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Construction of Unramified Galois Extensions

Over Maximal Abelian Extensions

of Algebraic Number Fields

By Sachiko Ohtani

Abstract. We construct unramified Galois extensions over max-
imal abelian extensions of algebraic number fields by using division
points of abelian varieties which have everywhere semistable reduc-
tion. Further, by using division points of elliptic curves, we construct
infinitely many linearly independent unramified Galois extensions of
Q(ζp∞)ab having SL2(Zp) as the Galois group over Q(ζp∞)ab.

0. Introduction

Our purpose in this paper is to construct unramified Galois extensions

over maximal abelian extensions of algebraic number fields by using division

points of abelian varieties.

Let A be an abelian variety over an algebraic number field K and p ≥ 5 a

prime number. Assume that the pair (A, p) satisfies the following conditions:

(A0) A has everywhere semistable reduction over OK , where OK
is the ring of integers of K.

(A1) A has bad reduction at all extensions of p to K.

Note that, if A is an arbitrary abelian variety over an algebraic number

field K, then we can find a finite extension L of K such that A⊗KL satisfies

the condition (A0) by the semistable reduction theorem (cf. Grothendieck

[8], Theorem 3.6).

For a place v of K, we denote by A0
v the identity component of the

special fibre of the Néron model of A at v. For an algebraic number field k,

we denote by kab the maximal abelian extension of k.

Our main result is the following
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Theorem 0.1. Let A be an abelian variety over an algebraic number

field K and p ≥ 5 a prime number. Assume that the pair (A, p) satisfies the

conditions (A0) and (A1). Let F be the field obtained by adjoining to K the

coordinates of all p-power division points on A.

(a) If A0
v is a split torus for every place v of K such that A has bad reduc-

tion at v, then FK(ζp∞)ab is an unramified Galois extension of K(ζp∞)ab,

where K(ζp∞) is the field obtained by adjoining to K all p-power roots of

unity.

(b) If A0
v is a split torus for every place v of K lying above p,

then F (KQab)ab is an unramified Galois extension of (KQab)ab.

Further, by using division points of elliptic curves (i.e., abelian varieties

of dimension one), we obtain the following

Theorem 0.2. Let p ≥ 5 be a prime number. Then there exist in-

finitely many linearly independent unramified Galois extensions of Q(ζp∞)ab

having SL2(Zp) as the Galois group over Q(ζp∞)ab.

Here, for a sequence of extensions K1,K2, · · · of an algebraic number

field k, if Kn+1 ∩ K1K2 · · ·Kn = k for any n ≥ 1, then we say that the

extensions are linearly independent over k.

Now we explain the background of these results. Unramified abelian

extensions over maximal abelian extensions of algebraic number fields have

been investigated by many people, e.g., Cornell [4], Brumer [3] and Kuri-

hara [10]. Uchida [21] and Horie [9] determined the structure of the Galois

group of the maximal unramified solvable extension over maximal abelian

extensions of algebraic number fields. For unramified non-solvable exten-

sions, Asada [1], [2] gave some results. First, Asada [1] considered elliptic

curves over Q whose modular invariants are integral and which have good

reduction at a supersingular prime p, and then constructed unramified Ga-

lois extensions over maximal abelian extensions of algebraic number fields

by using their p-power division points. Second, Asada [2] constructed an

infinite family of elliptic curves over Q which have multiplicative reduction

at a prime p and of which the orders at p of the modular invariants are

divisible by p, and then constructed unramified Galois extensions over Qab

having PSL2(Z/p
rZ) as the Galois group over Qab by using their pr-division
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points. Further this paper contains an example of unramified Galois exten-

sions having SL2(Zp) as the Galois group using results of [1]. Asada’s family

in [2] is chosen so carefully that it appears very special. Also his elliptic

curves in [1] have everywhere potential good reduction. So we would like to

find more general phenomena. In this paper, we shall give a general con-

struction, at the expense of enlarging the base field, using abelian varieties

which have everywhere semistable reduction.

