|x1=0 = δjl, j = 0, · · · ,m− 1.
(3.25)

By the non-characteristic property we have (3.20) for P (ζ1, ζ
′′, ζ ′′′) = 0. By

Lemma 12.7.7 in [H], the Cauchy problem (3.25) has a unique solution and

|fl(x1, ζ
′′, ζ ′′′)|(3.26)

≤ 2m
(
C(1 + |ζ ′′| + |ζ ′′′|) + 1

)m−l

× exp{(β|Imζ ′′| + γ|ζ ′′′| + M(l|ζ ′′′|) + C)|x1|}.

The solution to (3.12) is given by

v̂(x1, ζ
′′, ζ ′′′) =

m−1∑
j=0

v̂j(ζ
′′)fj(x1, ζ

′′, ζ ′′′).(3.27)

By Proposition 1.3,

|v̂j(ζ ′′)| ≤ CM̃(l|ζ ′′|)eHK(ζ′′).(3.28)
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Let |x1| < β′/β, β′ < β then Proposition 3.6 in [Ko1] gives that there exist

constants H, J such that

|v̂(x1, ζ
′′, ζ ′′′)|(3.29)

≤ C ′(1 + |ζ ′′| + |ζ ′′′|)meβ
′|Imζ′′|eγ|ζ

′′′||x1|e2M(l|ζ′′|)eHK(ζ′′)

≤ C ′(1 + |ζ ′′| + |ζ ′′′|)meγ|ζ
′′′||x1|eM(Hl|ζ′′|)+log Je

HKβ′ (ζ
′′)
,

where

Ka := {y ; |y − x| ≤ a, x ∈ K}.(3.30)

Therefore

|v̂(x1, ζ
′′, ζ ′′′)| ≤ C(1 + |ζ ′′′|)meγ|ζ

′′′||x1|M̃(H ′l|ζ ′′|)eHKβ′ (ζ
′′)
.(3.31)

Hence we obtain the solution v ∈ D∗′ to (3.12) with support Kβ′ in x′′. We

have a dense inclusion{∑
vk(x

′′)eiz
′′′·ζk′′′

; vk ∈ E∗′[K]
}
⊂ E∗′[K]⊗̂O(UA).(3.32)

In fact, assume A = 1 for simplicity. For any f(x′′, z′′′) ∈ E∗′[K]⊗̂O(U1),

we have

f(x′′, z′′′) =
n!

πn

∫
|w′′′|<1

f(x′′, w′′′)

(1 − z′′′w′′′)n+1
|dw′′′|2(3.33)

=
1

πn

∫
|w′′′|<1

f(x′′, w′′′)

(∫ ∞

0
tne−t(1−z′′′w′′′)dt

)
|dw′′′|2

Approximating all the integrands in the right hand side of (3.33) by Rieman-

nian sums yields that the inclusion (3.32) is dense. Note that the solution

depends continuously on the initial data. Hence Theorem 3.1 is proved. �

Remark 3.2. i) The counterparts of Theorem 3.1 for distributions and

hyperfunctions are proved in [LK] in a stronger form. In Lee-Kaneko’s

theorems they do not assume that initial values and solutions are compactly

supported in x′′. For NQA ultradistributions, this extension is possible since

D∗′O is partially soft when ∗ defines NQA class. For QA case, we have to

prove partial flabbiness of D∗′O for this extension, which is left open.
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ii) Note that our proof holds for the case where P is a convolution

operator which acts on QA ultradistributions.

iii) What we claim in Theorem 3.1 is that we have a solution with

holomorphic parameter in ultradistribution category, especially in QA ones.

The author expresses his gratitude to Professors Kiyoomi Kataoka and Akira

Kaneko for having meaningful discussions on the context of this section.

§4. Uniqueness of Functions with Microlocal Analyticity

In this section, we review the results on the following problem.

Problem 4.1. Let f be a function defined in R
n with

(0;±dxn) �∈ WFA(f),(4.1)

where x = (x′, xn) ∈ R
n, xn ∈ R, N be a neighborhood of x = 0. Assume

that the restrictions to S = {xn = 0}∩N of f and all its derivatives vanish,

that is,

∂kxnf |S = 0 for all k ∈ N ∪ {0}.(4.2)

Whether f = 0 in some neighborhood of x = 0 or not?

The answer to this problem is positive when f is a NQA ultradistribution

(cf. Lemma 2.1 above and [TT]) and it is negative when f is a hyperfunction

(cf. [Ka]). As we mentioned in Section 2, it is also known that Problem 4.1

is positively solved even if the wave front set of f in (4.1) is replaced by QA

one, when f is a NQA ultradistribution (cf. [B2]).

In this section, we review J.Boman’s answer to Problem 4.1, when f is

a QA ultradistribution (cf. [B3]). He extended M.Sato’s counterexample

for hyperfunctions to QA ultradistributions and proved that the answer to

Problem 4.1 is negative when f is a QA ultradistribution.

