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Siegel-Whittaker Functions on Sp(2,R) for Principal

Series Representations

By Taku Ishii

Abstract. We study a kind of generalized spherical functions
on Sp(2,R) for principal series representations, which are related to
archimedean theory of automorphic forms (Siegel wave forms). By
solving some differential equations, we obtain explicit formulas for
boundary values of these functions in terms of Meijer’s G-functions.

Introduction

In this paper we investigate Siegel-Whittaker functions on the real sym-

plectic group of degree two for the principal series representations. Before

we discuss our problem, let us recall the general setting in the theory of

spherical functions.

Let G be a real reductive Lie group and g the Lie algebra of G. Fix a

maximal compact subgroup K of G and a closed subgroup R of G. Take

an irreducible smooth representation ξ of R and consider C∞-induction

C∞IndGR(ξ). For an irreducible admissible representation (π,Hπ) of G with

Hπ,K the subspace of K-finite vectors, consider the following problems:

(1) Is Hom(g,K)(Hπ,K , C
∞IndGR(ξ)) finite dimensional? Moreover, we

want to know whether the dimension is at most one under some growth

conditions (Multiplicity Free Theorem).

(2) For nonzero Φ ∈ Hom(g,K)(Hπ,K , C
∞IndGR(ξ)), what is the realization

Im(Φ) of π in C∞IndGR(ξ)? Or, equivalently, give explicit formulas for

its elements (as functions on G).

Depending on the choices of R, these problems correspond to various funda-

mental questions in the local (archimedean) theory of automorphic forms.

For example, they are related to the construction of automorphic L-function
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and Fourier expansions of automorphic forms. When R is a maximal unipo-

tent subgroup of G and ξ is a unitary character of R, the space of inter-

twining operators Hom(g,K)(Hπ,K , C
∞IndGR(ξ)) of (g,K)-modules is called

the space of Whittaker functionals and has been studied for two or three

decades (cf. [16], [13], [14]).

Now we explain our situation in this paper. Let G = Sp(2,R), Ps the

Siegel parabolic subgroup of G with the Levi subgroup Ls and the abelian

unipotent radical Ns, η a definite character of Ns and SO(η) the identity

component of the stabilizer of η in Ls. Take R = SO(η) � Ns and ξ as

the semidirect product of η and a unitary character χ of SO(η). In this

case, the intertwining space is usually called the space of the generalized

Whittaker functionals. Since there are many possible notions of generalized

Whittaker functionals, we call it the space of Siegel-Whittaker functionals.

Consider the restriction of elements in this space to a specific K-type

as follows. Let (τ∗, Vτ∗) be the multiplicity one K-type of π, where τ∗

means the contragradient representation of τ , and let ι : Vτ∗ → Hπ be a K-

equivariant map. By Φ(ι(v∗))(g) = 〈v∗, φπ,τ (g)〉, we can define the function

φπ,τ contained in the space C∞
χ·η,τ (R\G/K) of Vτ -valued smooth functions

on G satisfying f(rgk) = (χ·η)(r)τ(k)−1f(g) for all (r, g, k) ∈ R × G ×K.

Here 〈 , 〉 is the canonical pairing on Vτ ×Vτ∗ . We call the function φπ,τ the

Siegel-Whittaker function with K-type τ∗ for π and denote by Wχ·η, τ∗(π)

the space of these functions. By a decomposition G = RAK with A =

{diag(a1, a2, a
−1
1 , a−1

2 ) | a1, a2 > 0}, we see that φπ,τ is determined by its

restriction to A. We call this restriction φπ,τ |A the A-radial part of φπ,τ .

Our aim is to find an explicit formula for this function.

Miyazaki obtained a system of differential equations satisfied by Siegel-

Whittaker functions for the principal series representation in the paper [12]

(this part is omitted in published version), whose purpose was to show the

multiplicity one theorem and to give explicit formulas in the case when π is

the PJ -principal series representation or the large discrete series represen-

tation. In the present paper, we study this system and obtain the following

theorem.

Multiplicity Free Theorem (Theorems 10.1 and 15.1). Let πσ,ν
be the principal series representation of G = Sp(2,R), and assume that

the parameter ν = (ν1, ν2) of πσ,ν satisfies ν1, ν2, ν1 ± ν2 /∈ Z. We also

assume the character η of Ns is ‘positive definite.’ We define the subspace
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C∞IndGR(χ ·η)rap of C∞IndGR(χ ·η), whose elements are rapidly decreasing

functions on G. Then

dimC Hom(g,K)(Hπσ,ν ,K , C
∞IndGR(χ·η)rap) ≤ 1.

Moreover the boundary values of the radial parts of the elements in

Wrap
χ·η,τ∗(π) (see §10 and §15 for the precise definition) are written explicitly

in terms of Meijer’s G-function G4,0
2,4 if

(1) πσ,ν is in the ‘even’ principal series and τ∗ = τ(0,0) or τ(1,1),

(2) πσ,ν is in the ‘odd’ principal series and τ∗ = τ(0,−1).

Here τ(λ1,λ2) is the irreducible representation of K with highest weight

(λ1, λ2) and the definitions of ‘even’ and ‘odd’ are given in §5.

This result seems to cover only particular K-types, but it includes ex-

plicit formulas for all minimal K-types τ∗ of π.

As far as we know, the previous results related to our investigations are

only due to Niwa and Hori. Niwa ([15]) obtained the integral representation

of the Siegel-Whittaker function with trivial K-type, i.e, π is even and

τ∗ = τ(0,0), and by using this result, Hori ([10]) computed the gamma factor

of L-function of Siegel wave forms of degree two.

Let us outline the contents of this paper. From §1 to §6, we recall the

basic facts of representation theory and review the system of differential

equations following [12]. We also recall the basic properties of Meijer’s G-

functions. From §7 to §11, we treat the even principal series. We calculate

characteristic indices at the singularity of the system (§8), and find the

explicit formulas for the holomorphic solutions along the singular divisor

and deduce the multiplicity free theorem (§9, §10). In §11 we see relations

between the results of [15], [10] and ours. We give an integral representation

of a Meijer’s G-function and a simpler proof for the computation of the

gamma factor of L-function. From §12 to §15, we treat the odd principal

series in a way similar to the even case.

We want to comment on some other related works. Hirano ([8], [9])

investigated the case where R is the Jacobi subgroup of the Jacobi parabolic

subgroup of Sp(2,R) and π are PJ -principal series and the large discrete

series, and obtained explicit formulas in terms of Meijer’s G-function G3,0
2,3.
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These results are related to Fourier-Jacobi expansions of non-holmorphic

automorphic forms. In the case G = SU(2, 2), which has the same root

system of type C2, Hayata ([6], [7]) studied the Whittaker functions and

Gon ([5]) studied the generalized Whittaker functions with respect to Siegel

parabolic subgroup (i.e., Siegel-Whittaker functions).

The author would like to express his profound gratitude to Professor

Takayuki Oda for his many pieces of valuable advice, Miki Hirano for helpful

discussions, and Professor Werner Hoffmann for many comments on the first

draft of this paper.

§1. Definition of Siegel-Whittaker Functions

We first define the space of algebraic Siegel-Whittaker functionals for an

irreducible admissible representation (π,Hπ) of the real symplectic group

of degree two. This is the space of intertwining operators from π to an

induced representation, which is called the reduced generalized Gelfand-

Graev representation by Yamashita ([20]).

(1.1) Definition of the space of algebraic Siegel-Whittaker func-

tionals

Let G be the real symplectic group Sp(2,R),

G = Sp(2,R) =

{
g ∈ SL(4,R)

∣∣∣∣ tgJ2g = J2 =

(
0 12

−12 0

)}
.

Here we denote by 12 the unit matrix of degree two. The Siegel parabolic

subgroup Ps of G is a maximal parabolic subgroup corresponding to the

short root with abelian unipotent radical Ns. A Levi decomposition is

given by Ps = Ls � Ns, where Ls =
{(

A 0
0 tA−1

)
| A ∈ GL(2,R)

}
and

Ns =
{
n(T ) =

(
12 T
0 12

)
| tT = T ∈M2(R)

}
. Fix a unitary character η of Ns

defined by

η(n(T )) = exp
(
2π
√
−1 tr(HηT )

)
with Hη =

(
h1 h3/2
h3/2 h2

)
∈ M2(R). In this paper we assume that Hη is

nondegenerate, that is, h1h2 − h2
3/4 �= 0.

Consider the action of Ls on Ns by conjugation, and also the induced ac-

tion of Ls on the character group N̂s. Let SO(η) be the identity component
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of the stabilizer subgroup of the character η. Then

SO(η) =

{(
A 0

0 tA−1

) ∣∣∣∣A ∈ GL(2,R), tAHηA = Hη

}◦

and it is isomorphic to SO(2) for definite Hη and to SOo(1, 1) for indefinite

Hη. In this paper we only treat the case of definite Hη. Take a unitary

character χ of SO(η) ∼= SO(2) and define the subgroup R of Ps by R =

SO(η) � Ns. Then we can construct a well-defined character χ ·η of R by

(χ ·η)(r) = χ(l)η(n) for r = (l, n) ∈ SO(η) � Ns. We consider the C∞-

induced representation from R to G,

C∞IndGR(χ·η) = {f : G→ C, C∞ | f(rg) = (χ·η)(r)f(g),

∀r ∈ R, ∀g ∈ G}

with the action of G via right translation. This is called the reduced gener-

alized Gelfand-Graev representation in [20].

For an irreducible admissible representation (π,Hπ) of G, take the sub-

space Hπ,K of K-finite vectors in Hπ where K is a maximal compact sub-

group of G. Then the Lie algebra g of G acts on Hπ,K .

Definition 1.1. The space Wχ·η(π) := Hom(g,K)(Hπ,K , C
∞IndGR(χ ·

η)) of intertwining operators of (g,K)-modules is called the space of alge-

braic Siegel-Whittaker functionals for the representation (π,Hπ) of G.

(1.2) Siegel-Whittaker functions with a fixed K-type

For Φ ∈Wχ·η(π) and v ∈ Hπ,K we want to study the C-valued functions

Φ(v) ∈ C∞IndGR(χ ·η) on G. More precisely, we consider those Φ(v) with

v belonging to a specific K-type in π. Let (τ∗, Vτ∗) be a multiplicity one

K-type of (π,Hπ), where τ∗ is the contragradient representation of τ and

ι : Vτ∗ → Hπ a K-equivariant map. By Φ(ι(v∗))(g) = 〈v∗, φπ,τ (g)〉, we can

define the function φπ,τ contained in the space

C∞
χ·η,τ (R\G/K) = {f : G→ Vτ , C

∞ | f(rgk) = (χ·η)(r)τ(k)−1f(g),

∀(r, g, k) ∈ R×G×K}

Here 〈 , 〉 is the canonical pairing on Vτ × Vτ∗ .
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Definition 1.2. We call the above function φπ,τ the Siegel-Whittaker

function with K-type (τ∗, Vτ∗) for (π,Hπ) and denote by Wχ·η,τ∗(π) the

space of Siegel-Whittaker functions with K-type τ∗ for π.

Considering a decomposition G = RAK with A = {diag(a1, a2,

a−1
1 , a−1

2 ) | a1, a2 > 0}, we see that φπ,τ is determined by its restriction

to A. We call this restriction φπ,τ |A the A-radial part of φπ,τ . Our aim is

to give an explicit formula for this function.

Remark 1.3. We give some remarks on the unitary character χ of

SO(η) ∼= SO(2). Let dχ : so(η) →
√
−1R be its differential and φ :

so(η) ∼= so(2) be an isomorphism of Lie algebras given by X �−→ HXH−1

with H = diag(
√
h1,
√
h2). Let χ0 be the character of SO(2) defined by

χ0(rθ) = e
√
−1m0θ, where rθ is the rotation with angle θ and m0 ∈ Z, and

dχ0 differential of χ0. Then we have dχ0(Y ) =
√
−1m0 with Y =

(
0 1
−1 0

)
and define χ to satisfy dχ = dχ0 ◦ φ.

Our notation is related to that of [12] as follows. We may assume

h1, h2 > 0 and h3 = 0. Since a generator of so(η) is taken as Yη = H−1
η Y in

[12], we have χ(Yη)
√
h1h2 =

√
−1m0.

§2. Lie Groups and Algebras

(2.1) Maximal compact subgroup

A maximal compact subgroup K of G = Sp(2,R) is given by

K =

{(
A B

−B A

)
∈ G

∣∣∣∣A, B ∈M2(R)

}

and is isomorphic to the unitary group U(2) via the homomorphism

K �
(

A B

−B A

)
�−→ A+

√
−1B ∈ U(2).

