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Fourier-Jacobi Expansion of Eisenstein Series on

Unitary Groups of Degree Three

By Atsushi Murase and Takashi Sugano

Abstract. After reformulating Shintani’s theory of Fourier-
Jacobi expansion of automorphic forms on U(2, 1) in the adelic
setting, we show that the primitive components of holomorphic
Eisenstein series are expressed in terms of the periods of primitive
theta functions and critical values of Hecke L-functions.

§0. Introduction

0.1 The object of this paper is two-fold. We first reformulate, in the

adelic setting, Shintani’s theory of Fourier-Jacobi expansion for holomorphic

automorphic forms on a unitary group G = U(2, 1) defined over a totally

real number field F . The main ingredient is the primitive theta functions

first introduced by Shintani ([Shin]) and studied later by Glaubermann–

Rogawski ([GlRo]) and ourselves ([MS]). For another approach to the theory

of Fourier-Jacobi expansion, we refer to [PS], [GeRo] and [Is].

The second object is to calculate explicitly the primitive components of

Fourier-Jacobi expansion of holomorphic Eisenstein series on G. It is to be

noted that, in his thesis ([Hi]), Hickey obtained a similar result in the case

of F = Q by a method somewhat different from ours.

0.2 We now summarize our results in the simplest case where the base

field F is Q. Let K be an imaginary quadratic field of discriminant D,

OK the integer ring of K and σ the nontrivial automorphism of K/Q.

Denote by G the unitary group of a Hermitian matrix

S =

 0 0 1/κ

0 1 0

−1/κ 0 0

 ,
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where κ =
√
D. Note that sgn(S) = (2, 1). Let N and R be subgroups of

G given by

NQ =
{
(w, x) :=

 1 κwσ x +
κ

2
wwσ

0 1 w

0 0 1

 | w ∈ K,x ∈ Q
}

and

RQ =
{
nt := n

 1 0 0

0 t 0

0 0 1

 | n ∈ NQ, t ∈ K1
}
,

where K1 = {t ∈ K× | ttσ = 1}. For a ∈ K×, we put

d(a) =

 aσ 0 0

0 1 0

0 0 a−1

 ∈ GQ .

Define an action of G∞ on D = {t(z, w) ∈ C2 | (z − z)/κ − ww > 0}
and an automorphic factor j:G∞×D → C× in a usual way (see §1.5). Let

K∞ = {g ∈ G∞ | g∞〈Z0〉 = Z0} be a maximal compact subgroup of G∞,

where Z0 = t(κ/2, 0) ∈ D. We put Kf = {g ∈ GA,f | g · Lf = Lf}, where

L = O3
K , Lf = L ⊗Z Zf (Zf =

∏
p<∞ Zp) and GA,f is the finite part of

GA. Then Kf is a maximal open compact subgroup of GA,f .

For a positive even integer l, let Al(Kf ) be the space of smooth func-

tions f on GQ\GA satisfying

(i) f(gkfk∞) = j(k∞, Z0)
−l f(g) (g ∈ GA, kf ∈ Kf , k∞ ∈ K∞)

(ii) For any gf ∈ GA,f , j(g∞, Z0)
l f(g∞gf ) is holomorphic in g∞〈Z0〉.

We call Al(Kf ) the space of holomorphic automorphic forms of weight l

on Kf . Let f ∈ Al(Kf ). For m ∈ Q and a nonzero fractional ideal a of

K, we put

fma (r) =

∫
Q\QA

ψm(−x) f((0, x)rd(αf )) dx (r ∈ RA) .

Here dx is the Haar measure on QA normalized by vol(Q\QA) = 1, ψm
is the additive character of Q\QA with ψm(x∞) = em[x∞] :=
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exp(2π
√
−1mx∞) for x∞ ∈ R, and we choose an element αf of K×

A,f

such that af = αfOK,f (af = a ⊗Z Zf ,OK,f = OK ⊗Z Zf ). Then f is

determined by {fma }m,a . Note that fma = 0 unless m is nonnegative and

mN(a) is integral.

Throughout this section, we let m be a positive rational number. Let

Tm
hol be the space of smooth functions Θ on RQ\RA satisfying

(i) Θ((0, x)r) = ψm(x) Θ(r) (x ∈ QA, r ∈ RA)

(ii) Θ(rt∞) = Θ(r) (r ∈ RA, t∞ ∈ K1
∞)

(iii) For any rf ∈ RA,f , w∞ �→ em

[
− κ

2
w∞w∞

]
Θ((w∞, 0)rf ) is holo-

morphic on C.

We call Tm
hol the space of holomorphic theta functions of index m.

We next define a metaplectic representation of K1
A on Tm

hol. Let X
be the set of Hecke characters χ of K with χ|Q×

A
= ω and X0 = {χ ∈

X | χ(z∞) = |z∞|/z∞ (z∞ ∈ K×
∞ = C×)}, where ω denotes the quadratic

Hecke character of Q corresponding to K/Q. Let χ ∈ X0. For a prime

v of Q, we put χv = χ|K×
v

, where Kv = K ⊗Q Qv. Let tv ∈ K1
v and

Θ ∈ Tm
hol. If tv = 1, we put M′

χv
(tv) Θ = Θ. If tv �= 1, we put

M′
χv

(tv) Θ(r)

= λKv(ψm)−1 χv

(
1− tv
κ

) ∣∣∣NK/Q(1− tv)
∣∣∣1/2
v

×
∫
Kv

ψm

(
1

2
〈wv, tvwv〉

)
Θ(r ((1− tv)wv, 0)) dwv (r ∈ RA) .

Here λKv(ψm) is the Weil constant (see §2.9), 〈wv, w′
v〉 =

TrKv/Qv
(κwσvw

′
v) (wv, w

′
v ∈ Kv) and dwv is the self-dual Haar measure of

Kv with respect to the pairing (wv, w
′
v) �→ ψm(〈wv, w′

v〉). For t = (tv)v ∈
K1

A, we put M′
χ(t) =

⊗
v M′

χv
(tv). Denote by ρ′ the right translation of

NA,f on Tm
hol. Then M′

χ defines a smooth representation of K1
A on Tm

hol

satisfying M′
χ(t) ◦ ρ′(nf ) ◦M′

χ(t
−1) = ρ′(tnf t−1) for t ∈ K1

A, nf ∈ NA,f

(see §2.9–11).

For χ ∈ X0, set

Tm
hol,χ = {Θ ∈ Tm

hol | M′
χ(t) Θ(r) = Θ(rt) (r ∈ RA, t ∈ K1

A)} .

Then the following facts hold:
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(0.1) Tm
hol,χ is an irreducible NA,f -module.

(0.2) Tm
hol =

⊕
χ∈X0

Tm
hol,χ.

Note that we define Tm
hol,χ in a different way in §2 and that both definitions

are equivalent (see §2.25 and §2.24). For a nonzero fractional ideal a of K

and χ ∈ X0, we put

Tm
hol(a) = {Θ ∈ Tm

hol | Θ(rr0) = Θ(r)

for any r ∈ RA and r0 ∈ R(a)f}
Tm
hol(a, χ) = Tm

hol(a) ∩Tm
hol,χ ,

where R(a)f is an open compact subgroup of RA,f given by

R(a)f = {nt | n ∈ N(a)f , t ∈ O1
K,f = K1

A,f ∩ O×
K,f}

N(a)f = {(w, x) ∈ NA,f | w ∈ af , x +
κ

2
wwσ ∈ N(af )OK,f} .

Note that fma ∈ Tm
hol(a) for f ∈ Al(Kf ).

We define the primitive part Tm
hol,prim(a, χ) of Tm

hol(a, χ) to be the

space of Θ ∈ Tm
hol(a, χ) such that∫

N(b)f

ρ′(n)Θ dbn = 0

holds for any fractional ideal b of K with b ⊃ a and b �= a, where dbn

is the Haar measure on N(b)f normalized by vol(N(b)f ) = 1. It is known

that

dimC Tm
hol,prim(a, χ) ≤ 1

([Shin], [GlRo]; see also Theorem 3.4). Moreover we have

dimC Tm
hol,prim(a, χ) = 1 ⇐⇒ χ ∈ X+

0,prim(a,m) ,

where X+
0,prim(a,m) consists of χ ∈ X0 satisfying certain conditions on the

Artin conductor and the epsilon factor (for the precise statement, see §3.7

and §3.8). Then we have the following direct sum decomposition:

Tm
hol(a) =

∑
b

∑
χ∈X+

0,prim(b,m)

Tm
hol,prim(b, χ) ,
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where b runs over the fractional ideals of K with b ⊃ a and mN(b)

integral.

Let f ∈ Al(Kf ), χ ∈ X+
0,prim(a,m) and Θ ∈ Tm

hol,prim(a, χ),Θ �= 0. We

call the inner product

(fma ,Θ) =

∫
RQ\RA

fma (r)Θ(r) dr

the primitive (a, χ)-component of f with respect to Θ ( dr is normalized

by vol(RQ\RA) = 1).

We now state the main results of the paper. Let l > 4 be an even

integer and Ω a Hecke character of K satisfying Ω|O×
K,f

= 1 and Ω(z∞) =

(z∞/|z∞|)l for z∞ ∈ K×
∞. Let EΩ ∈ Al(Kf ) be the holomorphic Eisenstein

series of weight l attached to Ω (see §4.2). Let χ ∈ X+
0,prim(a,m). Denote

by A(χ) the set of finite primes p with p|D, ordp(mN(a)) = 0, a(χp) =

2 ordp(D)− 1, where a(χp) is the p-exponent of the Artin conductor of χp
(see §3.5). For p ∈ A(χ), let Πp be a prime element of Kp. We define the

period of Θ ∈ Tm
hol,prim(a, χ) by

I(Θ) =

∫
K1\K1

A

Θ(t) d×t ,

where d×t is normalized by vol(K1\K1
A) = 1.

Main Theorem. Let Θ ∈ Tm
hol,prim(a, χ) − {0}. Then the primitive

(a, χ)-component of EΩ with respect to Θ is given by

((EΩ)ma ,Θ) = c(Ω)
∏

p∈A(χ)

(1 + Ω(Πp) p
1−l/2) · L(χΩ; (l − 1)/2)

L(ω; l − 1)L(Ω; l/2)
· I(Θ) ,

where

c(Ω) =
(2π
√
−1)l

(l − 1)!
ml−2|D|−1N(a)l/2−2 em

[
κ

2

]
Ω−1(ασf ) .

The following criterion for the nonvanishing of I(Θ) is due to T. Yang

([Yan]).
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Theorem. Let χ ∈ X+
0,prim(a,m) and Θ ∈ Tm

hol,prim(a, χ)−{0}. Then

we have I(Θ) �= 0 if and only if L
(
χ;

1

2

)
�= 0.

This implies that the primitive (a, χ)-component of EΩ vanishes if and

only if L
(
χ;

1

2

)
�= 0. By virtue of Shimura’s results on critical values of

Hecke L-functions ([Shim1], [Shim3]), we obtain

Theorem. Let χ ∈ X+
0,prim(a,m) and suppose that L

(
χ;

1

2

)
�= 0.

Let Θa,χ be the element of Tm
hol,prim(a, χ) with I(Θa,χ) =

π−1 em

[
− κ

2

]
L
(
χ;

1

2

)
. Then ((EΩ)ma ,Θa,χ) is algebraic.

0.3 The paper is organized as follows. The first three sections are

devoted to an adelic reformulation with some refinement of the theory of

Fourier-Jacobi expansion for automorphic forms on G mainly due to Shin-

tani. In §1, we recall basic facts about holomorphic automorphic forms on

G, their Fourier-Jacobi expansions and theta functions appearing as coeffi-

cients of the expansion. The second section is of expository nature. We first

recall several basic facts about the lattice model after [MVW] and [MS]. We

next study a relation between the lattice model and the space of theta func-

tions. The main object of this section is to prove the facts (0.1) and (0.2).

Though the content of this section might be known, we give its detailed

account since it is not found in the literature. In §3, we recall the defini-

tion of primitive theta functions, which plays an essential role in Shintani’s

theory of Fourier-Jacobi expansion, and summarize their basic properties

(the uniqueness and existence) after [Shin], [GlRo] and [MS]. In §4, we state

the main result of the paper (Theorem 4.4): The primitive components

of a holomorphic Eisenstein series on G are expressed in terms of critical

values of Hecke L-functions and periods of primitive theta functions. In §5,

we first give a criterion for non-vanishing of a primitive component. This

follows from a relation between periods of primitive theta functions and cen-

tral critical values of certain Hecke L-functions, which is essentially due to

T. Yang ([Yan]). We next show that the primitive components of the Eisen-

stein series, under a suitable normalization of primitive theta functions, are

algebraic. This fact seems to be closely related to the theory of the arith-

meticity of automorphic forms on unitary groups due to Shimura ([Shim2])
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and Yamauchi ([Yam]). The remaining part of the paper is devoted to the

proof of Theorem 4.4. In §6, we reduce the proof of the theorem to the

calculation of certain local integrals. After preparing several notation in §7,

we carry out the calculation of the local integrals in §§8–9 and complete the

proof of Theorem 4.4 in §10.

Notation. Let E be an algebraic number field with the integer ring

OE . For a prime v of E, we denote by Ev the completion of E at v.

