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Extension of Tight Contact Structures

from Tori to Solid Tori

By Jiro Adachi

Abstract. We study tight contact structures on the solid torus
S1×D2. We construct contact structures on the solid torus depending
only on the given characteristic foliations on its boundary torus S1 ×
∂D2. Then, it is shown that tight contact structures on the solid
torus, which admit transverse meridian curves on its boundary torus
with a self-linking number −1 are determined up to an isotopy by their
characteristic foliations on its boundary torus.

0. Introduction

The classification of contact structures on manifolds is a basic prob-

lem for a long time since J. Martinet showed that any closed orientable

3-manifold admits a contact structure (see [Mar]). Ya. Eliashberg intro-

duced two notions, tight and overtwisted structures, for contact struc-

tures on 3-manifolds. It is shown in [El1] that the classification up to iso-

topy of overtwisted oriented contact structures on a compact 3-manifold

coincides with the homotopy classification of oriented tangent plane fields.

Then only the classification of tight contact structures is left to be open.

There are some results for the classifications of tight contact structures on

S1 × R
2, B3,R3, T 3, L(p, q), T 2 × I and so on (see [El2], [El3], [El4], [Et],

[Gi2], [H1], [H2], [K]), but this problem is still open for some manifolds, as

far as the author knows.

In this paper, we study tight contact structures on the solid torus

S1 × D2. S. Makar-Limanov partially classifies up to contact diffeomor-

phism tight contact structures on S1×D2 with “normal” boundaries, under

some conditions in [Mak]. The normal boundary means that the character-

istic foliation on the boundary torus has no singular point and no Reeb
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component (see [Mak] for the definition). An isotopy classification of tight

contact structures in a wider class is considered in this paper. We treat

tight contact structures on S1 × D2 for which the characteristic foliations

on S1 × ∂D2 may have singular points satisfying some conditions (see the

statement of Theorem A). Recently K. Honda and E. Giroux classify tight

contact structures on the solid torus from another point of view (see [H1],

[H2], [Gi3]). Their methods give the 3-dimensional contact topology a re-

markable progress. Their methods are based on the theory of convex sur-

faces developed by E. Giroux in [Gi1]. They observed dividing curves on

those surfaces, where contact planes are vertical. Those represent the situ-

ations of contact structure near the surfaces well, and are flexible. In this

paper, we observe carefully characteristic foliations themselves. They are

very sensitive and rigid, in a sense. Our approach would give another point

of view to understanding tight contact structures. The result of this paper

can not be induced from their statement immediately.

Our and the other results are affected by the following classification

theorem for tight contact structures on the 3-ball B3 in [El3].

Theorem (Eliashberg). Tight contact structures on the 3-ball B3

which induce the same characteristic foliation on the boundary sphere ∂B3

are isotopic relatively to the boundary each other.

The argument of S. Makar-Limanov in [Mak] is also based on this. He

showed a version of the above theorem for balls with transverse corners,

and reduced the problem for tight contact structures on the solid torus to

it. We consider a version of the above theorem for tight contact structures

on solid tori. The above Theorem is proved by the method of extending tight

contact structures from the sphere to the ball in [El3]. Similarly, we consider

extending tight contact structures from the torus to the solid torus, and

classifying tight contact structures on S1 ×D2. However, some difficulties

arise when we treat contact structures on the solid torus. Meridian curves on

the boundary torus which are transverse to the contact structure may have

several values of self-linking number as transverse knots. This implies that

there exist tight contact structures on S1 ×D2 with the same characteristic

foliation on its boundary S1×∂D2, but which are not isotopic to each other.

In this paper, we first consider a simple case when there exists a transverse

meridian curve on the boundary torus, with self-linking number −1. Then
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it is proved that such tight contact structures on the solid torus depends

only on their characteristic foliations on the boundary torus.

First of all, we review several basic notions in order to state the results.

A contact structure on a 3-manifold is a completely non-integrable tan-

gent plane field. The complete non-integrability implies that this tangent

plane field is defined, at least locally, by a 1-form α which satisfies the in-

equality α ∧ dα �= 0 everywhere. The sign of the form α ∧ dα depends

only on the contact structure. Then it defines an orientation of the base

manifold. When the base manifold is oriented, we can distinguish whether

the contact structure is positive or negative. In this paper, we treat only

positively oriented contact structures.

Let F be an embedded surface in a contact 3-manifold (M, ξ). The

contact structure ξ traces on F a 1-dimensional singular foliation. Such a

foliation is called the characteristic foliation on F with respect to ξ, and

Fξ denotes it. When ξ = {α = 0} and F are oriented, Fξ is oriented by

the vector field X on F which satisfies X�volF = i∗α, where volF is a vol-

ume form of F , and i : F ↪→ M is the inclusion mapping. Generically, the

characteristic foliation Fξ has a finite number of singular points where F is

tangent to ξ. A singular point is called positive or negative depending on

whether the orientations of F and ξ coincide at the point or not. Generi-

cally, the index of the vector field which defines the characteristic foliation

locally at a singular point is ±1. We call a singular point elliptic if its

index is +1, and hyperbolic if it is −1. Because of the non-integrability of

contact structures, the characteristic foliation Fξ has topologically the focus

type singularity at elliptic points, and Fξ has the saddle type singularity at

hyperbolic points. These singularities are called simple singularities.

A contact structure ξ is called tight if for any embedded disc D ⊂ (M, ξ)

the characteristic foliation Dξ has no limit cycle. A contact structure which

is not tight is called overtwisted (see [El3]). In this paper, a tight contact

structure ξ defined near S1 × ∂D2 ⊂ S1 ×D2 means that the characteristic

foliation Dξ defined near ∂D has no limit cycle for any embedded disc D ⊂
S1 ×D2.

A closed immersed oriented curve γ : S1 → (M, ξ) is called positively

(resp., negatively) transverse to ξ if γ∗α(∂/∂θ) is positive (resp., negative),

where ∂/∂θ gives the positive orientation of S1. For transverse knots a

transverse isotopy invariant is defined (see [B], [El3], [El5]). Let Γ be a
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transverse knot in a contact manifold (M, ξ) which is homologous to zero.

