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Fourier-Jacobi Expansion of Fisenstein Series on

Unitary Groups of Degree Three

By Atsushi MURASE and Takashi SUGANO

Abstract. After reformulating Shintani’s theory of Fourier-
Jacobi expansion of automorphic forms on U(2,1) in the adelic
setting, we show that the primitive components of holomorphic
Eisenstein series are expressed in terms of the periods of primitive
theta functions and critical values of Hecke L-functions.

80. Introduction

0.1 The object of this paper is two-fold. We first reformulate, in the
adelic setting, Shintani’s theory of Fourier-Jacobi expansion for holomorphic
automorphic forms on a unitary group G = U(2,1) defined over a totally
real number field F'. The main ingredient is the primitive theta functions
first introduced by Shintani ([Shin]) and studied later by Glaubermann—
Rogawski ([GIRo]) and ourselves ([MS]). For another approach to the theory
of Fourier-Jacobi expansion, we refer to [PS], [GeRo] and [Is].

The second object is to calculate explicitly the primitive components of
Fourier-Jacobi expansion of holomorphic Eisenstein series on G. It is to be
noted that, in his thesis ([Hi]), Hickey obtained a similar result in the case
of FF = Q by a method somewhat different from ours.

0.2 We now summarize our results in the simplest case where the base
field F is Q. Let K be an imaginary quadratic field of discriminant D,
Ok the integer ring of K and o the nontrivial automorphism of K/Q.
Denote by G the unitary group of a Hermitian matrix

0 0 1/k
S = 0 1 0 ,
—-1/k 0 O
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where k= +/D. Note that sgn(S) = (2,1). Let N and R be subgroups of
G given by

1 kw® z+gww”
Ng={(wz)=|o 1 " |we Kz eQ)
0 0 1

and

1 00
RQ:{nt::n 0t 0 |neNQ,teK1},
0 0 1
where K!' = {t ¢ K* |tt° = 1}. For a € K*, we put
aO'
d(a)=| 0
0

Define an action of Go, on D = {!(z,w) € C?| (2 — 2)/k —ww > 0}
and an automorphic factor j: Goo X D — C* in a usual way (see §1.5). Let
Koo ={9 € Goo | 9goo{Z0) = Zp} be a maximal compact subgroup of G,
where Zy ='(k/2,0) € D. We put Ky ={g9 € Ga,s | g- Ly = Ly}, where
L=0%Ls=L®z%Zs (Zf = [[p<oo Zp) and Ga s is the finite part of
Ga. Then Ky is a maximal open compact subgroup of Ga f.

For a positive even integer [, let A;(Ks) be the space of smooth func-
tions f on Gq\Ga satisfying

(1) flgkrhoo) = j(koos Z0)~' f9) (9 € Gasks € Kf koo € Kuo)
(ii) For any gf € Ga,y, 3 (goos Zo)" f(9sogy) is holomorphic in g (Zo).

We call A;(Ks) the space of holomorphic automorphic forms of weight 1
on Ky. Let f e A(Ky). For m € Q and a nonzero fractional ideal a of
K, we put

) = /Q o, VmD IO rd(ap)de (7€ Rp).

Here dz is the Haar measure on Qa normalized by vol(Q\Qa) =1, ¥,
is the additive character of Q\Qa with ¥, (2s) = em[re] =
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exp(2my/—1mas,) for zoo € R, and we choose an element ay of Ki’f
such that ar = OéfOKyf (af = a®z Zf,OK’f = O Rz Zf). Then f is
determined by {f7"}mq. Note that f;* =0 unless m is nonnegative and
mN (a) is integral.

Throughout this section, we let m be a positive rational number. Let
T}, be the space of smooth functions © on Rq\Ra satisfying

(i) O((0,z)r) = Ym(z)O(r) (z € Qa,r € Ra)
(ii) O(rtes) = O(r) (r € Ra,too € K1)

(ili) For any r¢ € RA,f, Woo — € [—gwoowoo} O((woo,0)ry) is holo-
morphic on C.

We call T}, the space of holomorphic theta functions of index m.

We next define a metaplectic representation of K}A‘ on T}, Let X
be the set of Hecke characters x of K with X‘QX =w and Xy = {x €
X | X(200) = |200|/200 (200 € KZ = C*)}, where w denotes the quadratic
Hecke character of Q corresponding to K/Q. Let x € Ayp. For a prime
v of Q, we put x, = X\Kvx, where K, = K ®q Q,. Let t, € K} and
© e Ty, If t, =1, we put M (t,)© =0©. If ¢, # 1, we put

M, (to) O(r)

= )‘Kv(wm)_l Xv (1 —h

p > ‘NK/Q(l_tv)
y /K o (; (wv,tvwv)> O(r (1 — ty)we,0)) dwy  (r € Ra).

Here Mg, () is the Weil constant (see §2.9), (w,,w)) =

v

1/2

v

Trg, q, (Kwgw,,) (wy, w, € K,) and dw, is the self-dual Haar measure of
K, with respect to the pairing (wy, w)) — ¥y ((wy, w))). For t = (t,), €
K}, we put M, (t) = ®, M/, (t,). Denote by p' the right translation of
Na.y on T}, Then ./\/l;( defines a smooth representation of K}g on TV,
satisfying M (t) o p'(ny) o M;((t_l) = p/(tngt™1) for t € Ky, ny € Na s
(see §2.9-11).

For x € Ay, set

oy =10 € Thy | /\/l;((t) O(r) = O(rt) (r € Ra,t € Kx)}.
Then the following facts hold:
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(0.1) T}y, is an irreducible Na p-module.

(02) T%l = @XEXO TZ:)l,x'

Note that we define Thory Ina different way in §2 and that both definitions
are equivalent (see §2.25 and §2.24). For a nonzero fractional ideal a of K
and x € &), we put

hot(@) = {© € Thy [ O(rro) = O(r)

for any r € Ra and 19 € R(a)f}
T’lrlrﬁjl(aa X) = T;lnol<a) N TZ%)I,X ’

where R(a); is an open compact subgroup of Ra ; given by

R(a); = {nt|ne€ N(a)ste o}w = K}.‘,f NOx ;}

N(@; = {(w.a)eNas|weapa+3wn € Nap)Ox.}-

Note that fi* € T (a) for f e A(Ky).
We define the primitive part Tj, ...(a,x) of Ty, (a,x) to be the
space of © € T}, (a,x) such that

/ p'(n)®dyn =0
N(b)y

holds for any fractional ideal b of K with b D a and b # a, where dyn
is the Haar measure on N(b); normalized by vol(N(b)s) = 1. It is known
that

dimgc T%l,prim(a’ X) <1

([Shin], [GIRo]; see also Theorem 3.4). Moreover we have
dimc T%l,prim(av X) =1 < X € XJprim(aﬂ m) ’

where X()errim
Artin conductor and the epsilon factor (for the precise statement, see §3.7

and §3.8). Then we have the following direct sum decomposition:

%l(a) = Z Z Zqé)l,prim(ba X) )

b xext . (b,m)

0,prim

(a,m) consists of x € Xy satisfying certain conditions on the
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where b runs over the fractional ideals of K with b D a and mN(b)
integral.

Let f e Ai(Ks),x € X ppim(a,m) and © € Tp o (4, %), © # 0. We
call the inner product

o= [ JCIewdr

the primitive (a,x)-component of f with respect to © (dr is normalized
by vol(Rq\Ra) =1).

We now state the main results of the paper. Let [ > 4 be an even
integer and 2 a Hecke character of K satisfying | oy, = 1 and Q(200) =

(200/]200])! for 200 € KX. Let Eq € A;(K;) be the holomorphic Eisenstein
series of weight [ attached to Q (see §4.2). Let y € Xo'fprim(a, m). Denote
by A(x) the set of finite primes p with p|D,ord,(mN(a)) = 0,a(x,) =
2ordy,(D) — 1, where a(x,) is the p-exponent of the Artin conductor of x,
(see §3.5). For p € A(x), let II, be a prime element of K,. We define the

period of © € T (a,x) by

hol,prim

1(©) = / o(t) d*t,
KN\KL
where d*t is normalized by vol(K'\K}) = 1.

MAIN THEOREM. Let © € T} (a,x) — {0}. Then the primitive

hol,prim

(a, x)-component of Eq with respect to © s given by

L(x$% (1-1)/2) m
L(w;1 —1)L(2;1/2) ’

(Bo)i @) =c() [ (1+QL)p'~"?)-

PEA(X)
where
_(27Tv—1)l -2 1y —1 1/2—2 {“] —1/.0
C(Q)_i(l—l)! m’~“|D|""N(a) en 5 Q (af).

The following criterion for the nonvanishing of 1(©) is due to T. Yang
([Yan]).
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THEOREM. Let x € X&:prim(a, m) and © € Ti, . (a,x)—{0}. Then
1
we have I(©) # 0 if and only if L(X; 5) #0.

This implies that the primitive (a,y)-component of Fq vanishes if and

1
only if L(X; 5) # 0. By virtue of Shimura’s results on critical values of
Hecke L-functions ([Shiml], [Shim3]), we obtain

1
THEOREM. Let x € X(fprim(a, m) and suppose that L(X;ﬁ) £ 0.

Let  ©qy be the element of Ty, i.(a.x) with I(Oqy) =
rle,, {— g} L(X; %) Then ((Eq)g', Oa,y) is algebraic.