Proposition 4.2 (cf. Proposition 3 in [B3]). There exists a QA ul-

tradistribution f(x′, x′′) on R
n satisfying the following conditions.

f contains x′ as holomorphic parameters at x′ = 0,(4.3)

∂αx′ |x′=0f = 0 for all α,(4.4)

0 ∈ suppf,(4.5)



560 Takashi Takiguchi

where (x′, x′′) ∈ R
n.

M.Sato constructed a hyperfunction satisfying (4.3), (4.4) and (4.5) with

t = x′ ∈ R, x = x′′ ∈ R. He considered polynomials pk(z) which approxi-

mate 1/z in C \ (−∞, 0] uniformly in the wider sense. Then

F (τ, z) :=
∞∑
k=0

pk(z)

k!
τk ∈ O ((C \ (−∞, 0]) × C)(4.6)

is the defining function of the required counterexample

f(t, x) = F (t, x + i0) − F (t, x− i0).(4.7)

(4.7) is the counterexample by M.Sato (cf. [Ka]).

The idea of J.Boman’s extension is the following. Assume that Np sat-

isfies (M.0), (M.1), (M.2)′, (QA) and (NA). Let

E := {z ∈ C ; |z| < 1, Imz �= 0}.(4.8)

Take such polynomials pk(z) which approximate 1/z uniformly in the wider

sense in E that

|F (τ, z)| ≤ CrM
∗
( r

|Imz|
)
,(4.9)

for ∀r > 0, ∃Cr, where F is defined in (4.6). (4.9) yields that (4.7) is a

QA ultradistribution of class {Np} satisfying (4.3), (4.4) and (4.5). It is not

difficult to construct a counterexample in (Np) class applying the inclusion

relation between {Np} and (Np) classes.

§5. The Main Theorem

In this section, we prove that uniqueness in (0.1) does not hold in QA

ultradistribution category, to prove which, Theorem 3.1 and Proposition 4.2

play important roles.

Theorem 5.1. Assume that the sequence Np satisfies (M.0), (M.1),

(M.2), (QA) and (NA). There exists such a QA ultradistribution u(t, x) of

class (Np) or {Np} satisfying (0.2) that u(t, x) �≡ 0 in any neighborhood of

x = x0.
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Proof. For simplicity, let us assume that x0 = 0. Consider the Cauchy

problem 
∂2u

∂t2
− ∆u = 0,

u|x1=0 = ϕ(x′, t),
∂u

∂x1

∣∣
x1=0

= ψ(x′, t) = 0,
(5.1)

where x = (x1, x
′) ∈ R

n and ϕ is a QA ultradistribution satisfying (4.3),

(4.4) and (4.5) with taking t for x′′. It is not difficult to see that (3.5) is

satisfied for P (D) = ∂2
t −∆. By the construction, ϕ is compactly supported

in t. By virtue of Theorem 3.1, the Cauchy problem (5.1) has a local QA

ultradistribution solution u(t, x) near x1 = 0. By (0.1),

∂αx,tu =
∑
β

cβ∂
β
x′,t∂x1u +

∑
γ

cγ∂
γ
x′,tu,(5.2)

where cβ, cγ = 1 or −1. We have

∂αx,tu|x1=0 =
∑
γ

cγ∂
γ
x′,tϕ =

∑
γ′,γ′′

cγ′,γ′′∂γ
′

t ∂γ
′′

x′ ϕ.(5.3)

Restricting both sides to {x′ = 0} gives us

∂αx,tu|x=0 = ∂γ
′

t (∂γ
′′

x′ ϕ|x′=0) = 0,(5.4)

because ∂γ
′′

x′ ϕ|x′=0 = 0. �

Theorem 5.1 completes the study of uniqueness of the Cauchy problem

(0.1).

Remark 5.2. Even in NQA ultradistribution category, uniqueness

does not hold if initial values are restricted to finite order. More strongly,

we construct a counterexample in distribution category. Let m ∈ N. We

have a local distribution solution u(t, x) �≡ 0 to the Cauchy problem
∂2u

∂t2
− ∆u = 0,

∂αxu|x=x0 = 0 for |α| ≤ m.
(5.5)
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In fact, for simplicity, we assume that x0 = 0. Consider the Cauchy problem
∂2u

∂t2
− ∆u = 0,

u|x1=0 = (x2 · · ·xn)m+1g(t),
∂u

∂x1
|x1=0 = ψ(x′, t) = 0,

(5.6)

where g(t) is a distribution of one variable. By Theorem 2 or 3 in [LK],

(5.6) has a distribution solution u(t, x) near x1 = 0. It is easy to show that

∂αxu|x=0 = 0 for |α| ≤ m.

In smoother classes where the counterpart of Theorem 3.1 holds, the

counterpart of Remark 5.2 is proved. For example, C∞, ultradifferential and

analytic classes are those ones. Note also that the argument in this paper ap-

plies to a general linear partial differential equation with analytic coefficients

and a real analytic submanifold whose conormals are non-characteristic.
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