Next we give an outline of this paper. In Section 1, we shall prove

Theorem 0.1. By a lemma due to Y. Ihara, for a finite Galois extension

K/k, the extension Kkab/kab is unramified if and only if the local Galois

extension Kkv/kv is abelian for every place v of k. Then we shall apply

Mumford’s construction (cf. Faltings-Chai [6]) and a result by Grothendieck

(cf. [8]) on p-adic representations associated to semistable abelian varieties,

which imply that the local Galois extension is abelian. In Section 2, we shall

give examples of abelian varieties and algebraic number fields which satisfy

the conditions of Theorem 0.1. In Section 3, by using division points of

elliptic curves over Q which satisfy the conditions of Theorem 0.1 and some

additional assumptions, we shall construct infinitely many unramified Galois

extensions of Q(ζp∞)ab having SL2(Zp) as the Galois group over Q(ζp∞)ab.

To determine the Galois group, we use a criterion by Serre (cf. [15]) on the

surjectivity of p-adic representations associated to non-CM elliptic curves.

To prove the infinite existence of linearly independent unramified extensions,

we use an infinite family of elliptic curves of the form y2 = x(x− p)(x+ pi),

where pi’s ≥ 5 are distinct prime numbers different from p. Thus we can

prove Theorem 0.2. In Section 4, we shall consider elliptic curves of prime

conductor p of Setzer [19], and construct unramified Galois extensions over

finite extensions over Q having SL2(Z/p
rZ) as the Galois group.

The author would like to express her sincere gratitude to Professor

Yuichiro Taguchi who suggested her to consider this problem and gave her

many valuable suggestions. The author also thanks Professor Iku Nakamura

for enjoyable discussions on degeneration of abelian varieties, and Professor

Kenneth A. Ribet for his suggesting an improvement of the exposition of

the proof of Theorem 0.1, which made her original proof more elegant. She

also thanks the referee for his/her many kind and careful comments.

In this paper we use the following notation:
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Q : the field of rational numbers.

Z : the ring of rational integers.

For a rational prime number p,

Qp : the field of p-adic numbers,

Zp : the ring of p-adic integers,

Fp : the prime field of p elements.

For an algebraic number field K,

Kab : the maximal abelian extension of K,

Kv : the completion of K at a place v of K,

OK : the ring of integers of K,

GK : the absolute Galois group over K.

For a positive integer m,

ζm : a primitive m-th root of unity,

A[m] : the group of the m-division points of an abelian variety A.

1. Division Points of Abelian Varieties

First we introduce a lemma due to Y. Ihara, which is a key in our con-

struction of unramified Galois extensions over maximal abelian extensions

of algebraic number fields.

Lemma 1.1 (cf. Asada [1], Proposition 1). Let k be an algebraic num-

ber field, kab the maximal abelian extension of k, and K a finite Galois

extension of k. Then Kkab is unramified over kab if and only if the de-

composition group in K over k is commutative for any prime divisor of K.

Next we shall give a proof of Theorem 0.1 by using an application of

Mumford’s construction of degenerating abelian varieties (cf. Faltings-Chai

[6]). Let A be an abelian variety of dimension g over an algebraic number

field K and p ≥ 5 a prime number. Assume that the pair (A, p) satisfies the

following conditions:
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(A0) A has everywhere semistable reduction over OK .

(A1) A has bad reduction at all extensions of p to K.

Let r be a positive integer and Fr the field obtained by adjoining to K

the coordinates of the pr-division points on A. Theorem 0.1 (a) follows from

the following

Theorem 1.2. Assume that A0
v is a split torus for every place v of

K such that A has bad reduction at v. Then FrK(ζpr)
ab is an unramified

Galois extension of K(ζpr)
ab.

Proof. By Lemma 1.1, it suffices to prove that FrKv is an abelian

extension of Kv(ζpr) for every place v of K. If v is unramified in Fr, then

there is nothing to prove. Hence we only have to prove it for the places which

are ramified in Fr. By the criterion of Néron-Ogg-Shafarevich (cf. Serre-

Tate [18], Theorem 1), such places are the bad places of A. (Recall that we

assumed that A has bad reduction at all extensions of p to K.) Let v be

a place of K such that A has bad reduction at v. We have the following

representation:

ρr : GKv −→ Aut (A[pr]) 	 GL2g(Z/p
rZ).

If we put H = Gal (K̄v/Kv(ζpr)), then it suffices to prove that ρr(σ)ρr(τ) =

ρr(τ)ρr(σ) for any σ and τ in H.