0.3 The paper is organized as follows. The first three sections are
devoted to an adelic reformulation with some refinement of the theory of
Fourier-Jacobi expansion for automorphic forms on G mainly due to Shin-
tani. In §1, we recall basic facts about holomorphic automorphic forms on
G, their Fourier-Jacobi expansions and theta functions appearing as coeffi-
cients of the expansion. The second section is of expository nature. We first
recall several basic facts about the lattice model after [MVW] and [MS]. We
next study a relation between the lattice model and the space of theta func-
tions. The main object of this section is to prove the facts (0.1) and (0.2).
Though the content of this section might be known, we give its detailed
account since it is not found in the literature. In §3, we recall the defini-
tion of primitive theta functions, which plays an essential role in Shintani’s
theory of Fourier-Jacobi expansion, and summarize their basic properties
(the uniqueness and existence) after [Shin], [GIRo] and [MS]. In §4, we state
the main result of the paper (Theorem 4.4): The primitive components
of a holomorphic Eisenstein series on G are expressed in terms of critical
values of Hecke L-functions and periods of primitive theta functions. In §5,
we first give a criterion for non-vanishing of a primitive component. This
follows from a relation between periods of primitive theta functions and cen-
tral critical values of certain Hecke L-functions, which is essentially due to
T. Yang ([Yan]). We next show that the primitive components of the Eisen-
stein series, under a suitable normalization of primitive theta functions, are
algebraic. This fact seems to be closely related to the theory of the arith-
meticity of automorphic forms on unitary groups due to Shimura ([Shim2])
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and Yamauchi ([Yam]). The remaining part of the paper is devoted to the
proof of Theorem 4.4. In §6, we reduce the proof of the theorem to the
calculation of certain local integrals. After preparing several notation in §7,
we carry out the calculation of the local integrals in §§8-9 and complete the
proof of Theorem 4.4 in §10.

Notation. Let E be an algebraic number field with the integer ring
Op. For a prime v of E, we denote by FE, the completion of F at v.
Let | -], be the valuation of E, given by d(ax,) = |a|ydz, (a € EJ),
where dz, is a Haar measure on F,. Let p be a finite prime of F and
Opg,p the integer ring of E,. We put ¢, = #(Opg,/m,OFy), where 7, is a
prime element of Ej. Let ordy: Ey° — Z be the additive valuation of E,
normalized by ord, () = 1. For a nontrivial character ¢ of Ej,, we denote
by n(y) the largest integer n such that v is trivial on 7, "Ogy. By an
ideal of E (resp. Ej), we always mean a nonzero fractional ideal of FE
(resp. Ey). Denote by Ea the adele ring of E and by Ea ¢ (resp. Eu)
the finite (resp. infinite) part of Fa. We put Op ; = H Ogp C Eay.

p<oo
Let w € Ea. For a finite prime p of E, let w, € E, be the p-component

of w. We also put wee = (Wy)yjoc € Foo. Denote by S(FEa) the space of
Schwartz—Bruhat functions on Ea. By a Hecke character of E, we mean
a unitary character of E trivial on E*. For a Hecke character & of FE,
L(&;s) stands for the Hecke L-function attached to &.

Let G be an algebraic group defined over E. For a prime v of FE,
we write G, for the group of E,-rational points of G. Let Ga be the
adelization of G, and Ga s (resp. G) the finite (resp. infinite) part of
GAa.

For a locally compact abelian group H, we denote by H” the group
of unitary characters of H, continuous homomorphisms from H to C' =
{2 € C|2zz=1}. For 2z € C, we put e[z] = exp(2mry/—1z). For a set X,
chy stands for the characteristic function of X. For € R, [z] denotes the
largest integer n with n <. We denote by diag(as,...,a,) the diagonal
matrix with the i-th diagonal component a;. We denote by Z> the set of
nonnegative integers. For a condition P, we set 6(P) =1 if P is satisfied
and 6(P) =0 otherwise.
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§1. Automorphic Forms on U(2,1) and Fourier-Jacobi Expansion

1.1 Let F be a totally real number field of degree n. We put dzry =
|dp|™Y? d'zo, where dp is the discriminant of F and d'z., is the usual
Lebesgue measure on Fy, = F' ®g R ~ R". For a finite prime p of F,

let dxp, be the Haar measure on F, normalized by / drp, = 1. Put
OFpp

dr = dZoo [[y<oo drp. Then we have vol(Fa/F) = 1. The idele norm |a|a
of a € FY is defined by d(az) = |a|adz. We let Dp be the different of F:

Dgl ={r € F|Trpq(zy) € Z for any y € Or}.

1.2 Let K be a totally imaginary quadratic extension of F. Denote
by o the nontrivial automorphism of K/F'. Let Dk /p be the different of
K/F:

D;{}F ={2€ K |Trg/r(zw) € O for any w € Ok} .

For a finite prime p of F' and an ideal a of K, we put a, = a ®0, Opy.

Let af = a®0,.O0Ff = H ap.
p<oo

1.3 Throughout the paper, we fix an element k of K* satisfying

g

k% = —k and a Hermitian matrix

1/k
S = 1
—1/K

Let G =U(S) be the unitary group of S defined over F'

Gr={g€GL3(K) |'g”Sg = S}.

1.4 Let {7i}1<i<n be the CM-type of K such that Im(7;(x)) >0 (1 <
i <n=[F:Q]). We embed K into Koo .= K ®qR = C" by z —
(11(2),...,m(2)). Denote by oo; the infinite prime of F' corresponding to
the embedding 7;|r: F' — R and identify Foo, (resp. Koo, = K ®p Fi,)



Fourier-Jacobi Expansion 355

with R (resp. C) via the embedding 7;. In what follows, we often write
20 for 7;(z) (z € K) to simplify the notation.

1.5 For i=1,...,n,let

1/k®
SO = 1
—1/k@
GY) = {geGLs(C)|'gSWg = 5"}

Note that the signature of S® is (2,1). The Lie group GY acts on a
Hermitian symmetric domain 20 = {Z =*(z,w) € C? | ) (z—2)—ww >
0} as follows. For Z = Y(z,w) € 2%, we put Z~ = *(z,w,1) € C3.
For g € GY and Z € Z® define g(Z) € Z9 and j¥(g,Z) € C* by
9-27=j"(g,2)-(9(2))~ Then (g9,2)  g(Z) (resp. (g.2) — j")(g,2))

defines an action of G((fo) on Z() (resp. a holomorphic automorphic factor).

This action is transitive. Let K% be the stabilizer subgroup of Z(()i) =
tk®/2,0) € 20 in GY. Then K& ~ U(2) x U(1), where U(m) = {g €
GLn(C) | 'gg = 1m}.

We define an action of Go, = Gg) X oo X Gf;f) on Z2 =20 x...x 2z
in a natural manner. Put j(g,7) = H j(i)(g(i),Z(i)) € C* for g =

1<i<n

(g") € Go and Z = (Z¥) € Z. The stabilizer subgroup of Zy = (Z(()i))
N G is Koo = K& x - x KL,

1.6 Let L = {!(z1,22,23) € K® | 21 € nDI_(}F, 29,23 € Ok}. Then
L is a maximal DI_(} p-integral lattice of K 3 with respect to the Hermitian
form S. For each finite prime p of F, we put Ky, = {9 € Gy | gLy = Ly},
where Ly, = L®0,.OFp. Then K, is a maximal open compact subgroup of
Gp. Weput Ky =[] Ky CGay.

p<oo

1.7 Let [ be an even positive integer. We denote by A;(KCs) the space
of functions f on G satisfying the following conditions:

(i) f(vgkrkos) = j(koo: Z0) " f(g) (v € Gp,g € Ga ks € Ky, koo €
Kao) -
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(ii) For any gf € Ga.fy j(goos 20)! f(googs) is holomorphic in geo(Zp).

We call A;(Ky) the space of holomorphic automorphic forms of weight 1
on Kf.

1.8 Let N be an algebraic subgroup of G such that

1 kw? m+gww"
Np=<(w,z):=|¢9 1 w lwe K,z e F
0 0 1

The multiplication law of N is given by

1
(1.1) (w,z)(w',2") = (w+w',x+x'+§<w,w'>),
where
(1.2) (w,w') = Trg/p(kww’).

Thus N is the Heisenberg group associated with (K, (,)).
Let R be an algebraic subgroup of G such that

Rr = {(w,:z:) -diag(1,t,1) |w € K,z GF,tGKl} ,

where K' = {t € K* | tt° = 1}. We henceforth identify R with a
semidirect product of N and K!, and write (w,z)t for (w,x)diag(1,t,1)
if there is no fear of confusion. Under this notation, we have t(w,z)t™! =
(tw,z) (t € K, (w,z) € N). The center of R is {(0,2)}. For a € K*, put
d(a) = diag(a®,1,a™ ') € Gr. Then we have the Iwasawa decomposition

(1.3) GA:RA{d(a) ’aEKX}/Cf/COO.

1.9 Denote by 1q the additive character of Q\Qa with ¥q(z) =
€[zs] (o € R). For m € F, we define an additive character 1, of F\Fa
by m(x) = Yo(Trr/q(mz)) (x € Fa). Let f e A(Kys). Then f admits
the Fourier-Jacobi expansion

(1.4) fl9)=> f™yg) (g€Ga),

meF
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where
(1.5) o) = [ F(0.2)9) () da
F\Fa
We easily see that ™ is left Rp -invariant.
1.10 Let a be an ideal of K. We set
(1.6) [t (r) = f"(rd(ay))  (r € Ra),

where oy is an element of Kx Af such that ay = a;y O y. Note that the
right-hand side of (1.6) is independent of the choice of ay. For m € F' and
w = (wq,...,w,) € Koo = C", we put

enfw] = exp (27r\/—_1(m(1)w1 +-- 4 m(")wn)> .
The following facts are easily verified.
1.11 LeMMA. Let f € A(Ky) and a an ideal of K.
(i) We have fI* =0 unless m is totally non-negative.
(ii) For a fized t € Ky, f)((w,0)t) is a constant function in w € Ka.

(i) For ry € Raf, em {—;woowgo} J&' (oo, 0)1y) is holomorphic in
Weo € Koo

1.12 LEMMA. Let f € A(Kf),tw € KL and a = axay € K.
Then we have

F" (rtocd(a (ﬁ ) n |5 % = D] 220) (e Ra),

where a is the ideal of K corresponding to oy (a= KN (afOk ¢ x Ku)).

REMARK. Inview of (1.3) and Lemma 1.12, f € A4;(Ky) is determined
by {fd"}m.a-

1.13 Let m be a totally positive element of F. Let T™ be the space
of smooth functions ©: Rp\Ra — C which satisfy the following properties:
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(L.7)  O((0,2)r) =Yn(z)O(r) (x € Fa,7 € Ra).
(1.8) For any r € Ra, too — O(1ts) is K1 -finite.

We call T™ the space of smooth theta functions of index m. Let T}, be the
subspace of T™ consisting of ©® € T™ satisfying the following properties:

(1.9) For any r € Ra, we have O(rts) = O(7) (too € KL).