Let | · |v be the valuation of Ev given by d(axv) = |a|vdxv (a ∈ E×
v ),

where dxv is a Haar measure on Ev. Let p be a finite prime of E and

OE,p the integer ring of Ep . We put qp = #(OE,p/πpOE,p), where πp is a

prime element of Ep . Let ordp :E
×
p → Z be the additive valuation of Ep

normalized by ordp(πp) = 1. For a nontrivial character ψ of Ep , we denote

by n(ψ) the largest integer n such that ψ is trivial on π−n
p OE,p . By an

ideal of E (resp. Ep), we always mean a nonzero fractional ideal of E

(resp. Ep). Denote by EA the adele ring of E and by EA,f (resp. E∞)

the finite (resp. infinite) part of EA. We put OE,f =
∏

p<∞
OE,p ⊂ EA,f .

Let w ∈ EA. For a finite prime p of E, let wp ∈ Ep be the p-component

of w. We also put w∞ = (wv)v|∞ ∈ E∞. Denote by S(EA) the space of

Schwartz–Bruhat functions on EA. By a Hecke character of E, we mean

a unitary character of E×
A trivial on E×. For a Hecke character ξ of E,

L(ξ; s) stands for the Hecke L-function attached to ξ.

Let G be an algebraic group defined over E. For a prime v of E,

we write Gv for the group of Ev-rational points of G. Let GA be the

adelization of G, and GA,f (resp. G∞) the finite (resp. infinite) part of

GA.

For a locally compact abelian group H, we denote by H∧ the group

of unitary characters of H, continuous homomorphisms from H to C1 =

{z ∈ C | zz = 1}. For z ∈ C, we put e[z] = exp(2π
√
−1z). For a set X,

chX stands for the characteristic function of X. For x ∈ R, [x] denotes the

largest integer n with n ≤ x. We denote by diag(a1, . . . , an) the diagonal

matrix with the i-th diagonal component ai. We denote by Z≥0 the set of

nonnegative integers. For a condition P , we set δ(P ) = 1 if P is satisfied

and δ(P ) = 0 otherwise.
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§1. Automorphic Forms on U(2, 1) and Fourier-Jacobi Expansion

1.1 Let F be a totally real number field of degree n. We put dx∞ =

|dF |−1/2 d′x∞, where dF is the discriminant of F and d′x∞ is the usual

Lebesgue measure on F∞ = F ⊗Q R � Rn. For a finite prime p of F ,

let dxp be the Haar measure on Fp normalized by

∫
OF,p

dxp = 1. Put

dx = dx∞
∏

p<∞ dxp . Then we have vol(FA/F ) = 1. The idele norm |a|A
of a ∈ F×

A is defined by d(ax) = |a|Adx. We let DF be the different of F :

D−1
F = {x ∈ F | TrF/Q(xy) ∈ Z for any y ∈ OF } .

1.2 Let K be a totally imaginary quadratic extension of F . Denote

by σ the nontrivial automorphism of K/F . Let DK/F be the different of

K/F :

D−1
K/F = {z ∈ K | TrK/F (zw) ∈ OF for any w ∈ OK} .

For a finite prime p of F and an ideal a of K, we put ap = a ⊗OF
OF,p .

Let af = a⊗OF
OF,f =

∏
p<∞

ap .

1.3 Throughout the paper, we fix an element κ of K× satisfying

κσ = −κ and a Hermitian matrix

S =

 1/κ

1

−1/κ

 .
Let G = U(S) be the unitary group of S defined over F :

GF = {g ∈ GL3(K) | tgσSg = S} .

1.4 Let {τi}1≤i≤n be the CM-type of K such that Im(τi(κ)) > 0 (1 ≤
i ≤ n = [F : Q]). We embed K into K∞ := K ⊗Q R = Cn by z �→
(τ1(z), . . . , τn(z)). Denote by ∞i the infinite prime of F corresponding to

the embedding τi|F :F → R and identify F∞i (resp. K∞i = K ⊗F F∞i)
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with R (resp. C) via the embedding τi. In what follows, we often write

z(i) for τi(z) (z ∈ K) to simplify the notation.

1.5 For i = 1, . . . , n, let

S(i) =

 1/κ(i)

1

−1/κ(i)


G(i)

∞ = {g ∈ GL3(C) | tgS(i)g = S(i)} .

Note that the signature of S(i) is (2, 1). The Lie group G
(i)
∞ acts on a

Hermitian symmetric domain Z(i) = {Z = t(z, w) ∈ C2 | 1

κ(i)
(z−z)−ww >

0} as follows. For Z = t(z, w) ∈ Z(i), we put Z ˜ = t(z, w, 1) ∈ C3.

For g ∈ G
(i)
∞ and Z ∈ Z(i), define g〈Z〉 ∈ Z(i) and j(i)(g, Z) ∈ C× by

g ·Z˜= j(i)(g, Z) · (g〈Z〉) .̃ Then (g, Z) �→ g〈Z〉 (resp. (g, Z) �→ j(i)(g, Z))

defines an action of G
(i)
∞ on Z(i) (resp. a holomorphic automorphic factor).

This action is transitive. Let K(i)
∞ be the stabilizer subgroup of Z

(i)
0 =

t(κ(i)/2, 0) ∈ Z(i) in G
(i)
∞ . Then K(i)

∞ � U(2) × U(1), where U(m) = {g ∈
GLm(C) | tgg = 1m}.

We define an action of G∞ = G
(1)
∞ ×· · ·×G

(n)
∞ on Z = Z(1)×· · ·×Z(n)

in a natural manner. Put j(g, Z) =
∏

1≤i≤n
j(i)(g(i), Z(i)) ∈ C× for g =

(g(i)) ∈ G∞ and Z = (Z(i)) ∈ Z. The stabilizer subgroup of Z0 = (Z
(i)
0 )

in G∞ is K∞ = K(1)
∞ × · · · × K(n)

∞ .

1.6 Let L = {t(z1, z2, z3) ∈ K3 | z1 ∈ κD−1
K/F , z2, z3 ∈ OK}. Then

L is a maximal D−1
K/F -integral lattice of K3 with respect to the Hermitian

form S. For each finite prime p of F , we put Kp = {g ∈ Gp | gLp = Lp},
where Lp = L⊗OF

OF,p . Then Kp is a maximal open compact subgroup of

Gp . We put Kf =
∏

p<∞
Kp ⊂ GA,f .

1.7 Let l be an even positive integer. We denote by Al(Kf ) the space

of functions f on GA satisfying the following conditions:

(i) f(γgkfk∞) = j(k∞, Z0)
−l f(g) (γ ∈ GF , g ∈ GA, kf ∈ Kf , k∞ ∈

K∞) .
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(ii) For any gf ∈ GA,f , j(g∞, Z0)
l f(g∞gf ) is holomorphic in g∞〈Z0〉.

We call Al(Kf ) the space of holomorphic automorphic forms of weight l

on Kf .

1.8 Let N be an algebraic subgroup of G such that

NF =

(w, x) :=

 1 κwσ x +
κ

2
wwσ

0 1 w

0 0 1

 | w ∈ K,x ∈ F

 .

The multiplication law of N is given by

(1.1) (w, x)(w′, x′) = (w + w′, x + x′ +
1

2
〈w,w′〉) ,

where

(1.2) 〈w,w′〉 = TrK/F (κwσw′) .

Thus N is the Heisenberg group associated with (K, 〈, 〉).
Let R be an algebraic subgroup of G such that

RF =
{
(w, x) · diag(1, t, 1) | w ∈ K,x ∈ F, t ∈ K1

}
,

where K1 = {t ∈ K× | ttσ = 1}. We henceforth identify R with a

semidirect product of N and K1, and write (w, x)t for (w, x) diag(1, t, 1)

if there is no fear of confusion. Under this notation, we have t(w, x)t−1 =

(tw, x) (t ∈ K1, (w, x) ∈ N). The center of R is {(0, x)}. For α ∈ K×, put

d(α) = diag(ασ, 1, α−1) ∈ GF . Then we have the Iwasawa decomposition

(1.3) GA = RA {d(α) | α ∈ K×
A}Kf K∞ .

1.9 Denote by ψQ the additive character of Q\QA with ψQ(x∞) =

e[x∞] (x∞ ∈ R). For m ∈ F , we define an additive character ψm of F\FA

by ψm(x) = ψQ(TrF/Q(mx)) (x ∈ FA). Let f ∈ Al(Kf ). Then f admits

the Fourier-Jacobi expansion

(1.4) f(g) =
∑
m∈F

fm(g) (g ∈ GA) ,



Fourier-Jacobi Expansion 357

where

(1.5) fm(g) =

∫
F\FA

f((0, x)g)ψm(−x) dx .

We easily see that fm is left RF -invariant.

1.10 Let a be an ideal of K. We set

(1.6) fma (r) = fm(r d(αf )) (r ∈ RA),

where αf is an element of K×
A,f such that af = αf OK,f . Note that the

right-hand side of (1.6) is independent of the choice of αf . For m ∈ F and

w = (w1, . . . , wn) ∈ K∞ = Cn, we put

em[w] = exp
(
2π
√
−1(m(1)w1 + · · ·+ m(n)wn)

)
.

The following facts are easily verified.

1.11 Lemma. Let f ∈ Al(Kf ) and a an ideal of K.

(i) We have fma = 0 unless m is totally non-negative.

(ii) For a fixed t ∈ K1
A, f0

a ((w, 0)t) is a constant function in w ∈ KA.

(iii) For rf ∈ RA,f , em

[
−κ

2
w∞wσ∞

]
fma ((w∞, 0)rf ) is holomorphic in

w∞ ∈ K∞.

1.12 Lemma. Let f ∈ Al(Kf ), t∞ ∈ K1
∞ and α = α∞αf ∈ K×

A.

Then we have

fm(rt∞d(α)) =

(
n∏
i=1

α(i)
∞

)l
em

[
κ

2
(α∞ασ∞ − 1)

]
· fma (r) (r ∈ RA) ,

where a is the ideal of K corresponding to αf ( a = K ∩ (αfOK,f ×K∞)).

Remark. In view of (1.3) and Lemma 1.12, f ∈ Al(Kf ) is determined

by {fma }m,a .

1.13 Let m be a totally positive element of F . Let Tm be the space

of smooth functions Θ:RF \RA → C which satisfy the following properties:
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(1.7) Θ((0, x)r) = ψm(x) Θ(r) (x ∈ FA, r ∈ RA).

(1.8) For any r ∈ RA, t∞ �→ Θ(rt∞) is K1
∞-finite.

We call Tm the space of smooth theta functions of index m. Let Tm
hol be the

subspace of Tm consisting of Θ ∈ Tm satisfying the following properties:

(1.9) For any r ∈ RA, we have Θ(rt∞) = Θ(r) (t∞ ∈ K1
∞).

(1.10) For any rf ∈ RA,f , w∞ �→ em

[
− κ

2
w∞wσ∞

]
Θ((w∞, 0) rf ) is holo-

morphic on K∞.

We call Tm
hol the space of holomorphic theta functions of index m. In view

of Lemma 1.11 and Lemma 1.12, we have fma ∈ Tm
hol for f ∈ Al(Kf ).

Let T̃m be the completion of Tm with respect to the inner product

(Θ,Θ′) =

∫
RF \RA

Θ(r) Θ′(r) dr (Θ,Θ′ ∈ Tm) ,

where the Haar measure dr on RA is normalized by vol(RF \RA) = 1.

Then T̃m is the Hilbert space of square integrable functions Θ on RF \RA

satisfying (1.7). We call T̃m the space of L2-theta functions of index m.

Let ρ′ be the right translation of RA on T̃m. Note that Tm and Tm
hol

are R∗
A-stable under ρ′, where

(1.11) R∗
A = NA,f ·K1

A = RA,fK
1
∞ ⊂ RA .

1.14 Let p be a finite prime of F and ap an ideal of Kp . We put

N(ap) =

{
(w, x) ∈ Np | w ∈ ap ,(1.12)

x +
κ

2
wwσ ∈

(
κD−1

K/F

)
p
NK/F (ap)

}
and

(1.13) R(ap) = {nt | n ∈ N(ap), t ∈ O1
K,p} ,

where O1
K,p = K1

p ∩ O×
K,p .
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For an ideal a of K, we set N(a)f =
∏

p<∞
N(ap) and R(a)f =∏

p<∞
R(ap). Let

(1.14) Tm
hol(a) = {Θ ∈ Tm

hol | ρ′(r) Θ = Θ for any r ∈ R(a)f} .

It is easy to see that fma ∈ Tm
hol(a) for f ∈ Al(Kf ).

1.15 For each finite prime p of F , we choose and fix an element νp

of (D−1
K/F )p satisfying the following two conditions:

(i) νp + νσp = 1.

(ii) If p ramifies in K/F , we have νp ∈ Πp(D−1
K/F )p , where Πp is a

prime element of Kp .

Set νf = (νp)p<∞ ∈ (D−1
K/F )f . For w ∈ KA,f , we put

(1.15) xw =
κ

2
(νf − νσf )wwσ ∈ FA,f .

Then

(1.16) N(a)f =
{
(w, x + xw) | w ∈ af , x ∈ FA,f ∩

(
κD−1

K/F NK/F (a)
)
f

}
.

Let f(a,m) be an ideal of F given by

(1.17) f(a,m) = F ∩
(
mDF (κD−1

K/F )NK/F (a)
)
.