Fix a relative homology class β ∈ H2(M,Γ). Let F be a surface bounded

by Γ which represents β : [F ] = β ∈ H2(M,Γ). Let ν be a non-vanishing

vector field tangent to ξ|F . Then ν is transverse to Γ, and we can perturb

Γ slightly along ν to a curve Γ′. We define l(Γ|β) to be the intersection

number of Γ′ and β. It is well defined and we call it the self-linking number

of Γ with respect to β. We note that this invariant is independent of the

orientation of knots.

The results of this paper are the following.

Theorem A. Let ξ be a germ of a tight contact structure on the solid

torus S1×D2 along the boundary torus S1×∂D2. We suppose that singular

points of the characteristic foliation (S1 × ∂D)ξ are simple and that closed

orbits are a finite number of limit cycles which are isotopic to each other

by orientation preserving isotopies. Then ξ can be extended, to a contact

structure ξ̃ on S1×D2, for which there exists a transverse meridian curve C

in S1×∂D2 with self-linking number l(C) = −1. This construction depends

only on the characteristic foliation on S1 × ∂D2.

Moreover, the following theorem implies that contact structures on the

solid torus S1 × D2 with a transverse meridian C ⊂ S1 × ∂D2 of self-

linking number l(C) = −1 depend only on their characteristic foliation on

S1×∂D2. It is also proved by S. Makar-Limanov in [Mak], in the case when

the boundaries are normal with a different method.

Theorem B. Let ξ0, ξ1 be tight contact structures on the solid torus

S1 ×D2 with the same characteristic foliation F = (S1 × ∂D2)ξ0 = (S1 ×
∂D2)ξ1 on the boundary torus. Suppose that a positively transverse meridian

curve C exists in S1×∂D2, which self-linking number is l(C) = −1 for both

of ξ0 and ξ1. Then ξ0 and ξ1 are isotopic relatively to S1 × ∂D2.

In the following section we study the taming functions for characteristic

foliations on a 2-torus. The taming function on a 2-sphere were studied by

Ya. Eliashberg in [El3]. The S1-valued taming function for a characteristic

foliation on a 2-torus is defined in this section. The taming function inher-

its some properties of the characteristic foliation (see Section. 1.1 for the

definition).
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Section 2 is devoted to the extension of tight contact structures from

S1 × ∂D2 to S1 ×D2. A tight contact structure on S1 ×D2 with a trans-

verse meridian of self-linking number −1 is constructed depending only on

the characteristic foliation on S1 × ∂D2. We obtain a germ of strictly pseu-

doconvex embeddings of S1 × D2 along S1 × ∂D2 into C
2 with respect to

the standard complex structure J0. The contact structure induced by com-

plex tangencies of the above germ induce the same characteristic foliation

on S1 × ∂D2 as the given one. We show Theorem A in this section.

Theorem B is proved in Section 3. The condition on self-linking numbers

of transverse meridians is essential for the proof. We show that there exists

a family of strictly pseudoconvex embeddings for a family of characteristic

foliations satisfying certain conditions. Thus there exists a family of contact

structures on S1 ×D2 for a family of characteristic foliations on S1 × ∂D2.

Then we show that all contact structures having the same characteristic

foliation and a positively transverse meridian with self-linking number −1

is path connected.

Acknowledgement . This article was established while the author visited

at Hokkaido University. The author would like to express his gratitude to

Professor Goo Ishikawa for the hospitality and encouragements.

1. Taming Function

1.1. Definition of the taming function

Let S1×D2 be a solid torus embedded into a contact 3-manifold (M, ξ),

and T := S1 × ∂D2 its boundary. Let X be a vector field generating the

characteristic foliation Tξ. We assume that X has a finite number of singular

points which are simple or of “birth-death” type.

Definition. We say that an S1-valued function f : T → S1 tames the

characteristic foliation Tξ if the following properties are satisfied.

(1) The generating field X is gradient like. In other words, the inequality

df(X) ≥ ε · ‖df‖2 holds for a positive constant ε and a Riemannian

metric on T . The singularities of X coincide with the critical points

of f in particular.

(2) Positive (resp., negative) elliptic points of Tξ are local minima (resp.,

maxima) of f .
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(3) When we pass through a critical value of f corresponding to a hyper-

bolic point in the positive direction of S1, the number of connected

component of f increases (resp., decreases) if the point is negative

(resp., positive).

We call a taming function f : T → S1 of Tξ the �-taming function if it

has the following properties,

• there is a longitude curve l ⊂ T where f is monotone,

• there is a regular value a ∈ S1 of f which level set f−1(a) is a meridian

curve C ⊂ T .

In the following of this paper, we consider only �-taming functions, and

suppose a = [0] ∈ S1.

1.2. Existence of taming functions

The following proposition guarantees the existence of a taming function

for certain characteristic foliations.

Proposition 1.1. Let S1 ×D2 be a solid torus embedded into a tight

contact 3-manifold (M, ξ) and T := S1 × ∂D2 its boundary. Suppose that

singular points of Tξ are elliptic or hyperbolic. In addition, we suppose that

all closed leaves of Tξ have the same orientation if they exist. Then, there

exists an �-taming function f : T → S1 for Tξ.

To prove this proposition, we need the following lemmas. First, we

introduce the Elimination Lemma which is a result due to E. Giroux in an

improved version by D. Fuchs (see [Gi1], [El3]).

Lemma 1.2 (Elimination Lemma). Let F be an embedded surface in a

contact 3-manifold (M, ξ), and p, q ∈ F be elliptic and hyperbolic points of

Fξ with the same sign. If there is a trajectory γ of Fξ joining p and q, then

there exists a C0-small isotopy ht : F → (M, ξ), t ∈ [0, 1], which has the

following properties.

(1) ht is the identity on γ and outside a neighborhood U of γ.

(2) h0 = id .
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Figure 1.

(3) The characteristic foliation F̃ξ on F̃ := h1(F ) has no singular point

in F̃ ∩ U .

(see Fig.1)

The converse of this lemma is easily shown. This means that it is easy

to create singular points (see [El3]).

Lemma 1.3. By a C0-small isotopy of the embedded surface near a

non-singular point, a pair of elliptic and hyperbolic singular points with the

same sign can be created.