(1.10) For any rf € RA f, Woo — € {— gwoowgo] O((weo,0) 7f) is holo-
morphic on K.
We call T}, the space of holomorphic theta functions of index m. In view
of Lemma 1.11 and Lemma 1.12, we have fi" € T}, for f € A(Ky).
Let T™ be the completion of T™ with respect to the inner product

0,0 _/RF\RA oM e dr (0,0 eT™),

where the Haar measure dr on Ra is normalized by vol(Rp\Ra) = 1.
Then T™ is the Hilbert space of square integrable functions © on Rp\Ra
satisfying (1.7). We call T™ the space of L2-theta functions of index m.
Let p' be the right translation of Ra on T™. Note that T™ and T,
are R -stable under p’, where

(1.11) Rz:NAJ'K}&:RA’fK;O C Ra .

1.14 Let p be a finite prime of F' and a, an ideal of K,. We put

(112)  N(ap) = {(w,a:) €N, |we ap,
K 4 _
z+ 5 ww’ € (”DK}F)p NK/F(ap)}
and
(1.13) R(ap) ={nt |n € N(ay),t € Of,},

where O%(,p = Kp1 N C’)[Xﬂg.
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For an ideal a of K, we set N(a)y= H N(ap) and R(a)y =

p<oo
II R(ap). Let
p<oo
(1.14) (@) ={0 e T, | p(r)©® =0 for any r € R(a)s}.

It is easy to see that fi* € T},(a) for f e A/(Ky).

1.15 For each finite prime p of F', we choose and fix an element 1,
of (D;(} )p satisfying the following two conditions:

i) vty =1

(ii) If p ramifies in K/F, we have v, € HP(DI_{}F)P’ where II, is a
prime element of K.

Set vy = (Vp)p<oo € (DI_(}F)f' For w € Ka r, we put

K
(1.15) Ty = §(Vf—V?)wa € Fay.

Then
(1.16) N(a)y = {(w, 2+ zy) | w € ap, 2 € Fap N (kDhp NK/F(a)>f}.
Let f(a,m) be an ideal of F' given by
(1.17) fa,m) = F 0 (mDr(kDy) o) Nie/p(a)) -
In view of (1.16), we have the following:

1.16 LEMMA. We have T} (a) = {0} unless f(a,m) is integral.
§2. Lattice Model and Intertwining Operators

2.1 In this section, we first summarize several facts about the lattice
model. We refer to [MVW] and [MS] for the local theory of the lattice
model. We next study a relation between the lattice model and the space
of (smooth, holomorphic or L?-) theta functions.
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2.2 From now on, we fix a totally positive element m of F. Let

1

2.1
(2.1) L=—

Dyt + 2o
2
be an Op-lattice of K. Then L is self-dual with respect to the pairing
(w,w") — Py ((w,w')), where (,) is given by (1.2). Put £, = L ®0,OFp
for each finite prime p of F' and put Ly = L ®0,.OF = H Ly.
p<oo

For each prime v of F, let dw, be the Haar measure on K, = K Qp
F, self-dual with respect to the pairing (w,, w!) — ¥ ((wy, w))), where
Ymo = Um|F,. Let dw =], dw, be the product measure on K. We note

that vol(K\Ka) = 1.
REMARK. The Haar measure dz,, on K., = C" is given by
" 9 () ()

==

where dz(® and dy(? are the usual Lebesgue measures on R. We also note

that dzy, = 1.
Ly

dzo = de Dy (200 = (21gicn, 28 = 2@ + V=T,

For k = (ki,...,kn) € (Z>0)" and z = (2, ... 2") € K, we

write 2F = [, (z))ki . The following elementary facts are used in later
discussion.
2.3 LEMMA.

(i) For k,l € (Z>0)" and z € K, we have

/ em|rww’ + kuw’z] (w)k (z + w) dw

n () () \ "
sl I ko (M) |
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PRrROOF. It suffices to consider the case n = 1. Denote by f(z) the
integral of (i). Expanding e,,[swz] and (z + w)' into power series in @
and w respectively, we obtain

l—r SRl ‘ (2 —1mk)? 2T / em|[rww] W w" dw .
J-: C

2mme

V-1

f(z) =0 if k> [. Suppose that k& <[. Then we have

) = A (”—m)k Sty

—k—j
Since the last integral is equal to x4, (K + j)! < > , we have

M

V-1 ]Oj(k+j—l)
2rmk\ ~F
= O k!
" (m) |

which proves (i). The assertion (ii) is similarly proved. O

2.4 Let p be a finite prime of F. Define a smooth irreducible repre-
sentation (py, V") of Ny as follows:

VI = (B € S(Ky) | (2 + 1) = (1 (50 + 5 <z,z0>> B(2)
(z€ Kp,leLy)}

pp(n) ®(2) = Yy (; (z,w) + x) P(z+w) (n=(w,x)€ Ny, @€ V"),

The Stone—von Neumann theorem asserts that any smooth irreducible rep-
resentation of N, with central character (0,z) — vy, () is equivalent to
pyp- Let @y be an element of V™ given by

1 o
(DO,JJ(Z) — wm,p <Z <Z,Z >> ..oz E Ep
0 e Ky — L.

2.5 Let V{" be the space of @y € S(Ka,y) satisfying

(2.2) Py(zf +1f) = Ymy (1 (zfp) + <lf’l?>) P(2y)
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for zy € Kay,ly € Ly. Then me is identified with the restricted tensor
product of V™ over p < oo with respect to {®op}p<co. Let VI be the

space of functions ®,, on K., = C" such that e,, [— gzoozgo] Do (200) 18
a polynomial in zc(xl)), e zéZ). The space V' is called the Fock space (cf.
[Ig]). We consider V™ = V" ®@ V' as a subspace of S(Ka).

Let V™ be the completion of V™ with respect to the inner product

given by

(@, = ; O(2)P/(2)dz (®, 0" e V™).

Then V™ = V" @ VI, where

Vit = {®; € L*(Kay)| ®y satisfies (2.2)}

~ K
v {® € LK) | em [—2 zoozgo] oo (200)
is anti-holomorphic in 2z} .

For n = (w,z) € Na,z € Ka and ® € V™, we put
1
p0) D) = b (5 (210) + ) Bz +w).

Then p defines an irreducible unitary representation of Na on V™ sat-
isfying p(0,z) = ¢m(2)1dy,, for z € Fa. Note that V™ is N s-stable
under p. We call V™ (resp. V™) the smooth (resp. L2-) lattice model.

2.6 Let ®g= P s ® Py € V'™, where

Do r(zf) = H Po,p(2p)
p<oo
1 (o}
Y, f Z<zf’zf> o zpELy
D oo(200) = e€m [g zoozgo} (200 € Koo) -

We note that @ ; satisfies

1 g
(2.3) p <lf7 YRUR lf>) o =Pos  (f€Ly),
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and is characterized by this condition up to constant multiples.
2.7 PROPOSITION.
(i) For ® € V™, we have
®(z) = (p(z,0) D, D) (z€ Ka).
(i) For ®,& € V™, we have

e O (w) p(w,0) ¥ (2) dw = (&, d’) - Dy(2) (z€ Ka).

PROOF. To prove the proposition, we may (and do) suppose tNhat b =
Py ® Qo € V™ and ' = P} ® &, € V™, since V™ is dense in V™. It is
easily verified that
Py(zr) = (p(27,0)P5, o s) (27 € Kay)-

Let ®(2) = ®oo0(2)P(2), where P(z) is a polynomial in z. By Lemma
2.3 (ii), we have

(p(2,0)Ps0, Po.00) = /K

which proves (i). To prove (ii), put

D (2y) —/K O p(wy)p(wy,0) ®(zy) dwy (25 € Kap)-
A f

Let zy € Kay and Iy € Ly. Since @y € Vi, ®(z5 +1y) is equal to
/KAf Cr(wy —1y)Ym (— {zp + 1wy — lf)) Oy (2 +wy) dwy
= Ym ( (zp2 ) + lfvlf )

X/KM £(wf) tom (— (2f 0 >) (2 + wy) duwy

_¢m< (zf,lf lf,lf ) (I),



364 Atsushi MURASE and Takashi SUGANO

On the other hand, since p(wy, O)Q’f € Vi for wy € Ka, g, we have

1 1
K +10) = b (=5 (ernlsh = 3 U1D) @),

These two facts imply that @ is a constant multiple of ®¢ y. Since ®7(0) =
(@, ), we obtain . ,
;= (25, @F) Doz

By using a standard argument and Lemma 2.3, we obtain

- Do (w) p(w, 0) P (2) dw = (oo, Pl) Po,o(2) (2 € Koo)

which completes the proof of (ii). O

2.8 Denote by w =wg/r € (FX/F*)" the quadratic Hecke character
of F corresponding to K/F by class field theory. Let

(2.4) X = {x € (Kx/K*)" | X|px = w}

(2.5) Xy = {xv € (K,)"| Xolpx = wo},
where w, is the restriction of w to F,* for each prime v of F.

2.9 We now recall a splitting of metaplectic representation of K} on
V™ (or on V™) given in [MS]. For each prime v of F', let A\g, (¢ ) € C*
be the Weil constant attached to (K,/F,,¢m ). By definition, we have

[ e bl dz
=, () [Nacpe )] [ () 6% 2028 d,

for ¢ € S(K,), where ¢ is the Fourier transform of ¢ with respect to the
pairing (z,w) — ¥ ({2, w)). The following facts are well-known:

(i) AK, (¢m,v)2 = Wv(_l) for every wv.

(ii) If v :(p is)ﬁnite and Ky, /F, is not ramified, we have A, (¢mp) =
n(Ym,
Wy <7Tp P )
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(iii) If v is infinite, Mg, (Ym.) = v —1.
H AK, (¢m,v) =1
For each prime v of F, let V)™ (resp. V™) be the v-component of

V™ (resp. XN/m) For x, € &, and t, € K, we define an endomorphism
My, (ty) of V™ by

My, (tv) Dy
o, ety =1

4 W) () Vi (1 ),
<[ ma (3 wv,twv>) pol(1 = £, 0) By dwy -ty £1

1/2

for ®, € V. The following fact is proved in [MS, §4].