(2.2) Lie algebras

The Lie algebra g of G is given by g = {X ∈M4(R) | JX + tXJ = 0}.
Let θ be the Cartan involution of g defined by θ(X) = −tX for X ∈ g. Then
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the subspaces

k = {X ∈ g | θ(X) = X}

=

{(
A B

−B A

) ∣∣∣∣A,B ∈M2(R), tA = −A, tB = B

}
,

p = {X ∈ g | θ(X) = −X}

=

{(
A B

B −A

) ∣∣∣∣A,B ∈M2(R), tA = A, tB = B

}

give a Cartan decomposition g = k ⊕ p. Notice that k is the Lie algebra of

K and is isomorphic to the unitary Lie algebra u(2) via the linear map

k �
(

A B

−B A

)
�−→ A+

√
−1B ∈ u(2).

(2.3) Root system of (gC, hC)

Let us consider the complexification gC = g ⊗R C of g and u(2)C =

u(2)⊗R C. Take a basis of u(2)C by

Z =

(
1 0

0 1

)
, H ′ =

(
1 0

0 −1

)
,

Y =

(
0 1

−1 0

)
, Y ′ =

√
−1

(
0 1

1 0

)
.

Note that {H ′, X = (Y −
√
−1Ȳ )/2, X̄ = (−Y −

√
−1Ȳ )/2} is an sl(2)-

triple, that is, [H ′, X] = 2X, [H ′, X̄] = −2X̄, [X, X̄] = H ′. Via the iso-

morphism kC � u(2)C, the preimage of the above basis of u(2)C is given

by

Z = −
√
−1




1

1

−1

−1


 , H ′ = −

√
−1




1

−1

−1

1


 ,

Y =




1

−1

1

−1


 , Y ′ =




1

1

−1

−1


 .
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Set T1 = 1
2

√
−1(Z + H ′), T2 = 1

2

√
−1(Z − H ′) and fix a compact Cartan

subalgebra h of g by h = RT1 ⊕RT2. For linear form β : hC → C we write

β(Ti) = −
√
−1βi ∈ C and put gβ = {X ∈ gC | [H, X] = β(H)X, ∀X ∈

hC}. Then the set of roots ∆ of (gC, hC) is given by ∆ = {β = (β1, β2) |
gβ �= 0, β �= (0, 0)} = {±(2, 0),±(0, 2),±(1, 1),±(1,−1)}. Fix the positive

system ∆+ = {(2, 0), (0, 2), (1, 1), (1,−1)} and choose a root vector Xβ in

gβ as follows:

X(2,0) =




1
√
−1

0 0√
−1 −1

0 0


 ,

X(1,1) =




1
√
−1

1
√
−1√

−1 −1√
−1 −1


 ,

X(0,2) =




0 0

1
√
−1

0 0√
−1 −1


 ,

X(1,−1) =




1 −
√
−1

−1 −
√
−1√

−1 1√
−1 −1


 ,

and X−β = X̄β for β ∈ ∆+. Then ∆+
c = {(1,−1)} and ∆+

n = {(2, 0), (0, 2),

(1, 1)} are the sets of compact and non-compact positive roots, respectively.

We have a decomposition pC = p+ ⊕ p− with p± =
∑

β∈∆±
n

gβ. If we put

‖β‖ =
√
β2

1 + β2
2 then the set{

c‖β‖(Xβ +X−β), c
√
−1‖β‖(Xβ −X−β) (β ∈ ∆+

n )
}

forms an orthonormal basis of p with respect to the Killing form for some

constant c.

(2.4) Root system of (g, a)

Put H1 = diag(1, 0,−1, 0), H2 = diag(0, 1, 0,−1) and a = RH1 ⊕RH2.

Then a is a maximal abelian subalgebra of p. Define linear forms ei on
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a by ei(a1H1 + a2H2) = ai (i = 1, 2) and put gα = {X ∈ g | [H,X] =

α(H)X, ∀H ∈ a}. Then the restricted root system Σ = Σ(g, a) is given

by Σ = {±2e1,±2e2,±e1 ± e2}, and we fix a positive system Σ+ by Σ+ =

{2e1, 2e2, e1 ± e2}. We choose a root vector Eα ∈ gα as

E2e1 = E1,3, E2e2 = E2,4, Ee1+e2 = E1,4 + E2,3, Ee1−e2 = E1,2 − E4,3,

and E−α = −tEα for α ∈ Σ+. Here Ei,j is a matrix with 1 in the (i, j)-

entry and 0 elsewhere. If we put n =
∑

α∈Σ+ gα, we have an Iwasawa

decomposition g = k⊕ a⊕ n.

§3. Representations of the Maximal Compact Subgroup

In this section we recall some basic facts about the representations of the

maximal compact subgroup K of G. Since K ∼= U(2), its complexification

KC is isomorphic to GL(2,C). The set {λ = (λ1, λ2) ∈ Z ⊕ Z | λ1 ≥ λ2}
parametrizes the set of irreducible representations of K. For each dominant

weight λ, put dλ = λ1−λ2. Then the dimension of the representation space

Vλ associated to λ is dλ + 1. We can choose a basis {vλj | 0 ≤ j ≤ dλ} for Vλ
so that the associated representation τλ is given as

{
τλ(Z)vλj = (λ1 + λ2)v

λ
j , τλ(H

′)vλj = (2j − dλ)v
λ
j ,

τλ(X)vλj = (j + 1)vλj+1, τλ(X̄)vλj = (dλ + 1− j)vλj−1.

Then we have isomorphisms p+
∼= V(2,0) and p− ∼= V(0,−2), where K acts on

p± via the adjoint representation. The correspondences of the basis are

(X(0,2), X(1,1), X(2,0)) �−→ (v
(2,0)
0 , v

(2,0)
1 , v

(2,0)
2 ),

(X(−2,0), X(−1,−1), X(0,−2)) �−→ (v
(0,−2)
0 ,−v(0,−2)

1 , v
(0,−2)
2 ).

Let us consider the tensor product Vλ⊗ p+. We have the decomposition

Vλ ⊗ p+
∼=
∑

β∈∆+
n
Vλ+β. Let P up, P even and P down be the projectors from

Vλ ⊗ p+ into the irreducible factors V(λ1+2,λ2), V(λ1+1,λ2+1) and V(λ1,λ2+2),

respectively. Then
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Lemma 3.1.

(1) P up(vλj ⊗X(2,0)) = 1
2(j + 1)(j + 2)v

λ+(2,0)
j+2 ,

P up(vλj ⊗X(1,1)) = (j + 1)(dλ + 1− j)v
λ+(2,0)
j+1 ,

P up(vλj ⊗X(0,2)) = 1
2(dλ + 1− j)(dλ + 2− j)v

λ+(2,0)
j ,

for 0 ≤ j ≤ dλ.

(2) P even(vλj ⊗X(2,0)) = (j + 1)v
λ+(1,1)
j+1 (0 ≤ j ≤ dλ − 1),

P even(vλj ⊗X(1,1)) = (dλ − 2j)v
λ+(1,1)
j (0 ≤ j ≤ dλ),

P even(vλj ⊗X(0,2)) = −(dλ + 1− j)v
λ+(1,1)
j−1 (1 ≤ j ≤ dλ),

and the others are 0.

(3) P down(vλj ⊗X(2,0)) = v
λ+(0,2)
j (0 ≤ j ≤ dλ − 2),

P down(vλj ⊗X(1,1)) = −2v
λ+(0,2)
j−1 (1 ≤ j ≤ dλ − 1),

P down(vλj ⊗X(0,2)) = v
λ+(0,2)
j−2 (2 ≤ j ≤ dλ),

and the others are 0.

§4. Gradient Operators, Shift Operators and Casimir Operator

In this section we define the gradient operators, the shift operators and

the Casimir operator which characterize the Siegel-Whittaker functions, and

give the radial part of the gradient operators and the Casimir operator. We

denote by C∞
τ (G/K) the space of smooth functions f : G → Vτ satisfying

f(gk) = τ(k)−1f(g) for (k, g) ∈ K ×G.

(4.1) Gradient operators and shift operators

Definition 4.1. Let (τ, Vτ ) be a finite dimensional irreducible repre-

sentation of K, {Xi (i ∈ I)} be an orthonormal basis of p with respect

to the Killing form of g and AdpC be the adjoint representation of K on

pC. We define the gradient operator ∇ : C∞
τ (G/K) → C∞

τ⊗AdpC
(G/K) as

∇φ =
∑

i∈I RXiφ(·)⊗Xi for φ ∈ C∞
τ (G/K). Here RX is the right differen-

tial, RXφ(g) = d
dtφ(g exp tX)

∣∣
t=0

.
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We remark that the gradient operator is independent of the choice of

the orthonormal basis.

Definition 4.2. Under the same setting as above, let τ ′ be an irre-

ducible component of τ ⊗AdpC and Pτ ′ be the projection to τ ′. We call the

composition of operators Pτ ′ ◦ ∇ a shift operator.

The shift operators move the K-type parameter of the Siegel-Whittaker

functions. If we apply the (up and down) shift operators a number of times

to Siegel-Whittaker function with multiplicity one K-type such that the

result lies in the original K-type, then the composed operator acts on this

function as multiplication by a scalar, whose value is calculated in [13].

(4.2) Radial parts of the gradient operators

We first define the radial part of an operator. Let C∞(A, Vτ ) = {f : A→
Vτ , C

∞} and resAτ : C∞
χ·η,τ (R\G/K) → C∞(A, Vτ ) be the restriction map.

For K-modules (τ1, Vτ1), (τ2, Vτ2) and a linear map D : C∞
χ·η,τ1(R\G/K) →

C∞
χ·η,τ2(R\G/K), we have a unique linear map R(D) : C∞(A, Vτ ) →

C∞(A, Vτ ) satisfying R(D) ◦ resAτ1 = resAτ2 ◦ D. We call this linear map

R(D) the A-radial part of D.

Let us take an orthonormal basis of p as
{
c‖β‖(Xβ + X−β),

c
√
−1‖β‖(Xβ − X−β) (β ∈ ∆+

n )
}

for some nonnegative constant c (§2).

By using this basis, the gradient operator ∇ is described as

∇F = 2c2
∑

β∈Σ+
n
‖β‖2RX−β

F ⊗Xβ + 2c2
∑

β∈Σ+
n
‖β‖2RXβ

F ⊗X−β,

for F ∈ C∞
τ (G/K). Corresponding to the decomposition pC =

p+ ⊕ p−, we can decompose the gradient operator as ∇ = ∇+ ⊕ ∇−.
Here ∇± : C∞

τ (G/K) → C∞
τ⊗Adp±

(G/K) are defined by ∇+F =
1
4

∑
β∈Σ+

n
‖β‖2RX−β

F ⊗ Xβ, ∇−F = 1
4

∑
β∈Σ+

n
‖β‖2RXβ

F ⊗ X−β. By us-

ing the Iwasawa decomposition, we obtain

Proposition 4.3 ([12, Proposition 5.3]). Assume that Hη is nonde-

generate and h3 = 0. Then the A-radial parts R(∇±
χ·η,τλ) : C∞(A, Vτλ) →
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C∞(A, Vτλ ⊗ p±) of the gradient operators are given as

(1) R(∇+
χ·η,τλ)f(a)

=
[
∂1 + 4πh1a

2
1 + (τλ ⊗Adp+)(H ′

1) + 2
h2a2

2
L − 2

]
(f(a)⊗X(2,0))

+
[
I − h2a2

2
L (τλ ⊗Adp+)(X) +

h1a2
1

L (τλ ⊗Adp+)(X̄)
]
(f(a)⊗X(1,1))

+
[
∂2 + 4πh2a

2
2 + (τλ ⊗Adp+)(H ′

2)− 2
h1a2

1
L − 2

]
(f(a)⊗X(0,2)),

(2) R(∇−
χ·η,τλ)f(a)

=
[
∂1 − 4πh1a

2
1 + (τλ ⊗Adp−)(H ′

1) + 2
h2a2

2
L − 2

]
(f(a)⊗X(−2,0))

+
[
I − h1a2

1
L (τλ ⊗Adp−)(X) +

h2a2
2

L (τλ ⊗Adp−)(X̄)
]
(f(a)⊗X(−1,−1))

+
[
∂2 − 4πh2a

2
2 + (τλ ⊗Adp−)(H ′

2)− 2
h1a2

1
L − 2

]
(f(a)⊗X(0,−2)).