In view of (1.16), we have the following:

1.16 Lemma. We have Tm
hol(a) = {0} unless f(a,m) is integral.

§2. Lattice Model and Intertwining Operators

2.1 In this section, we first summarize several facts about the lattice

model. We refer to [MVW] and [MS] for the local theory of the lattice

model. We next study a relation between the lattice model and the space

of (smooth, holomorphic or L2-) theta functions.
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2.2 From now on, we fix a totally positive element m of F . Let

(2.1) L =
1

mκ2
D−1
F +

κ

2
OF

be an OF -lattice of K. Then L is self-dual with respect to the pairing

(w,w′) �→ ψm(〈w,w′〉), where 〈, 〉 is given by (1.2). Put Lp = L ⊗OF
OF,p

for each finite prime p of F and put Lf = L ⊗OF
OF,f =

∏
p<∞

Lp .

For each prime v of F , let dwv be the Haar measure on Kv = K ⊗F
Fv self-dual with respect to the pairing (wv, w

′
v) �→ ψm,v(〈wv, w′

v〉), where

ψm,v = ψm|Fv . Let dw =
∏
v dwv be the product measure on KA. We note

that vol(K\KA) = 1.

Remark. The Haar measure dz∞ on K∞ = Cn is given by

dz∞ =
n∏
i=1

2m(i)κ(i)

√
−1

dx(i)dy(i) (z∞ = (z(i)
∞ )1≤i≤n, z

(i)
∞ = x(i) +

√
−1y(i)) ,

where dx(i) and dy(i) are the usual Lebesgue measures on R. We also note

that

∫
Lp

dzp = 1.

For k = (k1, . . . , kn) ∈ (Z≥0)
n and z = (z(1), . . . , z(n)) ∈ K∞, we

write zk =
∏n
i=1 (z(i))ki . The following elementary facts are used in later

discussion.

2.3 Lemma.

(i) For k, l ∈ (Z≥0)
n and z ∈ K∞, we have∫
K∞

em[κwwσ + κwσz] (wσ)k (z + w)l dw

= δk,l

n∏
i=1

ki!

(
2πm(i)κ(i)

√
−1

)−ki
.

(ii) For a polynomial P (z) in z ∈ K∞, we have∫
K∞

em[κwwσ − κzσw]P (w) dw = P (z) .
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Proof. It suffices to consider the case n = 1. Denote by f(z) the

integral of (i). Expanding em[κwz] and (z + w)l into power series in w

and w respectively, we obtain

f(z) =
∞∑
j=0

l∑
r=0

l!

(l − r)! r! j!
(2π
√
−1mκ)j zj+l−r

∫
C

em[κww]wk+j wr dw .

Since the last integral is equal to δk+j,r (k + j)!

(
2πmκ√
−1

)−k−j
, we have

f(z) = 0 if k > l. Suppose that k ≤ l. Then we have

f(z) = zl−k
(

2πmκ√
−1

)−k l−k∑
j=0

l!

j! (k + j − l)!
(−1)j

= δl,k k!

(
2πmκ√
−1

)−k
,

which proves (i). The assertion (ii) is similarly proved. �

2.4 Let p be a finite prime of F . Define a smooth irreducible repre-

sentation (ρp , V
m
p ) of Np as follows:

V m
p = {Φ ∈ S(Kp) | Φ(z + l) = ψm,p

(
1

2
〈z, l〉+ 1

4
〈l, lσ〉

)
Φ(z)

(z ∈ Kp , l ∈ Lp)}

ρp(n) Φ(z) = ψm,p

(
1

2
〈z, w〉+ x

)
Φ(z + w) (n = (w, x) ∈ Np ,Φ ∈ V m

p ) .

The Stone–von Neumann theorem asserts that any smooth irreducible rep-

resentation of Np with central character (0, x) �→ ψm,p(x) is equivalent to

ρp . Let Φ0,p be an element of V m
p given by

Φ0,p(z) =

 ψm,p

(
1

4
〈z, zσ〉

)
· · · z ∈ Lp

0 · · · z ∈ Kp − Lp .

2.5 Let V m
f be the space of Φf ∈ S(KA,f ) satisfying

(2.2) Φf (zf + lf ) = ψm,f

(
1

2
〈zf , lf 〉+

1

4
〈lf , lσf 〉

)
Φ(zf )
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for zf ∈ KA,f , lf ∈ Lf . Then V m
f is identified with the restricted tensor

product of V m
p over p < ∞ with respect to {Φ0,p}p<∞. Let V m

∞ be the

space of functions Φ∞ on K∞ = Cn such that em

[
− κ

2
z∞zσ∞

]
Φ∞(z∞) is

a polynomial in z
(1)
∞ , . . . , z

(n)
∞ . The space V m

∞ is called the Fock space (cf.

[Ig]). We consider V m = V m
f ⊗ V m

∞ as a subspace of S(KA).

Let Ṽ m be the completion of V m with respect to the inner product

given by

(Φ,Φ′) =

∫
KA

Φ(z)Φ′(z) dz (Φ,Φ′ ∈ V m) .

Then Ṽ m = Ṽ m
f ⊗ Ṽ m

∞ , where

Ṽ m
f = {Φf ∈ L2(KA,f ) | Φf satisfies (2.2)}

Ṽ m
∞ = {Φ∞ ∈ L2(K∞) | em

[
−κ

2
z∞zσ∞

]
Φ∞(z∞)

is anti-holomorphic in z∞} .

For n = (w, x) ∈ NA, z ∈ KA and Φ ∈ Ṽ m, we put

ρ(n) Φ(z) = ψm

(
1

2
〈z, w〉+ x

)
Φ(z + w) .

Then ρ defines an irreducible unitary representation of NA on Ṽ m sat-

isfying ρ(0, x) = ψm(x) Id
Ṽm for x ∈ FA. Note that V m is NA,f -stable

under ρ. We call V m (resp. Ṽ m) the smooth (resp. L2-) lattice model.

2.6 Let Φ0 = Φ0,f ⊗ Φ0,∞ ∈ V m, where

Φ0,f (zf ) =
∏

p<∞
Φ0,p(zp)

=

 ψm,f

(
1

4
〈zf , zσf 〉

)
· · · zf ∈ Lf

0 · · · zf ∈ KA,f − Lf

Φ0,∞(z∞) = em

[
κ

2
z∞zσ∞

]
(z∞ ∈ K∞) .

We note that Φ0,f satisfies

(2.3) ρ

(
lf ,

1

4
〈lf , lσf 〉

)
Φ0,f = Φ0,f (lf ∈ Lf ) ,
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and is characterized by this condition up to constant multiples.

2.7 Proposition.

(i) For Φ ∈ Ṽ m, we have

Φ(z) = (ρ(z, 0) Φ,Φ0) (z ∈ KA) .

(ii) For Φ,Φ′ ∈ Ṽ m, we have∫
KA

Φ(w) ρ(w, 0) Φ′(z) dw = (Φ,Φ′) · Φ0(z) (z ∈ KA) .

Proof. To prove the proposition, we may (and do) suppose that Φ =

Φf ⊗ Φ∞ ∈ V m and Φ′ = Φ′
f ⊗ Φ′

∞ ∈ V m, since V m is dense in Ṽ m. It is

easily verified that

Φf (zf ) = (ρ(zf , 0)Φf ,Φ0,f ) (zf ∈ KA,f ) .

Let Φ∞(z) = Φ0,∞(z)P (z), where P (z) is a polynomial in z. By Lemma

2.3 (ii), we have

(ρ(z, 0)Φ∞,Φ0,∞) =

∫
K∞

em

[
1

2
〈w, z〉

]
Φ∞(w + z) Φ0,∞(w) dw

= Φ0,∞(z)

∫
K∞

em[κwwσ − κwzσ]P (w) dw

= Φ0,∞(z)P (z) = Φ∞(z) ,

which proves (i). To prove (ii), put

Φ′′
f (zf ) =

∫
KA,f

Φf (wf )ρ(wf , 0) Φ′
f (zf ) dwf (zf ∈ KA,f ) .

Let zf ∈ KA,f and lf ∈ Lf . Since Φf ∈ V m
f , Φ′′

f (zf + lf ) is equal to∫
KA,f

Φf (wf − lf )ψm

(
−1

2
〈zf + lf , wf − lf 〉

)
Φ′
f (zf + wf ) dwf

= ψm

(
1

2
〈zf , lf 〉+

1

4
〈lf , lσf 〉

)
×
∫
KA,f

Φf (wf )ψm

(
−1

2
〈zf , wf 〉

)
Φ′
f (zf + wf ) dwf

= ψm

(
1

2
〈zf , lf 〉+

1

4
〈lf , lσf 〉

)
Φ′′
f (zf ) .
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On the other hand, since ρ(wf , 0)Φ′
f ∈ V m

f for wf ∈ KA,f , we have

Φ′′
f (zf + lf ) = ψm

(
−1

2
〈zf , lf 〉 −

1

4
〈lf , lσf 〉

)
Φ′′
f (zf ) .

These two facts imply that Φ′′
f is a constant multiple of Φ0,f . Since Φ′′

f (0) =

(Φf ,Φ
′
f ), we obtain

Φ′′
f = (Φf ,Φ

′
f ) Φ0,f .

By using a standard argument and Lemma 2.3, we obtain∫
K∞

Φ∞(w) ρ(w, 0)Φ′∞(z) dw = (Φ∞,Φ′
∞) Φ0,∞(z) (z ∈ K∞) ,

which completes the proof of (ii). �

2.8 Denote by ω = ωK/F ∈ (F×
A/F×)∧ the quadratic Hecke character

of F corresponding to K/F by class field theory. Let

(2.4) X = {χ ∈ (K×
A/K

×)∧ | χ|F×
A

= ω}

(2.5) Xv = {χv ∈ (K×
v )∧ | χv|F×

v
= ωv} ,

where ωv is the restriction of ω to F×
v for each prime v of F .

2.9 We now recall a splitting of metaplectic representation of K1
A on

V m (or on Ṽ m) given in [MS]. For each prime v of F , let λKv(ψm,v) ∈ C×

be the Weil constant attached to (Kv/Fv, ψm,v). By definition, we have∫
Kv

ϕ(zv)ψm,v(zvz
σ
v ) dzv

= λKv(ψm,v)
∣∣∣NK/F (κ)

∣∣∣1/2
v

∫
Kv

ϕ̂(zv)ψm,v(κ
2 zvz

σ
v ) dzv

for ϕ ∈ S(Kv), where ϕ̂ is the Fourier transform of ϕ with respect to the

pairing (z, w) �→ ψm,v(〈z, w〉). The following facts are well-known:

(i) λKv(ψm,v)
2 = ωv(−1) for every v.

(ii) If v = p is finite and Kp/Fp is not ramified, we have λKp(ψm,p) =

ωp

(
π
n(ψm,p)
p

)
.
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(iii) If v is infinite, λKv(ψm,v) =
√
−1.

(iv)
∏
v

λKv(ψm,v) = 1.

For each prime v of F , let V m
v (resp. Ṽ m

v ) be the v-component of

V m (resp. Ṽ m). For χv ∈ Xv and tv ∈ K1
v , we define an endomorphism

Mχv(tv) of V m
v by

Mχv(tv) Φv

=



Φv · · · tv = 1

λKv(ψm,v)
−1 χv

(
1− tv
κ

) ∣∣∣NKv/Fv
(1− tv)

∣∣∣1/2
v

×
∫
Kv

ψm,v

(
1

2
〈wv, tvwv〉

)
ρv((1− tv)wv, 0) Φv dwv · · · tv �= 1

for Φv ∈ V m
v . The following fact is proved in [MS, §4].

2.10 Proposition. The mapping tv �→ Mχv(tv) defines a smooth rep-

resentation of K1
v on V m

v and extends to a unitary representation of K1
v

on Ṽ m
v .

2.11 For χ ∈ X , define a unitary representation Mχ of K1
A on Ṽ m

by

Mχ(t) Φ =
∏
v

Mχv(tv) Φv (t = (tv) ∈ K1
A,Φ =

∏
v

Φv ∈ Ṽ m) .

We use the same notation Mχ to denote a representation of RA on Ṽ m

given by

Mχ(nt) Φ = ρ(n)Mχ(t) Φ (n ∈ NA, t ∈ K1
A,Φ ∈ Ṽ m) .

Let ξ ∈ (K×
A/K

×)∧ be a Hecke character of K trivial on F×
A . For t ∈ K1

A,

we put ξ1(t) = ξ(z) where we choose z ∈ K×
A so that t = zσ/z. Then

ξ1 does not depend on the choice of z and defines a character of K1
A/K

1.

Recall that R∗
A = NA,fK

1
A. The following fact is easily verified.

2.12 Lemma.
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(i) Let χ ∈ X . The space V m is R∗
A-stable under Mχ and the

representation of R∗
A on V m is smooth.

(ii) For χ, χ′ ∈ X , we have Mχ′(t) = (χ/χ′)1(t)Mχ(t) for t ∈ K1
A.

2.13 For k = (k1, . . . , kn) ∈ (Z≥0)
n and z∞ ∈ K∞, we put

Φk,∞(z∞) = ck · em
[
κ

2
z∞zσ∞

]
(zσ∞)k ,

where

ck =
n∏
i=1

1√
ki!

(
2πm(i)κ(i)

√
−1

)ki/2
.

Then {Φk,∞ | k ∈ (Z≥0)
n} forms an orthonormal basis of Ṽ m

∞ .

Let χ ∈ X and put χ∞ = χ|K×
∞

. There exist integers a1(χ), . . . , an(χ)

such that

(2.6) χ∞(z∞) =
n∏
i=1

(
z(i)
∞ /|z(i)

∞ |
)ai(χ)

(z∞ = (z(i)
∞ ) ∈ K×

∞) .