2.10 Proposition. The mapping t, — My, (t,) defines a smooth rep-
resentation of K! on V™ and estends to a unitary representation of K.
on V.

2.11 For x € &, define a unitary representation M, of K} on ym
by

M ()@ =My, (t) s (t=(t,) € K5, @ =][RreV™).
We use the same notation M, to denote a representation of Ra on ym
given by
M, (nt)® = p(n) My (t)®  (n€ Na,t € Ky, ®e V™).

Let £ € (KX /K*)" be a Hecke character of K trivial on Fy. For t € K},
we put £1(t) = £(z) where we choose z € KX so that ¢ = 27/z. Then
¢! does not depend on the choice of z and defines a character of K} /K.
Recall that R = Na, fK}A. The following fact is easily verified.

2.12 Lemma.



366 Atsushi MURASE and Takashi SUGANO
(i) Let x € X. The space V™ is R -stable under M, and the
representation of R on V'™ is smooth.
(ii) For x,x' € X, we have My(t) = (x/X')'(t) My (t) for t € Kj.
2.13 For k= (ki,...,kn) € (Z>0)" and zo € Ko, we put

K
Ppp oo(200) = C - € {5 zoozgo] (zgo)k ,

where

=11 . 2rm® @)\ "/
P VR VA '

Then {® o | k € (Z>0)"} forms an orthonormal basis of V7.
Let x € X and put Xoo = X|xx . There exist integers ai(x),. .., an(x)
such that

(26)  xoolon) = [T (/200" (oo = () € KZ).

Since Xoo;(—1) = weo; (—1) = —1, we have a;(x) =1 (mod 2) (1 <i <n).

2.14 LEMMA. For t = (t;)1<i<n € KL, we have

Mx(t) (I)k,oo = H (ti)ki+(ai(X)+1)/2 : (I)kpo .
=1

PROOF. We may assume that ¢; # 1 for each i. For z € K, we have

CI:I My (1) P 00 (2)

() () e

1+t
x/ en {g {%ww"—i—z”w—zw”—i—(w—l—z)(w—i—z)”}]

x (w” + 2°)F dw

1 \" 1—t\ 1 K
- [e'e) 1_t’L m | 5 U'I7
() e () = e 57
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where
I= / en {% ww’ + HZU’LU] (w® + 2°)* dw .

A calculation similar to the proof of Lemma 2.3 shows that

We thus obtain

st = () (15

n
< [T -t (1- t)th - Dy o (2)
=1

_ H t”;?i+(ai(x)+1)/2 o,

=1

0o(2),

which proves the lemma. []

2.15 Corollary. The space of KL -finite vectors in ‘70? coincides with
V.

2.16 For x € X and ® € V™, we put
(2.7) I 0(r) = ) (My(r)®)(€)  (r € Ra).

feK
The theta series (2.7) is absolutely convergent, since M, (r)® € S(Ka).
Set
(2.8) Cot =T @o(1) = Y o(€),
{eK

where ®( is given in §2.6.

2.17 LEMMA. We have CJ* > 0.

PROOF. We first observe that Cj* = Z vo(l), where

lel

vo(z) =en gzz" — i <z,z">] € S(Kw) (2€ Ky).
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1
Note that e, [_Z <l,l")} = £1 for [ € L. A straightforward calculation

shows that

Golz) = [ olw)enl(zu)]do =2 e, [n (e )

By Poisson summation formula, we obtain

Cr =3 %o(l) =2"2 Y en[sli’] > 0.0
leL leL
2.18 PROPOSITION.
(i) We have T,"® € T™ for ® € V™.

(ii) 7" defines an Rj-homomorphism of V™ (with the action My)
to T™.

(iii) For x,x' € X and ®,® € V™, we have
T3 @((w, 0)t) = (x/X) () T)" @((w,0)t)  (w € Ka,t € Kp)

and
(7;” @,7;(’7 ') = 5x,x’06n (P, <I>’) .

(iv) We can extend T" to an Ra-homomorphism of V™ (with the ac-
tion M,) to T™.

(v) For © € T™ and ® € V™, we have

Z (@77;?1(1)): % @((wao))mdw
XEX A

PrROOF. Let ® € V™. It is straightforward to see that © = 7.)"®
is smooth, left Np-invariant and satisfies (1.7) and (1.8). To prove (i), it
remains to show that ©(tr) = ©(r) for t € K!' and r € Ra. Since the
assertion is trivial for ¢t = 1, we assume ¢ # 1. We have

Otr) =Y (My(1)®)(€),

feK
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where ® = M, (r)® € V™. By definition of M,,, we have
(M02) (©) = [ v (510 w0 =) ¥'(1-w+ ¢ du
A
Changing the variable w into (1 —¢)~}(w — £), we have

MO = (1)

1-1¢
where  ®” is  the Fourier transform  of & (w) =
U < Trg/r <1Lt ww >> ®'(w) with respect to ,((,)). By Poisson

summation formula, we obtain

—Y P ()T -y v -

EEK ¢eK 1334

which proves (i). The second assertion of the proposition is easily verified.
The first part of (iii) is immediate from Lemma 2.12 (ii). Let ®,®' €
V™ ox,x' € & and put © = 7" and ©' = 7;’7@’. Then we have

(0,0
e o (len)

= e ™,
K\Ka KWK Py

X (M (t)®)(w + &) ©'((w,0)t)
_ / dw/ 45t (Mo (£)®) (w) O ((w, 0)2)
Ka KWK

-2, dW/l M (00) ) p(w,0) My (D E)
Ka KN\K

{eK

_ ;{%(5) /Kl\K}A (Mo (), My (1) D) d"1

(by Proposition 2.7 (ii))
= G (2,2) / (X' /x)*(t)d*t  (by Lemma 2.12 (ii))
KWKL

= 5x,x’ Can (q)v@/),
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which proves the second part of (iii). The fourth assertion follows from (ii)
and (iii). To prove (v), we fix a xo € X. Observe that

S [ o0 SOt = ()

YEX 1\K1

holds for any continuous function f on K'\K}. It follows that

> (6. 7"®)
XEX
- /K\KA w 26;» /KI\K}\ O((w, 0)t) (xo/x)" (1) T ®((w, 0)t)d*

which proves (v). O
2.19 For © € T™, we set

(2.9) (FlO)(=) = (/(2.0)0,T]" ) (= € Ka).

2.20 PROPOSITION.
(i) For © € T™, we have F'O € V™.

(ii) Fy' defines an R} -homomorphism of T™ to V™ (with the action
M,).

(iii) For © € T™, we have F'© =0 except for finitely many x € X.
(iv) For ® € V™ and x,x € X, we have

FUTH® =6y, Cy' @
(v) For © € T™, we have

Y. T'Fre=Cfe.
XEX
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Proor. (i) Put ® = F7'©. By (2.3), we have

(2.10) B+ 1) = v (510 + 3 111D B)

for Iy € L. We next show that zf — ®(202¢) belongs to S(Ka ¢) for a
fixed 2o € K. Take a sufficiently small neighbourhood Uy of 0 in Ka

1
such that Uy C Ly, <Z <wf,w?)> =1 and p'(wy,0)© = O for wy € Uy.

1
Then we have ®(z+wy) = ¥, (2(z,wf)> ®(2) (2 € Ka,wy € Uy) in view
of (2.10). On the other hand, we have

Bz twg) = v (55.2)) (000 7,0 ©,T20)
= Um (;(wf,z>) O(z) (2€ Ka,wy €Uy).

These show that, for a fixed 2o € Koo, 2 — P(2002f) is in S(K4a ¢) and

hence in V™ by (2.10). To prove (i), it now remains to show that 2o —

D (2002¢) belongs to V' for a fixed zp € Ka 5. Put ©' = p'(24,0)© € T™

and take t1,...,t5 € K}A,f so that K} = U K't; Kolo(Q}(’f (disjoint
1<j<s

union). Then we have

D(2002f) = (O, T (p(—200,0) Do)
:/ dw/ ¥t ©/(w, 0)) My (H{— 200, 0)) B(w)
Ka KN\KL

1 S
= - dw/ d*t d*tee O ((w,0)tit too
P2 ot foy AU [y O Oty

My (tjt ftoo(— 200, 0)) Po(w)

where the measures d*t; and d*t., are normalized by Vol((’)}{’ §) =
vol(KL)=1 and c=s-#(K'NnKLOL ). Lemma 2.14 implies

My (tjt ftoo(—200,0)) Po(weowy)

K
= 1(tos) €m B} (20023 + WooW, — 2loczooW,) | My (tts) Pop(wy)
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with "
H (t9)) (e C+1)/
7=1

Hence we have
K

O(2002f) = €1 {

5 zoozgo] U(200)

where

U(za) :/OO dwa, /Kgo P toe (o) ™" P(Woo, Loo) €m]—F Woo (fooze0)]

1

P(Woos too) = Cem[ WeooW }Z/K dw g / dxtf
Jj=1 247

O'((wg,0)tjts - (woo, )t )(Mx(tjtf)@O,f)(wf)-

Since © is right Kl -finite, ¢(weo,te0) can be written as a finite sum of
unitary characters of K' as a function of t... It follows that U(z) is a
polynomial in zZ, and hence zo, — ®(zo02f) belongs to V'. The proof of
(i) has been completed.

(ii) It is easily verified that F" is an Na y-homomorphism. To prove (ii),
it suffices to show that, for any prime v of F, M, (t)F'© = F"p'(1)©
holds for t € K! — {1}. For w € K,, set

Fulw) = A )™ () N (1= O (50 1) )
Since fi(w) = fi-1(w) = fi—1(—w), we have
M(1) F6(2)
= /K : fe(w) thmo <%<z7w>> FrO(z + w) dw
= (o7 ([ s (—u)pl(=w.0)(=2.0) o v )
= (O, T (M (7' (~2,0)) @)

= (6,771 (~2,0) T ®y)
= Fr(1)0)(2)
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for z € Ka. This completes the proof of (ii).
(iii) Fixa xp € X and put ©g = T"®¢. By Proposition 2.18 (iii), we have

Fre) = [ 12) (u/xo) 0 dt,

KWK

where
I(t,2) :/K\KA O((w, 0)t(z,0))B0 ((w, 0)8) duw .