Here we use the symbols ∂i = ai
∂
∂ai

(i = 1, 2),L = h1a
2
1 − h2a

2
2 and I =

−χ(Yη)
detHηa1a2

L .

(4.3) Casimir operator

The Casimir operator L in the center Z(gC) of the universal enveloping

algebra of gC is given as

L = H2
1 +H2

2 − 4H1 − 2H2

+ 2Ee1−e2 · E−e1+e2 + 4E2e1 · E−2e1

+ 2Ee1+e2 · E−e1−e2 + 4E2e2 · E−2e2 ,

up to scalar ([13, §7]).

Proposition 4.4 ([12, Proposition 5.6]). Assume that Hη is nonde-

generate and h3 = 0. Then the A-radial part R(Lχ·η,τλ) of the Casimir

operator L is given as

R(Lχ·η,τλ) = ∂2
1 + ∂2

2 + 2(
h2a2

2
L − 1)∂1 − 2(

h1a2
1

L + 1)∂2 − 16π2(h2
1a

4
1 + h2

2a
4
2)

+ 2S2 − 8πh1a
2
1τλ(H

′
1)− 8πh2a

2
2τλ(H

′
2)

+ 2S
h1a2

1+h2a2
2

L τλ(W ) + 2
h1a2

1h2a2
2

L2 {τλ(W )}2

with W = X − X̄ ∈ kC, S = χ(Yη)
h1a1h2a2

L .
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§5. Principal Series Representations and a System of Differential

Equations

In this section we recall the principal series representations of G and

review the system of differential equations of Siegel-Whittaker functions

obtained by Miyazaki.

(5.1) Principal series representation and its K-types

Let P0 be the standard minimal parabolic subgroup of G. Its Langlands

decomposition is P0 = M0A0N0, where M0 = {diag(ε1, ε2, ε1, ε2) | εi ∈
{±1} (i = 1, 2)}, A0 = A = {diag(a1, a2, a

−1
1 , a−1

2 ) | ai > 0 (i = 1, 2)} and

N0 =







1 n0

0 1

1 0

−n0 1


 ·




1 0 n1 n2

0 1 n2 n3

1 0

0 1



∣∣∣∣∣n0, n1, n2, n3 ∈ R


 .

Take a character exp ν of A0 given by exp ν(a) = exp(ν1(log a1)+ν2(log a2))

for a ∈ A0, with ν = (ν1, ν2) ∈ a∗C and a character σ of M0, σ : M0 → {±1}.

Definition 5.1. We call the induced representation πσ,ν := IndGP0
(σ⊗

exp(ν + ρ0)⊗ 1N0) the principal series representation of G, where ρ0 is the

half-sum of the restricted positive roots fixed in §2, that is, ρ0 = 1
2{(2, 0) +

(0, 2) + (1, 1) + (1,−1)} = (2, 1).

Now we see the K-type decomposition of the principal series, which de-

pends only on σ. Put γ2e1 = diag(−1, 1,−1, 1) and γ2e2 = diag(1,−1, 1,−1).

By the Frobenius reciprocity, we have

Proposition 5.2 ([13, Proposition 3.2]). The multiplicity of τ(λ1,λ2) ∈
K̂ in the restriction of πσ,ν to K is the cardinality of the set

{m ∈ Z | λ2 ≤ m ≤ λ1, (−1)m = σ(γ2e1), (−1)λ1+λ2−m = σ(γ2e2)}.

In particular, the following τ(λ1,λ2) occurs in πσ,ν |K with multiplicity one.

(1) (i) τ(λ,λ) with λ ∈ 2Z for σ(γ2e1) = σ(γ2e2) = 1,

(ii) τ(λ,λ) with λ ∈ 2Z + 1 for σ(γ2e1) = σ(γ2e2) = −1,
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(2) τ(λ+1,λ) with λ ∈ Z for σ(γ2e1) = −σ(γ2e2).

We say that πσ,ν is even if σ(γ2e1) = σ(γ2e2) and odd if σ(γ2e1) =

−σ(γ2e2).

Lemma 5.3. If Wχ·η,τ∗(πσ,ν) �= {0} then the parameter m0 of the char-

acter χ of SO(η) is even if πσ,ν is even and odd if πσ,ν is odd.

Proof. Let φπσ,ν ,τλ ∈ C∞
χ·η,τλ(R\G/K) be a Siegel-Whittaker function

for πσ,ν with K-type τ∗λ . Since the centralizer ZK(A) of A in K is M0,

SO(η) ∩ ZK(A) = {±14}, where 14 is the unit matrix of size four. If we

denote m = −14 then

φπσ,ν ,τλ(a) = φπσ,ν ,τλ(mam−1) = (χ·η)(m)τλ(m)φπσ,ν ,τλ(a).

By using τ(λ,λ)(m) = det(−12)
λ, τ(λ+1,λ)(m) = det(−12)

λ ⊗ Sym1(−12) =

−12 and (χ · η)(m) = χ(m) = exp(π
√
−1m0), we have the lemma. �

(5.2) System of differential equations (even case)

Proposition 5.4 (Miyazaki). Assume that h1, h2 > 0 and h3 = 0 for

Hη. Let φ(a1, a2) = b0(a1, a2)v0 be a Siegel-Whittaker function with K-

type τ(λ,λ) for the even principal series representation. Then the A-radial

coefficient b0(a1, a2) satisfies

(1)
{
∂1∂2 − h2a2

2
L ∂1 +

h1a2
1

L ∂2 − 4πh2a
2
2∂1 − 4πh1a

2
1∂2 + 16π2h1a

2
1h2a

2
2 − S2

+ (λ− 3)(∂1 + ∂2)− 4π(λ− 3)(h1a
2
1 + h2a

2
2) + (λ− 2)(λ− 3)

}
{
∂1∂2 − h2a2

2
L ∂1 +

h1a2
1

L ∂2 + 4πh2a
2
2∂1 + 4πh1a

2
1∂2 + 16π2h1a

2
1h2a

2
2 − S2

− (λ+ 1)(∂1 + ∂2)− 4π(λ+ 1)(h1a
2
1 + h2a

2
2) + λ(λ+ 1)

}
b0(a1, a2)

= {ν2
1 − (λ− 1)2}{ν2

2 − (λ− 1)2} b0(a1, a2),

(2)
{
∂2

1 + ∂2
2 − 2(∂1 + ∂2) + 2

h2a2
2

L ∂1 − 2
h1a2

1
L ∂2 − 16π2(h2

1a
4
1 + h2

2a
4
2)

+ 8πλ(h1a
2
1 + h2a

2
2) + 2S2

}
b0(a1, a2) = (ν2

1 + ν2
2 − 5) b0(a1, a2).
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Proof. (1) is obtained from the action of the composition of four

shift operators, P down ◦R(∇−
χ·η, τ−λ+2,−λ

)◦P up ◦R(∇−
χ·η, τ−λ+2,−λ+2

)◦P down ◦
R(∇+

χ·η, τ−λ+2,−λ
) ◦ P up ◦ R(∇+

χ·η, τ−λ,−λ
), which acts by the scalar multipli-

cation with value 4{ν2
1 − (−λ+ 1)2}{ν2

2 − (−λ+ 1)2}, while (2) is obtained

from the action of the Casimir operator. �

(5.3) System of differential equations (odd case)

Proposition 5.5 (Miyazaki). Assume that h1, h2 > 0 and h3 = 0 for

Hη. Let φ(a1, a2) = b0(a1, a2)v0+b1(a1, a2)v1 be a Siegel-Whittaker function

with K-type τ(λ,λ−1) for the odd principal series representation. Then the

A-radial coefficients b0(a1, a2) and b1(a1, a2) satisfy

(1)

(
P1 + S2 S(∂1 + ∂2 − 4πL − 2

h1a2
1

L − 2)

S(∂1 + ∂2 + 4πL+ 2
h2a2

2
L − 2) P2 + S2

)

×
(
b0(a1, a2)

b1(a1, a2)

)

= {ν2 − (λ− 1)2}
(

b0(a1, a2)

b1(a1, a2)

)
,

where

P1 = ∂2
1 + 2(

h2a2
2

L − 1)∂1 + 8πλh1a
2
1 − 16π2h2

1a
4
1

− (
h1a2

1
L + 3)

h2a2
2

L − λ(λ− 2),

P2 = ∂2
2 + 2(−h1a2

1
L − 1)∂2 + 8πλh2a

2
2 − 16π2h2

2a
4
2

− (
h2a2

2
L − 3)

h1a2
1

L − λ(λ− 2),

ν =

{
ν1 if λ is even,

ν2 if λ is odd,

(2)

(
P + 8πλh1a

2
1 + 8π(λ− 1)h2a

2
2 −2

h1a2
1+h2a2

2
L S

2
h1a2

1+h2a2
2

L S P + 8π(λ− 1)h1a
2
1 + 8πλh2a

2
2

)

×
(
b0(a1, a2)

b1(a1, a2)

)

= (ν2
1 + ν2

2 − 5)

(
b0(a1, a2)

b1(a1, a2)

)
,



318 Taku Ishii

where

P = ∂2
1 + ∂2

2 + 2(
h2a2

2
L − 1)∂1 − 2(

h1a2
1

L + 1)∂2

− 16π2(h2
1a

4
1 + h2

2a
4
2)− 2

h1a2
1

L
h2a2

2
L + 2S2.

Proof. (1) is obtained from the action of the composition of two shift

operators, P even◦R(∇−
χ·η, τ−λ+2,−λ+1

)◦P even◦R(∇+
χ·η, τ−λ+1,−λ

), and (2) from

the Casimir operator. �

§6. Meijer’s G-Functions

In this section we recall some basic facts on Meijer’s G-functions. The

main references are [11] and [3].

(6.1) Definition and basic properties

Definition 6.1. Suppose that m,n, p and q are integers with 1 ≤
q, 0 ≤ n ≤ p ≤ q and 0 ≤ m ≤ q, suppose further that the number x

satisfies 0 < |x| < 1 if q = p and x �= 0 if p < q, moreover that the numbers

a1, . . . , an and b1, . . . , bm fulfill the condition ai − bj �= 1, 2, 3, . . . (1 ≤ i ≤
n, 1 ≤ j ≤ m). Then Meijer’s G-function with parameters ai, bj is defined

as

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
(1)

=
1

2π
√
−1

∫
C

∏m
j=1 Γ(bj − s)

∏n
i=1 Γ(1− ai + s)∏q

j=m+1 Γ(1− bj + s)
∏p

i=n+1 Γ(ai − s)
xsds.

The contour C is a loop starting and ending at +∞ and encircling all poles

of Γ(bj − s) (1 ≤ j ≤ m) once in the negative direction, but none of the

poles of Γ(1− ai + s) (1 ≤ i ≤ n). This integral converges if p < q or p = q

and |x| < 1.

Assume that bj − bh /∈ Z (1 ≤ j �= h ≤ m). Then the integral (1) can be

evaluated as a sum of residues. Thus Gm,n
p,q is expressed by the generalized

hypergeometric function pFq−1:
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Lemma 6.2. Under the above conditions

Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)

=
m∑
h=1

∏m
j=1,j �=h Γ(bj − bh)

∏n
i=1 Γ(1 + bh − ai)∏q

j=m+1 Γ(1 + bh − bj)
∏p

i=n+1 Γ(ai − bh)
xbh

× pFq−1

(
1 + bh − a1, . . . , 1 + bh − ap
1 + bh − b1, ∗. . . , 1 + bh − bq

∣∣∣∣ (−1)p−m−nx

)
,

where

pFq−1

(
α1, . . . , αp
β1, . . . , βq−1

∣∣∣∣x
)

=
∞∑
n=0

( p∏
i=1

Γ(αi + n)

Γ(αi)

q−1∏
j=1

Γ(βj)

Γ(βj + n)

)
xn

n!

and the asterisk means that the number 1 + bh − bh is to be omitted in the

sequence 1 + bh − b1, . . . , 1 + bh − bq.

The following formulas are deduced from the definition.

xσGm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
= Gm,n

p,q

(
x

∣∣∣∣ a1 + σ, . . . , ap + σ

b1 + σ, . . . , bq + σ

)
,(2)

x
d

dx
Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
= Gm,n

p,q

(
x

∣∣∣∣ a1 − 1, . . . , ap
b1, . . . , bq

)
(3)

+ (a1 − 1)Gm,n
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
, n ≥ 1.

(6.2) Asymptotic expansions

We review some asymptotic expansions of Gm,n
p,q proved by Barnes ([1],

[11]).