Since χ∞i(−1) = ω∞i(−1) = −1, we have ai(χ) ≡ 1 (mod 2) (1 ≤ i ≤ n).

2.14 Lemma. For t = (ti)1≤i≤n ∈ K1
∞, we have

Mχ(t) Φk,∞ =
n∏
i=1

(ti)
ki+(ai(χ)+1)/2 · Φk,∞ .

Proof. We may assume that ti �= 1 for each i. For z ∈ K∞, we have

c−1
k Mχ(t)Φk,∞(z)

=

(
1√
−1

)n
χ∞

(
1− t

κ

) n∏
i=1

|1− ti|−1

×
∫
K∞

em

[
κ

2

{
1 + t

1− t
wwσ + zσw − zwσ + (w + z)(w + z)σ

}]
×(wσ + zσ)k dw

=

(
1√
−1

)n
χ∞

(
1− t

κ

) n∏
i=1

|1− ti|−1 em

[
κ

2
zzσ

]
· I ,
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where

I =

∫
K∞

em

[
κ

1− t
wwσ + κ zσw

]
(wσ + zσ)k dw .

A calculation similar to the proof of Lemma 2.3 shows that

I =
n∏
i=1

(1− ti)t
ki
i · (zσ)k .

We thus obtain

Mχ(t)Φk,∞(z) =

(
1√
−1

)n
χ∞

(
1− t

κ

)
×

n∏
i=1

|1− ti|−1 (1− ti)t
ki
i · Φk,∞(z)

=
n∏
i=1

t
ki+(ai(χ)+1)/2
i Φk,∞(z) ,

which proves the lemma. �

2.15 Corollary. The space of K1
∞-finite vectors in Ṽ m

∞ coincides with

V m
∞ .

2.16 For χ ∈ X and Φ ∈ V m, we put

(2.7) T mχ Φ(r) =
∑
ξ∈K

(Mχ(r) Φ)(ξ) (r ∈ RA) .

The theta series (2.7) is absolutely convergent, since Mχ(r) Φ ∈ S(KA).

Set

(2.8) Cm0 = T mχ Φ0(1) =
∑
ξ∈K

Φ0(ξ) ,

where Φ0 is given in §2.6.

2.17 Lemma. We have Cm0 > 0 .

Proof. We first observe that Cm0 =
∑
l∈L

ϕ0(l), where

ϕ0(z) = em

[
κ

2
zzσ − 1

4
〈z, zσ〉

]
∈ S(K∞) (z ∈ K∞) .
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Note that em

[
−1

4
〈l, lσ〉

]
= ±1 for l ∈ L. A straightforward calculation

shows that

ϕ̂0(z) :=

∫
K∞

ϕ0(w) em[〈z, w〉] dw = 2n/2 · em
[
κzzσ − 1

2
〈z, zσ〉

]
.

By Poisson summation formula, we obtain

Cm0 =
∑
l∈L

ϕ̂0(l) = 2n/2
∑
l∈L

em[κllσ] > 0 . �

2.18 Proposition.

(i) We have T mχ Φ ∈ Tm for Φ ∈ V m.

(ii) T mχ defines an R∗
A-homomorphism of V m (with the action Mχ)

to Tm.

(iii) For χ, χ′ ∈ X and Φ,Φ′ ∈ V m, we have

T mχ′ Φ((w, 0)t) = (χ/χ′)1(t) T mχ Φ((w, 0)t) (w ∈ KA, t ∈ K1
A)

and

(T mχ Φ, T mχ′ Φ′) = δχ,χ′Cm0 · (Φ,Φ′) .

(iv) We can extend T mχ to an RA-homomorphism of Ṽ m (with the ac-

tion Mχ) to T̃m.

(v) For Θ ∈ Tm and Φ ∈ V m, we have∑
χ∈X

(Θ, T mχ Φ) =

∫
KA

Θ((w, 0))Φ(w) dw .

Proof. Let Φ ∈ V m. It is straightforward to see that Θ = T mχ Φ

is smooth, left NF -invariant and satisfies (1.7) and (1.8). To prove (i), it

remains to show that Θ(tr) = Θ(r) for t ∈ K1 and r ∈ RA. Since the

assertion is trivial for t = 1, we assume t �= 1. We have

Θ(tr) =
∑
ξ∈K

(
Mχ(t)Φ

′) (ξ) ,
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where Φ′ =Mχ(r)Φ ∈ Ṽ m. By definition of Mχ, we have

(
Mχ(t)Φ

′) (ξ) =

∫
KA

ψm

(
1

2
〈(1− t)w,w − ξ〉

)
Φ′((1− t)w + ξ) dw .

Changing the variable w into (1− t)−1(w − ξ), we have

Mχ(t)Φ
′(ξ) = Φ̂′′

(
ξ

1− t

)
,

where Φ̂′′ is the Fourier transform of Φ′′(w) =

ψm

(
1

2
TrK/F

(
κ

1− t
wwσ

))
Φ′(w) with respect to ψm(〈, 〉). By Poisson

summation formula, we obtain

Θ(tr) =
∑
ξ∈K

Φ̂′′
(

ξ

1− t

)
=
∑
ξ∈K

Φ′′(ξ) =
∑
ξ∈K

Φ′(ξ) = Θ(r) ,

which proves (i). The second assertion of the proposition is easily verified.

The first part of (iii) is immediate from Lemma 2.12 (ii). Let Φ,Φ′ ∈
V m, χ, χ′ ∈ X and put Θ = T mχ Φ and Θ′ = T mχ′ Φ′. Then we have

(Θ,Θ′)

=

∫
K\KA

dw

∫
K1\K1

A

d×t
∑
ξ∈K

ψm

(
1

2
〈ξ, w〉

)
× (Mχ(t)Φ)(w + ξ)Θ′((w, 0)t)

=

∫
KA

dw

∫
K1\K1

A

d×t (Mχ(t)Φ)(w) Θ′((w, 0)t)

=
∑
ξ∈K

∫
KA

dw

∫
K1\K1

A

d×t (Mχ(t)Φ)(w) ρ(w, 0)Mχ′(t)Φ′(ξ)

=
∑
ξ∈K

Φ0(ξ)

∫
K1\K1

A

(Mχ(t)Φ,Mχ′(t)Φ′) d×t

(by Proposition 2.7 (ii))

= Cm0 (Φ,Φ′)
∫
K1\K1

A

(χ′/χ)1(t) d×t (by Lemma 2.12 (ii))

= δχ,χ′ Cm0 (Φ,Φ′) ,



370 Atsushi Murase and Takashi Sugano

which proves the second part of (iii). The fourth assertion follows from (ii)

and (iii). To prove (v), we fix a χ0 ∈ X . Observe that∑
χ∈X

∫
K1\K1

A

(χ0/χ)1(t) f(t) d×t = f(1)

holds for any continuous function f on K1\K1
A. It follows that∑

χ∈X
(Θ, T mχ Φ)

=

∫
K\KA

dw
∑
χ∈X

∫
K1\K1

A

Θ((w, 0)t) (χ0/χ)1(t) T mχ0
Φ((w, 0)t)d×t

=

∫
K\KA

Θ((w, 0)) T mχ0
Φ((w, 0)) dw

=

∫
KA

Θ((w, 0))Φ(w) dw ,

which proves (v). �

2.19 For Θ ∈ Tm, we set

(2.9) (Fmχ Θ)(z) = (ρ′(z, 0) Θ, T mχ Φ0) (z ∈ KA).

2.20 Proposition.

(i) For Θ ∈ Tm, we have Fmχ Θ ∈ V m.

(ii) Fmχ defines an R∗
A-homomorphism of Tm to V m (with the action

Mχ).

(iii) For Θ ∈ Tm, we have Fmχ Θ = 0 except for finitely many χ ∈ X .

(iv) For Φ ∈ V m and χ, χ′ ∈ X , we have

Fmχ T mχ′ Φ = δχ,χ′ Cm0 Φ .

(v) For Θ ∈ Tm, we have∑
χ∈X
T mχ Fmχ Θ = Cm0 Θ .
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Proof. (i) Put Φ = Fmχ Θ. By (2.3), we have

(2.10) Φ(z + lf ) = ψm

(
1

2
〈z, lf 〉+

1

4
〈lf , lσf 〉

)
Φ(z)

for lf ∈ Lf . We next show that zf �→ Φ(z∞zf ) belongs to S(KA,f ) for a

fixed z∞ ∈ K∞. Take a sufficiently small neighbourhood Uf of 0 in KA,f

such that Uf ⊂ Lf , ψm
(

1

4
〈wf , wσf 〉

)
= 1 and ρ′(wf , 0) Θ = Θ for wf ∈ Uf .

Then we have Φ(z+wf ) = ψm

(
1

2
〈z, wf 〉

)
Φ(z) (z ∈ KA, wf ∈ Uf ) in view

of (2.10). On the other hand, we have

Φ(z + wf ) = ψm

(
1

2
〈wf , z〉

)
(ρ′(z, 0) ρ′(wf , 0) Θ, T mχ Φ0)

= ψm

(
1

2
〈wf , z〉

)
Φ(z) (z ∈ KA, wf ∈ Uf ) .

These show that, for a fixed z∞ ∈ K∞, zf �→ Φ(z∞zf ) is in S(KA,f ) and

hence in V m
f by (2.10). To prove (i), it now remains to show that z∞ �→

Φ(z∞zf ) belongs to V m
∞ for a fixed zf ∈ KA,f . Put Θ′ = ρ′(zf , 0) Θ ∈ Tm

and take t1, . . . , ts ∈ K1
A,f so that K1

A =
⋃

1≤j≤s
K1 tjK

1
∞O1

K,f (disjoint

union). Then we have

Φ(z∞zf ) = (Θ′, T mχ (ρ(−z∞, 0) Φ0))

=

∫
KA

dw

∫
K1\K1

A

d×t Θ′((w, 0)t)Mχ(t(−z∞, 0)) Φ0(w)

=
1

c

s∑
j=1

∫
KA

dw

∫
O1

K,f

d×tf

∫
K1∞

d×t∞ Θ′((w, 0)tjtf t∞)

Mχ(tjtf t∞(−z∞, 0)) Φ0(w) ,

where the measures d×tf and d×t∞ are normalized by vol(O1
K,f ) =

vol(K1
∞) = 1 and c = s ·#(K1 ∩K1

∞O1
K,f ). Lemma 2.14 implies

Mχ(tjtf t∞(−z∞, 0)) Φ0(w∞wf )

= η(t∞) em

[
κ

2
(z∞zσ∞ + w∞wσ∞ − 2t∞z∞wσ∞)

]
Mχ(tjtf ) Φ0,f (wf )
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with

η(t∞) =
n∏
j=1

(t(j)∞ )(aj(χ)+1)/2 .

Hence we have

Φ(z∞zf ) = em

[
κ

2
z∞zσ∞

]
Ψ(z∞) ,

where

Ψ(z∞) =

∫
K∞

dw∞

∫
K1∞

d×t∞ η(t∞)−1 ϕ(w∞, t∞) em[−κw∞(t∞z∞)σ] ,

ϕ(w∞, t∞) =
1

c
em

[
κ

2
w∞wσ∞

] s∑
j=1

∫
KA,f

dwf

∫
O1

K,f

d×tf

Θ′((wf , 0)tjtf · (w∞, 0)t∞) (Mχ(tjtf )Φ0,f )(wf ) .

Since Θ is right K1
∞-finite, ϕ(w∞, t∞) can be written as a finite sum of

unitary characters of K1
∞ as a function of t∞. It follows that Ψ(z∞) is a

polynomial in zσ∞ and hence z∞ �→ Φ(z∞zf ) belongs to V m
∞ . The proof of

(i) has been completed.

(ii) It is easily verified that Fmχ is an NA,f -homomorphism. To prove (ii),

it suffices to show that, for any prime v of F , Mχ(t)Fmχ Θ = Fmχ ρ′(t)Θ
holds for t ∈ K1

v − {1}. For w ∈ Kv, set

ft(w) = λKv(ψm,v)
−1 χv

(
1− t

κ

)
|NK/F (1− t)|−1/2

v ψm,v

(
1

2
〈w, w

1− t
〉
)
.

Since ft(w) = ft−1(w) = ft−1(−w), we have

Mχ(t)Fmχ Θ(z)

=

∫
Kv

ft(w)ψm,v

(
1

2
〈z, w〉

)
Fmχ Θ(z + w) dw

=

(
Θ, T mχ

(∫
Kv

ft−1(−w) ρ((−w, 0)(−z, 0)) Φ0 dw

))
=

(
Θ, T mχ (Mχ(t

−1(−z, 0)) Φ0)
)

=
(
Θ, ρ′(t−1(−z, 0)) T mχ Φ0

)
= Fmχ (ρ′(t)Θ)(z)
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for z ∈ KA. This completes the proof of (ii).

(iii) Fix a χ0 ∈ X and put Θ0 = T mχ0
Φ0. By Proposition 2.18 (iii), we have

Fmχ Θ(z) =

∫
K1\K1

A

I(t, z) (χ/χ0)
1(t) d×t ,

where

I(t, z) =

∫
K\KA

Θ((w, 0)t(z, 0))Θ0((w, 0)t) dw .

Since Θ and Θ0 are right invariant under some open compact subgroup of

NA,f , there exists an ideal a of K such that the equalities

I(t, z + wf ) = ψm

(
−1

2
〈zf , wf 〉

)
I(t, z)

and

I(t, z + wf ) = ψm

(
1

2
〈zf , wf 〉

)
I(t, z)

hold for any wf ∈ af , t ∈ K1
A and z ∈ KA. This implies that zf �→

I(t, z∞zf ) has a compact support independent of t and z∞ and hence

that there exists an open compact subgroup U1
f of K1

A,f satisfying

I(t′t, z) = I(t, z) (t′ ∈ U1
f , t ∈ K1

A, z ∈ KA) .