S. Makar-Limanov studies in [Mak] characteristic foliations on a torus

T embedded in a tight contact 3-manifold (M, ξ).

Lemma 1.4. T can be deformed by a C0-small isotopy ht : M → M

so that h1(T ) is normal, that is, h1(T )ξ is non-singular and without Reeb

components.

We note that singular points are canceled by the Elimination Lemma 1.2.

The following lemma is essential for the proof of Proposition 1.1. This

shows the nature of the characteristic foliations on a 2-torus for tight contact

structures. This lemma treats not only generic case but also non-generic

case for the later use.

Lemma 1.5. Let T = S1×∂D2 be the 2-torus which is the boundary of

a solid torus embedded into a tight contact 3-manifold (M, ξ). We suppose

that singular points of Tξ are elliptic or hyperbolic, and there is at most one

separatrix connection between hyperbolic points. In addition, we suppose

that all closed leaves of Tξ have the same orientation if they exist. Then,
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there exists a meridian curve C in T which is transverse to ξ. Moreover by

a C0-small perturbation of T fixing a neighborhood of C, all singular points

of Tξ can be canceled.

We note that there are transverse meridians which can not be fixed when

singularities are eliminated. It is important for the following arguments that

we can eliminate all singular points fixing a transverse meridian curve.

Proof. First, we consider the case when T is generic, that is to say,

Tξ has no separatrix connecting two hyperbolic points. By Lemma 1.4, we

obtain a normal foliation F on perturbed T . We note that F never admits

meridian closed orbit because of the tightness of ξ. Then we can take a

meridian curve C on T which is transverse to F . Recall that F is obtained

from Tξ by the Elimination Lemma 1.2. The support of the corresponding

C0-small perturbation is contained in an arbitrary small neighborhood of

trajectories of Tξ joining elliptic and hyperbolic points with the same sign.

Then, Tξ can be obtained from F by Lemma 1.3. If the above curve C

intersects the support, we can replace C not to intersect it. In fact, as the

foliation is trivial sufficiently near the support, the replacement can be done

preserving transversality to the foliation (see Fig.2). After all, we obtain a

meridian curve C transverse to Tξ, which does not intersect the supports of

the perturbation of eliminations.

Next, we consider the non-generic case. There are separatrices connect-

ing hyperbolic points. We have supposed that there is exactly one separatrix

connecting two hyperbolic points. There are the following four cases.

(1) The separatrix is unstable for the positive hyperbolic point and stable

for the negative one.

(2) The separatrix is stable for the positive hyperbolic point and unstable

for the negative one.

(3) The separatrix connects two positive hyperbolic points.

(4) The separatrix connects two negative hyperbolic points.

Other separatrices of these connected hyperbolic points are connected with

elliptic points or go to limit cycles. If either of these hyperbolic points are

connected with an elliptic point with the same sign, this connection between
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Figure 2.

hyperbolic points are canceled by the Elimination Lemma 1.2. Then, we

can apply the same argument as the generic case above. Therefore we have

only to consider the cases that the stable separatrices of positive hyperbolic

points come from limit cycles (repellers), and that the unstable separatrices

of negative hyperbolic points go to limit cycles (attractors). We are going

to show that these cases would not occur.

Let us consider in each case. First, we consider Case (1). According to

the tightness of ξ, closed leaves of the characteristic foliation Tξ are non-

nullhomotopic and belong to the same torus knot class. Then we consider

an annulus which boundaries are an attractor and a repeller. Stable sepa-

ratrices of the positive hyperbolic point must come from the same repeller.

By applying Lemma 1.3 near this repeller, these separatrices come from the

same positive elliptic point. An closed orbit is obtained by the Elimination

Lemma 1.2. This contradicts the tightness. Thus this case never occurs.

(see Fig.3) We can prove that the other cases never occur in similar ways.

We can find the situation where both of the stable (unstable) separatrices

of a hyperbolic point come from (reach to) the same repeller (attractor), by

breaking a separatrix connection between hyperbolic points if necessary. �

It was shown by Ya. Eliashberg in [El3] that there exists an R-valued

taming function f : S2 → R for a 2-sphere S2 embedded into a tight contact

3-manifold (M, ξ) if all singular points of S2
ξ are elliptic or hyperbolic. We

can prove Proposition 1.1 by reducing the problem to this case.

Proof of Proposition 1.1. Let T := S1 × ∂D2 be the boundary of

an embedded solid torus in a tight contact 3-manifold (M, ξ). There exists
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a meridian curve C ⊂ T transverse to Tξ, according to Lemma 1.5. Then we

can take a sufficiently small tubular neighborhood N ⊂ T of γ with respect

to the characteristic foliation Tξ, that is, N is diffeomorphic to S1 × [0, 1]

and leaves of Nξ correspond to fibres {x}× [0, 1]. Let S± be the components

of ∂N where trajectories of Nξ look inwards or outwards respectively. We

set A := T \ N . It is an embedded open annulus. We consider a singular

foliation F on a 2-sphere S2 obtained as follows. Let p± ∈ S2 be the north

and south poles. We can identify S2 \{p+, p−} with the annulus A = T \N .

The foliation F is identified with Aξ on S2 \ {p+, p−}. The points p± are

considered to be elliptic points of F . We note that this singular foliation

F on S2 determines a germs on tight contact structure. In fact, we can

eliminate all singular point of Aξ fixing both ends, according to Lemma 1.5.

Then we can apply the argument of Eliashberg in [El3] to the foliation F
on S2. We obtain a taming function f̃ : S2 → R for F , which satisfies

f̃(p+) = 2π − ε, f̃(p−) = ε for some small ε > 0. From this function, we

obtain a taming function f : A → R for Aξ, which satisfies f(S+) = 2π − ε,

f(S−) = ε. Last of all, by extending f to N , we obtain an S1-valued taming

function for Tξ, f : T → S1, which satisfies that f(C) = [0] = [2π] ∈ S1.