Let G be the identity component of the Néron model of A at v. By the

condition (A0), G is a semi-abelian scheme over Spec (OKv) whose generic

fibre Gη is abelian. Then we have the exact sequence

0 −−−→ T −−−→ G̃ −−−→ B −−−→ 0

called the Raynaud extension associated to G (cf. Faltings-Chai [6], Ch.II,

1), where T is a torus, G̃ is a semi-abelian scheme over Spec (OKv) and B

is an abelian variety. Similarly, we can construct a semi-abelian scheme Gt

from the dual abelian variety of the generic fibre Gη. Then we denote the

Raynaud extension associated to Gt by

0 −−−→ T t −−−→ G̃t −−−→ Bt −−−→ 0.

Let X = Hom (T,Gm) and Y = Hom (T t,Gm). We regard X and Y as

étale sheaf over Spec (OKv). Now we assume that the special fibre A0
v of G
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is a split torus. Hence T is split and isomorphic to G̃, and X and Y are

constant, with values X and Y . Here X and Y are free Z-modules of rank

g. Further we obtain the following exact sequence as GKv -modules:

0 −−−→ Hom (X,µpr)
φ−−−→ A[pr]

ψ−−−→ Y/prY −−−→ 0,

where µpr is the group of the pr-th roots of unity (cf. Faltings-Chai [6],

Ch.III, 7.3, or see also Ribet [13], Lemma (3.3.1)).

X and Y are trivial GKv -modules, and Hom (X,µpr) is a trivial H-

module. Hence ρr(σ) − 1 = 0 on Im(φ) for any σ in H. While ρr(σ) − 1

maps A[pr] into Ker (ψ) for any σ in H because Y/prY is a trivial H-

module. Hence (ρr(σ)− 1)(ρr(τ)− 1) = 0 for any σ and τ in H. Therefore

ρr(σ)ρr(τ) = ρr(τ) + ρr(σ) − 1 = ρr(τ)ρr(σ) for any σ and τ in H. This

completes the proof of Theorem 1.2. �

Remark 1.3. We also see that the field FrKv is a Kummer extension

over Kv(ζpr) for every place v such that A has bad reduction at v.

Theorem 0.1 (b) follows from the following

Theorem 1.4. If A0
v is a split torus for every place v of K lying above

p, then Fr(KQab)ab is an unramified Galois extension of (KQab)ab.

Proof. By Lemma 1.1 again and Theorem 1.2, it suffices to prove that

FrKvQ
ab is an abelian extension of KvQ

ab for the places v of K prime to p

such that A has bad reduction at v.

Let v be a place of K prime to p such that A has bad reduction at v

and Tp(A) the p-adic Tate module associated to A. We have the following

representation:

ρ : GKv −→ Aut (Tp(A)) 	 GL2g(Zp).

Since A has semistable reduction at v, we see that the image of the inertia

subgroup of GKv by ρ is isomorphic to Zp(1) = lim←−r µpr by Grothendieck [8],

Proposition 3.5, Corollary 3.5.2. Hence FrK
ur
v is abelian over Kur

v , where

Kur
v is the maximal unramified extension of Kv. Since Kur

v is cyclotomic

over Kv, we see that FrKvQ
ab is an abelian extension of KvQ

ab. �
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2. Examples

In this section, we shall give examples of abelian varieties and algebraic

number fields which satisfy the conditions of Theorem 0.1.

2.1. The case of dim A = 1

Let E be an elliptic curve over an algebraic number field k with modular

invariant j = j(E) and p ≥ 5 a prime number. Assume that v(j) < 0 for

any place v of k lying above p. Then the pair (E, p) satisfies the condition

(A1) of Theorem 0.1. Further there exists a finite Galois extension K of k

such that the elliptic curve E ⊗k K over K satisfies the condition (A0) of

Theorem 0.1 by the semistable reduction theorem (cf. [8], Theorem 3.6), and

the assumption of Theorem 0.1 (a) by Tate’s theory (cf. Lang [11], Ch.15).

If k is equal to Q, then we can find a field K explicitly such that

FK(ζp∞)ab is unramified over K(ζp∞)ab. In particular, we can take a solv-

able extension of Q as such a field K. Further if E satisfies a certain as-

sumption, then we can also determine the Galois group of FK(ζp∞)ab over

K(ζp∞)ab which is an unramified Galois extension of Theorem 0.1.

Proposition 2.1. (a) Let E be an elliptic curve over Q and p ≥ 5

a prime number. Assume that the modular invariant j(E) is non-integral.