Thus there exists an open compact subgroup Uf of K×
A,f such that

Fmχ Θ �= 0 =⇒ χ|Uf
= 1 .

On the other hand, in view of the argument of the proof of (i), we see that

there exist only a finite number of infinity types of χ such that Fmχ Θ �= 0.

The assertion (iii) now follows.

(iv) For z ∈ KA, we have

Fmχ T mχ′ Φ(z) = (ρ′(z, 0)T mχ′ Φ, T mχ Φ0)

= δχ,χ′ Cm0 (ρ(z, 0)Φ,Φ0) (by Proposition 2.18 (iv), (iii))

= δχ,χ′ Cm0 Φ(z) (by Proposition 2.7 (i)) .
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(v) In view of (ii), we have

(Mχ(r)Fmχ Θ)(z) = (ρ′((z, 0)r)Θ, T mχ Φ0) (r ∈ RA, z ∈ KA) .

Thus, for r ∈ RA, we have∑
χ∈X
T mχ Fmχ Θ(r)

=
∑
χ∈X

∑
ξ∈K

(ρ′((ξ, 0)r)Θ, T mχ Φ0)

=
∑
ξ∈K

∫
KA

Θ((w, 0)(ξ, 0)r) Φ0(w) dw (by Proposition 2.18 (v))

=
∑
ξ∈K

∫
KA

ψm(〈w, ξ〉)Θ((w, 0)r)Φ0(w) dw

=
∑
ξ∈K

Θ((ξ, 0)r) Φ0(ξ) (by Poisson summation formula)

= Cm0 Θ(r) ,

which proves (v). �

2.21 Put

(2.11) Tm
χ = T mχ (V m) ⊂ Tm .

2.22 Theorem.

(i) We have an algebraic direct sum

Tm =
⊕
χ∈X

Tm
χ .

(ii) For (Φχ) ∈
⊕
χ

V m and Θ ∈ Tm, we have

∑
χ∈X
T mχ Φχ,Θ

 =
∑
χ∈X

(
Φχ,Fmχ Θ

)
.



Fourier-Jacobi Expansion 375

(iii) For Θ,Θ′ ∈ Tm, we have∑
χ∈X

(
Fmχ Θ,Fmχ Θ′

)
= Cm0

(
Θ,Θ′) .

Proof. The first assertion follows from Proposition 2.20 (v) and (iii).

By Proposition 2.20 (v) and Proposition 2.18 (iii), we have(∑
χ

T mχ Φχ,Θ

)
=

(∑
χ

T mχ Φχ, (C
m
0 )−1

∑
χ

T mχ Fmχ Θ

)
=

∑
χ

(Φχ,Fmχ Θ) ,

which proves (ii). The third assertion is an immediate consequence of (ii)

and Proposition 2.20 (v). �

2.23 Corollary. The mapping
⊕
χ

T mχ gives rise to an R∗
A-iso-

morphism of
⊕
χ

V m onto Tm, and extends to an RA-isomorphism of

⊕̂
χ
Ṽ m (a direct sum of Hilbert spaces) to T̃m. Its inverse is given by

(Cm0 )−1
∑
χ

Fmχ .

2.24 Remark. For χ ∈ X , let M′
χ be the representation of K1

A on

T̃m constructed from the right translation ρ′ of NA as in §2.9 (see also

§0.2). Then Tm is K1
A-stable under M′

χ and Tm
χ is characterized as

follows:

Tm
χ = {Θ ∈ Tm | ρ′(t)Θ =M′

χ(t)Θ (t ∈ K1
A)} .

2.25 Let

(2.12) V m
hol,∞ = C · Φ0,∞ , V m

hol = V m
hol,∞ ⊗ V m

f

and

(2.13) X0 = {χ ∈ X | ai(χ) = −1 (1 ≤ i ≤ n)} .
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For χ ∈ X0, we put

(2.14) Tm
hol,χ = T mχ (V m

hol) ⊂ Tm
χ .

2.26 Proposition.

(i) We have Tm
hol =

⊕
χ∈X0

Tm
hol,χ.

(ii) For χ ∈ X0, we have Tm
hol,χ = {Θ ∈ Tm

χ | ρ′(t∞)Θ = Θ (t∞ ∈
K1

∞)}.

Proof. Let χ ∈ X , Φ =
N∑
j=1

Φk(j),∞ ⊗ Φ
(j)
f (k(j) ∈ (Z≥0)

n,Φ
(j)
f ∈

V m
f ), and put Θχ = T mχ Φ. We show that Θχ ∈ Tm

hol if and only if χ ∈ X0

and k(j) = (0, . . . , 0) for any j. For rf ∈ RA,f and w∞ ∈ K∞, we have

em

[
− κ

2
w∞wσ∞

]
Θχ((w∞, 0) rf )

=
N∑
j=1

ck(j)

∑
ξ∈K

(
Mχ(rf ) Φ

(j)
f

)
(ξ)

·em
[
κ

2
ξξσ + κξσw∞

] n∏
i=1

(w
(i)
∞ + ξ(i))

k
(j)
i

,

where k(j) = (k
(j)
i )1≤i≤n (for the definition of ck(j) , see §2.13). This implies

that Θχ satisfies the holomorphy condition (1.10) if and only if k(j) =

(0, . . . , 0) for any j. Hence we may (and do) assume that Φ = Φ0,∞ ⊗ Φf
with Φf ∈ V m

f . Since

ρ′(t∞) Θχ = T mχ (Mχ(t∞)Φ) =
n∏
i=1

t
(ai(χ)+1)/2
i Θχ (t∞ = (ti)1≤i≤n ∈ K1

∞)

by Lemma 2.14, we see that Θχ is K1
∞-invariant if and only if χ ∈ X0.

Thus we are done. �

2.27 For χ ∈ X0 and an ideal a of K, let

(2.15) V m
hol(a, χ) = {Φ ∈ V m

hol | Mχ(rf ) Φ = Φ (rf ∈ R(a)f )} .
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and

(2.16) Tm
hol(a, χ) = {Θ ∈ Tm

hol,χ | ρ′(rf )Θ = Θ (rf ∈ R(a)f )} .

The following is easily verified.

2.28 Proposition.

(i) V m
hol(a, χ) is isomorphic to Tm

hol(a, χ) via T mχ .

(ii) We have Tm
hol(a) =

⊕
χ∈X0

Tm
hol(a, χ).

§3. Primitive Theta Functions

3.1 In this section, we study primitive theta functions introduced by

Shintani ([Shin]; see also [GlRo] and [MS]).

For an ideal a of K, define an endomorphism P ′
a of Tm by

(3.1) P ′
aΘ =

∫
N(a)f

ρ′(n)Θ dan (Θ ∈ Tm) ,

where dan is the Haar measure on N(a)f normalized by vol(N(a)f ) = 1.

Then P ′
a ◦ P ′

a = P ′
a and P ′

a(T
m
hol) = Tm

hol(a). Note that P ′
a = 0 unless

f(a,m) is integral (for the definition of f(a,m), see (1.17)).

3.2 From now on, we always assume that

(3.2) f(a,m) is integral.

For χ ∈ X0, put

Tm
hol,prim(a, χ) =

{
Θ ∈ Tm

hol(a, χ) | P ′
bΘ = 0(3.3)

for any ideal b ⊃ a, b �= a} .

We call Tm
hol,prim(a, χ) the space of primitive theta functions attached to

(a, χ).

Remark. The above definition of primitivity is slightly different from

the one in [MS], where we imposed an additional condition that Q′
p Θ = 0

for any finite prime p of F ramified in K/F with ordp f(a,m) = 0. Here

(3.4) Q′
p Θ =

∫
ap

ρ′(Π−1
p w, (ΠpΠ

σ
p )−1xw) Θ dapw (Θ ∈ Tm) .
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( dapw is the Haar measure on ap normalized by vol(ap) = 1 and Πp is a

prime element of Kp .)

3.3 For an ideal a of K, define Pa ∈ End(V m) by

(3.5) PaΦ =

∫
N(a)f

ρ(n)Φ dan (Φ ∈ V m) .

For χ ∈ X0, we set

V m
hol,prim(a, χ) = {Φ ∈ V m

hol(a, χ) | PbΦ = 0(3.6)

for any ideal b ⊃ a, b �= a} .

Then V m
hol,prim(a, χ) is isomorphic to Tm

hol,prim(a, χ) via T mχ . On the other

hand, we have

V m
hol,prim(a, χ) = C · Φ0,∞ ⊗

⊗
p<∞

V m
p,prim(a, χ) ,

where V m
p,prim(a, χ) is the primitive part of V m

p (a, χ) = {Φ ∈
V m

p | Mχ(r)Φ = Φ (r ∈ R(ap))} defined similarly as (3.6). By Corol-

lary 6.5 in [MS], V m
p,prim(a, χ) is at most one-dimensional. Thus we have

3.4 Theorem.

dimC Tm
hol,prim(a, χ) = dimC V m

hol,prim(a, χ) ≤ 1.

Remark. This result has been proved, in a classical setting, by Shin-

tani [Shin] in the case where F = Q and K = Q(
√
−1), and by Glauber-

mann and Rogawski [GlRo] in the general CM case.

3.5 We now recall a criterion for the existence of primitive theta func-

tions after [MS]. Let p be a finite prime of F . We put

(3.7) δKp/Fp
= ordp NK/F (DK/F )

and

(3.8) µp(a,m) = ordp f(a,m) .
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Recall that we have assumed µp(a,m) ≥ 0 for any p. Let χp be a character

of K×
p . Define a(χp) to be the smallest nonnegative integer a such that

χp is trivial on (1 + Pa
p) ∩ O×

K,p , where

Pp =

{
πpOK,p · · · Kp = Fp ⊕ Fp

the maximal ideal of OK,p · · · Kp is a field .

Let ε(s, χp , ψm,Kp) be Tate’s epsilon factor (cf. [Ta]), where ψm,Kp =

ψm,p ◦ TrKp/Fp
∈ (Kp)

∧. In what follows, we write ε(χp , ψm,Kp) for

ε(1/2, χp , ψm,Kp) to simplify the notation. Recall that, if Kp is a field,

we have

ε(χp , ψm,Kp) = χp(c)
S

|S| ,

where c is an element of K×
p satisfying cOK,p = π

n(ψm,p)
p P

a(χp)+δKp/Fp

p

and

S =

∫
O×

K,p

χ−1
p (u)ψm,Kp

(
u

c

)
d×u

( d×u is a Haar measure on O×
K,p). The following fact is well-known (for

example, see [MS, Proposition 3.7]).

3.6 Lemma. Let χp ∈ Xp (for the definition of Xp, see (2.5)).

(i) ε(χp , ψm,Kp) = ±χp(κ
−1).

(ii) If Kp = Fp ⊕ Fp, we have ε(χp , ψm,Kp) = χp(κ
−1).

(iii) If Kp is an unramified quadratic extension of Fp, we have

ε(χp , ψm,Kp) = (−1)a(χp)+µp(a,m) χp(κ
−1) .

3.7 Let Xprim(a,m) be the set of χ =
∏
v χv ∈ X satisfying, for each

finite prime p,

a(χp) =


µp(a,m) · · · δKp/Fp

= 0

2(µp(a,m) + δKp/Fp
) · · · δKp/Fp

> 0 and µp(a,m) > 0

2δKp/Fp
or 2δKp/Fp

− 1 · · · δKp/Fp
> 0 and µp(a,m) = 0 .
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Set

X+
prim(a,m) = {χ ∈ Xprim(a,m) | ε(χp , ψm,Kp) = χp(κ

−1)(3.9)

for each finite prime p}

and

(3.10) X+
0,prim(a,m) = X0 ∩ X+

prim(a,m)

(recall that X0 is defined in §2.25). The following criterion for the existence

of primitive theta functions is a direct consequence of the corresponding fact

for V m
p,prim(a, χ) proved in our previous paper (see [MS, Theorem 6.4]).

3.8 Theorem. Let χ ∈ X and a be an ideal of K such that f(a,m)

is integral.

(i) We have Tm
hol,prim(a, χ) �= {0} if and only if χ ∈ X+

0,prim(a,m).

In this case, we have Tm
hol(a, χ) = Tm

hol,prim(a, χ) and

dimC Tm
hol,prim(a, χ) = 1.

(ii) Let χ ∈ X+
0,prim(a,m) and Θ be a nonzero element of

Tm
hol,prim(a, χ). Let p be a finite prime ramified in K/F with

µp(a,m) = 0. Then

a(χp) = 2δKp/Fp
⇐⇒ Q′

p Θ = 0

a(χp) = 2δKp/Fp
− 1 ⇐⇒ Q′

p Θ = Θ ,

where Q′
p is defined by (3.4).

Remark. Theorem 3.8 is an refinement of the epsilon dichotomy for

(U(1), U(1)), which asserts that χp ∈ Xp appears in the metaplectic rep-

resentation of K1
p if and only if ε(χp , ψm,Kp) = χp(κ

−1). The epsilon

dichotomy for (U(1), U(1)) was proved by Moen ([Mo]) in the odd residual

characteristic case and by Rogawski ([Ro]) in the general case by using a

global method (see also [HKS] for a purely local proof, which is different

from the one in [MS]).