We note that the meridian curve C is the unique component of a level set

f−1([0]), from the construction. Further, there exists a segment l ⊂ T \N
connecting two boundary components of ∂(T \N), where f is monotone,

according to the construction. Since the characteristic foliation Nξ is trivial

and f is monotone on each leaf, the segment l is extended to a closed curve

l ⊂ T so that l is a longitude of T and that f is monotone on l. Thus we

show that f is the required �-taming function. �



Extension of Tight Contact Structures 531

1.3. Existence of families of taming functions

The main result of this section is the following.

Proposition 1.6. Let T := S1 × ∂D2 be the boundary of a solid torus

embedded into a 3-manifold M . Let {ξt}t∈[0,1] be a smooth family of tight

contact structures defined near S1 × ∂D2, which satisfy that all closed or-

bits of the characteristic foliation Tξt have the same orientation if they exist.

Suppose that there exist a finite number of values 0 < t1 < t2 < . . . < tn < 1,

and a finite number of disjoint closed intervals I1, I2, . . . , Ik ⊂ [0, 1], which

satisfy that Tξt is generic for t ∈ [0, 1] \ ({t1, t2, . . . tn} ∪ I1 ∪ I2 ∪ . . . Ik).

In addition, we suppose that the characteristic foliation Tξt admits either a

“birth-death” type singular point or a separatrix connection between hyper-

bolic points for t = t1, t2, . . . , tn, and that Tξt is normal for t ∈ int Ij , j =

1, 2, . . . , k and each interval contains a point at which Tξt is not generic.

Then, for any two S1-valued functions f0, f1 : T → S1 which tame

Tξ0 , Tξ1 respectively, there exists a family of S1-valued taming functions

{ft}t∈[0,1] including the above f0 and f1, each of which tames Tξt for all

t ∈ [0, 1].

A similar result for S2 = ∂D3 is proved by Ya. Eliashberg in [El3]. The

proof of the proposition above is parallel to the arguments in [El3]. The

following lemma is a key for the proof of this proposition in the case for a

torus.

Lemma 1.7. Let ξ be a tight contact structure defined near S1 × ∂D2.

Suppose that all singular points of Tξ = (S1×∂D)ξ are non-degenerate. Let

f0, f1 be two taming functions for the same Tξ. Then, there exists a smooth

family of taming functions {ft}t∈[0,1] for Tξ containing f0, f1.

Proof. We will prove that any taming function for a characteristic

foliation can be deformed, as taming functions, to the same one. Let f

be a taming function for Tξ. Fix a regular value [0] ∈ S1 of f . We may

suppose that the level set f−1([0]) is a meridian curve on T by homotopy

among taming functions. Suppose that Im f ⊂ (0, 2π) in the complement

of this meridian. We note that all taming functions for Tξ have the same

critical points. Therefore, taming functions for Tξ with a fixed regular value

[0] ∈ S1, for which the level set is a meridian curve, are homotopic among
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taming functions if they have the same ordering of corresponding critical

value. Let c1 < c2 are consecutive critical values. If c2 corresponds to a

positive elliptic point, we can change the order of critical values of critical

points corresponding to c1 and c2 by a homotopy among taming functions,

whichever type a critical point corresponding to c1 may have. In fact, we

can make a critical value corresponding to a positive elliptic point arbitrary

small by a homotopy among taming functions, because taming functions

have positive elliptic points as their minimal points. In the case when c1
corresponds to a negative elliptic point, we can change the order similarly.

Then we can arrange the function f so that it has critical values correspond-

ing to positive and negative elliptic points near [0] and [2π] respectively, and

those corresponding to hyperbolic points between them. We can exchange

the order of critical values corresponding to hyperbolic points unless they

are connected by separatrices. Eventually, we obtain the same ordering of

critical values.

The homotopy class in taming functions is independent of the choice of

a fixed regular value, or a transverse meridian curve. In fact, although the

change of the regular value alter the order of critical points, we can adjust

it in the same manner mentioned above. �

The existence of a taming function for a characteristic foliation, with

respect to a tight contact structure, on a sphere are proved by Ya. Eliashberg

in [El3]. The following elementary lemmas, which he use, are valid in the

case of a torus.

Lemma 1.8. Let ξ be a contact structure defined near T = S1×∂D2 ⊂
M , and f : T → S1 a taming function for Tξ. Suppose that the contact

structure ξ̃ is sufficiently C0-close to ξ and coincides with ξ near singular

points of Tξ. Then, f is also a taming function for Tξ̃.

Lemma 1.9. Let {ξt}t∈[−1,1] be a family of contact structures near T ,

which satisfies that Tξt is generic for t �= 0, and that Tξ0 has a “birth-death”

type singular point p ∈ T and Tξt are isomorphic outside an arbitrary small

neighborhood of p in T for all t ∈ [−1, 0]. If the characteristic foliation Tξ−1

admits a taming function f , then there exists a smooth family of functions

{ft : T → S1}t∈[−1,1] which satisfies that ft tames Tξt for each t ∈ [−1, 1]

and f−1 = f .
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Now, we are ready to prove the main result of this section. Proposi-

tion 1.6 can be proved in a similar manner as in [El3]. In order to make this

paper reasonably self-contained, we give an outline of the proof.

Proof of Proposition 1.6. We construct the family of taming func-

tions near t = t1, . . . , tn. First, suppose that Tξtj has a separatrix connec-

tion between hyperbolic points for t = tj . There is a taming function ftj for

Tξtj according to Proposition 1.1. Then, on account of Lemma 1.8, there is

a family of taming functions {ft}t for Tξt defined for t close to tj , which in-

cludes ftj . Next, suppose that Tξtk has a “birth-death” type singular points

for t = tk. There exists a family of taming functions {ft}t for Tξt defined

for t close to tk, including ftk according to Lemma 1.9.

It is clear that a non-singular taming function exists for a normal char-

acteristic foliation. Moreover, there exists a family of non-singular taming

functions for a family of normal characteristic foliations. Then, there exists

a family of taming functions {ft}t for Tξt on t ∈ Ij .