Since © and Oq are right invariant under some open compact subgroup of
Na .y, there exists an ideal a of K such that the equalities

1

I(t, z + wy) = ¥m (—2 (2, wf>> I(t, 2)

and
1

I(t,z +wy) = Ym (2 <Zf,wf>> I(t, 2)

hold for any wy € ay,t € K}X and z € Ka. This implies that z; —
I(t, z002f) has a compact support independent of ¢t and 2z, and hence
that there exists an open compact subgroup U } of K11&7 f satisfying

I(t't,z) =1(t,2) (' €Uj,t€ Kp,z€ Kp).
Thus there exists an open compact subgroup Uy of K 7 such that
f;n@#()thjf =1.

On the other hand, in view of the argument of the proof of (i), we see that
there exist only a finite number of infinity types of x such that )"0 # 0.
The assertion (iii) now follows.

(iv) For z € Ka, we have
FITEO() = (2 0T, T )

= 0y Cy' (p(2,0)@,®0)  (by Proposition 2.18 (iv), (iii))
= 0y Cy' ®(2)  (by Proposition 2.7 (i)) .
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(v) In view of (ii), we have
(My(r) FY'©)(2) = (p’((z,O)r)@,’];Z"@o) (r € Ra,z € Ka).
Thus, for r € Ra, we have

> TrEre)

XEX

= > > )0, T ®)

XEX (€K

= Z/ O((w,0)(&,0)r) ®g(w) dw (by Proposition 2.18 (v))
(eEK

= 2 [ (i, )0 ((w. 0r) Bofuw) dun
{eK

= Z O((&,0)r) Do (¢) (by Poisson summation formula)
{eK

= Cy'O(r),

which proves (v). O
2.21 Put

(2.11) TV = T"(V™) C T™.

2.22 THEOREM.

(i) We have an algebraic direct sum

:@T;n.

XEX

(ii) For (®y) € @Vm and © € T™, we have
X

(Z T;ﬂ@x,@) = (o 770) .

XEX XEX
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(i) For ©,0" € T™, we have

> (Fre.Fre) =cy(e.e).

XEX

PrOOF. The first assertion follows from Proposition 2.20 (v) and (iii).
By Proposition 2.20 (v) and Proposition 2.18 (iii), we have

(Z 7;<m<1>x,@> = (Z Ty, (CF") ™ ZT’”]—"”@)
= (@ FV0),

X

which proves (ii). The third assertion is an immediate consequence of (ii)
and Proposition 2.20 (v). O

2.23 COROLLARY. The mapping @ T, gives rise to an Rj-iso-
X
morphism of EBV’” onto T™, and extends to an RAa-isomorphism of
X

@Xf/m (a direct sum of Hilbert spaces) to T™. [ts inverse is given by
-1
> F
X

2.24 REMARK. For y € X, let /\/l;( be the representation of K} on

T™ constructed from the right translation p’ of Na as in §2.9 (see also
§0.2). Then T™ is Kj-stable under M, and T is characterized as
follows:

TT = {0 cT" | /()0 = M, ()0 (te KX)}.
2.25 Let
(2.12) Vil oo = C - Bpoe, Vil = Vil o @ VE

and

(2.13) Xo={xe&|a(x)=-1 1<i<n)}.
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For x € Ay, we put

(2.14) hoix = L (Vhor) C TY'

2.26 PROPOSITION.

(i) We have T}, = GB Thoy-
XEXo
(ii) Folr X € Xo, we have T, = {0 € T | p'(t=)® = O (tx €
Koo)}-

N
PROOF. Let x € X, & = ) &
j=1
me), apd put O, =7, ®. We show that ©, € T}, if and only if x € A
and kU) = (0,...,0) for any j. For rr € Ra,y and we € Koo, we have

®‘I>§fj) (k?(j) S (Zzo)n,q);j) S

7),00

en |~ 5wl | O ((n,0)7y)

N .
= > qn X (Mo (o
Jj=1 geK
K T @ e
e |5 667+ E7un T2+
where kU) = (kl(j))lgign (for the definition of ¢, see §2.13). This implies
that ©, satisfies the holomorphy condition (1.10) if and only if k() =
(0,...,0) for any j. Hence we may (and do) assume that ® = @, @ Py
with @, € Vi". Since

P (too) Oy = T (M (too)®) = [[ 020, (tee = (ti)12i2n € KL)
=1

by Lemma 2.14, we see that ©, is Kl -invariant if and only if x € Ap.
Thus we are done. [

2.27 For x € Ay and an ideal a of K, let
(2.15) Vior(@,x) ={® € Vi [ My (r) @ =@ (ry € R(a)s)}
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and
(2.16) hot(a,x) ={0 € Ty | p'(rp)© =0 (rf € R(a)s)}-
The following is easily verified.

2.28 PROPOSITION.

(i) Vim(a,x) is isomorphic to Ty, (a,x) via T".

(ii)) We have Ty (a @ Ty (a,x).
XEXo

§3. Primitive Theta Functions

3.1 In this section, we study primitive theta functions introduced by
Shintani ([Shin]; see also [GIRo] and [MS]).
For an ideal a of K, define an endomorphism P} of T™ by

(3.1) PO = / n)©dsn  (©€T™),

where dqn is the Haar measure on N(a)y normalized by vol(N(a)f) = 1.
Then P, o P, = P, and PL(T}:,) = Tj%,(a). Note that P, = 0 unless
f(a,m) is integral (for the definition of f(a,m), see (1.17)).

3.2 From now on, we always assume that
(3.2) f(a,m) is integral.
For x € Ap, put

(33) th)l,prim(m X) = {6 € T;Z)l(a7 X) ‘ Pl/)@ =
for any ideal b D a,b # a}.
We call T}Z)l’mim(a, X) the space of primitive theta functions attached to

(a,X)-

REMARK. The above definition of primitivity is slightly different from
the one in [MS], where we imposed an additional condition that Q; © =0
for any finite prime p of F' ramified in K/F with ord, f(a,m) = 0. Here

(34) Q0= / P (I w, (T,T10) " 2) O dgyw (O € T™).
P
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(dapw is the Haar measure on a, normalized by vol(ay) = 1 and II, is a
prime element of Kj.)

3.3 For an ideal a of K, define P, € End(V"™) by
(3.5) Pad = / p()Bdan (B V™).
N(a)y

For x € Ay, we set
(36) VFZJLl,prim(a’ X) = {CI) € th(}l(a’ X) ‘ ,Pb(D =0
for any ideal b D a,b # a}.

Then V,7, im(a, X) is isomorphic to Ty, .. (a,x) via .. On the other
hand, we have

th(}l,prim(a) X) =C: q)oaoo ® ® ‘/p%rim(a7 X) )
p<oo

where V7. (a,x) is the primitive part of V™(a,x) = {® €

p,prim
Vot | My(r)® = @ (r € R(ap))} defined similarly as (3.6). By Corol-
lary 6.5 in [MS], V" .. (a,X) is at most one-dimensional. Thus we have

3.4 THEOREM.

dimc Tz’ﬁ)l,prim(m X) = dimC Vi:(r)ll,prim(a7 X) S L.

REMARK. This result has been proved, in a classical setting, by Shin-
tani [Shin] in the case where F' = Q and K = Q(v/—1), and by Glauber-
mann and Rogawski [GIRo] in the general CM case.

3.5 We now recall a criterion for the existence of primitive theta func-
tions after [MS]. Let p be a finite prime of F. We put

(3.7) Oxcp/F, = Ordp Ni/r(Dre/r)
and

(3.8) pp(a,m) = ordy f(a,m).
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Recall that we have assumed gy (a,m) > 0 for any p. Let x, be a character
of K,°. Define a(x,) to be the smallest nonnegative integer a such that
Xp is trivial on (1+97) N O ., where

P, — T Ok p o Ky =1, 0 F
P the maximal ideal of O, --- K, is a field.

Let (s, Xp,%m,k,) be Tate’s epsilon factor (cf. [Ta]), where ¥, x, =
Ymp © Trrc,/m, € (Kp)". In what follows, we write e(xp,%m,K,) for
€(1/2, Xp,¥m,K,) to simplify the notation. Recall that, if K, is a field,
we have

S
E(Xpa wm,Kp) = Xp (C) m )

n(Vm, p)‘B (Xp)+xy/ Fy

where ¢ is an element of K satistying cOkp = m,

and
S = / ) Yo, Ky <9> d*u
C

(d*u is a Haar measure on le(,p). The following fact is well-known (for
example, see [MS, Proposition 3.7]).

3.6 LEMMA. Let xp € X, (for the definition of X,, see (2.5)).
1) e(Xp> Ym,k,) = £xp(s71).

(i) If Ky = F, ® F,, we have €(xp, hm,x,) = Xp(K71).
(iii) If K, is an unramified quadratic extension of F,, we have

3.7 Let Xprim(a,m) be the set of x =[], x» € X satisfying, for each
finite prime p,

fap (@, m) o Oy /p, =0
a(xp) = 2(up(a,m) + 0k, /) o+ 8gym, >0 and pp(a,m) >0
25Kp/Fp or 26Kp/Fp -1 - 6Kp/pp >0 and pp(a,m)=0.
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Set

(39)  Xpim(a,m) = {x € Xprim(a,m) | e(xp, Ym.1c,) = Xp(57")
for each finite prime p}

and

(3.10) X prim (@,m) = Xo N XS

prim (Cl, m)

(recall that Ap is defined in §2.25). The following criterion for the existence
of primitive theta functions is a direct consequence of the corresponding fact

for V@ . (a,x) proved in our previous paper (see [MS, Theorem 6.4]).

p,prim

3.8 THEOREM. Let x € X and a be an ideal of K such that f(a,m)
is integral.

(i) We have Ty, .im(a,x) # {0} if and only if x € Xo'fprim(a, m).
In this case, we have Ty, (a,x) = T, n(ax) and

dimg T%l,prim(a7 x)=1.

(i) Let x € Xgprim(a,m) and © be a mnonzero element of
Thorprim(8:X).  Let p be a finite prime ramified in K/F with

pp(a,m) =0. Then

a(xp) = 26k, /5, = ©,0=0
a(xp):%Kp/Fp—l — Q;G):@,

where Qs defined by (3.4).