Let r be a positive integer and Fr the field obtained by adjoining to Q the

coordinates of the pr-division points on E. Then there exists a finite solv-

able extension K over Q depending only on E such that FrK(ζpr)
ab is an

unramified Galois extension of K(ζpr)
ab.

(b) Let F1 be the field obtained by adjoining to Q the coordinates of the

p-division points on E. If Gal (F1/Q) is isomorphic to GL2(Fp), then

Gal (FrK(ζpr)
ab/K(ζpr)

ab) 	 SL2(Z/p
rZ).

Note that it is well-known that Gal (F1/Q) 	 GL2(Fp) for almost all

prime numbers p in this case by Serre [16], Théorème 2.

Proof. (a) Let E be an elliptic curve over Q. We may assume that E

has the Legendre form (cf. Silverman [20], Ch.III, §1) over a finite solvable

extension L of Q given by the following equation:

(*) y2 = x(x− 1)(x− λ), λ �= 0, 1.



412 Sachiko Ohtani

Indeed, we may assume that E is defined over Q by the equation

E : y2 = (x− e1)(x− e2)(x− e3), e1, e2, e3 ∈ Q̄,

by [20], Ch.III, §1. Further, by the proof of Proposition 1.7 (a) in [20],

Ch.III, we see that E has the Legendre form (*) with λ = (e3−e1)/(e2−e1)
over the Galois closure L of Q(

√
e2 − e1, e1). Note that L is solvable over

Q.

We put S = {v : place of L | v(λ) < 0}. If S is empty, then E has

everywhere semistable reduction over OL by Remark 1.1 and Proposition

5.1 in [20], Ch.VII. In this case we can take L as the field K of the statement

of (a). Next assume that S is non-empty. Let H be the Hilbert class field of

L and pv a prime divisor of L corresponding to v ∈ S. Since the extensions

of all prime divisors of L to H are principal, there exists an element πv in

OH such that pvOH = (πv). Then there exist positive integers rv such that

v′(λ
∏
v∈S π

rv
v ) = 0 for any place v′ of H lying above a place in S. We put

π =
∏
v∈S π

rv
v and u = λπ. In a way similar to Case 3 in [20], p.182, we may

assume that E is isomorphic over H(
√
π) to an elliptic curve E′ having the

following form:

E′ : (y′)2 = x′(x′ − u)(x′ − π).

Let w be an extension of v′ to H(
√
π). Then we see that the equation of

E′ is minimal and E′ has multiplicative reduction over H(
√
π)w by Remark

1.1 and Proposition 5.1 in [20], Ch.VII. Since E is isomorphic to E′ over

H(
√
π), E also has multiplicative reduction over H(

√
π)w. In this case we

can take H(
√
π) as the field K of the statement of (a). Note that H(

√
π)

is also solvable over Q. Thus we see that there exists a solvable extension

K of Q such that E ⊗QK has everywhere semistable reduction over OK .

Next we prove that FrK(ζpr)
ab is an unramified Galois extension of

K(ζpr)
ab. Let v be a place of K at which E ⊗K Kv has bad reduction. By

Tate’s theory (cf. Lang [11], Ch.15), over the unramified quadratic extension

K ′
v of Kv, we see that E⊗K Kv is isomorphic to a Tate curve E(q) over Kv

with modular invariant j(E). Let F (q)r be the field obtained by adjoining

to Kv the coordinates of the pr-division points on E(q). Then F (q)r is

equal to Kv(ζpr , q
1/pr), where q is the element of K×

v which corresponds to

j(E) by Tate’s theory again. Hence F (q)rKv is a Kummer extension over

Kv(ζpr), in particular, it is abelian. Then FrK
′
v is also an abelian extension

of Kv(ζpr). Hence we see that FrKv is also abelian over Kv(ζpr).
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(b) By the assumption, we have

Gal (F1/Q(ζp)) ∼= SL2(Fp).

Since SL2(Fp) has no non-trivial abelian quotient, we see that

K(ζpr)
ab ∩ F1 = Q(ζp).

Hence we see

Gal (F1K(ζpr)
ab/K(ζpr)

ab) ∼= SL2(Fp).