Lemma 6.3. Suppose that t, p, q are integers with 1 ≤ t ≤ p < q and

the parameters satisfy at − bj �= 1, 2, 3, . . . (1 ≤ j ≤ q). Then

Gq,1
p,q

(
x

∣∣∣∣ at, a1, ∗. . . , ap
b1, . . . , bq

)
∼

∏q
j=1 Γ(1 + bj − at)∏p

j=1, j �=t Γ(1 + aj − at)
x−1+at

× pFq−1

(
1 + b1 − at, . . . , 1 + bq − ap
1 + a1 − at, ∗. . . , 1 + ap − at

∣∣∣∣−1

x

)
,
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as |x| → ∞ in | arg x| < q−p+2
2 π, where the asterisk means that the number

1 + at − at is to be omitted in the sequence 1 + a1 − at, . . . , 1 + ap − at.

Lemma 6.4. Let ε be 1/2 if q = p+ 1 and 1 if q ≥ p+ 2. Then

Gq,0
p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)

∼ exp
(
(p− q)x

1
q−p

)
xϑ

{
(2π)

q−p−1
2

√
q − p

+
M1

x
1

q−p

+
M2

x
2

q−p

+ · · ·
}

as |x| → ∞ in | arg x| < (q − p + ε)π, where ϑ = 1
q−p(

p−q+1
2 +

∑q
h=1 bh −∑p

h=1 ah) and the coefficients M1,M2, . . . do not depend on x but on the

parameters ah, bh.

Lemma 6.5. Suppose that 0 ≤ p ≤ q−1, αj �= 0,−1,−2, . . . (1 ≤ j ≤ p)

and αj − αt /∈ Z (1 ≤ j �= t ≤ p). Then

pFq

(
α1, . . . , αp
β1, . . . , βq

∣∣∣∣x
)
∼

∏q
j=1 Γ(βj)∏p
j=1 Γ(αj)

exp
(
(q − p+ 1)x

1
q−p+1

)
xγ

×
{

(2π)
p−q
2

√
q − p+ 1

+
N1

x
1

q−p+1

+
N2

x
2

q−p+1

+ · · ·
}

as |x| → ∞ in | arg x| < π, where γ = 1
q−p+1( q−p

2 +
∑p

j=1 αh +
∑q

j=1 βh)

and the coefficients N1, N2, . . . do not depend on x but on the parameters

aj , bj.

§7. Reduction of the System of Differential Equations

In this section we reduce the system of differential equations of even

principal series to simpler ones. From now on we use the notation Di =
∂
∂yi

(i = 1, 2).

(7.1) Reduction of the system of differential equations

Proposition 7.1. Under the same assumptions as in Proposition 5.4,

if we write

b0(a1, a2) = (
√
h1a1)

λ+1(
√
h2a2)

λ+1 exp{−2π(h1a
2
1 + h2a

2
2)}c(a1, a2),
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and introduce new variables y = (y1, y2) = (2πh1a
2
1, 2πh2a

2
2), then we have

y1y2

[
D1D2 + (λ−1

y2
− 2− 1

2
1

y1−y2
)D1 + (λ−1

y1
− 2− 1

2
1

y1−y2
)D2(1)

− 2(λ− 1)( 1
y1

+ 1
y2

) + 4 +
m2

0
4

1
(y1−y2)2

+ (λ− 1
2)(λ− 1) 1

y1y2

]
y1y2

[
D1D2 − 1

2
1

y1−y2
D1 + 1

2
1

y1−y2
D2 +

m2
0

4
1

(y1−y2)2

]
c(y)

= 1
16{ν2

1 − (λ− 1)2}{ν2
2 − (λ− 1)2} c(y),

[
y2
1D

2
1 + y2

2D
2
2 + {(λ+ 1)y1 − 2y2

1 + y1y2
y1−y2

}D1(2)

+ {(λ+ 1)y2 − 2y2
2 + y1y2

y1−y2
}D2 − (y1 + y2)

+ 1
2(λ+ 1)(λ− 2)− 1

4(ν2
1 + ν2

2 − 5)− m2
0

2
y1y2

(y1−y2)2

]
c(y) = 0.

Proof. Straightforward computations. �

Now we eliminate the terms (y1 − y2)
−2 = (2πL)−2.

Proposition 7.2. If we put c(y) = L|m0|/2 f(y), the differential equa-

tions in Proposition 7.1 are rewritten as

PAf(y) = [PA1 ◦ PA2 − y1−y2
16y2

1y
2
2
{ν2

1 − (λ− 1)2}{ν2
2 − (λ− 1)2}] f(y) = 0,

PBf(y) = 0,

with

PA1 = D1D2 + λ(y1y2)
−1Ey − |m0|−1

2 (y1 − y2)
−1(D1 −D2)− 2(D1 +D2)

+ (|m0| − 1)(y1 − y2)
−2 − 2λ(y−1

1 + y−1
2 )

+ λ(λ+ 1
2(|m0| − 1))(y1y2)

−1 + 4,

PA2 = (y1 − y2)D1D2 − 1
2(|m0|+ 1)D1 + 1

2(|m0|+ 1)D2,

PB = E2
y + (λ+ |m0|)Ey − 2y1y2D1D2 − 2(y2

1D1 + y2
2D2)

+ (|m0|+ 1)y1y2(y1 − y2)
−1(D1 −D2)− (|m0|+ 1)(y1 + y2) + C.

Here we use the symbols

Ey = y1D1 + y2D2, C = 1
4(|m0|+ 1)2 + 1

2(λ− 1)(λ+ |m0|)− 1
4(ν2

1 + ν2
2).
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Proof. Note that

L− |m0|
2 D1(L− |m0|

2 f) = [D1 + |m0|
2

1
y1−y2

]f,

L− |m0|
2 D1D2(L− |m0|

2 f)

= [D1D2 − |m0|
2

1
y1−y2

(D1 −D2)− |m0|
2 ( |m0|

2 − 1) 1
(y1−y2)2

]f,

L− |m0|
2 D2

1(L− |m0|
2 f) = [D2

1 + |m0| 1
y1−y2

D1 + |m0|
2 ( |m0|

2 − 1) 1
(y1−y2)2

]f. �

(7.2) Singularities of the system of differential equations

Let us define 3 divisors in the affine space C2 by Y0 = {(y1, y2) | y2 = 0},
Y∞ = {(y1, y2) | y1 = 0} and Y1 = {(y1, y2) | y1 − y2 = 0}. These divisors

are regular singularities of our system in the sense of [17]. Since they are

not normal crossing at the point y1 = y2 = 0, it is natural to blow up C2

at the origin. Put Y = {(y1, y2) × [ξ1 : ξ2] ∈ C2 × P 1
C | y1ξ2 − y2ξ1 = 0}.

Here [ξ1 : ξ2] is a system of homogeneous coordinates on P 1
C. We have an

embedding i : Y ↪→ C2×P 1
C and a projection pr1 : C2×P 1

C → C2. The map

π = i ◦ pr1 is a blow up of C2 at (0, 0). If (y1, y2) �= (0, 0), π−1((y1, y2)) =

(y1, y2) × [y1 : y2], and π−1((0, 0)) � P 1
C. We write nonhomogeneous local

coordinates of P 1
C as u = ξ2/ξ1, v = ξ1/ξ2 and set

Q0 := (0, 0)× [1 : 0], Q∞ := (0, 0)× [0 : 1] and Q1 := (0, 0)× [1 : 1].

At these points in Y , we can take local coordinates (y1, u), (v, y2) and (y1, u−
1) respectively.
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§8. Characteristic Indices

We consider the pull back of the equations to Y from now on. To

consider the formal solutions of the differential equations in Proposition

7.2, we calculate the characteristic indices at Q0, Q∞ and Q1.

(8.1) Characteristic indices at Q0

Since local coordinate at Q0 is (y1, u) (u = y2/y1), we can write the

formal solution at Q0 as f(y) =
∑

m,n≥0 cm,ny
σ1+m
1 uσ2+n with c0,0 �= 0.

We give recurrence relations of cm,n to determine the characteristic indices

(σ1, σ2).

Lemma 8.1. If we write M0 = cm,n y
σ1+m
1 uσ2+n, we have

(1) D1(M0) = {(σ1 +m)− (σ2 + n)} cm,n y
σ1+m−1
1 uσ2+n,

(2) D2(M0) = (σ2 + n) cm,n y
σ1+m−1
1 uσ2+n−1,

(3) D1D2(M0) = {(σ1 +m)− (σ2 + n)}(σ2 + n) cm,n y
σ1+m−2
1 uσ2+n−1,

(4) Ey(M0) = (σ1 +m)M0, E2
y(M0) = (σ1 +m)2M0.

Proof. Direct computations. �

We put P 0
A1

= (y1−y2)
2PA1 , P

0
A2

= PA2 , P
0
B = (y1−y2)PB and consider

the equation P 0
Af(y) = 0. If we denote by s1 = σ1 +m and s2 = σ2 + n for

short, then

P 0
A2
f(y) =

∑
m,n≥0

[
s2{s1 − s2 + 1

2(|m0|+ 1)} cm,n

− (s1 − s2 + 1){s2 + 1
2(|m0| − 1)} cm,n−1

]
ys1−1
1 us2−1,

by Lemma 8.1. If we denote by
∑

m,n≥0 dm,n y
s1−1
1 us2−1 the above equation

and use Lemma 8.1 again, then have

P 0
A1
◦ P 0

A2
f(y) = P 0

A1

(∑
m,n≥0 dm,n y

s1−1
1 us2−1

)
=
∑

m,n≥0

[{
s2
(
s1 − s2 − 1

2(|m0|+ 1)
)

+ (λ− 1)
(
s1 + λ+ 1

2(|m0|+ 1)
)}

dm+1,n+2

+
{
−2s2(s1 − s2)− 1

2(|m0|+ 3)s1

− 2 + 2(λ− 1)
(
s1 − λ− 1

2(|m0|+ 1)
)}

dm+1,n+1
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+
{
(s1 − s2 − 2)

(
s2 + 1

2(|m0| − 1)
)

+ (λ− 1)
(
s1 + λ+ 1

2(|m0|+ 1)
)}

dm+1,n

− 2(s2 + λ+ 1) dm,n+2 − 2(s1 − 3s2 − λ− 1) dm,n+1

+ 2(2s1 − 3s2 − λ+ 1) dm,n

− 2(s1 − s2 − λ) dm,n−1 + 4dm−1,n+1 − 8dm−1,n + 4dm−1,n−1

]
ys11 us2 .

Then we get[{(
s1 − s2 − 1

2(|m0|+ 1)
)
(s2 + n+ 2) + (λ− 1)

(
s1 + λ+ 1

2(|m0|+ 1)
)}

× (s2 + 2)
(
s1 − s2 + 1

2(|m0| − 1)
)

− 1
16{ν2

1 − (λ− 1)2}{ν2
2 − (λ− 1)2}

]
cm+1,n+2

+ (‘lower order terms’) = 0.

Here ‘lower order terms’ means terms which contain ci,j with i ≤ m+1 and

j ≤ n+ 1. Since c0,0 �= 0, we have

σ2(σ2 + λ− 1)
(
σ1 − σ2 + 1

2(|m0| − 1)
)

(4)

×
(
σ1 − σ2 + 1

2(|m0| − 1) + λ− 1
)

= 1
16(ν1 − λ+ 1)(ν1 + λ− 1)(ν2 − λ+ 1)(ν2 + λ− 1).

Now we treat the Casimir equation P 0
Bf(y) = 0. In the same way as above

we get

{s1(s2 + λ+ |m0|)− s2(2s1 − 2s2 + |m0|+ 1) + C} cm,n

+ (‘lower order terms’) = 0.

Then

σ2(σ2 + λ− 1)(5)

+
{
σ1 − σ2 + 1

2(|m0| − 1)
}{

σ1 − σ2 + 1
2(|m0| − 1) + λ− 1

}
= 1

4{(ν1 − λ+ 1)(ν1 + λ− 1) + (ν2 − λ+ 1)(ν2 + λ− 1)}.

From (4) and (5) we obtain

Proposition 8.2. The characteristic indices (σ1, σ2) at Q0 are(
1
2(εν1 ± ν2 − |m0| − 2λ+ 1), 1

2(εν1 − λ+ 1)
)
,(

1
2(±ν1 + εν2 − |m0| − 2λ+ 1), 1

2(εν2 − λ+ 1)
)
, ε ∈ {±1}.
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Remark 8.3. The above set is invariant under the action of Weyl

group of Sp(2,R), S2 � (Z/2Z)2. Throughout this paper we assume that

ν1, ν2 and ν1 ± ν2 are not integers. This implies that the principal series

representation πσ,ν is irreducible. Therefore we have an 8-dimensional space

of meromorphic solutions at Q0.