REMARK. Theorem 3.8 is an refinement of the epsilon dichotomy for
(U(1),U(1)), which asserts that x, € &, appears in the metaplectic rep-
resentation of Kg if and only if €(xp,Vm,K,) = xp(k71). The epsilon
dichotomy for (U(1),U(1)) was proved by Moen ([Mo]) in the odd residual
characteristic case and by Rogawski ([Ro]) in the general case by using a
global method (see also [HKS] for a purely local proof, which is different
from the one in [MS]).

The following result is due to Shintani ([Shin]; see also [MS, §10]).
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3.9 THEOREM. Let a be an ideal of K such that f(a,m) is integral.
Then we have a direct sum decomposition

hol Z Z Thol pmm )

where b runs over the ideals of K such that b D a and f(b,m) is integral,
and x € Xy . (b,m).

0,prim

84. Main Result

4.1 Recall that m is a totally positive element of F. Let a be an
ideal of K such that f(a,m) is integral and let x € Xfpmm( a,m). Let ©
be a nonzero element of Thmolyprim(a, X), which is uniquely determined by
(a,x) up to constant multiples.

For f e A;(Ky), we call the inner product

(4.) (o) =[  frmewdr
Rp\Ra
the primitive (a,x)-component of f (with respect to O).

4.2 Let | be an even positive integer and (2 a Hecke character of K
satisfying

VANURN
200
(o)

=1

Let P be a minimal parabolic subgroup of G given by Pp = {rd(z) | r €
Rp,z € K*}. Recall that the Iwasawa decomposition Ga = PaK K
holds. Define a function ¢ on G by

(4.3) $o(rd(2) kg ko) = Q2) [N/ (2)[47 3 (koos Z0) ™

for r € Rpo,z € K;, ky € K, koo € Koo Then ¢q is left Pp-invariant. We
set

(4.4) Eqolg)= > ¢alyg) (g€ Ga).

YEPF\GF
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If [ > 4, the series (4.4) is absolutely convergent and defines an element
of A;(Ky). We call Eq the holomorphic Eisenstein series attached to ().
From now on, we fix an even integer [ with [ > 4.

4.3 To state the main result of the paper, we let m,a,x,©® be as in
§4.1. Let Q be a Hecke character of K satisfying (4.2). Let af = (op)p<oco
be an element of Kgf corresponding to a as in §1.10. Let A(y) be the
set of finite primes p of F' such that

(4.5)  p is ramified in K/F, pp(a,m) =0 and a(xp) = 20K, /5, — 1.

For each finite prime p, we choose an element by(x) of F,° such that
(k D;(}F)P =by(k) Ok p. Let 1(O) be the period of © given by

(4.6) 1(©) = /K g OO,

where d*t is normalized by vol(K!'\K ) = 1. In the next section, we state
a criterion for the non-vanishing of I(©) (cf. Corollary 5.4).

4.4 THEOREM. For © € Tj, .. (a,x), we have

(B)™,0) = e [] 1+91)q )
peEA(X)
L(XQ§ (l - 1)/2) ﬁ
L(wQp;l—1)L(1/2) .

Here Qp = Q’FX and

ory/—1)1 " _ _ o 1ot
C(Q) — {((l - 1)') } dF3/2 NF/Q(ml 2) NK/Q(al/Q 2 Kl/2 1 DKZ/}?‘)
K - o
X € {5] p<| Oo| Q, 1 (bp(n) ap) :

85. Algebraicity of Primitive Components of Eisenstein Series

5.1 Let m,a,x,Q be asin §4 and let © € T}, . (a,x). The object
of this section is to give a criterion for the nonvanishing of the primitive
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component ((Eq)g',©) and to prove its algebraicity under a suitable nor-
malization of ©. We begin with a formula for |I1(0)|?
due to T. Yang.

, which is essentially

5.2 THEOREM. We have
1O)F =B L (xi5) (0.0).

where

1
st L O+ehH™ 1T -7
2L(w;1) neA; peds
Ay = {p: unramified in K/F, a(x,) > 0}

Ay = {p: split in K/F, a(x,) > 0}.

The theorem is proved by using Yang’s arguments in [Yan] with a slight
modification. In the course of the proof, we need the following formula for
matrix coefficients of M.

5.3 LEMMA.

(i) Let p be a finite prime of F and ® € Vi, .. (a,x). For t € Kpl,
we have

(M (1) @, @) = (@, P)

Chol p(t) e p Spllt mn K/Fa a(XP) > 0
— ord zt|/2 it 1

% Qp| p 2]/ Xp(t) ceep spllt m K/F, a(XP):O
1 ---  otherwise.

Here we write t = (2,2, ') when K, = F, © F,.

(ii) For te € KL, we have

(Mx(too) (I)O,om (I)O,oo) - ((I)O,om cI)O,oo) .
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We omit the proofs of Theorem 5.2 and Lemma 5.3. In view of Theo-
rem 4.4 and Theorem 5.2, we have obtained the following criterion for the
primitive components of Fq.

5.4 COROLLARY. For © € T}, .. (a,x)— {0}, we have

(Ea)i.0) 20 = 1(0) £0 = L(xi;) A0.

1
5.5 Let m,a be as above and yx € X(fprim(a, m). If L <X§ §> #0, let
Oq,x be the element of T}y, ... (a,x) such that

I(Ogy) = e [— ’;} L (x; ;) .

1
If L (X; 5) = 0, we take any nonzero element ©,, of T;ﬁ)l,prim(a, X)-

5.6 THEOREM. ((Eq)y',Oay) is an algebraic number.

PROOF. For a,b € C, we write a ~b if b# 0 and a/b € Q. Set

LSy (1-1)/2) L(x; 1/2)
p(x, Q) = L(:1/2) .

Since L(wQp;l — 1) ~ 70" we see that ((Eq)T,0ay) ~ p(x,Q) by
Theorem 4.4. On the other hand, we have p(y, ) ~ 1 by Shimura’s results
([Shim1, Theorem 2], [Shim3, Theorem 1.1]; see also [Yo]). Thus we are
done. [J

REMARK. Eq is arithmetic in the sense of [Shim2] (see [Shim2, The-
orem 5.3]).

86. Fourier-Jacobi Expansion of Eisenstein Series
6.1 Let the notation be as in §4. Define a function Jgf on Ka by

61 )= [ da(Yolaztn. ) (N rlag)e) dr
(w € KA) R
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where dx is normalized as in §1.1 and

Ty = 1 € Gp.
-1

The next lemma follows from the definition (4.4) of Eq and the Bruhat
decomposition Gg = Pp U Pp Ty Np.

6.2 LEMMA. For r = (w,0)t € Ra, we have

(Ba)i(r) = )™ Wigr(apli 3 v (5 (€0)) T (7w +6)).

EeEK
6.3 We have
(6.2) To! (w) = Jo (weo) T Jop (wp)  (w € Ka),
p
where

Jo. (wse) = / G620 (T0(Woo Too)) €m|—oo] dios

Togtwn) = [ 90, (Co(ay s ) Yinp (~Nicsr(ap)) dy

Here we put Qy = Q|K§o’ ngoo = ¢Q|Goo, Qp = Q|pr and qf)gp = ¢Q|Gp.
Set

(2my/-1)!

(6.3) Coo = {(l—l)'

} Npjq(m)' =" |dp| /2 enlr/2].

6.4 LEMMA. We have
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PROOF. Since ¢q.(g) = j(g, Zo)" for g € G, we have

JQOO (woo) = /F j(TO(wom xoo)a ZO)_l em[_moo] dT oo

1/2 ’f(z) (z) () -
= |dr|” H/ 5 weo + 1)

xe[-mWz®] 'z
)

= Cxo (I)O,oo(woo) (woo - (wc()i)lgign S Koo)7

(@)

where d'zso is the usual Lebesgue measure on R. [

6.5 Let ® be the element of V7, . (a,x) such that © = T"(®).
Then

(6.4) D (w) = P00 (Woo) H D, (wy) (we Ka),

p<oo

where ®¢ o is defined in §2.6 and ®, € V" . (a,x). We put

p pmm

(6.5) ngq,(z) = e Jo! (w) p(w,0) ®(z) dw (z€ Ka).

Later we will see that Wg’&, is not in V™, but in V™ (cf. Proposition
10.2).

6.6 LEMMA. We have

(O, (B)i) = 2ef) Wil [ TV L0t

Proor. By Lemma 6.2, we have
Q) Ngp(ap)l X (O, (Ea)i)
:/ duw / 4t 0((w, 0)1)
K\Ka KWK
< 3 v (5 (6w) ) T (N + €)

{eK
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_ / duw / 4t O ((w, 0)t) Jo7 (1~ 1w)
Ka KWK}

:/ dw/ 4%t O(t(w, 0)) T (w)
Ka KWK}
= T(WSE) () d*t
J e T W0
which proves the lemma. [l

6.7 In view of (6.2) and (6.4), W% is decomposed as

W(C;fzb(z) = Weo(200) H WSC;;@,,(ZP) (2 € Ka),

p<oo

(6.6) Woolzeo) = p Jo.. (Woo) p(Woo, 0) Pp oo (200) dWse (200 € Koo)

(6.7) Wor o, (20) = /K Jop (wy) p(wy, 0) @y (2p) dwy (2 € Kp).
b

6.8 LEMMA. We have

Woo(Zo0) = Coo * P0,00(200) (200 € Koo) -

Proor. This follows from Lemma 6.4 and Lemma 2.3.
§7. Local Calculation: (I) Preparation

7.1 In §§7-9, we fix a finite prime p of F and calculate the lo-
cal factor WSS,% defined by (6.7). To simplify the notation, we often
omit the subscript p in these sections. For example, we write F, K, N,
| - |pyordp, T, Ym, w, 6g/p and V™ for Fy, Kp, Ny,| - |p,0rdp, T, Yimp,
wp, 0k, /p, and V™. For z € K, we write N(z) for Ng/p(z) if there
is no fear of confusion. We put ¢ = #(Op/7OF). Denote by 79 (resp. 7)
the characteristic function of Op (resp. Ok ). From now on, we fix an
element 6 of K satisfying
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(i) {1,0} is an Op-basis of Ok.