The following result is due to Shintani ([Shin]; see also [MS, §10]).
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3.9 Theorem. Let a be an ideal of K such that f(a,m) is integral.

Then we have a direct sum decomposition

Tm
hol(a) =

∑
b

∑
χ

Tm
hol,prim(b, χ) ,

where b runs over the ideals of K such that b ⊃ a and f(b,m) is integral,

and χ ∈ X+
0,prim(b,m).

§4. Main Result

4.1 Recall that m is a totally positive element of F . Let a be an

ideal of K such that f(a,m) is integral and let χ ∈ X+
0,prim(a,m). Let Θ

be a nonzero element of Tm
hol,prim(a, χ), which is uniquely determined by

(a, χ) up to constant multiples.

For f ∈ Al(Kf ), we call the inner product

(4.1) (fma ,Θ) =

∫
RF \RA

fma (r) Θ(r) dr

the primitive (a, χ)-component of f (with respect to Θ).

4.2 Let l be an even positive integer and Ω a Hecke character of K

satisfying

(4.2) Ω|O×
K,f

= 1 and Ω(z∞) =
n∏
i=1

(
z
(i)
∞

|z(i)
∞ |

)l
(z∞ ∈ K×

∞) .

Let P be a minimal parabolic subgroup of G given by PF = {r d(z) | r ∈
RF , z ∈ K×}. Recall that the Iwasawa decomposition GA = PAKfK∞
holds. Define a function φΩ on GA by

(4.3) φΩ(r d(z) kf k∞) = Ω(z) |NK/F (z)|l/2A j(k∞, Z0)
−l

for r ∈ RA, z ∈ K×
A, kf ∈ Kf , k∞ ∈ K∞. Then φΩ is left PF -invariant. We

set

(4.4) EΩ(g) =
∑

γ∈PF \GF

φΩ(γg) (g ∈ GA) .
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If l > 4, the series (4.4) is absolutely convergent and defines an element

of Al(Kf ). We call EΩ the holomorphic Eisenstein series attached to Ω.

From now on, we fix an even integer l with l > 4.

4.3 To state the main result of the paper, we let m, a, χ,Θ be as in

§4.1. Let Ω be a Hecke character of K satisfying (4.2). Let αf = (αp)p<∞
be an element of K×

A,f corresponding to a as in §1.10. Let A(χ) be the

set of finite primes p of F such that

(4.5) p is ramified in K/F , µp(a,m) = 0 and a(χp) = 2δKp/Fp
− 1.

For each finite prime p, we choose an element bp(κ) of F×
p such that

(κD−1
K/F )p = bp(κ)OK,p . Let I(Θ) be the period of Θ given by

(4.6) I(Θ) =

∫
K1\K1

A

Θ(t) d×t ,

where d×t is normalized by vol(K1\K1
A) = 1. In the next section, we state

a criterion for the non-vanishing of I(Θ) (cf. Corollary 5.4).

4.4 Theorem. For Θ ∈ Tm
hol,prim(a, χ), we have

((EΩ)ma ,Θ) = c(Ω) ·
∏

p∈A(χ)

(1 + Ω(Πp) q
1−l/2
p )

× L(χΩ; (l − 1)/2)

L(ωΩF ; l − 1)L(Ω; l/2)
· I(Θ) .

Here ΩF = Ω|F×
A

and

c(Ω) =

{
(2π
√
−1)l

(l − 1)!

}n
d
−3/2
F NF/Q(ml−2)NK/Q(al/2−2 κl/2−1D−l/2

K/F )

× em

[
κ

2

] ∏
p<∞

Ω−1
p

(
bp(κ)ασp

)
.

§5. Algebraicity of Primitive Components of Eisenstein Series

5.1 Let m, a, χ,Ω be as in §4 and let Θ ∈ Tm
hol,prim(a, χ). The object

of this section is to give a criterion for the nonvanishing of the primitive
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component ((EΩ)ma ,Θ) and to prove its algebraicity under a suitable nor-

malization of Θ. We begin with a formula for |I(Θ)|2, which is essentially

due to T. Yang.

5.2 Theorem. We have

|I(Θ)|2 = B(χ)L

(
χ;

1

2

)
(Θ,Θ) ,

where

B(χ) =
1

2L(ω; 1)

∏
p∈A1

(1 + q−1
p )−1

∏
p∈A2

(1− q−1
p )−1

A1 = {p: unramified inK/F, a(χp) > 0}
A2 = {p: split inK/F, a(χp) > 0} .

The theorem is proved by using Yang’s arguments in [Yan] with a slight

modification. In the course of the proof, we need the following formula for

matrix coefficients of Mχ.

5.3 Lemma.

(i) Let p be a finite prime of F and Φ ∈ V m
p,prim(a, χ). For t ∈ K1

p ,

we have

(Mχ(t) Φ,Φ) = (Φ,Φ)

×


chO1

K,p
(t) · · · p split in K/F , a(χp) > 0

q
−| ordp zt|/2
p χp(t) · · · p split in K/F , a(χp) = 0

1 · · · otherwise .

Here we write t = (zt, z
−1
t ) when Kp = Fp ⊕ Fp.

(ii) For t∞ ∈ K1
∞, we have

(Mχ(t∞) Φ0,∞,Φ0,∞) = (Φ0,∞,Φ0,∞) .
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We omit the proofs of Theorem 5.2 and Lemma 5.3. In view of Theo-

rem 4.4 and Theorem 5.2, we have obtained the following criterion for the

primitive components of EΩ.

5.4 Corollary. For Θ ∈ Tm
hol,prim(a, χ)− {0}, we have

((EΩ)ma ,Θ) �= 0 ⇐⇒ I(Θ) �= 0 ⇐⇒ L

(
χ;

1

2

)
�= 0 .

5.5 Let m, a be as above and χ ∈ X+
0,prim(a,m). If L

(
χ;

1

2

)
�= 0, let

Θa,χ be the element of Tm
hol,prim(a, χ) such that

I(Θa,χ) = π−nem

[
− κ

2

]
· L
(
χ;

1

2

)
.

If L

(
χ;

1

2

)
= 0, we take any nonzero element Θa,χ of Tm

hol,prim(a, χ).

5.6 Theorem. ((EΩ)ma ,Θa,χ) is an algebraic number.

Proof. For a, b ∈ C, we write a ∼ b if b �= 0 and a/b ∈ Q. Set

p(χ,Ω) =
L(χΩ; (l − 1)/2)L(χ; 1/2)

L(Ω; l/2)
.

Since L(ωΩF ; l − 1) ∼ π(l−1)n, we see that ((EΩ)ma ,Θa,χ) ∼ p(χ,Ω) by

Theorem 4.4. On the other hand, we have p(χ,Ω) ∼ 1 by Shimura’s results

([Shim1, Theorem 2], [Shim3, Theorem 1.1]; see also [Yo]). Thus we are

done. �

Remark. EΩ is arithmetic in the sense of [Shim2] (see [Shim2, The-

orem 5.3]).

§6. Fourier-Jacobi Expansion of Eisenstein Series

6.1 Let the notation be as in §4. Define a function J
αf

Ω on KA by

J
αf

Ω (w) =

∫
FA

φΩ(Υ0 (α−1
f w, x))ψm(−NK/F (αf )x) dx(6.1)

(w ∈ KA) ,
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where dx is normalized as in §1.1 and

Υ0 =

 1

1

−1

 ∈ GF .

The next lemma follows from the definition (4.4) of EΩ and the Bruhat

decomposition GF = PF ∪ PF Υ0 NF .

6.2 Lemma. For r = (w, 0)t ∈ RA, we have

(EΩ)ma (r) = Ω(ασf )
−1 |NK/F (αf )|1−l/2A

∑
ξ∈K

ψm

(
1

2
〈ξ, w〉

)
J
αf

Ω (t−1(w + ξ)) .

6.3 We have

(6.2) J
αf

Ω (w) = JΩ∞(w∞)
∏
p

J
αp

Ωp
(wp) (w ∈ KA) ,

where

JΩ∞(w∞) =

∫
F∞

φΩ∞(Υ0(w∞, x∞)) em[−x∞] dx∞

J
αp

Ωp
(wp) =

∫
Fp

φΩp(Υ0(α
−1
p wp , xp))ψm,p(−NK/F (αp)xp) dxp .

Here we put Ω∞ = Ω|K×
∞

, φΩ∞ = φΩ|G∞ , Ωp = Ω|K×
p

and φΩp
= φΩ|Gp

.

Set

(6.3) c∞ =

{
(2π
√
−1)l

(l − 1) !

}n
NF/Q(m)l−1 |dF |−1/2 em[κ/2] .

6.4 Lemma. We have

JΩ∞(w∞) = c∞ Φ0,∞(w∞) (w∞ ∈ K∞) .
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Proof. Since φΩ∞(g) = j(g, Z0)
−l for g ∈ G∞, we have

JΩ∞(w∞) =

∫
F∞

j(Υ0(w∞, x∞), Z0)
−l em[−x∞] dx∞

= |dF |−1/2
n∏
i=1

∫
R

{
x(i)
∞ +

κ(i)

2
(w(i)

∞w
(i)
∞ + 1)

}−l

×e[−m(i)x(i)
∞ ] d′x(i)

∞
= c∞ Φ0,∞(w∞) (w∞ = (w(i)

∞ )1≤i≤n ∈ K∞) ,

where d′x(i)
∞ is the usual Lebesgue measure on R. �

6.5 Let Φ be the element of V m
hol,prim(a, χ) such that Θ = T mχ (Φ).

Then

(6.4) Φ(w) = Φ0,∞(w∞)
∏

p<∞
Φp(wp) (w ∈ KA) ,

where Φ0,∞ is defined in §2.6 and Φp ∈ V m
p,prim(a, χ). We put

(6.5) W
αf

Ω,Φ(z) =

∫
KA

J
αf

Ω (w) ρ(w, 0) Φ(z) dw (z ∈ KA) .

Later we will see that W
αf

Ω,Φ is not in V m, but in Ṽ m (cf. Proposition

10.2).

6.6 Lemma. We have

(Θ, (EΩ)ma ) = Ω(ασf ) |NK/F (αf )|1−l/2A

∫
K1\K1

A

T mχ (W
αf

Ω,Φ)(t) d×t .

Proof. By Lemma 6.2, we have

Ω(ασf )
−1|NK/F (αf )|l/2−1

A · (Θ, (EΩ)ma )

=

∫
K\KA

dw

∫
K1\K1

A

d×tΘ((w, 0)t)

×
∑
ξ∈K

ψm

(
−1

2
〈ξ, w〉

)
J
αf

Ω (t−1(w + ξ))
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=

∫
KA

dw

∫
K1\K1

A

d×tΘ((w, 0)t) J
αf

Ω (t−1w)

=

∫
KA

dw

∫
K1\K1

A

d×tΘ(t(w, 0))J
αf

Ω (w)

=

∫
K1\K1

A

T mχ (W
αf

Ω,Φ)(t) d×t ,

which proves the lemma. �

6.7 In view of (6.2) and (6.4), W
αf

Ω,Φ is decomposed as

W
αf

Ω,Φ(z) = W∞(z∞)
∏

p<∞
W

αp

Ωp,Φp
(zp) (z ∈ KA) ,

where

(6.6) W∞(z∞) =

∫
K∞

JΩ∞(w∞) ρ(w∞, 0) Φ0,∞(z∞) dw∞ (z∞ ∈ K∞)

(6.7) W
αp

Ωp,Φp
(zp) =

∫
Kp

J
αp

Ωp
(wp) ρ(wp , 0) Φp(zp) dwp (zp ∈ Kp) .

6.8 Lemma. We have

W∞(z∞) = c∞ · Φ0,∞(z∞) (z∞ ∈ K∞) .

Proof. This follows from Lemma 6.4 and Lemma 2.3. �

§7. Local Calculation: (I) Preparation

7.1 In §§7–9, we fix a finite prime p of F and calculate the lo-

cal factor W
αp

Ωp,Φp
defined by (6.7). To simplify the notation, we often

omit the subscript p in these sections. For example, we write F,K,N,

| · |F , ordF , π, ψm, ω, δK/F and V m for Fp ,Kp , Np , | · |p , ordp , πp , ψm,p ,

ωp , δKp/Fp
and V m

p . For z ∈ K, we write N(z) for NK/F (z) if there

is no fear of confusion. We put q = #(OF /πOF ). Denote by τ0 (resp. τ )

the characteristic function of OF (resp. OK ). From now on, we fix an

element θ of K satisfying
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(i) {1, θ} is an OF -basis of OK .

(ii) θ is a prime element of K when K/F is ramified.

We have

(7.1) δK/F = ordF N(θ − θσ) .

Set

(7.2) ν = − θσ

θ − θσ
.

Then ν satisfies the conditions in §1.15.

7.2 Let a = αOK be an ideal of K. Note that

(7.3) µ(a,m) := ordF f(a,m) = ordF (b(κ)N(α)) + n(ψm) ,

where we put

(7.4) b(κ) =
κ

θ − θσ
∈ F× .

We also note that

(7.5) daz = qµ(a,m)+δK/F dz

(recall that daz is normalized by vol(a) = 1).