(8.2) Characteristic indices at Q∞
Since local coordinate at Q∞ is (v, y2) (v = y1/y2), we can write the

formal solution at Q∞ as f(y) =
∑

m,n≥0 cm,nv
ρ1+myρ2+n

2 with c0,0 �= 0.

Since our system in Proposition 7.2 is symmetric with respect to y1 and y2,

we get the following from Proposition 8.2.

Proposition 8.4. The characteristic indices (ρ1, ρ2) at Q∞ are

(
1
2(εν1 − λ+ 1), 1

2(εν1 ± ν2 − |m0| − 2λ+ 1)
)
,(

1
2(εν2 − λ+ 1), 1

2(±ν1 + εν2 − |m0| − 2λ+ 1)
)
, ε ∈ {±1}.

(8.3) Characteristic indices at Q1

We take the local coordinate (y1, u − 1) at Q1 and write the formal

solution as f(y) =
∑

m,n≥0 cm,n y
τ1+m
1 (u − 1)τ2+n with c0,0 �= 0. The way

to determine the characteristic indices is the same as in 8.1, but we need a

little more complicated calculation.

Put P 1
A = y2

1y
2
2PA, P

1
B = PB and begin with P 1

Af(y) = 0. In a similar

way to 8.1, if we denote t1 = τ1 + m and t2 = τ2 + n for short, then we

obtain the following recurrence relation.

4(t2 + 1)(t2 + |m0|+ 1)(t2 + 3)(t2 + |m0|+ 3) cm+1,n+3

− [2(t2 + 1)(t2 + |m0|+ 1)(t1 − t2 − 1)(2t2 + |m0|+ 5)

+ {2t1(2t2 + |m0|+ 1)− 12t22 − 2(5|m0|+ 3)t2 − 2(|m0|+ 1)}
× (t2 + 2)(t2 + |m0|+ 2)] cm+1,n+2

+ [{t1(2t2 + |m0|+ 1)− 6t22 − (5|m0|+ 3)t2 − (|m0|+ 1)}
× (t1 − t2)(2t2 + |m0|+ 3)

− 2{2t1(2t2 + λ+ |m0| − 1)− 6t22 − 2(2|m0| − 3)t2 + 3|m0| − 1

+ (λ− 1)(2λ+ |m0|+ 1)}(t2 + 1)(t2 + |m0|+ 1)] cm+1,n+1
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+ [{2t1(2t2 + λ+ |m0| − 1)− 6t22 − 2(2|m0| − 3)t2 + 3|m0| − 1

+ (λ− 1)(2λ+ |m0|+ 1)}(t1 − t2 + 1)(2t2 + |m0|+ 1)

− 2{t1(2t2 + 2λ+ |m0| − 3)− 2t22 − (|m0| − 5)t2 + 2(|m0| − 1)

+ (λ− 1)(2λ+ |m0|+ 1)}t2(t2 + |m0|)] cm+1,n

+ [{t1(2t2 + 2λ+ |m0| − 3)− 2t22 − (|m0| − 5)t2 + 2(|m0| − 1)

+ (λ− 1)(2λ+ |m0|+ 1)}(t1 − t2 + 2)(2t2 + |m0| − 1)

+ 1
4{ν2

1 − (λ− 1)2}{ν2
2 − (λ− 1)2}] cm+1,n−1

+ (‘lower order terms’) = 0.

Here ‘lower order terms’ are terms which contain ci,j with i ≤ m. We denote

by (A-1), . . . ,(A-5) the recurrence relations which are obtained by substi-

tuting m = −1 and n = −3,−2,−1, 0, 1 in the above.

Now we treat the Casimir equation P 1
Bf(y) = 0. We have

2(t2 + 2)(t2 + |m0|+ 2) cm,n+2

+ {(−t1 + t2 + 1)(2t2 + |m0|+ 3) + 2(t2 + 1)(t2 + |m0|+ 1)} cm,n+1

+ {t1(t1 + λ+ |m0|)− (t1 − t2)(2t2 + |m0|+ 1) + C} cm,n

− 2(t1 + t2 + |m0|) cm−1,n − (2t2 + |m0| − 1) cm−1,n−1 = 0.

We also denote by (B-1), . . . ,(B-5) the recurrence relations obtained by

substituting m = 0 and n = −2,−1, 0, 1, 2.

Since (A-1), (A-2), (A-3) and (A-4) are deduced from (B-1), (B-2), (B-3)

and (B-4), they give no new information. First we substitute (B-2), (B-3),

(B-4) and (B-5) into (A-5) and get a new recurrence relation among c0,2, c0,1
and c0,0. Secondly by using (B-1), (B-2) and (B-3), we eliminate c0,2, c0,1
and reach

{τ1(τ1 + λ+ |m0|) + C}
× {τ1(τ1 + 3λ+ |m0| − 2) + (λ− 1)(2λ+ |m0| − 1) + C}

= 1
4{ν2

1 − (λ− 1)2}{ν2
2 − (λ− 1)2}.

Combined with τ2(τ2 + |m0|) = 0 ((B-1)), we get

Proposition 8.5. The characteristic indices (τ1, τ2) at Q1 are(
1
2{±(ν1 ± ν2)− |m0| − 2λ+ 1}, 0

)
,(

1
2{±(ν1 ± ν2)− |m0| − 2λ+ 1}, −|m0|

)
.



Siegel-Whittaker Functions 327

Remark 8.6. Since we have assumed that ν1, ν2 and ν1 ± ν2 are not

integers, there exists a 4-dimensional space of holomorphic solutions along

Y1 corresponding to τ2 = 0 and another 4-dimensional space of solutions

(possibly with logarithmic branch) corresponding to τ2 = −|m0|. Thus we

have dimC Hom(g,K)(Hπσ,ν ,K , C
∞IndGR(χ · η)) ≤ 4.

Remark 8.7. Part of our computation is suggested by a similar one by

Oda for PJ -principal series (private note). But our case is more complicated

because the rank of holonomic system becomes 8 for 4 in the PJ case.

§9. Holomorphic Solutions Along the Singular Divisor Y1

In this section we study holomorphic solutions along Y1. For each non-

negative integer n, if we put ϕn(y1) =
∑

m≥0 cm,ny
τ1+m
1 , then we have

f(y) = f(y1, u− 1) =
∑

n≥0 ϕn(y1)(u− 1)n (u = y2/y1).

The even principal series Siegel-Whittaker function with K-type τ(λ,λ) is of

the form

b0(y1, y2)v0 =
(y1y2

2π

)λ+1
2
(y1 − y2

2π

)|m0|
2
e−(y1+y2)

∑
n≥0

ϕn(y1)(u− 1)n v0.

Here v0 is a basis of τ∗(λ,λ). Our concern in this section is the boundary value

of b0(y1, y2) along y1 − y2 = 0. We first review the definition of boundary

values.

(9.1) Definition of boundary values

Definition 9.1 ([19, Definition 0.1]). Let U be a neighborhood of the

point x = y = 0 in C2 and Ω a simply connected domain whose closure Ω̄

is also simply connected, satisfying the conditions, Ω ⊆ {(x, y) | x �= 0}
and U ∩ {(x, y) | x = 0} ⊆ Ω̄. Let g(x, y) be a holomorphic function on

the domain Ω admitting the expression, xα0g0(x, y) + xα1g1(x, y) + · · · +
xαpgp(x, y) with αi−αj /∈ Z in U∩Ω where the functions gk are holomorphic

at x = y = 0 and gk(0, y) �≡ 0. We call the function gk(0, y) the boundary

value of g(x, y) with respect to the characteristic exponent αk along x = 0.
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Note that this is compatible with the more general definition of boundary

values given in [17, §3]. Since

b0(y1, y2) = (u− 1)
|m0|

2

∑
n≥0

(−1)
|m0|

2

×
( y1

2π

)λ+1+
|m0|

2
e−2y1ϕn(y1) e

−y1(u−1)u
λ+1

2 (u− 1)n,

the boundary value of b0(y1, y2) with respect to the characteristic exponent

|m0|/2 along u− 1 = 0 is

(−1)
|m0|

2

( y1

2π

)λ+1+
|m0|

2
e−2y1ϕ0(y1).

To determine ϕ0(y1), we deduce a differential equation for ϕ0(y1) from

difference-differential equations for ϕn(y1). We construct space of solutions

by using Meijer’s G-functions and show that the dimension of the subspace

of rapidly decreasing solutions is at most one (Multiplicity Free Theorem).

(9.2) Differential equation for ϕ0(y1)

We first find difference-differential equations for ϕn(y1) by similar cal-

culations as in the previous section.

Lemma 9.2. For f(y1, u− 1) =
∑

n≥0 ϕn(y1)(u− 1)n, we have

(1) D1(f) =
∑

n≥0

(
ϕ′
n(y1)− n

y1
ϕn(y1)

)
(u− 1)n − n

y1
ϕn(y1)(u− 1)n−1,

(2) D2(f) =
∑

n≥0
n
y1
ϕn(y1)(u− 1)n−1,

(3) D1D2(f) =
∑

n≥0

(
n
y1
ϕ′
n(y1)− n2

y2
1
ϕ(y1)

)
(u− 1)n−1

− n(n−1)
y2
1

ϕn(y1)(u− 1)n−2,

(4) Ey(f) =
∑

n≥0 y1ϕ
′
n(y1)(u− 1)n,

E2
y(f) =

∑
n≥0(y1ϕ

′
n(y1) + y2

1ϕ
′′
n(y1))(u− 1)n.

Proof. Note that D1u = −u/y1, D2u = u/y1. �
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We begin with P 1
Af = 0. For short we write ϕn(y1) as ϕn. If we denote

P 1
A2
f(y) =

∑
n≥−1 ψn(y1)(u− 1)n then

ψn = −
(
n+ 1

2(|m0|+ 1)
)
(ϕ′

n − ny−1
1 ϕn)(6)

+ (n+ 1)(n+ |m0|+ 1)y−1
1 ϕn+1,

by Lemma 9.2. We use Lemma 9.2 again and obtain

P 1
A1
◦ P 1

A2
f(y) = P 1

A1

(∑
n≥−1 ψn(y1)(u− 1)n

)
(7)

=
∑

n≥−2

[
−(n+ 1)(n+ |m0|+ 1)y2

1ψn+2 +
(
n+ 1

2(|m0|+ 1)
)
y3
1ψ

′
n+1

−
(
3n2 + 1

2(5|m0|+ 3)n+ 1
2(|m0|+ 1)

)
y2
1ψn+1

+
(
−2y4

1 + (2n+ |m0|+ λ− 1)y3
1

)
ψ′
n

+
{
4y4

1 + (2n− 4λ)y3
1 +

(
−3n2 + (−2|m0|+ 3)n+ λ2

+ 1
2(|m0|+ 1)λ+ |m0| − 1

)
y2
1

}
ψn

+
{
−4y4

1 +
(
n+ λ− 1

2(|m0| − 3)
)
y3
1

}
ψ′
n−1

+
{
8y4

1 + (4n− 6λ− 4)y3
1 +

(
−n2 − 1

2(|m0| − 5)n+ λ2

+ 1
2(|m0| − 1)λ+ 1

2(|m0| − 3)
)
y2
1

}
ψn−1

− 2y4
1ψ

′
n−2 +

(
4y4

1 + (2n− 2λ− 4)y3
1

)
ψn−2

]
(u− 1)n

Substituting (6) (and its differential) into (7), we get a recurrence relation

for ϕn. Then

(C-1) 2ϕ1 − y1ϕ
′
0 = 0,

(C-2) 12ϕ3 − 6y1ϕ
′
2 + 12ϕ2 + y2

1ϕ
′′
1 − 2y1ϕ

′
1 + 2ϕ1 = 0,

(C-3) 32(|m0|+ 2)(|m0|+ 4)ϕ4 − 2(|m0|+ 5)(5|m0|+ 11)y1ϕ
′
3

+ 6(9|m0|2 + 52|m0|+ 67)ϕ3 + (|m0|+ 3)(|m0|+ 5)y2
1ϕ

′′
2

+ 8(|m0|+ 2){2y2
1 + (2|m0|+ λ− 6)y1}ϕ′

2

− {32(|m0|+ 2)y2
1 − 32(λ− 1)(|m0|+ 2)y1

+ 8(|m0|+ 2)λ2 + 4(|m0|+ 2)(|m0| − 3)λ

− 6(5|m0|+ 9)(|m0|+ 3)}ϕ2

− (|m0|+ 3){2y3
1 − (|m0|+ λ+ 1)y2

1}ϕ′′
1

+ (|m0|+ 3){8y3
1 − 8(λ− 1)y2

1

+ (2λ2 + (|m0| − 3)λ− 2(|m0|+ 2))y1}ϕ′
1
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− (|m0|+ 3){8y2
1 − 8(λ− 1)y1

+ 2λ2 + (|m0| − 3)λ− 2(|m0|+ 2)}ϕ1

− 1
4{ν2

1 − (λ− 1)2}{ν2
2 − (λ− 1)2}ϕ0 = 0.