The proposition follows from the following

Lemma 2.2 (Serre [15], Ch.IV, 3.4, Lemma 3). Let X be a closed sub-

group of SL2(Zp) whose image in SL2(Fp) is SL2(Fp). If p ≥ 5, then

X = SL2(Zp). �

By Proposition 2.1, we obtain the following

Corollary 2.3. (a) Let E and p be as above, and F the field obtained

by adjoining to Q the coordinates of all p-power division points on E. Then

there exists a finite solvable extension K over Q depending only on E such

that FK(ζp∞)ab is an unramified Galois extension of K(ζp∞)ab.

(b) Let F1 be the field obtained by adjoining to Q the coordinates of the

p-division points on E. If Gal (F1/Q) is isomorphic to GL2(Fp), then

Gal (FK(ζp∞)ab/K(ζp∞)ab) 	 SL2(Zp).

2.2. The jacobian variety of the modular curve of level p

For any integer m and a subgroup H of GL2(Z/mZ), we have an alge-

braic stack proper over Spec Z, which may be interpreted over Spec Z[1/m]

as the fine moduli stack classifying generalized elliptic curves with level

H-structure (cf. Deligne-Rapoport [5], IV, (3.1)). Its associated coarse

moduli stack (cf. [5], I, (8.1)) may be denoted by MH . If H = Γ0(N) ={(
a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N)

}
, then we write MH = M0(N).

Lemma 2.4 (Mazur [12], Appendix, Theorem (A.1)). Let p ≥ 5 be a

prime number, J the jacobian variety of dimension g of the modular curve
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M0(p) and J the Néron model of J at p. The identity component J 0
p of the

fibre at Fp of J is a group scheme of multiplicative type, in other words, if

we consider it over F̄p, then J 0
p ⊗Fp F̄p 	 G

g
m.

Note that J has good reduction outside p. By this lemma, we see that

there exists a finite extension k over Fp such that J 0
p ⊗Fp k 	 G

g
m. Hence

there exists a finite Galois extension K over Q such that the abelian variety

J over K satisfies the condition (A0), (A1) and the assumption of Theorem

0.1 (a).

Now we describe k and K explicitly. We put X(J 0
p ) = Hom F̄p(J 0

p ,Gm).

We see that X(J 0
p ) = Hom (Gg

m,Gm) 	 Zg since we have J 0
p ⊗Fp F̄p 	 G

g
m

by Lemma 2.4. We have the following representation defined by a continuous

action of GFp on X(J 0
p ):

ρ : GFp −→ Aut (X(J 0
p )) 	 GL2g(Z).

By Ribet [14], Proposition 3.7 and 3.8 (ii), we see that GFp acts on X(J 0
p )

as an automorphism of order 1 or 2. Hence we can take as the field k a

quadratic field of Fp and as the field K a quadratic extension of Q in which

p is inert.

Thus we obtain the following

Proposition 2.5. Let J and p be as above, and F the field obtained

by adjoining to Q the coordinates of all p-power division points on J . If K

is a quadratic extension over Q in which p is inert, then FK(ζp∞)ab is an

unramified Galois extension of K(ζp∞)ab.

3. Division Points of Elliptic Curves

In this section, we shall prove Theorem 0.2. Throughout this section,

let k be the field obtained by adjoining to Q all p-power roots of unity and

kr the field obtained by adjoining to Q the pr-th roots of unity.

3.1. Unramifiedness over Q(ζp∞)ab

In this subsection, by using division points of elliptic curves over Q, we

construct unramified Galois extensions over kab.

Let E be an elliptic curve over Q and p ≥ 5 a prime number. Assume

that the pair (E, p) satisfies the following conditions:
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(E0) E has everywhere semistable reduction over Z.

(E1) E has bad reduction at p.

Proposition 3.1. Let E and p be as above. Let r be a positive integer

and Fr the field obtained by adjoining to Q the coordinates of the pr-division

points on E. Then Frk
ab
r is an unramified Galois extension of kab

r .

Proof. We can prove this proposition in a way similar to the proof

of Proposition 2.1. In this case, we can take Q itself as the field K in

Proposition 2.1. �

By Proposition 3.1, we obtain the following

Corollary 3.2. Let E, p and k be as above. Let F be the field obtained

by adjoining to Q the coordinates of all p-power division points on E. Then

Fkab is an unramified Galois extension of kab.

3.2. Determination of the Galois group

Let E be an elliptic curve over Q and p ≥ 5 a prime number. Assume

that the pair (E, p) satisfies the conditions (E0) and (E1) of 3.1 and the

following conditions:

(E2) E has three Q-rational points of order 2.