(ii) 0 is a prime element of K when K/F' is ramified.

We have
(71) 5K/F :OI'dFN(Q—QU)
Set
00’
2 =— .
(72) ST

Then v satisfies the conditions in §1.15.
7.2 Let a =aOg be an ideal of K. Note that
(7.3) p(a,m) :=ordp f(a,m) = ordp(b(k)N(a)) + n(¢m) ,

where we put

(7.4) b() = # € F*
We also note that
(7.5) doz = &M Tox/r gy

(recall that dqz is normalized by vol(a) = 1).

7.3 Let & (resp. Z) be a character of F* (resp. K*). As usual, we
define the local L-factors attached to & and = by

1-— )=t « =1
L(E:s) = (1 —&(ma™) €lox '
1 .-+ otherwise
and
(1-Z|NID[E)™ -+ K is a field and Elpx =1

K =F @ F and E’O}x(:l

1 -+ Elox #1.
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Here II is a prime element of K when K is a field, and II; = (m, 1),1Iy =
(I,7) when K =F & F.

7.4 Let C°°(K) be the space of locally constant functions on K. De-
fine a smooth representation p of N on C*(K) by

(7.6) p(w,) F(2) = (% (2, w) + m) ftw) (f€C®(K)zeK).

Recall that p(N)V™ C V™ and that p defines a smooth irreducible repre-
sentation of N on V™.
For an ideal a of K, we define an endomorphism P, of C*°(K) by

Pof= [ o) Fdan (1€ CFE)).
N(a)
where dqn is normalized by vol(N(a)) = 1. If u(a,m) > 0, we have

Paf = / p(w, 20) f daw,

where

(7.7) Ty = g (v —v7)ww?’ .

If p(a,m) <0, we have Py f = 0.

7.5 For fe C®(K) and ® € V'™, we put

(7.8) A(f, @)(2) Z/KW(P(MO) ®)(z)dw (2 €K).

The integral (7.8) is absolutely convergent for every z € K and defines an
element of C*°(K). The following is easily verified.

7.6 LEMMA.

(i) For fe C®(K),® e V™ and w € K, we have

A(p(w,0)f, @) = p(—w,0) A(?a P).
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(ii) For an ideal a of K, we have

A(f, Pa®) = A(Pof, @) (fe C®(K),®ec V™).

7.7 Until the end of §9, we fix an ideal a = a O with p(a,m) >
0, Q € (K*)" with Q’O}x{ =1, x € &', (a,m) and ® € V"(a,x) =

prim
m(a,x). We write p for u(a,m) if there is no fear of confusion. Set

prim

(79) W) =) bl Ly (2 1) - Waal2) (2 € K)

and

(110) Tw) = Qb)) () Ly (2 5) - Sy )
= /Fgb*Q(To(a*lw,x))wm(—N(a)x)da; (we K),

where
54(9) = b)) o) Ly (52 1) - d0ls) (9.€ G).

In view of (6.5), we have
(7.11) W*(z) = A(J*, ®)(2) .
To calculate W*(z), we need the following integral expression of J*.

7.8 LEMMA. For w € K, we have
Fw) = IN@IF () [0 [ de (-0 90) NG
(2) (0~ w7 T(b(/{)_lN(a)_l(a? _ b(&)ww”@”)z) ,
where d*z is normalized by vol(Oj) = 1.

PrOOF. Put L' = 'L - (kS) = O ® KOk @® b(k)Ok. Then L' is
K-invariant under right multiplication. By a standard argument, we have

si() = [ ((0.0.29) 2 NP Ee (g€6)
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and hence
[ @ [ drva(-N@a) 2@ N E)E
KX P

H()r(a~ ws)r (b( ) (o + 5 N() ww )z> .

Changing the variable x into N(a)™!(x + z,,), we obtain the assertion of
the lemma. [J

§8. Local Calculation: (II) The Case Where K is a Field

8.1 In this section, we calculate W* when K is a field. We first
consider the unramified case.

8.2 LEMMA. Suppose that K/F is an unramified quadratic extension.
Then we have

T (w) = (k)| F (=) Y (Am)g" ™) 7@ o w)  (w e K).

Proor. By Lemma 7.8, we have

[o.9]

T*(w) = IN(@)| 5" m(—2w) Y (QUm)g™)" Li(w),

k=0

I (w) = 7(7*a"w) /F T(b(n)lN(a)lﬂk (x — b(/i)waQU)) Ym(—x) dz.

Since {1,607} is an Op-basis of Ok, we have

I(w) = rara tw) m(a N (@™ w) [ () g (<o) do
k—ptn(¥m) .. o<k <
= r(nlk/2 q Sk
G A

This proves the lemma, since ¢~ #t"¥m) = |b(k)N (a)|p. O
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8.3 PROPOSITION. Suppose that K/F is an unramified quadratic ex-
tension. Then we have

LGﬁﬂ—Dﬂ)®

W* = q H0RIF |b(k)| p ———
L@@FJ—1)

PrROOF. In view of (7.11) and Lemma 8.2, we have

I

k
w* = |b(k)|F Z (ﬁ(w)ql_l> / T(ﬂ[k/2]a_1w) p(w, ) @ dw
k=0 K
Lo, k
_ ‘b(fi)|F Z (Q(W)ql_l) qQ[k/Q]—M—§K/F ’Pﬂ—[k/z]a P .
k=0

The primitivity of ® implies that

1 o =0

* *M*éK/F . o
W =g wmmw¢x{1+gﬁmlz”.u>o

Observe that x(m) = w(m) = —1 and that x is trivial on O if and only
if g =0. It follows that L(wQp;l —1) = (14 Q(7)¢' =)~ and

=1\ _ [ 0+Qm)eHT - p=0
v i) =] e

These prove the proposition. [

8.4 Next suppose that K/F is a ramified quadratic extension and let
II be a prime element of K. Define an endomorphism Q of V™ by

QW:/pWJ@T%W (U e V™,
a/
where o/ = II7#"1q.

8.5 LEMMA. Let ® € VI (a,x).

prim

(i) If p >0, we have QP = 0.
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(ii) If p =0, we have

0 - alx) =20kr
QP =

ProOOF. First suppose that p > 0. A straightforward calculation shows
that @ = Q Pr-1, and hence Q ® = 0 by the primitivity of ®. The second
assertion follows from Theorem 3.8 (ii). [J

8.6 LEMMA. Suppose that K/F is a ramified quadratic extension.
Then we have

2p+1
T*(w) = [b(k)|F Ym(—22) Y ¢*ZH(QIT) g7 2)F 7 (FHD2l 0~ 1)
k=0

for we K.

Proor. By Lemma 7.8, we have

(e o]

J*(w) = N5 (=) Y- Q) ¢ ) Ii(w)  (w € K),
k=0

where
I, (w) = 7(IT*a~tw) /F T (b(n)*lN(a)*lﬂk(Q: - b(ﬂ)wwgé"’)) Ym(—x) de .

First suppose that k = 2k’ is even. Since ITF € 7#' O, we have

) = e ) (e N w) [ (e 0 ) g (<) do
F
, —ptn(m) ... <k <
_ kK -1 q SK S W
= 1M« w)x{o K s

We next consider the case where k = 2k’ + 1 is odd. Recall that we have
assumed that @ is a prime element of K. It follows that II¥ € 7*'¢ O
and hence

I(w) = (¥ o w) r(x" N (o w))
X / To (R m) gy 4y (—2) d
F

, K —ptn(fm) ... <k <
_ e +1g-1 q SKE S W
7( a Tw) X 0 K
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These yield the required result. [

8.7 PROPOSITION. Suppose that K/F is a ramified quadratic exten-
ston. Then we have

L(x2:(-1)/2)

W* = g ORI [b(k)

L (wQF il — 1)
L Qg2 - =0, ?(X) =2%xr—1 1 5
1 ... otherwise

PROOF. By an argument similar to the proof of Proposition 8.3, we
have

2p+1 - &
W* = |b(k)|F ];) g/ (Q(H)q—m) /H[(Hw% p(w, z) ® dw

2 - &
= |b(r)|F {Z q[k/2]+[(k+1)/2}7#76;(/p (Q(H)q*lﬁ) Pri—i(k1)/2, P
k=0

+qu+1—6K/F (Q(H) q—l/2)2u+1 Q(I)} )
If > 0, the primitivity of ® and Lemma 8.5 (i) imply that
W* = q H 0K/ |b(k)|p @

If p=0, Lemma 8.5 (ii) implies

e 1 e a(X> = 26[{ F
W* = g H0%/7 |b o / ¢
q [b()] { L+Q) g2 o a(x) = 26km—1 [

On the other hand, we have L(x{;s) = L(wQpr;s) = 1, since xQ (resp.
wQp) is nontrivial on O (resp. Of). This completes the proof of the
proposition. []

§9. Local Calculation: (IIT) The Case Where K = F ¢ F

9.1 In this section, we calculate W* when K = F & F. We take 6 =
1
(1,0). Then we have z, = — 3 b(k) N(w) and (z,w) = b(k)(z2w; — z1w3)
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for z = (21,22),w = (w1, ws) € K. Set & = Q(IL;) ¢""/? (i = 1,2), where
I} = (m,1) and IIs = (1, 7). We let a = (a1, a2) € K*.

9.2 LEMMA. For w € K, we have

JHw) = [b(r)|p > &R Iy gy ()

k1,ka=0
where
Ik1,k2 (w)
=T (H?H];la*lw)
¢" ("2 N (o™ w)) Y (—2w) -+ k1 < kg and ki < p
x 1 @2 (" N(a™'w)) Y (zw) -+ k1> ko and ke < p
0 .-+ otherwise.

Proor. By Lemma 7.8, we obtain

Tr(w) = IN(@)[F7 m(—20) Y. el r (P15 0 w) 1, 4, (w),
k1,k2=0

where
Ty g ) = [ 7m0 1y (w000 04 20,)) () o

First suppose that ki < ks. Then

I]/€1,]€2 (w) e 7’0 (ﬂ-kQ _H'+n(7/}m) . 2$w) / 7-0 (7-‘-]91 —lH-n(ﬁJm) x) d}m(_m) dx
F
k1
_ ks —1 ¢"o(k)N(a)|lp -+ 0<ki <p
= 79(7mN(« w))x{o B s
A similar calculation shows that
Ly gy (W) = P (220) T0o(7" N (o 'w))

g2 b()N(a)|p -+ 0<ky<p
X
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if k1 > ko. Hence the lemma has been proved. []
9.3 For (k,k') € (Z>0)?, put
nki,k/(w) =T (Hlfﬂgla_lw> Um(E£xy) (w e K).