Here we use that |m0| is even, in particular |m0| �= 1 (Lemma 5.3).

Next we treat the Casimir equation P 1
Bf(y) = 0. By Lemma 9.2, we

have

2(n+ 2)(n+ |m0|+ 2)ϕn+2 − (2n+ |m0|+ 3)y1ϕ
′
n+1

+ (n+ 1)(4n+ 3|m0|+ 5)ϕn+1 + y2
1ϕ

′′
n + {−2y2

1 + (−2n+ λ)y1}ϕ′
n

+ {−2(n+ |m0|+ 1)y1 + 2n2 + (|m0|+ 1)n+ C}ϕn

− (2n+ |m0| − 1)y1ϕn−1 = 0.

So we have

(D-1) 2ϕ1 − y1ϕ
′
0 = 0,

(D-2) 4(|m0|+ 2)ϕ2 − (|m0|+ 3)y1ϕ
′
1 + (3|m0|+ 5)ϕ1

+ y2
1ϕ

′′
0 − (2y2

1 − λy1)ϕ
′
0 − {2(|m0|+ 1)y1 − C}ϕ0 = 0,

(D-3) 6(|m0|+ 3)ϕ3 − (|m0|+ 5)y1ϕ
′
2 + 6(|m0|+ 3)ϕ2 + y2

1ϕ
′′
1

− {2y2
1 + (2− λ)y1}ϕ′

1 + {−2(|m0|+ 2)y1 + |m0|+ 3 + C}ϕ1

− (|m0|+ 1)y1ϕ0 = 0,

(D-4) 8(|m0|+ 4)ϕ4 − (|m0|+ 7)y1ϕ
′
3 + 3(3|m0|+ 13)ϕ3

+ y2
1ϕ

′′
2 − {2y2

1 + (4− λ)y1}ϕ′
2

+ {−2(|m0|+ 3)y1 + 2(|m0|+ 5) + C}ϕ2 − (|m0|+ 3)y1ϕ1 = 0.

By using (C-1), . . . , (D-4), we eliminate ϕ4, ϕ3, ϕ2 and ϕ1 step by step and

reach a differential equation satisfied by ϕ0.

Proposition 9.3. If we write Φ(y1) = e−2y1ϕ0(y1) and θ = y1
d
dy1

,

then [
−4y2

1(θ + λ)(θ + λ+ 1) + 4λy1(θ + λ)(θ + λ+ 1
2 |m0|)(8)

+
(
θ + λ+ 1

2(m0 − 1 + ν1 + ν2)
)(
θ + λ+ 1

2(m0 − 1 + ν1 − ν2)
)

×
(
θ + λ+ 1

2(m0 − 1− ν1 + ν2)
)

×
(
θ + λ+ 1

2(m0 − 1− ν1 − ν2)
)]

Φ(y1) = 0.
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Since the shift operators (which are second-order partial differential op-

erators in this situation) move the K-type parameter (λ, λ) to (λ±2, λ±2),

we need only solve the above differential equation the case where λ = 0, 1.

We remark that integral representations of the solutions were obtained in

case of λ = 0 in [15].

(9.3) Solution of the differential equation

We construct the space of solutions of (8) when λ = 0,±1. Let us write

the formal solution at the origin as Φ(y1) =
∑

m≥0 cmy
σ+m
1 (c0 �= 0). Since

σ = τ1 = 1
2(ε1ν1 + ε2ν2 − |m0| − 2λ+ 1), εi ∈ {±1} (i = 1, 2), we have

m(m+ ε1ν1)(m+ ε2ν2)(m+ ε1ν1 + ε2ν2) cm(9)

+ λ(2m+ ε1ν1 + ε2ν2 − 1)(2m+ ε1ν1 + ε2ν2 − |m0| − 1) cm−1

− (2m+ ε1ν1 + ε2ν2 − |m0| − 1)

× (2m+ ε1ν1 + ε2ν2 − |m0| − 3) cm−2 = 0.

In case of λ = 0 we can easily deduce the following.

Proposition 9.4. Let y1 > 0. The following four functions are lin-

early independent solutions of (8) for λ = 0.

Φ0
ε1,ε2(y1)

= y
(−|m0|+1+ε1ν1+ε2ν2)/2
1 2F3

(
ε1ν1+ε2ν2−|m0|+1

4 , ε1ν1+ε2ν2−|m0|+3
4

ε1ν1+2
2 , ε2ν2+2

2 , ε1ν1+ε2ν2+2
2

∣∣∣∣∣ y2
1

)
.

These basic solutions are not convenient to investigate the asymptotic

behavior, since they are all rapidly increasing as the absolute value of y1

goes to infinity (See Lemma 6.5). To deduce a multiplicity free theorem,

we must construct another basis containing a rapidly decreasing solution by

taking a suitable linear combination of Φ0
ε1,ε2 .

Proposition 9.5. Under the same assumption as in Proposition 9.4,
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we get the following new basis.

Φ0
1(y1) = y

(−|m0|+1)/2
1 G4,0

2,4

(
y2
1

∣∣∣∣ a1, a2

b1, b2, b3, b4

)
,

Φ0
2(y1) = y

(−|m0|+1)/2
1 G4,0

2,4

(
y2
1e

−2π
√
−1

∣∣∣∣ a1, a2

b1, b2, b3, b4

)
,

Φ0
3(y1) = y

(−|m0|+1)/2
1 G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ a1, a2

b1, b2, b3, b4

)
,

Φ0
4(y1) = y

(−|m0|+1)/2
1 G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ a2, a1

b1, b2, b3, b4

)
,

with a1 = |m0|+3
4 , a2 = |m0|+1

4 , b1 = ν1+ν2
4 , b2 = −ν1+ν2

4 , b3 = ν1−ν2
4 ,

b4 = −ν1−ν2
4 . Moreover as |y1| → ∞, Φ0

1(y1) ∼ e−2y1y
−|m0|−1
1 , Φ0

2(y1) ∼
e2y1y

−|m0|−1
1 and Φ0

3(y1) and Φ0
4(y1) are moderate growth.

Proof. If we write Φ0
i (y1) =

∑
ε1,ε2∈{±1} Γε1,ε2

i Φ0
ε1,ε2(y1) (1 ≤ i ≤ 4),

Γε1,ε2
i are determined by Lemma 6.2. (They are fractional of Γ-functions.)

In each case, the asymptotic behavior is obtained from Lemma 6.3 and

6.4. �

Secondly we treat the case where λ = ε ∈ {±1}. From (9) we obtain

Proposition 9.6. Let y1 > 0. The following four functions are linear

independent solutions of (8) for λ = ε.

Φε
ε1,ε2(y1) = y

(−|m0|+1−2ε+ε1ν1+ε2ν2)/2
1

×
[

2F3

(
ε1ν1+ε2ν2−|m0|+1

4 , ε1ν1+ε2ν2−|m0|+3
4

ε1ν1+1
2 , ε2ν2+1

2 , ε1ν1+ε2ν2+2
2

∣∣∣∣∣ y2
1

)

− ε(ε1ν1 + ε2ν2 − |m0|+ 1)y1

(ε1ν1 + 1)(ε2ν2 + 1)

× 2F3

(
ε1ν1+ε2ν2−|m0|+3

4 , ε1ν1+ε2ν2−|m0|+5
4

ε1ν1+3
2 , ε2ν2+3

2 , ε1ν1+ε2ν2+2
2

∣∣∣∣∣ y2
1

)]
.

As in the case with λ = 0, we take a linear combination of them.
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Proposition 9.7. Under the same assumption as in Proposition 9.6,

we get the following new basis.

Φε
1(y1) = y

− |m0|
2

+1−ε

1

[
G4,0

2,4

(
y2
1

∣∣∣∣ c1, c2
d1, d2, d3, d4

)

+ εG4,0
2,4

(
y2
1

∣∣∣∣ c1, c2
d′1, d

′
2, d

′
3, d

′
4

)]
,

Φε
2(y1) = y

− |m0|
2

+1−ε

1

[
G4,0

2,4

(
y2
1e

−2π
√
−1

∣∣∣∣ c1, c2
d1, d2, d3, d4

)

− εG4,0
2,4

(
y2
1e

−2π
√
−1

∣∣∣∣ c1, c2
d′1, d

′
2, d

′
3, d

′
4

)]
,

Φε
3(y1) = y

− |m0|
2

+1−ε

1

[
G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ c1, c2
d1, d2, d3, d4

)

+ ε
√
−1G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ c2, c1
d′1, d

′
2, d

′
3, d

′
4

)]
,

Φε
4(y1) = y

− |m0|
2

+1−ε

1

[
G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ c1, c2
d′1, d

′
2, d

′
3, d

′
4

)

− ε
√
−1G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ c2, c1
d1, d2, d3, d4

)]
,

with

c1 = |m0|+2
4 , c2 = |m0|

4 ,

d1 = ν1+ν2−1
4 , d2 = −ν1+ν2+1

4 , d3 = ν1−ν2+1
4 , d4 = −ν1−ν2−1

4 ,

d′1 = ν1+ν2+1
4 , d′2 = −ν1+ν2−1

4 , d′3 = ν1−ν2−1
4 , d′4 = −ν1−ν2+1

4 .

Moreover as |y1| → ∞, Φε
1(y1) ∼ e−2y1y

−|m0|−1
1 ,Φε

2(y1) are rapidly increas-

ing and Φε
3(y1) and Φε

4(y1) are moderate growth.

Proof. The proof is similar to Proposition 9.5. Here we notice that

since Φε
i (y1) are ‘sum’ of 2F3, Γε1,ε2

i must be compatible between these two

functions. �
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§10. Multiplicity One Theorem and Explicit Formulas for Siegel-

Whittaker Functions (Even Case)

Now we can state the main theorem for the even principal series. We

have defined the space Wχ·η,τλ(π) in §1. For the even principal series rep-

resentation πσ,ν we define the subspace Wrap
χ·η,τλ(πσ,ν) of Wχ·η,τλ(πσ,ν) as

the set of functions φπσ,ν ,τλ ∈ Wχ·η,τλ(πσ,ν) such that φπσ,ν ,τλ |A is rapidly

decreasing along h1a
2
1 − h2a

2
2 = 0. Since

dimC Hom(g,K)(Hπσ,ν ,K , C
∞IndGR(χ·η)rap) ≤ dimCWrap

χ·η,τλ(πσ,ν),

the contents of the previous sections can be summarized as follows.

Theorem 10.1. We assume that Hη satisfies h1, h2 > 0, h3 = 0 and

the parameters ν1, ν2 of πσ,ν satisfy ν1, ν2, ν1 ± ν2 /∈ Z. Then

dimC Hom(g,K)(Hπσ,ν ,K , C
∞IndGR(χ·η)rap) ≤ 1.

Moreover

(1) When λ = (0, 0), dimCWrap
χ·η,τλ(πσ,ν) ≤ 1 and the boundary value φ(y1)

of φπσ,ν ,τλ |A with respect to the characteristic exponent |m0|/2 is of the

form

c0 G
4,0
2,4

(
y2
1

∣∣∣∣∣
|m0|

4 + 3
2 ,

|m0|
4 + 1

ν1+ν2+3
4 , −ν1+ν2+3

4 , ν1−ν2+3
4 , −ν1−ν2+3

4

)

for some constant c0.

(2) When λ = (ε, ε) (ε ∈ {±1}), dimCWrap
χ·η,τλ(πσ,ν) ≤ 1 and the boundary

value φ(y1) of φπσ,ν ,τλ |A with respect to the characteristic exponent

|m0|/2 is of the form

c1

[
G4,0

2,4

(
y2
1

∣∣∣∣∣
|m0|

4 + 3
2 ,

|m0|
4 + 1

ν1+ν2+3
4 , −ν1+ν2+5

4 , ν1−ν2+5
4 , −ν1−ν2+3

4

)

+ εG4,0
2,4

(
y2
1

∣∣∣∣∣
|m0|

4 + 3
2 ,

|m0|
4 + 1

ν1+ν2+5
4 , −ν1+ν2+3

4 , ν1−ν2+3
4 , −ν1−ν2+5

4

)]

for some constant c1.
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Remark 10.2. We use (2) for the parameter of Meijer’s G-function.