(E3) p does not divide the valuation at p of the modular invariant

j(E) of E.

In this subsection, for such E and p, we shall prove that the unramified

extension Fkab over kab which we constructed in Corollary 3.2 has SL2(Zp)

as the Galois group over kab. By Corollary 2.3 (b), it suffices to prove the

following

Proposition 3.3. Let E and p be as above, and F1 the field obtained

by adjoining to Q the coordinates of the p-division points on E. Then

Gal (F1/Q) ∼= GL2(Fp).
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Proof. In general, let E be an arbitrary elliptic curve defined over Q.

Let l ≥ 5 be a prime number, and E[l] the group of the l-division points of

E. Then we have the following representation:

ρ̄ : GQ −→ Aut (E[l]) ∼= GL2(Fl).

Now we denote Gl = Im ρ̄. To prove this proposition, we verify the condi-

tions of the following lemma (cf. Serre [15], Ch.IV, 3.2, Lemma 2).

Lemma 3.4. If Gl satisfies the next three conditions (a), (b) and (c),

then Gl is equal to GL2(Z/lZ).

(a) det Gl = F×
l .

(b) Gl contains the element

(
1 1

0 1

)
with respect to a suitable basis of E[l].

(c) E[l] is irreducible as a GQ-module.

Apply this to our E and l = p. The condition (a) is satisfied for l = p

since F1 contains ζp. The condition (b) is also satisfied for l = p by the

condition (E3) and Lemma 1 of Serre [15], Ch.IV, 3.2. Hence we prove that

the condition (c) is satisfied for l = p.

Assume that this is not the case, i.e., E[p] is reducible as a GQ-module.

Then E contains a subgroup X whose order is p and which is stable under

the action of GQ. The action of GQ on X and E[p]/X gives two characters

χ′, χ′′ : GQ −→ F×
p . Since E has everywhere semistable reduction and

multiplicative reduction at p, by Serre [16], p.307, we have χ′ = 1, χ′′ = χ

or χ′ = χ, χ′′ = 1, where χ : GQ −→ F×
p is the cyclotomic character.

In the first case, E has a Q-rational point of order p. Since E has three

Q-rational points of order 2, we have

|E(Q)tors | ≥ 4p ≥ 20.

Here E(Q)tors is the torsion subgroup of the group E(Q) of Q-rational points

of E. But it is impossible by Mazur’s Theorem (cf. Mazur [12], Theorem

8).

In the second case, the quotient curve E′ = E/X has a Q-rational point

of order p. Further the curve E′ also has three Q-rational point of order 2

because p �= 2. Hence we can apply the argument in the first case to E′.
This completes the proof of Proposition 3.3. �
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3.3. Infinite existence

In this subsection, we shall give a proof of Theorem 0.2. Let p, pi ≥ 5

(i = 1, 2, · · · ) be distinct prime numbers and E(i) the elliptic curve over Q

defined by the following equation:

E(i) : y2 = x(x− p)(x+ pi).

By Serre [17], 4.1, the elliptic curve E(i) has everywhere semistable reduction

over Z, and multiplicative reduction at p, pi and the prime divisors of p+pi.

Let j(E(i)) be the modular invariant of E(i). Then, by simple calculations,

we see that

j(E(i)) = 28 (p2 + ppi + p2
i )

3

p2p2
i (p+ pi)2

.

Hence E(i) satisfies the condition (E3). Thus we obtain an infinite family

of elliptic curves over Q which satisfies the conditions (E0), (E1), (E2) and

(E3). Let F (i) be the field obtained by adjoining to Q the coordinates of

all p-power division points on E(i). Then, by Proposition 3.1 and 3.3, we

see that the extensions F (i)kab over kab are unramified Galois extensions

having SL2(Zp) as the Galois group over kab for any i ≥ 1.

Let F
(i)
1 be the field obtained by adjoining to Q the coordinates of the

p-division points on E(i).

Lemma 3.5. Let p, p1 ≥ 5 be distinct prime numbers and E(1) as above.

If we take a prime number p2 such that E(2) has good reduction at p1, then

F
(1)
1 ∩ F (2)

1 = Q(ζp).

Note that E(2) has good reduction at p1 if and only if p2 �≡ −p (mod p1).