We may assume that there exists a transverse meridian C ⊂ T for a given

open interval (ti, ti+1), that is, C is transverse to ξs for any s ∈ (ti, ti+1). Let

A ⊂ T be an annulus obtained as a complement of a tubular neighborhood

of C, in the same way as in the proof of Proposition 1.1. If a taming

function fs for s ∈ (ti, ti+1) is given, there is a family of taming functions

{f t}t∈[ti,ti+1] on A including fs|A because Aξt are equivalent topologically for

all t ∈ (ti, ti+1). We can easily extend it to a family of taming functions on T .

Moreover, by Lemma 1.7, there is a family of taming functions {ft}t∈[ti,ti+1]

containing fs1 , fs2 for given two taming functions fs1 and fs2 for Tξs1 and

Tξs2 , s1, s2 ∈ (ti, ti+1). Thus we can extend the family of taming functions

for all t ∈ [0, 1]. �

2. Extension of Contact Structures from the Torus to the Solid

Torus

In this section, we prove Theorem A. We consider constructing contact

structures on a solid torus S1 × D2 from generic characteristic foliations

on its boundary torus which satisfy the condition of Theorem A. In this

case, there exist the taming functions for the given characteristic foliation

from Proposition 1.1. Moreover, we construct a smooth family of contact

structures for a smooth family of pairs of characteristic foliations and their
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taming functions. To be precise, we construct smooth family of strictly

pseudoconvex embedding of S1 × D2 into C
2. As a corollary, it is proved

that the constructed contact structures depend only on their characteristic

foliations because Lemma 1.7 guarantees the existence of a family of taming

functions for a characteristic foliation. This implies Theorem A. At the end

of this section, we check the self-linking number of a transverse meridian.

First, we recall some fundamental notions. Let (W,J) be a real 4-

dimensional almost complex manifold with an almost complex structure

J , and M ⊂ W a real hypersurface. Then M admits a tangent plane field

ζ formed by its complex tangency: ζ := TM ∩ J(TM). Suppose that M is

oriented. This 3-manifold is said to be strictly pseudoconvex (J-convex) if ζ

is a positive contact structure on M . Let φ : M → (W,J) be an embedding

which image φ(M) ⊂ (W,J) is a strictly pseudoconvex hypersurface. This

embedding is also called the strictly pseudoconvex embedding. Let ct(φ)

denote the contact structure (φ−1)∗{T (Imφ)∩ J(T (Imφ))} on M , which is

the pull back of the contact structure constructed by complex tangency of

φ(M) ⊂ (W,J).

The main result of this section is formulated as follows. Let (C2, J0)

be a complex 2-plane with the standard complex structure. Its coordinate

is given as (z1, z2) =
(
r1· exp(

√
−1θ1), r2· exp(

√
−1θ2)

)
∈ C

2. We identify

S1 × R
2 with Kc := {r2 = c} ⊂ C

2 for some constant c > 0. We set

pr : C
2 \ {r2 = 0} → S1 the projection to θ2-elements; (r1, θ1, r2, θ2) �→ θ2,

and p : C
2 → R the projection to r2-elements; (r1, θ1, r2, θ2) �→ r2.

Proposition 2.1. (a) Let (f,F) be a pair of a singular foliation F
on T = S1 × ∂D2 and its taming function f : T → S1. Then there exists a

strictly pseudoconvex embedding ϕ : S1 ×D2 → C
2 \{r2 = 0} which satisfies

• ϕ(S1 × ∂D2) ⊂ Kc, for sufficiently small constant c > 0,

• p ◦ ϕ(S1 × intD) > c,

• Imϕ is contractible to {r1 = 0, r2 = 1} in C
2 \ {r2 = 0},

• (S1 × ∂D2)ct(ϕ) = F ,

• pr ◦ ϕ|S1×∂D2 = f .

(b) Let {Ft = (ft,Ft)}t∈[0,1] be a smooth family of pairs of singular foliations

Ft on T = S1 × ∂D2 and their taming functions ft : T → S1. Suppose that
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two strictly pseudoconvex embeddings ϕ0, ϕ1 : S1×D2 → C
2\{r2 = 0} satis-

fying the above condition for F0, F1, are given. Then, there exists a family of

strictly pseudoconvex embeddings
{
ϕt : S

1 ×D2 → C
2 \ {r2 = 0}

}
t∈[0,1]

con-

taining the above ϕ0, ϕ1, which satisfies the following properties,

• (S1 × ∂D2)ct(ϕt) = Ft,

• pr ◦ ϕt|S1×∂D2 = ft,

for all t ∈ [0, 1].

To prove the Proposition above, we prepare the following lemmas.

Lemma 2.2. Let {ft : S1 × ∂D2 → S1}t∈[0,1] be a family of S1-valued

functions which satisfies that singular points of each function ft are non-

degenerate or of “birth-death” type, and that there are meridian curves Ct ⊂
S1 × ∂D2 which are unique components of f−1([0]) and longitude curves

lt ⊂ S1 × ∂D2 where ft are monotone. Suppose that there are two given

embeddings ψ0, ψ1 : S1×D2 → S1×R
2 which satisfy the following conditions,

• pr ◦ ψi|S1×∂D2 = fi,

• The vector ∂/∂θ2 is the normal vector looking inwards (resp.,

outwards) at positive (resp., negative) singular points of fi,

for i = 0, 1, where θ2 is the first coordinate of S1 × R
2. Then there exists a

family of embeddings {ψt : S1 ×D2 → S1 × R
2}t∈[0,1] containing the above

ψ0, ψ1, and satisfying the following properties for all t ∈ [0, 1].

• pr ◦ ψt|S1×∂D2 = ft.

• The vector ∂/∂θ2 is the normal vector looking inwards (resp.,

outwards) at positive (resp., negative) singular points of ft.