7.3 Let ξ (resp. Ξ) be a character of F× (resp. K×). As usual, we

define the local L-factors attached to ξ and Ξ by

L(ξ; s) =

{
(1− ξ(π)q−s)−1 · · · ξ|O×

F
= 1

1 · · · otherwise

and

L(Ξ; s) =


(1− Ξ(Π)|N(Π)|sF )−1 · · · K is a field and Ξ|O×

K
= 1∏

i=1,2

(
1− Ξ(Πi)q

−s)−1 · · · K = F ⊕ F and Ξ|O×
K

= 1

1 · · · Ξ|O×
K
�= 1 .
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Here Π is a prime element of K when K is a field, and Π1 = (π, 1),Π2 =

(1, π) when K = F ⊕ F .

7.4 Let C∞(K) be the space of locally constant functions on K. De-

fine a smooth representation ρ of N on C∞(K) by

(7.6) ρ(w, x) f(z) = ψm

(
1

2
〈z, w〉+ x

)
f(z + w) (f ∈ C∞(K), z ∈ K).

Recall that ρ(N)V m ⊂ V m and that ρ defines a smooth irreducible repre-

sentation of N on V m.

For an ideal a of K, we define an endomorphism Pa of C∞(K) by

Pa f =

∫
N(a)

ρ(n) f dan (f ∈ C∞(K)) ,

where dan is normalized by vol(N(a)) = 1. If µ(a,m) ≥ 0, we have

Pa f =

∫
a

ρ(w, xw) f daw ,

where

(7.7) xw =
κ

2
(ν − νσ)wwσ .

If µ(a,m) < 0, we have Pa f = 0.

7.5 For f ∈ C∞(K) and Φ ∈ V m, we put

(7.8) Λ(f,Φ)(z) =

∫
K

f(w) (ρ(w, 0) Φ) (z) dw (z ∈ K) .

The integral (7.8) is absolutely convergent for every z ∈ K and defines an

element of C∞(K). The following is easily verified.

7.6 Lemma.

(i) For f ∈ C∞(K),Φ ∈ V m and w ∈ K, we have

Λ(ρ(w, 0)f,Φ) = ρ(−w, 0) Λ(f,Φ) .
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(ii) For an ideal a of K, we have

Λ(f,PaΦ) = Λ(Paf,Φ) (f ∈ C∞(K),Φ ∈ V m).

7.7 Until the end of §9, we fix an ideal a = αOK with µ(a,m) ≥
0, Ω ∈ (K×)∧ with Ω|O×

K
= 1, χ ∈ X+

prim(a,m) and Φ ∈ V m(a, χ) =

V m
prim(a, χ). We write µ for µ(a,m) if there is no fear of confusion. Set

(7.9) W ∗(z) = Ω(b(κ)) |b(κ)|lF Lp

(
Ω ;

l

2

)
·Wα

Ω,Φ(z) (z ∈ K)

and

J∗(w) = Ω(b(κ)) |b(κ)|lF Lp

(
Ω;

l

2

)
· JαΩ(w)(7.10)

=

∫
F
φ∗

Ω(Υ0(α
−1w, x))ψm(−N(α)x) dx (w ∈ K) ,

where

φ∗
Ω(g) = Ω(b(κ)) |b(κ)|lF Lp

(
Ω;

l

2

)
· φΩ(g) (g ∈ G) .

In view of (6.5), we have

(7.11) W ∗(z) = Λ(J∗,Φ)(z) .

To calculate W ∗(z), we need the following integral expression of J∗.

7.8 Lemma. For w ∈ K, we have

J∗(w) = |N(α)|−1
F ψm(−xw)

∫
K×

d×z
∫
F
dx ψm(−x) Ω(z) |N(z)|l/2F

τ(z) τ(α−1wzσ) τ

(
b(κ)−1N(α)−1(x− b(κ)wwσθσ)z

)
,

where d×z is normalized by vol(O×
K) = 1.

Proof. Put L′ = tL · (κS) = OK ⊕ κOK ⊕ b(κ)OK . Then L′ is

K-invariant under right multiplication. By a standard argument, we have

φ∗
Ω(g) =

∫
K×

chL′

(
(0, 0, z) g

)
Ω(z) |N(z)|l/2F d×z (g ∈ G)
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and hence

J∗(w) =

∫
K×

d×z
∫
F
dxψm(−N(α)x) Ω(z) |N(z)|l/2F

τ(z)τ(α−1wzσ)τ

(
b(κ)−1(x +

κ

2
N(α)−1wwσ)z

)
.

Changing the variable x into N(α)−1(x + xw), we obtain the assertion of

the lemma. �

§8. Local Calculation: (II) The Case Where K is a Field

8.1 In this section, we calculate W ∗ when K is a field. We first

consider the unramified case.

8.2 Lemma. Suppose that K/F is an unramified quadratic extension.

Then we have

J∗(w) = |b(κ)|F ψm(−xw)
µ∑
k=0

(Ω(π)q1−l)k τ(π[k/2]α−1w) (w ∈ K) .

Proof. By Lemma 7.8, we have

J∗(w) = |N(α)|−1
F ψm(−xw)

∞∑
k=0

(Ω(π)q−l)k Ik(w) ,

where

Ik(w) = τ(πkα−1w)

∫
F
τ

(
b(κ)−1N(α)−1πk (x− b(κ)wwσθσ)

)
ψm(−x) dx .

Since {1, θσ} is an OF -basis of OK , we have

Ik(w) = τ(πkα−1w) τ0(π
kN(α−1w))

∫
F
τ0(π

k−µ+n(ψm)x)ψm(−x) dx

= τ(π[k/2]α−1w) ×
{

qk−µ+n(ψm) · · · 0 ≤ k ≤ µ

0 · · · k > µ .

This proves the lemma, since q−µ+n(ψm) = |b(κ)N(α)|F . �
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8.3 Proposition. Suppose that K/F is an unramified quadratic ex-

tension. Then we have

W ∗ = q−µ−δK/F |b(κ)|F
L
(
χΩ ; (l − 1)/2

)
L
(
ωΩF ; l − 1

) Φ .

Proof. In view of (7.11) and Lemma 8.2, we have

W ∗ = |b(κ)|F
µ∑
k=0

(
Ω(π)q1−l

)k ∫
K

τ(π[k/2]α−1w) ρ(w, xw) Φ dw

= |b(κ)|F
µ∑
k=0

(
Ω(π)q1−l

)k
q2[k/2]−µ−δK/F Pπ−[k/2]a Φ .

The primitivity of Φ implies that

W ∗ = q−µ−δK/F |b(κ)|F · Φ×
{

1 · · · µ = 0

1 + Ω(π) q1−l · · · µ > 0 .

Observe that χ(π) = ω(π) = −1 and that χ is trivial on O×
K if and only

if µ = 0. It follows that L(ωΩF ; l − 1) = (1 + Ω(π) q1−l)−1 and

L

(
χΩ;

l − 1

2

)
=

{
(1 + Ω(π) q1−l)−1 · · · µ = 0

1 · · · µ > 0 .

These prove the proposition. �

8.4 Next suppose that K/F is a ramified quadratic extension and let

Π be a prime element of K. Define an endomorphism Q of V m by

QΨ =

∫
a′
ρ(w, xw) Ψ da′w (Ψ ∈ V m) ,

where a′ = Π−µ−1a.

8.5 Lemma. Let Φ ∈ V m
prim(a, χ).

(i) If µ > 0, we have QΦ = 0.
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(ii) If µ = 0, we have

QΦ =

{
0 · · · a(χ) = 2δK/F
Φ · · · a(χ) = 2δK/F − 1 .

Proof. First suppose that µ > 0. A straightforward calculation shows

that Q = QPΠ−1a and hence QΦ = 0 by the primitivity of Φ. The second

assertion follows from Theorem 3.8 (ii). �

8.6 Lemma. Suppose that K/F is a ramified quadratic extension.

Then we have

J∗(w) = |b(κ)|F ψm(−xw)
2µ+1∑
k=0

q[k/2] (Ω(Π) q−l/2)k τ(Π[(k+1)/2]α−1w)

for w ∈ K.

Proof. By Lemma 7.8, we have

J∗(w) = |N(α)|−1
F ψm(−xw)

∞∑
k=0

(Ω(Π) q−l/2)k Ik(w) (w ∈ K) ,

where

Ik(w) = τ(Πkα−1w)

∫
F
τ
(
b(κ)−1N(α)−1Πk(x− b(κ)wwσθσ)

)
ψm(−x) dx .

First suppose that k = 2k′ is even. Since Πk ∈ πk
′O×

K , we have

Ik(w) = τ(πk
′
α−1w) τ0(π

k′N(α−1w))

∫
F
τ0(π

k′−µ+n(ψm) x)ψm(−x) dx

= τ(Πk′α−1w)×
{

qk
′−µ+n(ψm) · · · 0 ≤ k′ ≤ µ

0 · · · k′ > µ .

We next consider the case where k = 2k′ + 1 is odd. Recall that we have

assumed that θ is a prime element of K. It follows that Πk ∈ πk
′
θO×

K

and hence

Ik(w) = τ(Π2k′+1α−1w) τ0(π
k′+1N(α−1w))

×
∫
F
τ0(π

k′−µ+n(ψm) x)ψm(−x) dx

= τ(Πk′+1α−1w)×
{

qk
′−µ+n(ψm) · · · 0 ≤ k′ ≤ µ

0 · · · k′ > µ .
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These yield the required result. �

8.7 Proposition. Suppose that K/F is a ramified quadratic exten-

sion. Then we have

W ∗ = q−µ−δK/F |b(κ)|F
L
(
χΩ ; (l − 1)/2

)
L
(
ωΩF ; l − 1

)
×
{

1 + Ω(Π)q1−l/2 · · · µ = 0, a(χ) = 2δK/F − 1

1 · · · otherwise

}
× Φ .

Proof. By an argument similar to the proof of Proposition 8.3, we

have

W ∗ = |b(κ)|F
2µ+1∑
k=0

q[k/2]
(
Ω(Π)q−l/2

)k ∫
Π−[(k+1)/2]a

ρ(w, xw) Φ dw

= |b(κ)|F
{ 2µ∑
k=0

q[k/2]+[(k+1)/2]−µ−δK/F

(
Ω(Π)q−l/2

)k
PΠ−[(k+1)/2]a Φ

+qµ+1−δK/F (Ω(Π) q−l/2)2µ+1QΦ
}
.

If µ > 0, the primitivity of Φ and Lemma 8.5 (i) imply that

W ∗ = q−µ−δK/F |b(κ)|F Φ .

If µ = 0, Lemma 8.5 (ii) implies

W ∗ = q−µ−δK/F |b(κ)|F×
{

1 · · · a(χ) = 2δK/F
1 + Ω(Π) q1−l/2 · · · a(χ) = 2δK/F − 1

}
×Φ .

On the other hand, we have L(χΩ; s) = L(ωΩF ; s) = 1, since χΩ (resp.

ωΩF ) is nontrivial on O×
K (resp. O×

F ). This completes the proof of the

proposition. �

§9. Local Calculation: (III) The Case Where K = F ⊕ F

9.1 In this section, we calculate W ∗ when K = F ⊕ F . We take θ =

(1, 0). Then we have xw = − 1

2
b(κ)N(w) and 〈z, w〉 = b(κ)(z2w1 − z1w2)
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for z = (z1, z2), w = (w1, w2) ∈ K. Set ξi = Ω(Πi) q
−l/2 (i = 1, 2), where

Π1 = (π, 1) and Π2 = (1, π). We let α = (α1, α2) ∈ K×.

9.2 Lemma. For w ∈ K, we have

J∗(w) = |b(κ)|F
∞∑

k1,k2=0

ξk11 ξk22 Ik1,k2(w) ,

where

Ik1,k2(w)

= τ
(
Πk2

1 Πk1
2 α−1w

)
×


qk1 τ0(π

k2N(α−1w))ψm(−xw) · · · k1 ≤ k2 and k1 ≤ µ

qk2 τ0(π
k1N(α−1w))ψm(xw) · · · k1 ≥ k2 and k2 ≤ µ

0 · · · otherwise .

Proof. By Lemma 7.8, we obtain

J∗(w) = |N(α)|−1
F ψm(−xw)

∞∑
k1,k2=0

ξk11 ξk22 τ
(
Πk2

1 Πk1
2 α−1w

)
I ′k1,k2(w) ,

where

I ′k1,k2(w) =

∫
F
τ0(π

k1−µ+n(ψm)x) τ0(π
k2−µ+n(ψm)(x + 2xw))ψm(−x) dx .

First suppose that k1 ≤ k2. Then

I ′k1,k2(w) = τ0(π
k2−µ+n(ψm) · 2xw)

∫
F
τ0(π

k1−µ+n(ψm) x)ψm(−x) dx

= τ0(π
k2N(α−1w)) ×

{
qk1 |b(κ)N(α)|F · · · 0 ≤ k1 ≤ µ

0 · · · k1 > µ .

A similar calculation shows that

I ′k1,k2(w) = ψm(2xw) τ0(π
k1N(α−1w))

×
{

qk2 |b(κ)N(α)|F · · · 0 ≤ k2 ≤ µ

0 · · · k2 > µ
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if k1 ≥ k2. Hence the lemma has been proved. �

9.3 For (k, k′) ∈ (Z≥0)
2, put

η±k,k′(w) = τ
(
Πk

1Π
k′
2 α−1w

)
ψm(±xw) (w ∈ K) .

Note that η+
k,k′ = η−k,k′ if k + k′ ≤ µ, in which case we write simply ηk,k′

for η±k,k′ . Let N be the subspace of S(K) spanned by η±k,k′ ( (k, k′) ∈
(Z≥0)

2 − {(0, 0)}).

9.4 Lemma.

(i) I0,0 = η0,0.