By Dirichlet’s theorem, there exist infinitely many prime numbers satisfying

this condition.

Proof. Since E(2) has good reduction at p1, we see that p1 is unram-

ified in F
(2)
1 . Next we consider the ramification of p1 in F

(1)
1 . The curve

E(1) ⊗QQp1 is isomorphic to a Tate curve over Qp1 with modular invariant

j(E(1)) over the unramified quadratic extension L of Qp1 . Then we have

F
(1)
1 L 	 L(ζp, q

1/p),
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where q is the element of L× which corresponds to j(E(1)) by Tate’s theory.

Since p1 is unramified in L, if vp1 is an extension of the normalized p1-adic

valuation of Qp1 to L, then we see that

vp1(q) = −vp1(j(E(1))) = − ord p1(j(E
(1))) = 2.

Let v′p1 be an extension of vp1 to L(ζp) and wp1 an extension of v′p1 to F
(1)
1 L.

Since L(ζp) is unramified over L, if ep1 is the ramification index of wp1 over

v′p1 , then

wp1(q
1/p) =

1

p
wp1(q) =

1

p
ep1v

′
p1(q) =

2

p
ep1 .

Since p ≥ 5 and wp1(q
1/p) is in Z, we see that ep1 � 2. In particular,

p1 is ramified in F
(1)
1 because L is unramified over Qp1 . Hence we obtain

F
(1)
1 �= F

(2)
1 . Let F ′(i)

1 be the subextension of F
(i)
1 over Q(ζp) corresponding

to the normal subgroup {±1} of SL2(Fp) (i = 1, 2). Assume that F ′(1)
1 =

F ′(2)
1 . Then the prime of F ′(1)

1 lying above p1 must be ramified in F
(1)
1 and

the ramification index is equal to ep1 because p1 is unramified in F ′(1)
1 and

ramified in F
(1)
1 . However

[F
(1)
1 : F ′(1)

1 ] = 2 � ep1 ≤ [F
(1)
1 : F ′(1)

1 ].

It is impossible. Hence we see that F ′(1)
1 �= F ′(2)

1 . Since

Gal (F ′(i)
1 /Q(ζp)) 	 PSL2(Fp),

which is a simple group, we have

F
(1)
1 ∩ F (2)

1 = Q(ζp). �

Proposition 3.6. Let k and F (i) be as in Lemma 3.5. Then

F (1)kab ∩ F (2)kab = kab.

Proof. By Lemma 3.5 and Proposition 3.3, we obtain

Gal (F
(1)
1 F

(2)
1 /Q(ζp)) 	 Gal (F

(1)
1 /Q(ζp))×Gal (F

(2)
1 /Q(ζp))

	 SL2(Fp)× SL2(Fp).
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Since there is no non-trivial abelian quotient of SL2(Fp)× SL2(Fp), we see

Gal (F
(1)
1 F

(2)
1 kab/kab) 	 SL2(Fp)× SL2(Fp).

By Lemma 2.2, we obtain

F (1)kab ∩ F (2)kab = kab. �

Now we can choose an infinite family of elliptic curves over Q inductively.

Assume that we have taken p1, · · · , pn such that F (1)kab, · · · , F (n)kab are

linearly independent over kab having SL2(Zp) as the Galois group over kab.

Let pn+1 be a prime number different from p1, · · · , pn such that pn+1 �≡
−p (mod pi) and pi �≡ −p (mod pn+1) for all 1 ≤ i ≤ n. By using Dirichlet’s

theorem again, we can take such a prime number. Then we see that E(n+1)

has good reduction at pi (1 ≤ i ≤ n) from the first condition for pn+1. In a

way similar to the above argument, we obtain

F (n+1)kab ∩ F (i)kab = kab.

Further we see that F
(n+1)
1 ∩ F (1)

1 F
(2)
1 · · ·F (n)

1 = Q(ζp). Indeed, assume that

M = F
(n+1)
1 ∩ F

(1)
1 F

(2)
1 · · ·F (n)

1 is a non-trivial extension of Q(ζp). Then

the group Gal (F
(n+1)
1 /M) must be isomorphic to the group {±1} or {1}

because Gal (F
(n+1)
1 /Q(ζp)) 	 SL2(Fp). By the same argument as in the

proof of Lemma 3.5, the prime of Q(ζp) lying above pn+1 is ramified in M .