Proof. It is proved in a way similar to that used by Ya. Eliashberg in

[El3]. Let Γft be the graph constructed by identifying a component of level

set of ft with a point. ft induces a function ft : Γft → S1 on this graph. Then

there exists a family of embeddings {ψt : Γft → S1×R
2}t∈[0,1] which satisfies

pr ◦ ψt = ft. By taking a regular neighborhood of ψt(Γft) ⊂ S1 × R
2, we

obtain a family of embeddings {ψt : S1×D2 → S1×R
2}t∈[0,1] which satisfies
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the required condition. The space of embeddings ψ : S1 × D2 → S1 × R
2

satisfying the condition of the lemma for one function f : S1 × ∂D2 → S1

is connected. In fact, we need not to care the knot classes because of the

conditions of the functions ft mentioned in this lemma. Thus we can take

a family {ψt}t∈[0,1] which contains the given functions ψ0, ψ1. �

Lemma 2.3. Let {(ψt,Ft)}t∈[0,1] be a family of pairs of embeddings

ψt : S
1 × D2 → S1 × R

2 = Kc ⊂ C
2 and characteristic foliations Ft on

T = S1 × ∂D2 which are tamed by pr ◦ ψt|S1×∂D2 for each t ∈ [0, 1]. Then

there exists a family of 1-forms {αt ∈ ST ∗
C

2}t∈[0,1] defined on ψt(S
1×∂D2),

which defines hyperplane fields kerαt satisfying the followings,

Tp
(
ψt(S

1 × ∂D2)
)
∩ {kerαt ∩ J0(kerαt)}p = Tp(ψt∗Ft)

at each non-singular point p ∈ ψt(S
1 × ∂D2) of ψt∗(Ft), and

Tp
(
ψt(S

1 × ∂D2)
)

= {kerαt ∩ J0(kerαt)}p

at each singular point of Ft.

Proof. Let Xt be a vector field on T = S1 ×∂D2 defining the charac-

teristic foliation Ft. A hyperplane field kerαt is determined by the following

relations,

ψt∗(Xt)p ∈ (kerαt)p ∩ J0(kerαt)p

for non-singular points p ∈ ψt(S
1 × ∂D2), and

(kerαt)p ∩ J0(kerαt)p = Tp
(
ψt(S

1 × ∂D2)
)

for singular points. Then we obtained a differential 1-form αt up to multi-

plications of non-vanishing functions. �

Lemma 2.4. Let {ψt, ϕ∂t }t∈[0,1] be a family of pairs of embed-

dings ψt : S
1 ×D2 → S1 ×R

2 = Kc ⊂ C
2 as in Lemma 2.2 and embeddings

ϕ∂t : S1 × ∂D2 × [0, ε) → C
2 for a small ε > 0 which satisfy the following

properties for each t ∈ [0, 1],

• ϕ∂t |S1×∂D2×{0} = ψt|S1×∂D2,

• p ◦ ϕ∂t |S1×∂D2×(0,ε) > c,
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• Imϕ∂t ⊂ (C2, J0) is strictly pseudoconvex with respect to the orienta-

tion which has ∂(Imϕ∂t ) as the standardly oriented tori in S1 × R
2 =

Kc,

where p : C
2 → R is the projection to the r2-elements. Then there exists

a family of pairs {(ψt, ϕt)}t∈[0,1] which consists of the above embeddings ψt
and embeddings ϕt : S

1×D2 → C
2 which satisfy the following properties for

each t ∈ [0, 1],

• ϕt = ϕ∂t near S1 × ∂D2,

• Imϕt ⊂ (C2, J0) are strictly pseudoconvex,

• ct(ϕt) is transverse to γ0 := S1 × {0} ⊂ S1 ×D2 ⊂ S1 × R
2 ⊂ C

2.

Proof. There exist a sufficiently large R > 0 and a sufficiently small

δ > 0, which satisfy the following properties for any t ∈ [0, 1],

• ψt(S
1 × D2) ⊂ S1 × D(R) ⊂ S1 × R

2 = Kc, where D(R) ⊂ R
2 is a

disc centered at the origin with radius R,

• the hypersurface Σ :=
{
r2 − c = δ·

√
R2 − r2

1

}
⊂ C

2 intersects

ϕ∂t (S
1 ×D2 × [0, ε)) transversely for a sufficiently small ε < ε.

In fact, ϕ∂t (S
1 × ∂D2 × [0, ε)) ⊂ C

2 are strictly pseudoconvex hypersurfaces

with boundaries ϕ∂t (S
1 × ∂D2 × {0}) = ψt(S

1 × ∂D2) ⊂ Kc ⊂ C
2, and

Σ ⊂ C
2 is a strictly pseudoconvex hypersurface which intersects Kc ⊂ C

2

transversely at S1 × ∂D(R) ⊂ S1 × R
2 = Kc. We note that the embedded

tori ϕ∂t (S
1 × ∂D2 × {0}) and S1 × ∂D(R) = Σ ∩Kc in S1 × R

2 = Kc are

isotopic to each other, and have the same orientation induced standardly.

The intersection Σ∩ Imϕ∂t bounds in Σ a solid torus which is strictly pseu-

doconvex. Let Ut denote it. Also, ∂Ut := Σ∪ Imϕ∂t and ϕ∂t (S
1×∂D2×{0})

bound in Imϕ a toric annulus, that is a domain bounded by two 2-tori and

diffeomorphic to T 2 × I, which is strictly pseudoconvex. Let Vt denote it.

By a canonical smoothing procedure preserving pseudoconvexity, we obtain

a strictly pseudoconvex solid torus Wt embedded into C
2 because both Ut

and Vt are strictly pseudoconvex. We note that Wt coincide with Imϕ∂t near

∂Wt = ϕ∂t (S
1×∂D2×{0}). The embedding ϕt : S

1×D2 → C
2 is defined so

that ϕt has Wt as its image and coincides with ϕ∂t near S1 × ∂D2 for each
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t ∈ [0, 1]. As R and δ are taken for all t ∈ [0, 1], {ϕt}t∈[0,1] is a smooth fam-

ily. From the construction, Wt coincides with Σ near Γ0 := {r1 = 0} and Σ

is standard near Γ0. Then the induced contact structures near ϕt(S
1 ×{0})

are standard. That is to say, they are transverse to ϕt(S
1 × {0}). �

Before the proof of Proposition 2.1, we recall the fundamental facts (see

[A], [W], [EG] for precise). The radial vector field X0 := {r1·(∂/∂r1) +

r2·(∂/∂r2)}/2 satisfies LX0ω0 = ω0 for the standard symplectic structure

ω0 := r1·dr1∧dθ1+r2·dr2∧dθ2 on C
2 compatible with the standard complex

structure J0. This vector field X0 preserves symplectic structure ω0 up

to scalar multiplication. It is known that contact forms are induced on

hypersurface F ⊂ C
2 transverse to X0 as α = (X0�ω0)|F . It is easily checked

that this induced contact structure is the same as what is induced by the

complex tangency with respect to J0. Namely, F is strictly pseudoconvex

or pseudoconcave. The hypersurface F ⊂ C
2 is strictly pseudoconvex if the

given orientation on F coincides with that induced from those of C
2 and

X0.