We can find the boundary value of Siegel-Whittaker functions with K-type

τ(λ,λ) by applying compositions of some second-ordered differential opera-

tors to the ones with K-type τ(0,0) or τ(1,1) (cf. remark after Proposition

9.3). Since the differential of Meijer’s G-function is a sum of G-functions of

the same shape (cf.(3)), the boundary value can be written as a linear com-

bination of G4,0
2,4. However the explicit formula seems to be complicated. We

also remark that Niwa([14]) obtained explicit formula of Siegel-Whittaker

function (not only the boundary value) and multiplicity one property in the

case (1).

§11. A Formula for a Meijer’s G-Function and the Gamma Factor

of L-Function of Siegel Wave Forms of Degree Two

As we remarked, Niwa obtained an integral representation of class one

generalized Whittaker function, that is, Siegel-Whittaker function with triv-

ial K-type, and Hori found the gamma factor of L-function of Siegel wave

forms of degree two by calculating the Mellin transform of Niwa’s formula.

In this section we give an integral representation of a Meijer’s G-function

and a simpler proof of Hori’s result. We remark that our method can re-

move the unessential assumptions on the parameters of the principal series

provided in [10].

(11.1) A formula for a Meijer’s G-function

We first review Niwa’s result. The parameters ν̃1, ν̃2 of the principal

series in [15] are ν̃1 = (ν1 + ν2 − 1)/2 and ν̃2 = (ν1 − ν2 − 1)/2 in our

notation.

Proposition 11.1 ([15, Proposition 1]). Put ν̃1 = (
√

1 + 4λ1 − 1)/2,

ν̃2 = (
√

1 + 4λ2− 1)/2 and assume that −1 < Re(ν̃1) < 0, −1 < Re(ν̃2) < 0

and λ1, λ2 /∈ Z. For a nonnegative integer n the differential equation

[
y4 d4

dy4 + 4(n+ 2)y3 d3

dy3 + {−4π2y2 + 6n2 + 18n+ 14− (λ1 + λ2)}y2 d2

dy2

+ {−16π2y2 + 4(n+ 1)3 − 2(n+ 1)(λ1 + λ2)}y d
dy

+ {−8π2y2 + n2(n+ 1)2 − n(n+ 1)(λ1 + λ2) + λ1λ2}
]
a(y) = 0
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has unique rapidly decreasing solution as y →∞, which is given by

a(y) =

∫ ∞

1

∫ ∞

1
Pn
ν̃1(z1)P

n
ν̃2(z2)(z

2
1 − 1)

n
2 (z2

2 − 1)
n
2 e−2πz1z2y dz1dz2,

up to constant. Here Pn
ν (z) is the associated Legendre function of the first

kind.

If we put λ = 0, m0 = 2m (m ∈ Z), ((ν1 + ν2)
2 − 1)/4 = λ1, ((ν1 −

ν2)
2 − 1)/4 = λ2, y1 = πy and Φ(y1) = y1Φ̃(y1) in (8), then we can see

Φ̃(y1) satisfies the same differential equation as in Proposition 11.1. By the

multiplicity free theorem, we have an integral representation of G4,0
2,4(y

2
1).

But more generally we can prove the following formula.

Proposition 11.2. For nonnegative integers m1, . . . ,mN and y1 > 0,∫ ∞

1
· · ·

∫ ∞

1
Pm1
µ1

(z1) · · ·PmN
µN

(zN )(z2
1 − 1)

m1
2 · · · (z2

N − 1)
mN
2

× e−2z1···zNy1 dz1 · · · dzN

= cG2N,0
2N−2,2N

(
y2
1

∣∣∣∣∣
1
2 , 0, . . . , 1

2 , 0
µ1−m1

2 , −µ1−m1−1
2 , . . . , µN−mN

2 , −µN−mN−1
2

)
.

Here the constant c can be given explicitly.

Proof. We first prove the case where N = 1. By [18, 2.17.7.5],∫ ∞

1
P−m1
µ1

(z1)(z
2
1 − 1)

m1
2 e−2z1y1dz1 = c′ (2y1)

−m1− 1
2Kµ1+ 1

2
(2y1),

where Kν(x) is the modified Bessel function and c′ is some constant. By

using

Pm
µ (z) =

Γ(µ+m+ 1)

Γ(µ−m+ 1)
P−m
µ (z) for m ∈ Z≥0,

yνKµ(y) = 2ν−1 G2,0
0,2

(
1

4
y2

∣∣∣∣ ν+µ
2 , ν−µ

2

)
([3, p.219]),

we get the assertion in this case. If we use∫ ∞

1
(x2 − 1)−

λ
2P λ

ν (x)Gm,n
p,q

(
yx2

∣∣∣∣ (ap)

(bq)

)
dx

= c′′Gm+2,n
p+2,q+2

(
y

∣∣∣∣ (ap), 0, 1
2

λ−1−ν
2 , λ+ν

2 , (bq)

)
,
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([18, 2.24.6.2]) repeatedly, we get the formula for general N . �

Remark 11.3. If we put N = 2n−1 in the above formula, this G-

function seems to be related to the boundary value of principal series Siegel-

Whittaker functions on Sp(n,R) with trivial K-type. (In case of N = 1, 2,

this is true.)

(11.2) The gamma factor of L-function of Siegel wave forms of

degree two

Let F (Z) be a Siegel wave form on the Siegel upper half space H2 of

degree two ([10, Definition 1.1]). Consider the integral transform

R̃F (s) =

∫ ∞

0

∫
X12 (R)/X12 (Z)

F (X +
√
−1v12)v

s−1 dXdv,

with Z = X +
√
−1Y ∈ H2, X12(R) = {X ∈ M2(R) | tX = X, tr(X) = 0}

and X12(Z) = X12(R) ∩M2(Z). Let

F (Z) =
∑
N∈N2

aF,N (Y ) exp(2π
√
−1tr(NX))

be the Fourier expansion of F along Ps ([10, §1]) with N2 = {N ∈M2(Q) |
tN = N, semi-integral}. For definite N , we have further expansion

aF,N (Y ) =
∑
n∈Z

aF,N,nWN,n(Y ).

Here WN,n(Y ) is the class one generalized Whittaker function in [15] and in

particular, W12,0(v12) which corresponds to Φ(y1) in §9 and can be written

as follows (up to constant).

(1) If −1 < Re((−1 + ν1 ± ν2)/2) < 0 and ((ν1 ± ν2)
2 − 1)/4 are not

integers,

W12,0(v12) = v2

∫ ∞

1

∫ ∞

1
P 0

−1+ν1+ν2
2

(z1)P
0
−1+ν1−ν2

2

(z2)e
−4πz1z2v dz1dz2,

(2) If ν1, ν2 and ν1 ± ν2 are not integers,

W12,0(v12)

= G4,0
2,4

(
(2πv)2

∣∣∣∣ 3
2 , 1

ν1+ν2+3
4 , −ν1+ν2+3

4 , ν1−ν2+3
4 , −ν1−ν2−3

4

)
,
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Moreover,

R̃F (s) =
∑
m∈N

(aF,m12,0 + aF,−m12,0)m
−s

∫ ∞

0
W12,0(v12)v

s−1 dv

([10, §4]). Then the Mellin transformation of W12,0 gives the gamma factor

of the L-function.

Proposition 11.4 ([10, Proposition 4.1]). Assume that ν1, ν2 and

ν1 ± ν2 are not integers. For Re(s) > max Re((±ν1 ± ν2 + 1)/2),∫ ∞

0
W12,0(v12)v

s−1 dv

= c π−sΓ

[ s
2 + ν1+ν2+3

4 , s
2 + −ν1+ν2+3

4 , s
2 + ν1−ν2+3

4 , s
2 + −ν1−ν2+3

4

s+ 2

]
.

for some constant c. Here we use the notation

Γ
[ a1, . . . , an
b1, . . . , bm

]
=

n∏
i=1

Γ(ai)
/ m∏

i=1

Γ(bi).

Proof. This formula can be easily shown by using

∫ ∞

0
xs−1Gm,n

p,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
dx

=

∏m
i=1 Γ(bi + s)

∏n
i=1 Γ(1− ai − s)∏p

j=n+1 Γ(aj + s)
∏q

j=m+1 Γ(1− bj − s)
,

for 0 ≤ m ≤ q, 0 ≤ n ≤ p, p + q < 2(m + n) and −min1≤j≤m Re(bj) <

Re(s) < 1−max1≤j≤n Re(aj) ([4, p.337]), and Γ(2z) = 22z−1π− 1
2 Γ(z)Γ(z +

1
2). For our purpose we must extend the domain of convergence. Since

G4,0
2,4(x) = O(|x|max1≤j≤m Re(bj)) (as x→ 0) and G4,0

2,4(x) = O(e−2
√
x) (as x→

∞) ([3, p.212]), we get the assertion for Re(s) > max Re((±ν1±ν2+1)/2). �

Remark 11.5. We give the Mellin transformation of the boundary

value in the case where the K-type is τ(ε,ε) (ε ∈ {±1}) and m0 = 0. For
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Re(s) > max Re((±ν1 ± ν2 + 1)/2),∫ ∞

0
φ((2πv)2)vs−1 dv

= c π−s

(
Γ

[ s
2 + ν1+ν2+3

4 , s
2 + −ν1+ν2+5

4 , s2 + ν1−ν2+5
4 , s

2 + −ν1−ν2+3
4

s+ 2

]

+ εΓ

[ s
2 + ν1+ν2+5

4 , s
2 + −ν1+ν2+3

4 , s2 + ν1−ν2+3
4 , s

2 + −ν1−ν2+5
4

s+ 2

])

This is compatible with the gamma factor of spinor L-function in terms of

Langlands parameter of principal series representations (cf.[2]).

From now on we study the Siegel-Whittaker function for the odd princi-

pal series representation with two dimensional K-type. Though it is vector-

valued, the procedure is similar to that in the even case.

§12. Reduction of the System of Differential Equations

Proposition 12.1. Under the same assumptions as in Proposition

5.5, we write

b0(a1, a2) = (
√
h1a1)

λ+1(
√
h2a2)

λ exp{−2π(h1a
2
1 + h2a

2
2)} c0(a1, a2)

b1(a1, a2) = (
√
h1a1)

λ(
√
h2a2)

λ+1 exp{−2π(h1a
2
1 + h2a

2
2)} c1(a1, a2)

and introduce new variables y = (y1, y2) = (2πh1a
2
1, 2πh2a

2
2). Further put

ci(y) = L(|m0|−1)/2fi(y) (i = 1, 2). Then we have

(
P11 P12

P21 P22

)(
f0(y)

f1(y)

)
=

(
Q11 Q12

Q21 Q22

)(
f0(y)

f1(y)

)
=

(
0

0

)
,

where

P11 = y2
1D

2
1 + {λ− 2y1 + |m0|y1(y1 − y2)

−1}y1D1 − 1
2 |m0|y1y2(y1 − y2)

−2

+ {−|m0|y1 + 1
4 |m0|(|m0|+ 2λ− 2)}y1(y1 − y2)

−1

+ 1
4{(λ− 1)2 − ν2},

P12 =
√
−1
2 |m0|y2(y1 − y2)

−1{Ey − 2y1 − y1(y1 − y2)
−1 + λ+ 1

2 |m0| − 1},
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P21 =
√
−1
2 |m0|y1(y1 − y2)

−1{Ey − 2y2 + y2(y1 − y2)
−1 + λ+ 1

2 |m0| − 1},
P22 = y2

2D
2
2 + {λ− 2y2 − |m0|y2(y1 − y2)

−1}y2D2 − 1
2 |m0|y1y2(y1 − y2)

−2

+ {|m0|y2 − 1
4 |m0|(|m0|+ 2λ− 2)}y2(y1 − y2)

−1

+ 1
4{(λ− 1)2 − ν2},

Q11 = Q+ y1D1 + 1
2 |m0|y2(y1 − y2)

−1,

Q12 =
√
−1
2 |m0|(y1 + y2)y2(y1 − y2)

−2,

Q21 =
√
−1
2 |m0|(y1 + y2)y1(y1 − y2)

−2,

Q22 = Q+ y2D2 − 1
2 |m0|y1(y1 − y2)

−1,

with

Q = E2
y − 2y1y2D1D2 + (λ− 2)Ey − 2(y2

1D1 + y2
2D2)

+ |m0|(y1 − y2)
−1(y2

1D1 − y2
2D2)

− |m0|y1y2(y1 − y2)
−2 − |m0|(y1 + y2)

+ 1
4 |m0|2 + 1

2(λ− 1)|m0|+ 1
2λ

2 − 3
2λ+ 1

4(ν2
1 + ν2

2 − 5).