However pn+1 is unramified in F
(1)
1 F

(2)
1 · · ·F (n)

1 by the latter condition for

pn+1. These cases are impossible. Hence we obtain

F (n+1)kab ∩ F (1)F (2) · · ·F (n)kab = kab.

This completes the proof of Theorem 0.2.

Remark 3.7. In Theorem 0.2 we have constructed unramified Galois

extensions over algebraic number fields of infinite degree having SL2(Zp)

as the Galois group. Then can we construct unramified Galois extensions

over finite algebraic number fields having SL2(Zp) as the Galois group ?

If the Fontaine-Mazur conjecture (cf. Fontaine-Mazur [7], Conjecture 5a) is

true, then we cannot do this. Now we try to construct unramified Galois

extensions having SL2(Z/p
rZ) as the Galois group over smaller algebraic

number fields. In the next section, we shall give an example of this problem.
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4. Supplement

In this section, we shall construct unramified Galois extensions over a

finite extension of Q having SL2(Z/p
rZ) as the Galois group by using a

family of elliptic curves of conductor p over Q.

Let p be a prime number such that p = u2 + 64 for some integer u, and

E an elliptic curve of conductor p over Q with a non-trivial Q-rational point

of order 2.

By Theorem 2 of Setzer [19], if p is of the form u2 + 64, where u is an

integer, and the sign of u is chosen so that u ≡ 1 (mod 4), then there exist,

up to isomorphism, just two such curves. The two curves are connected by

a 2-isogeny, and one of them is given by the following equation:

y2 = x3 + ux2 − 16x.

Now we assume that E is given by this equation. The modular invariant

j(E) is p−1(p− 16)3. Then we see that E has no complex multiplication.

Proposition 4.1. Let E and p be as above, and Fr the field obtained

by adjoining to Q the coordinates of the pr-division points on E. Then there

exists a finite solvable extension Kr over Q of degree at most 2ϕ(pr)pr such

that FrKr is an unramified Galois extension of Kr having SL2(Z/p
rZ) as

the Galois group over Kr, where ϕ is the Euler function.

Proof. By the assumption, the extension Fr is unramified outside

p over Q. Since E has multiplicative reduction at p, we have FrL =

L(ζpr , q
1/pr) in a way similar to the proof of Proposition 2.1 (a), where

L is the unramified quadratic extension of Qp and q is the element of L×.

Then there exists a finite extension Kr of Q such that KrQp = L(ζpr , q
1/pr).

In particular, FrKrQp is unramified over KrQp. Hence FrKr is unramified

over Kr. Note that, if we take q0 ∈ Q such that q0 is close to q enough,

we may take a quadratic extension of Q(ζpr , q
1/pr

0 ) as the field Kr of the

statement of this proposition.

Next, to prove that Gal (FrKr/Kr) is isomorphic to SL2(Z/p
rZ), we

verify the conditions (a), (b) and (c) of Lemma 3.4. The condition (a) is

equivalent to the fact that F1 contains ζp. The condition (b) is also satisfied

by the assumption and Lemma 1 of Serre [15], Ch.IV, 3.2. We prove that
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the condition (c) is satisfied for p. Assume that E[p] is reducible as a GQ-

module. Then there is a one-dimensional subspace X of E[p] which is a

cyclic group of order p and stable under the action of GQ. Now we put E′

= E/X. Then we have an exact sequence

0 −−−→ X −−−→ E
λ−−−→ E′ −−−→ 0,

where λ is a separable isogeny of degree p. Since E has no complex multipli-

cation, E′ is not isomorphic to E. Further E′ has a non-trivial Q-rational

point of order 2, and we see that E′ has conductor p by Serre-Tate [18],

§1, Corollary 2. However we know that there exist just two such curves

up to isomorphism. Hence we see that they are E and E′. Since they are

connected by a 2-isogeny λ′, we have

E
λ−−−→ E′ λ′−−−→ E.

Then λ′ ◦λ is an endomorphism of E of degree 2p. But it is impossible since

E has no complex multiplication.

Hence we obtain

Gal (F1/Q(ζp)) ∼= SL2(Fp).

Since Kr ∩ F1 = Q(ζp) for any positive integer r, we see that

Gal (F1Kr/Kr) ∼= SL2(Fp).

By Lemma 2.2, we obtain

Gal (FrKr/Kr) ∼= SL2(Z/p
rZ). �
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