Now, we are ready to prove Proposition 2.1.

Proof of Proposition 2.1. The existence of a contact structure for

a pair of a characteristic foliation and its taming function (i.e., Proposi-

tion 2.1-(a)) is shown, for a family, in the proof of Proposition 2.1-(b). So,

it is sufficient to prove (b).

The given family of functions, {ft : S1 × ∂D2 → S1}t∈[0,1], satisfies

the condition of Lemma 2.2 because it is a family of taming functions.

Let ϕ0, ϕ1 : S1 × D2 → C
2 \ {r2 = 0} be the given strictly pseudocon-

vex embeddings. By applying the flow of the radial symplectic vector

field X0, we may assume ϕ0(S
1 × ∂D2), ϕ1(S

1 × ∂D2) ⊂ Kc for a con-

stant c > 0. Let ψ0, ψ1 : S1 × D2 → S1 × R
2 be embeddings which im-

ages are domains in S1 × R
2 = Kc ⊂ C

2 bounded by ϕi(S
1 × ∂D2),

i = 0, 1, respectively, and which satisfy ψi|S1×∂D2 = ϕi|S1×∂D2 for i =

0, 1. By the construction and the assumption, ψi satisfies the condition

of Lemma 2.2. By using Lemma 2.2, we obtain a family of embeddings

{ψt : S1 × D2 → S1 × R
2}t∈[0,1] containing the given ψ0 and ψ1, with a

property that pr◦ψt|S1×∂D2 = ft. Next, let αi ∈ ST ∗
C

2|ϕi(S1×∂D2) be a dif-

ferential 1-form which corresponds to (ψi,Fi) as in Lemma 2.3, for i = 0, 1.

Each of them satisfies (kerαi)p = Tpϕi(S
1 × D2) for p ∈ ϕi(S

1 × ∂D2) ⊂
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C
2. According to Lemma 2.3, we obtain a family of 1-forms {αt}t∈[0,1]

containing the above α0 and α1. If we set ct(αt) := kerαt ∩ J0(kerαt),

then ψt(S
1 × ∂D2)ct(αt) = ψt∗(Ft) holds. We can take a family of em-

beddings
{
ϕ∂t : S1 × ∂D2 × [0, ε) → C

2
}
t∈[0,1]

for sufficiently small ε > 0,

which satisfies the conditions of Lemma 2.4 and (kerαt)p = Tp(Imϕ∂t ) for

p ∈ ϕ∂t (S
1 × ∂D2 × {0}) = ψt(S

1 × ∂D2) and each t ∈ [0, 1], as follows.

We apply a similar argument to [El3], but we need a careful observation

about the second condition of Lemma 2.4. We take a family {ϕ∂t }t∈[0,1] of

embeddings so that ϕ∂t |S1×∂D2×{0} = ψt|S1×∂D2 , Tp(Imϕ∂t ) = (kerαt)p at

each point p ∈ ϕ∂t (S
1 × ∂D2 ×{0}) = ψt(S

1 × ∂D2). From the construction

of αt, we can take Imϕ∂t convex for sufficiently small ε > 0. We suppose

that ϕ∂0 , ϕ
∂
1 coincide with ϕ0, ϕ1 near ψi(S

1 × ∂D2) for i = 0, 1. We have

to note the second condition of Lemma 2.4, p ◦ ϕ∂t |S1×∂D2×(0,ε) > c. In the

case considered now, Kc = {r2 = c} is strictly pseudoconvex for any c > 0.

Tp(Imϕ∂t ), p ∈ ϕ∂t (S
1 × ∂D2 × {0}) is described by the angle between X0.

By taking c > 0 sufficiently small, we can regard Kc and X0 are almost

parallel at ϕ∂t (S
1 × ∂D2 × {0}). Since S1 × ∂D2 and [0, 1] are compact, we

can take a sufficiently small c > 0 so that p ◦ ϕ∂t (S1 × ∂D2 × (0, ε)) > c

holds for any t ∈ [0, 1]. By Lemma 2.4, we obtain a family of embeddings

{ϕt : S1 × D2 → C
2}t∈[0,1] containing the given ϕ0, ϕ1 which satisfies the

following properties for all t ∈ [0, 1],

• (S1 × ∂D2)ct(ϕt) = (S1 × ∂D2)(ψ−1
t )∗ct(αt)

= Ft,

• pr ◦ ϕt|S1×∂D2 = pr ◦ ψt|S1×∂D2 = ft.

Thus we complete the proof of Proposition 2.1. �

Last of all, we observe that the contact structures constructed as above

depend only on the characteristic foliations up to isotopies. It implies The-

orem A.

Corollary 2.5. Let F be a characteristic foliation on T = S1 × ∂D2

with taming functions f0, f1, and ϕ0, ϕ1 : S1 ×D2 → C
2 embeddings which

are constructed from (f0,F), (f1,F) as above respectively. Then ct(ϕ0) and

ct(ϕ1) are isotopic.

Proof. According to Lemma 1.7, there exists a family {ft}t∈[0,1] of

taming functions for F containing given f0 and f1. By Proposition 2.1,
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there exists a family of embeddings {ϕt}t∈[0,1] containing ϕ0 and ϕ1. Then,

ct(ϕt), t ∈ [0, 1], is a homotopy of contact structures between ct(ϕ0) and

ct(ϕ1). Two contact structures ct(ϕ0) and ct(ϕ1) are isotopic by Gray’s

theorem (see [Gr], [El3]). �

Not appearing clearly, the base transverse meridian C ⊂ S1 × ∂D2 is

considered in the arguments above. It is a level set of taming functions.