(ii) If µ ≥ 1, then I1,1 = q (−η0,0 + η1,0 + η0,1) ∈ −q η0,0 +N .

(iii) If (k1, k2) �= (0, 0), (1, 1), then Ik1,k2 ∈ N .

Proof. The first and second assertions are immediate from the def-

inition of Ik1,k2 . We show (iii) in the case k2 ≥ k1 by induction on

k1. Let α−1w = (w′
1, w

′
2). First suppose that k2 > k1 = 0. Then

Ik1,k2(w) = τ0(π
k2w′

1) τ0(w
′
2)ψm(−xw) = η−k2,0(w) ∈ N . Next suppose that

k2 ≥ k1 > 0 and (k1, k2) �= (1, 1). If k1 > µ, we have Ik1,k2 = 0. Assume

k1 ≤ µ. Then

q−k1 Ik1,k2(w)

= τ0(π
k2w′

1) τ0(π
k1w′

2) τ0(π
k2w′

1w
′
2)ψm(−xw)

= τ0(π
k2w′

1)
{
τ0(π

k1w′
2)− τ0(π

k1−1w′
2)
}
τ0(π

k2w′
1w

′
2)ψm(−xw)

+τ0(π
k2w′

1) τ0(π
k1−1w′

2) τ0(π
k2w′

1w
′
2)ψm(−xw) .

Since τ0(π
k1w′

2)− τ0(π
k1−1w′

2) = δ(πk1w′
2 ∈ O×

F ), we have

q−k1 Ik1,k2(w)

= τ0(π
k2−k1w′

1)
{
τ0(π

k1w′
2)− τ0(π

k1−1w′
2)
}
ψm(−xw)

+q1−k1 Ik1−1,k2(w)

= η−k2−k1,k1(w)− η−k2−k1,k1−1(w) + q1−k1 Ik1−1,k2(w) .
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In view of the assumption (k1, k2) �= (1, 1), we have η−k2−k1,k1−η
−
k2−k1,k1−1 ∈

N and hence Ik1,k2 ∈ N by the induction hypothesis. We can show (iii) in

the case k2 < k1 in a similar manner. �

The following fact is easily verified and we omit its proof.

9.5 Lemma. Let k, k′ ∈ Z≥0 and ε = ±.

(i) We have

Pa η
ε
k,k′(w) = ηεk,k′(w)×

{
τ0(π

µα−1
1 w1) · · · ε = +

τ0(π
µα−1

2 w2) · · · ε = − .

(ii) If µ > 0 and k > 0, we have

PΠ−1
1 a

ηεk,k′(w) = ηεk,k′(w)×
{

τ0(π
µα−1

1 w1) · · · ε = +

τ0(π
µ−1α−1

2 w2) · · · ε = − .

(iii) If µ > 0 and k′ > 0, we have

PΠ−1
2 a

ηεk,k′(w) = ηεk,k′(w)×
{

τ0(π
µ−1α−1

1 w1) · · · ε = +

τ0(π
µα−1

2 w2) · · · ε = − .

9.6 Lemma. Let Φ ∈ V m
prim(a, χ).

(i) We have Λ(η0,0 ,Φ) = q−µΦ.

(ii) If µ ≥ 1, we have Λ(η,Φ) = 0 for η ∈ N .

Proof. The first assertion is immediate from the fact that

Λ(η0,0,Φ) = q−µ Pa Φ. Suppose that µ ≥ 1. The primitivity of Φ im-

plies that Φ = (Pa − PΠ−1
1 a

) Φ = (Pa − PΠ−1
2 a

) Φ. If k > 0, we have

(
Pa − PΠ−1

1 a

)
ηεk,0(w)

= ηεk,0(w) ×
{

0 · · · ε = +

τ0(π
µα−1

2 w2)− τ0(π
µ−1α−1

2 w2) · · · ε = −
= 0
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by Lemma 9.5 and hence Λ(ηεk,0,Φ) = Λ(ηεk,0, (Pa − PΠ−1
1 a

)Φ) = Λ((Pa −
PΠ−1

1 a
)ηεk,0,Φ) = 0. A simialr argument shows that Λ(ηε0,k′ ,Φ) = 0 for

k′ > 0. Finally let k, k′ > 0. By Lemma 9.5, we have (Pa−PΠ−1
1 a

) η+
k,k′ = 0

and (Pa − PΠ−1
2 a

) η−k,k′ = 0, which imply Λ(η±k,k′ ,Φ) = 0. �

9.7 Proposition. Suppose that K = F ⊕ F and µ ≥ 1. Then

W ∗ = q−µ−δK/F |b(κ)|F
L
(
χΩ; (l − 1)/2

)
L
(
ωΩF ; l − 1

) Φ .

Proof. By (7.11), Lemma 9.2, Lemma 9.4 and Lemma 9.6, we obtain

W ∗ = |b(κ)|F Λ((1− qξ1ξ2)η0,0 ,Φ)

= |b(κ)|F q−µ
(
1− qξ1ξ2

)
Φ

= |b(κ)|F q−µ L(ωΩF ; l − 1)−1Φ

(note that ω is trivial when K = F ⊕ F ). Since µ ≥ 1, χΩ is nontrivial

on O×
K and hence L

(
χΩ ; s

)
= 1, which proves the proposition. �

9.8 Until the end of this section, we assume that µ = 0. In this case,

by Lemma 9.2, we have

Ik1,k2 =


0 · · · k1, k2 > 0

η+
0,k1

· · · k2 = 0

η−k2,0 · · · k1 = 0

and hence

(9.1) J∗ = |b(κ)|F
{
η0,0 +

∞∑
k=1

(
ξk1 η

+
0,k + ξk2 η

−
k,0

)}
.

9.9 For t ∈ K1, we define M(t) ∈ End(S(K)) as follows. If t = 1, we

put M(t) = IdS(K). If t �= 1, we put

M(t)ϕ(z)

= |NK/F (1− t)|1/2F

∫
K

ψm

(
1

2
〈w, tw〉

)
ρ((1− t)w, 0)ϕ(z) dw

= |NK/F (1− t)|−1/2
F

∫
K

ψm

(
atww

σ +
1

2
〈z, w〉

)
ϕ(z + w) dw ,
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where ϕ ∈ S(K) and at =
κ

2

1 + t

1− t
∈ F . Note that

(9.2) Mχ(t)Φ = χ

(
1− t

κ

)
M(t)Φ (t ∈ K1 − {1})

for Φ ∈ V m and χ ∈ X (cf. §2.9).

9.10 Lemma. For η ∈ S(K),Φ ∈ V m and t ∈ K1, we have

Λ(M(t)η,Φ) = M(t)Λ(η,Φ) .

Proof. This follows from Lemma 7.6 and the definition of M(t). �

9.11 Lemma. For k ≥ 0, we have

qk/2 M(tk)η0,0 = η−0,k = η+
0,k

qk/2 M(t−1
k )η0,0 = η+

k,0 = η−k,0

where tk = (Π1/Π2)
k = (πk, π−k).

Proof. Since the assertion for k = 0 is trivial, we assume that k > 0.

For z ∈ K, we have

qk/2 M(tk)η0,0(z)

= qk/2 |NK/F (1− tk)|−1/2
F

×
∫
K

ψm

(
atk(w − z)(w − z)σ +

1

2
〈z, w〉

)
η0,0(w) dw

=

∫
a

ψm

(
1

2

1 + πk

1− πk
b(κ) (w1 − z1)(w2 − z2)

+
1

2
b(κ) (z2w1 − z1w2) +

1

2
b(κ)w1w2

)
daw

= ψm

(
−xz +

πk

1− πk
b(κ) z1z2

)

×
∫

a

ψm

(
− πk

1− πk
b(κ) z2w1 −

1

1− πk
b(κ) z1w2

)
daw
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= ψm

(
−xz +

πk

1− πk
b(κ) z1z2

)
τ0(α

−1
1 z1) τ0(π

kα−1
2 z2)

= τ(Πk
2α

−1z)ψm(−xz)
= η−0,k(z) .

We can prove the second formula in a similar manner. �

9.12 Proposition. Suppose that K = F ⊕ F and µ = 0. Then we

have

W ∗ = q−µ−δK/F |b(κ)|F ·
{

Φ +
∞∑
k=1

(
q−(l−1)/2 Ω(Π1)

)k
M((Π1/Π2)

k) Φ

+
∞∑
k=1

(
q−(l−1)/2 Ω(Π2)

)k
M((Π1/Π2)

−k) Φ

}
.

Proof. It follows from (7.11) and (9.1) that

W ∗ = |b(κ)|F
{

Λ(η0,0 ,Φ) +
∞∑
k=1

ξ1
k
Λ(η+

0,k,Φ) +
∞∑
k=1

ξ2
k
Λ(η−k,0,Φ)

}
.

For k ≥ 0, we have

Λ(η+
0,k,Φ) = Λ(η−0,k,Φ) = qk/2 Λ(M(tk)η0,0,Φ)

= qk/2M(tk)Λ(η0,0,Φ) = qk/2M(tk)Φ

by Lemma 9.11 and Lemma 9.6 (i). Similarly we have

Λ(η−k,0,Φ) = qk/2M(t−1
k )Φ .

These prove the proposition. �

§10. Proof of Theorem 4.4

10.1 Let the notation and the assumptions be the same as in §4. Let

Φ ∈ V m
hol,prim(a, χ) be as in §6.5. Recall that

(10.1) (Θ, (EΩ)ma ) = Ω(ασf ) |NK/F (αf )|1−l/2A

∫
K1\K1

A

T mχ (W
αf

Ω,Φ)(t)d×t
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and

(10.2) W
αf

Ω,Φ(z) = c∞ Φ0,∞(z∞)
∏

p<∞
Wp(zp) (z ∈ KA) ,

where c∞ is defined by (6.3) and Wp = W
αp

Ωp,Φp
(cf. Lemma 6.6 and Lemma

6.8). We now summarize an explicit formula for Wp calculated in §§8–9.

Let S be the set of finite primes p of F such that Kp = Fp ⊕ Fp and

µp(a,m) = 0. Note that S is an infinite set. If p ∈ S, we set

RpΦp = Φp +
∞∑
k=1

(
q
−(l−1)/2
p Ω(Πp,1)

)k
M((Πp,1/Πp,2)

k) Φp

+
∞∑
k=1

(
q
−(l−1)/2
p Ω(Πp,2)

)k
M((Πp,1/Πp,2)

−k) Φp

for Φp ∈ V m
p , where Πp,1 = (πp , 1) and Πp,2 = (1, πp) (for the definition

of M , see §9.9).

10.2 Proposition.

(i) Let p be a finite prime of F . Then we have

Wp = q
−µp−δKp/Fp

p |bp(κ)|1−lp Ωp(bp(κ))Lp

(
Ω ;

l

2

)−1

×



RpΦp · · · p ∈ S

Lp

(
χΩ ;

l − 1

2

)
Lp

(
ωΩF ; l − 1

)−1(
1 + Ω(Πp)q

1−l/2
p

)
Φp · · · p ∈ A(χ)

Lp

(
χΩ ;

l − 1

2

)
Lp

(
ωΩF ; l − 1

)−1
Φp · · · otherwise .

(ii) We have Wp ∈ Ṽ m
p for any p, and Wp ∈ V m

p if p �∈ S.

Proof. The first assertion follows from Proposition 8.3, Proposition

8.7, Proposition 9.7, Proposition 9.12 and (7.9). The second is a direct

consequence of (i). �

10.3 Lemma. If p ∈ S, we have∫
K1\K1

A

T mχ
(
M((Πp,1/Πp,2)

k)Φ
)

(t) d×t = χp(Πp,1)
k · I(Θ)
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for k ∈ Z.

Proof. The assertion is trivial for k = 0. Suppose that k �= 0 and

put tk = (Πp,1/Πp,2)
k. In view of (9.2), we have

T mχ (M(tk)Φ) (t) = χ−1
p

(
1− tk
κ

)
T mχ (Mχ(tk) Φ)(t) = χp(Πp,1)

k Θ(ttk)

for t ∈ K1
A (note that χp is trivial on F×

p ). This immediately implies the

lemma. �

10.4 We are now ready to prove Theorem 4.4. In view of (10.1), (10.2),

Proposition 10.2 and Lemma 10.3, (Θ, (EΩ)ma ) is equal to

c′(Ω)
∏

p<∞,p �∈S

Lp

(
χΩ ;

l − 1

2

)
Lp

(
ωΩF ; l − 1

)
Lp

(
Ω; l/2

)
×

∏
p∈A(χ)

(
1 + Ω(Πp)q

1−l/2
p

) ∏
p∈S

Lp

(
Ω ;

l

2

)−1

Zp

(
l − 1

2

)
· I(Θ) ,

where

c′(Ω) = c∞ ·Ω(ασf ) |NK/F (αf )|1−l/2A

∏
p<∞

(
q
−µp−δKp/Fp

p |bp(κ)|1−lp Ωp(bp(κ))

)

and

Zp(s) = 1 +
∞∑
k=1

(
q−sp χpΩp(Πp,1)

)k
+

∞∑
k=1

(
q−sp χpΩp(Πp,2)

)k
.

By a straightforward calculation, we have c′(Ω) = c(Ω) and

Zp(s) =
1− q−2s

p χpΩp(πp)(
1− q−sp χpΩp(Πp,1)

) (
1− q−sp χpΩp(Πp,2)

) =
Lp

(
χΩ ; s

)
Lp

(
ωΩF ; 2s

) .

Thus Theorem 4.4 has been established.
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