§13. Characteristic Indices

As in the even case, we write the formal solution at Q0, Q∞ and Q1 as

(
f0(y)

f1(y)

)
=

∑
m,n≥0

(
c0m,n

d0
m,n

)
yσ1+m
1 uσ2+n with

(
c00,0
d0

0,0

)
�=
(

0

0

)
,

(
f0(y)

f1(y)

)
=

∑
m,n≥0

(
c∞m,n

d∞m,n

)
vρ1+myρ2+n

2 with

(
c∞0,0
d∞0,0

)
�=
(

0

0

)
,

(
f0(y)

f1(y)

)
=

∑
m,n≥0

(
c1m,n

d1
m,n

)
yτ1+m
1 (u− 1)τ2+n with

(
c10,0
d1

0,0

)
�=
(

0

0

)
.

In a similar way to 8.1, 8.2 and 8.3, we have

Proposition 13.1. The characteristic indices at Q0, Q∞ and Q1 are

(σ1, σ2) =
(

1
2(εν1 ± ν2 − |m0| − 2λ+ 1), 1

2(εν − λ+ 1)
)
,(

1
2(εν1 ± ν2 − |m0| − 2λ+ 3), 1

2(εν̃ − λ+ 2)
)
,
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(ρ1, ρ2) =
(

1
2(εν − λ+ 2), 1

2(±ν1 + εν2 − |m0| − 2λ+ 3)
)
,(

1
2(εν̃ − λ+ 1), 1

2(±ν1 + εν2 − |m0| − 2λ+ 1)
)
,

and

(τ1, τ2) =
(

1
2(±ν1 ± ν2 − |m0| − 2λ+ 3), 0

)
,(

1
2(±ν1 ± ν2 − |m0| − 2λ+ 3), −|m0|

)
.

Here ε ∈ {±1} and ν̃ = ν1 + ν2 − ν.

§14. Holomorphic Solutions Along the Singular Divisor Y1

As in the even case, we study the 4-dimensional space of holomorphic

solutions along Y1. For each nonnegative integer n, if we put ϕn(y1) =∑
m≥0 cm,n y

τ1+m
1 and ψn(y1) =

∑
m≥0 dm,n y

τ1+m
1 then we have(

f0(y)

f1(y)

)
=

(
ϕ(y1, u− 1)

ψ(y1, u− 1)

)
=
∑
n≥0

(
ϕn(y1)

ψn(y1)

)
(u− 1)n.

Since the odd principal series Siegel-Whittaker function withK-type τ(λ,λ−1)

is written by b0(y1, y2)v0 + b1(y1, y2)v1 with

b0(y1, y2) =
( y1

2π

)λ+1
2
( y2

2π

)λ
2 e−(y1+y2)

(y1−y2
2π

)|m0|−1
2

∑
n≥0 ϕn(y1)(u− 1)n,

b1(y1, y2) =
( y1

2π

)λ
2
( y2

2π

)λ+1
2 e−(y1+y2)

(y1−y2
2π

)|m0|−1
2

∑
n≥0 ψn(y1)(u− 1)n,

(see §12), the boundary value of

(
b0(y)

b1(y)

)
with respect to the characteristic

exponent (|m0| − 1)/2 along u− 1 = 0 is

(−1)
|m0|−1

2

( y1

2π

)λ+
|m0|

2
e−2y1

(
ϕ0(y1)

ψ0(y1)

)
.

We shall give an explicit formula for ϕ0(y1) and ψ0(y1) and prove a multi-

plicity free theorem in a way similar to the even case.

(14.1) Differential equation for ϕ0(y1)

Proposition 14.1. Put Φ(y1) = e−2y1ϕ0(y1). Then

ψ0(y1) =
√
−1sgn(m0)ϕ0(y1),
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[
256y3

1(|m0| − 1)(θ + λ)(θ + λ− 1)(10)

− 64y2
1(θ + λ− 1)

[
{2(|m0| − 1)(2λ− 1) + (ν2

1 + ν2
2 − 2ν2)}θ

+ (λ+ 1)(ν2
1 + ν2

2 − 2ν2) + (|m0| − 1)(2λ− 1)(2λ+ |m0| − 3)
]

+ 4y1

[
−16(|m0| − 1)θ4 − 16(|m0| − 1)(4λ+ 2|m0| − 7)θ3

+ 8[(2λ+ |m0| − 2)(ν2
1 + ν2

2 − 2ν2)

+ (|m0| − 1){2ν2 + 3(2λ+ |m0| − 3)(2λ+ |m0| − 4)}]θ2

+ 4[(8λ2 + 6|m0|λ− 14λ+ 2|m0|2 − 11|m0|+ 11)(ν2
1 + ν2

2 − 2ν2)

+ (|m0| − 1){4(2λ+ |m0| − 4)ν2

+ (2λ+ |m0| − 3)2(4λ+ 2|m0| − 9)}]θ
− [(|m0| − 3)(ν2

1 + ν2
2 − 2ν2)2 − 2{8λ3 + 4(2|m0| − 5)λ2

+ 2(2|m0|2 − 13|m0|+ 13)λ+ (|m0| − 1)(|m0|2 − 8|m0|+ 17)}
× (ν2

1 + ν2
2 − 2ν2) + (|m0| − 1)(2λ+ |m0| − 3)(2λ+m0 − 5)

× (2λ+ |m0| − 3− 2ν)(2λ+m0 − 5 + 2ν)]
]

+ (ν2
1 + ν2

2 − 2ν2){(2θ + 2λ+ |m0| − 3 + ν)2 − (ν2
1 + ν2

2 − ν2)}

× {(2θ + 2λ+ |m0| − 3− ν)2 − (ν2
1 + ν2

2 − ν2)}
]
Φ(y1) = 0,

with sgn(m0) is +1 for m0 > 0 and −1 for m0 < 0.

Since the shift operators move the K-type parameter (λ, λ− 1) to (λ−
1, λ− 2) or (λ+ 1, λ), we need only solve (10) in the case where λ = 0.

(14.2) Solutions of the differential equation

We solve (10) when λ = 0, ν = ν1. Let us write the formal solution

at the origin, Φ(y1) =
∑

m≥0 cm yσ+m
1 with c0 �= 0. By using σ = τ1 =

(3−m0 + ε1ν1 + ε2ν2)/2, εi ∈ {±1} (i = 1, 2), we obtain

Proposition 14.2. Let y1 > 0. The following four functions are linear

independent solutions of (10) for λ = 0, ν = ν1.

Φε1,ε2(y1) = y
(−m0+3+ε1ν1+ε2ν2)/2
1

×
[

2F3

(
ε1ν1+ε2ν2−|m0|+1

4 , ε1ν1+ε2ν2−|m0|+3
4

ε1ν1+2
2 , ε2ν2+1

2 , ε1ν1+ε2ν2+1
2

∣∣∣∣∣ y2
1

)
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+
(ε1ν1 + ε2ν2 − |m0|+ 1)y1

(ε2ν2 + 1)(ε1ν1 + ε2ν2 + 1)

× 2F3

(
ε1ν1+ε2ν2−|m0|+3

4 , ε1ν1+ε2ν2−|m0|+5
4

ε1ν1+2
2 , ε2ν2+3

2 , ε1ν1+ε2ν2+3
2

∣∣∣∣∣ y2
1

)]
.

As in the even case we take a linear combination.

Proposition 14.3. Under the same assumptions in Proposition 14.2,

we get the following new basis.

Φ1(y1) = y
−|m0|/2+2
1

[
G4,0

2,4

(
y2
1

∣∣∣∣ a1, a2

b1, b2, b3, b4

)

− G4,0
2,4

(
y2
1

∣∣∣∣ a1, a2

b′1, b
′
2, b

′
3, b

′
4

)]
,

Φ2(y1) = y
−|m0|/2+2
1

[
G4,0

2,4

(
y2
1e

−2π
√
−1

∣∣∣∣ a1, a2

b1, b2, b3, b4

)

+ G4,0
2,4

(
y2
1e

−2π
√
−1

∣∣∣∣ a1, a2

b′1, b
′
2, b

′
3, b

′
4

)]
,

Φ3(y1) = y
−|m0|/2+2
1

[
G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ a1, a2

b1, b2, b3, b4

)

+
√
−1G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ a2, a1

b′1, b
′
2, b

′
3, b

′
4

)]
,

Φ4(y1) = y
−|m0|/2+2
1

[
G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ a1, a2

b′1, b
′
2, b

′
3, b

′
4

)

+
√
−1G4,1

2,4

(
y2
1e

π
√
−1

∣∣∣∣ a2, a1

b1, b2, b3, b4

)]
,

where

a1 = |m0|+2
4 , a2 = |m0|

4 ,

b1 = ν1+ν2−1
4 , b2 = −ν1+ν2−1

4 , b3 = ν1−ν2+1
4 , b4 = −ν1−ν2+1

4 ,

b′1 = ν1+ν2+1
4 , b′2 = −ν1+ν2+1

4 , b′3 = ν1−ν2−1
4 , b′4 = −ν1−ν2−1

4 .

Moreover as |y1| → ∞, Φ1(y1) ∼ e−2y1y
−|m0|−1
1 , Φ2(y1) ∼ e2y1y

−|m0|−3
1 and

Φ3(y1) and Φ4(y1) are moderate growth.
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§15. Multiplicity One Theorem and Explicit Formulas for Siegel-

Whittaker Functions (Odd Case)

We state the main theorem for odd principal series πσ,ν . Define the

subspace Wrap
χ·η,τλ(πσ,ν) of Wχ·η,τλ(πσ,ν) as the set of functions φπσ,ν ,τλ ∈

Wχ·η,τλ(πσ,ν) such that φπσ,ν ,τλ |A is rapidly decreasing along h1a
2
1−h2a

2
2 = 0.

Since

dimC Hom(g,K)(Hπσ,ν ,K , C
∞IndGR(χ·η)rap) ≤ dimCWrap

χ·η,τλ(πσ,ν),

by summarizing the previous sections we obtain the main theorem.

Theorem 15.1. We assume that Hη satisfies h1, h2 > 0, h3 = 0 and

the parameters ν1, ν2 of πσ,ν satisfy ν1, ν2, ν1 ± ν2 /∈ Z. Then

dimC Hom(g,K)(Hπσ,ν ,K , C
∞IndGR(χ·η)rap) ≤ 1.

Moreover if λ = (0,−1) then dimCWrap
χ·η,τλ(πσ,ν) ≤ 1 and the boundary value

φ(y1) =

(
φ0(y1)√

−1sgn(m0)·φ0(y1)

)
of φπσ,ν ,τλ |A with respect to the character-

istic exponent (|m0| − 1)/2 is of the form

φ0(y1) = c

[
G4,0

2,4

(
y2
1

∣∣∣∣∣
|m0|

4 + 3
2 ,

|m0|
4 + 1

ν1+ν2+3
4 , −ν1+ν2+3

4 , ν1−ν2+5
4 , −ν1−ν2+5

4

)

− G4,0
2,4

(
y2
1

∣∣∣∣∣
|m0|

4 + 3
2 ,

|m0|
4 + 1

ν1+ν2+5
4 , −ν1+ν2+5

4 , ν1−ν2+3
4 , −ν1−ν2+3

4

)]

for some constant c.

Remark 15.2. As in the even case, we give the Mellin transform of

the boundary value. For Re(s) > max Re(±ν1 ± ν2 + 1)/2,∫ ∞

0
φ1((2πv)

2)vs−1 dv

= c π−s

(
Γ

[ s
2 + ν1+ν2+3

4 , s
2 + −ν1+ν2+3

4 , s
2 + ν1−ν2+5

4 , s
2 + −ν1−ν2+5

4

s+ 5
2

]

+ Γ

[ s
2 + ν1+ν2+5

4 , s
2 + −ν1+ν2+5

4 , s
2 + ν1−ν2+3

4 , s
2 + −ν1−ν2+3

4

s+ 5
2

])
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This is compatible with the gamma factor of spinor L-function in terms of

Langlands parameter of odd principal series representations.
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