From the construction above, there exists an embedded disc D ⊂ S1 ×D2

spanning C, near which the obtained strictly pseudo convex embedding is

standard. That is, the obtained contact structure is standard. Thus, the

self linking number of C is l(C) = −1.

3. Proof of Theorem B

In this section we prove Theorem B. We will prove that all tight contact

structures on S1 × D2 which induce the same characteristic foliation on

S1×∂D2, and have a transverse meridian C on S1×∂D2 with a self-linking

number l(C) = −1, are isotopic.

First, we recall the S1-Darboux theorem (see [Mar], [L]). The standard

contact structure ξ0 on S1 × R
2 is defined to be a kernel of the standard

contact form α0 := dθ + r2 · dφ, where (θ, r, φ) ∈ S1 × R
2 is the cylindrical

coordinate.

Proposition 3.1 (the S1-Darboux theorem). Let ξ be a contact struc-

ture defined near a circle γ, which is transverse to γ. Then there exists

a local diffeomorphism ϕ defined in a neighborhood of γ which satisfies

ϕ(γ) = S1 × {0} and ϕ∗ξ = ξ0.

Let D(r) ⊂ R
2 be the disc centered at the origin with radius r. We note

that with respect to the standard contact structure, the characteristic foli-

ation
(
S1 ×D(r)

)
ξ0

is non-singular, θ-invariant, and does not admit closed

orbits which are homotopic to meridian curves.

Next, we review some results about transverse knots. Let (M, ζ) be a

contact 3-manifold. The following is well known. (see [El5] for example)

Lemma 3.2. Any curve embedded in M can be made transverse to ζ

by a C0-small isotopy.
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We suppose that ζ is tight, in addition.

Lemma 3.3 (Eliashberg, [El5]). Let Γ be a trivial transverse knot in

(M, ζ), and fix a relative homology class β ∈ H2(M,Γ). The self-linking

number of Γ with respect to β is 1 − 2k if and only if there is an embedded

disc spanning Γ, which represent β and the characteristic foliation on which

has only k positive elliptic points and k − 1 negative hyperbolic points as

singular points.

Now, we are ready to prove Theorem B.

Proof of Theorem B. Let ξ be a tight contact structure on S1×D2

and C ⊂ S1×∂D2 a positively transverse meridian curve with a self-linking

number l(C) = −1. According to Lemma 3.2, we may suppose that the core

γ0 := S1×{0} of the solid torus is positively transverse to ξ. There exists an

embedded disc D in S1×D2 spanning C on which the characteristic foliation

Dξ has exactly one elliptic singular point p ∈ D by Lemma 3.3. As γ0 is

transverse to ξ, we may suppose that the singular point p is an intersection

point of γ0 and D, and that γ0 and D intersect only at this point. We note

that all leaves of Dξ starting from p intersect ∂D = C transversely. Then

we can take a family {Ct}t∈(0,1] of concentric circles on D \ {p} transverse

to Dξ, which satisfies

C1 = C ⊂ S1 × ∂D2, Ct → p (t → 0).

In addition, we can take a family {Ut}t∈(0,1] of tubular neighborhoods of γ0

in S1 ×D2, which satisfies,

• U1 = S1 ×D2, Ut → γ0 (t → 0),

• ∂Ut ∩ D = Ct for all t ∈ (0, 1].

We note that Ct is a transverse meridian of ∂Ut, and l(Ct) = −1 by

Lemma 3.3. Let {Ft}t∈(0,1] denote the family of characteristic foliations

{(∂Ut)ξ}t∈(0,1].

By the S1-Darboux theorem (Proposition 3.1), the contact structure

ξ is isotopic to the standard structure near γ0. Hence, the characteristic

foliation (∂Uε)ξ for sufficiently small ε ∈ (0, 1] is normal. Then it admits a

taming function with Cε as a level set. We can apply Proposition 1.1 and
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then Proposition 1.6. Then, there exists a family
{
ft : ∂Ut → S1

}
t∈[ε,1]

of

taming functions for Ft. For a family {(ft,Ft)}t∈[ε,1], there exists a family

of embeddings
{
ϕt : Ut → C

2
}
t∈[ε,1]

which satisfies the following properties

by Proposition 2.1,

• (∂Ut)ct(ϕt) = Ft,

• pr ◦ ϕt|∂Ut
= ft.

Let ζt denote contact structures on Ut defined by ct(ϕt). Define a family

{ξt}t∈[ε,1] of contact structures on S1 ×D2 by

ξt :=

{
ξ on (S1 ×D2) \ Ut,
ζt on Ut.

It is a homotopy among contact structures between ξε = ξ and ξ1 = ζ1
relatively to the boundary S1×∂D2. According to Gray’s theorem (see [Gr],

[El3]), they are isotopic relatively to S1 × ∂D2. Moreover, by Theorem A,

ζ1 depends only on (S1 × ∂D2)ξ. Therefore, all tight contact structures on

S1 × D2 with the characteristic foliation F = (S1 × ∂D2)ξ are isotopic to

ζ1.

This completes the proof of Theorem B. �
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(1983), 83–161.

[El1] Eliashberg, Ya., Classification of overtwisted contact structures on 3-man-
ifolds, Invent. Math. 98 (1989), 623–637.

[El2] Eliashberg, Ya., New invariants of open symplectic and contact manifolds,
J. Amer. Math. Soc. 4 (1991), 513–520.

[El3] Eliashberg, Ya., Contact 3-manifolds twenty years since J. Martinet’s work,
Ann. Inst. Fourier (Grenoble) 42 (1992), 165–192.

[El4] Eliashberg, Ya., Classification of contact structures on R
3, Internat. Math.

Res. Notices 3 (1993), 87–91.
[El5] Eliashberg, Ya., Legendrian and transversal knots in tight contact 3-man-

ifolds, Topological Methods in Modern Mathematics, (Publish or Perish,
1993), 171–193.



Extension of Tight Contact Structures 543

[EG] Eliashberg, Ya. and M. Gromov, Convex symplectic manifolds, Proc. Sym-
pos. Pure Math. 52 Part 2 (1991), 135–162.

[Et] Etnyre, J. B., Tight contact structures on lens space, Commun. Contemp.
Math. 2 (2000), no. 4, 559–577.
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