Note that n,‘e"k, =Ny if K+ k < p, in which case we write simply 7 5/
for n,,. Let N be the subspace of S(K) spanned by ni5,, ((k,k') €
(Z20)* = {(0,0)}).

9.4 LEMMA.

(i) Zoo = m0,0-

(i) If p> 1, then L1 = q (=00 + M0 +m0,1) € —qnoo +N.
(iii) If (k1,k2) # (0,0),(1,1), then Iy k, € N.

ProoOF. The first and second assertions are immediate from the def-
inition of I, ,. We show (iii) in the case ky > k; by induction on
k1. Let a !'w = (w},w)). First suppose that ko > k; = 0. Then
Iy ey (0) = To(7*20W]) To(Wh) Y (—20) = Niy0(w) € N. Next suppose that
ko > ki1 >0 and (ki,k2) # (1,1). If ki > p, we have Iy, p, = 0. Assume
k1 < u. Then

—kl
Ikl,kQ( )
= 7o(r"2w)) To(r* wh) 1o (72wl wh) P (—w)
= (e wy) {ro(ruh) — ro(rkt twh) b ro(rMwieh) Yim(—2w)
Ym

+7o(mF2w]) 7o (1~ Ywh) o (T2 w wh) Ym (—zw) -
Since 7o(m*1wh) — To(rF1 T wh) = s(rF1wl € OF), we have
q_kl Ikl,kz (w)
= 7o Rl {mo(rfrw) — 7o(@h M) } ()

+q1_k1 I (w)
- - —k
= Mky—k1 (w) = nkz—kl,kl—l(w) + ql Pl 1,k (w).
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In view of the assumption (k1,k2) # (1,1), we have 0, _, o~ . 51 €
N and hence I, i, € N by the induction hypothesis. We can show (iii) in
the case ko < k1 in a similar manner. [

The following fact is easily verified and we omit its proof.

9.5 LEMMA. Let k. k' € Z>y and ¢ = +.

(i) We have
. . mo(mta fwy) oo €=+
Pa Wk,k'(w) = Wk,k'(w) X { To(ﬂ“aglwz) e 6= —,
(ii) If p >0 and k>0, we have
. . Tg(ﬂ“aflwl) e e=+
Pn;la Wk,k/(w) = Wk,k/(w) X { To(ﬂ“_laglwg) e €= —.
(i) If >0 and k' > 0, we have
Pr=tg Moy (W) = Mg g (w) X (o twy) - e=+
HQ_ a nk,k/ - nkzk/ 7_0(77-”042_1102) v €= —

9.6 LEMMA. Let ® € V5, (a,x).

(i) We have A(n,,, ®) =q *®.

(i) If u>1, we have A(n,®) =0 for n e N.

PrROOF. The first assertion is immediate from the fact that

A(no,0,®) = ¢ * Py ®. Suppose that g > 1. The primitivity of & im-
plies that ® = (P, — 771-[1—1a) ¢ = (P, — 771-[2—1a) ®. If k> 0, we have

(Pa = Pri1) M0 (w)
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by Lemma 9.5 and hence A(nj o, ®) = A(nf o, (Pa — ,Pnfla)(I)) = A((Pa —
Pnl—1a)n,§70,<1>) = 0. A simialr argument shows that A(ng,,®) = 0 for
k' > 0. Finally let &, k" > 0. By Lemma 9.5, we have (Pa—Pp-1,) Mg =0
and (Pa — Ppy-1,) 1y = 0, which imply A ®) = 0.0

9.7 PROPOSITION. Suppose that K =F ® F and p > 1. Then

L (x%(1-1)/2) .

W* = g #00w [b(k) | p ———
L (wQF;l — 1)

PrROOF. By (7.11), Lemma 9.2, Lemma 9.4 and Lemma 9.6, we obtain
W= = [b(k)[r A1 = ¢§182)70 0, @)
= pRlrg* (1-¢@&) @
= |b(r)lrg " L@Qr;l1—1)""'
(note that w is trivial when K = F @ F). Since p > 1, xQ is nontrivial
on OF and hence L (W, s) = 1, which proves the proposition. []

9.8 Until the end of this section, we assume that p = 0. In this case,
by Lemma 9.2, we have

0 s ]{71, ko >0
Iy gy = Uafkl o k=0
and hence
(9.1) J* = b(rk)|F {770,0 +> (ff Mok + & %,0)} '
k=1

9.9 TFor t € K!, we define M(t) € End(S(K)) as follows. If t = 1, we
put M(t) = Ids(x). If t# 1, we put

M(t)p(2)
= Wigr (=01 [ (5 )] p((1 = w,0) () du

_ 1
= WNigr( =7 [ (awn” 4 5 (2w) ) ol + w) du,
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1
where ¢ € S(K) and a; = g 174__;; € F'. Note that
1—t )
9.2) Myt = (+ ) M@E®  (te K —{1})

for ® € V™ and x € X (cf. §2.9).

9.10 LEMMA. For n € S(K),® € V™ and t € K, we have

AM (t)n, @) = M()A(T, ) -

ProOOF. This follows from Lemma 7.6 and the definition of M (¢). O

9.11 LEMMA. For k> 0, we have

¢"* M(ty)nop = Mok = Mok

q"? Mt Yoo = 771_;0 = M0

where t, = (I /Ig)* = (7%, 7=F).

PROOF. Since the assertion for k£ = 0 is trivial, we assume that k£ > 0.
For z € K, we have

" M (t3)10,0(2)
= ¢ INi/p(1—te)|p P
1

< [ m (a0 = 2w =2 4 5 (2 w0)) () du
= / Um <1 Lem b(r) (w1 — z1) (w2 — 22)

1—7k

1 1
+5 b(k) (22w — z1w3) + 3 b(k) wlwg) dgw

ok
= Yy |-z + T b(k) z122
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7" _ _
= Yp (Iz + - b(k) 2129 | To(ay 21) To(mhag ! 22)

= (M50 "2) Ym(—22)
= 770,k( z).

We can prove the second formula in a similar manner. []

9.12 PROPOSITION. Suppose that K = F ® F and = 0. Then we
have

wW* = qfuféx/p |b(k)|F - {cp + i (qf(lfl)/2 Q(Hl))k M((H1/H2)k) By
k=1

£3 (eam) <<H1/H2>—k><1>} .
k=1

Proor. It follows from (7.11) and (9.1) that

W* = ‘b('%)|F { 770 07 + Z §1 7707/@ + Z 52 nk ,0° } .

For k£ > 0, we have

Mg ®) = Alggy, ®) = g2 AM (tx)no.0, ©)
¢"2 M (ty)A(To0, ®) = ¢*/2 M ()@

by Lemma 9.11 and Lemma 9.6 (i). Similarly we have
Ao ®) = ¢"?M (£, 1)@
These prove the proposition. [

§10. Proof of Theorem 4.4

10.1 Let the notation and the assumptions be the same as in §4. Let
® € Vit rim (@, X) be as in §6.5. Recall that

(0.1 (O, (B =0 Wigelaplk ™ [ TR0
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and

(10.2) Woh(2) = cxo Pocolze) [[ Walm) (2 € Ka).

p<oo

where ¢ is defined by (6.3) and W), = Wg;’@p (cf. Lemma 6.6 and Lemma
6.8). We now summarize an explicit formula for W, calculated in §§8-9.
Let S be the set of finite primes p of F' such that K, = F, ® F, and
pp(a,m) = 0. Note that S is an infinite set. If p € S, we set

Rp®p = <DP+Z (qp( 1)/29(Hp,1)) M ((Hp1/Tp,2)") @y

+Z (g2 0M0y2)) " M((Tp0 /Ty 2) ") @,

for @, € V", where Il, ;1 = (mp,1) and Il, 2 = (1,m,) (for the definition
of M, see §9 9).

10.2 PROPOSITION.

(i) Let p be a finite prime of F. Then we have

—Hp—bxy/ _ AN
W = g7 by )y 8y () Lo (55 )
qu)p peS
— -1 - —1
Ly XQ;T Lp(wQF;l—l)
X <1+Q( )1 l/2)q>p o peAlx)
1 SR -1
L, <XQ;ZT> L, (wQF;l—1> ®, --- otherwise.

(ii) We have W, € f/pm for any p, and W, € V" ifpes.

PrROOF. The first assertion follows from Proposition 8.3, Proposition
8.7, Proposition 9.7, Proposition 9.12 and (7.9). The second is a direct
consequence of (i). [

10.3 LEMmMA. If p € S, we have
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for ke Z.

PrROOF. The assertion is trivial for k = 0. Suppose that k£ # 0 and
put t; = (Ilp1/Iy 2)*. In view of (9.2), we have

1-1

T (M )2) (1) = x5 (S ) TP My (1) 2)(0) = Ta(TL,)* Ot

for t € K} (note that x, is trivial on FJ°). This immediately implies the
lemma. [J

10.4 We are now ready to prove Theorem 4.4. In view of (10.1), (10.2),
Proposition 10.2 and Lemma 10.3, (©, (Eq)y") is equal to

BT
) p<copgs Lp (m;l— 1) Ly (5;1/2)

< 1 (+QHp - ‘/2) HLP( é)lzp <Z_Tl>.l(@),

peA(x)

where

¢(9) = coo - Q) [Nig/plap)n " T1 (q; AR |bp<n>|;—lﬂp<bp<ﬂ>>)

p<oo

and

e - E - k
Zy(s) =14 Y (4 %D (M0)) + 3 (5" % (Ty2))
k=1 k=1

By a straightforward calculation, we have ¢/(Q) = ¢(2) and

1— gy " Xp D () _ L (XT);S)
(1= 0" M) (1 6 o ([p2) Ly (w0r:2s)

Zy(s) =

Thus Theorem 4.4 has been established.
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