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Approximation of BSDE’s by Stochastic Difference

Equation’s

By Toshiyuki Nakayama∗

Abstract. We consider a BSDE (backward stochastic differential
equation){

−dY (t) = f(B(·), t, Y (t), Z(t))dt− Z(t)∗dB(t),
Y (1) = ξ.

We construct backward stochastic difference equations approximating
the BSDE, where time and space are discrete. We show the existence
and uniqueness of the solutions of the backward stochastic difference
equations. Also we show a convergence result of the solutions of the
backward stochastic difference equations towards that of the BSDE.

1. Introduction

Let m and d be positive integers and W be D([0, 1];Rm) endowed with

the Skorohod metric disW . We denote by µ the Wiener measure on W . Let

(B(t))t∈[0,1] be the coordinate mapping process defined by B(w, t) = w(t).

Let (F(t))t∈[0,1] be a filtration given by F(t) =
⋂
ε>0 σ[B(s) ; s ≤ (t+ε)∧1].

Let Π be the predictable σ-field over W × [0, 1].

Let f :W × [0, 1] × Rd × Rm×d → Rd be a bounded, continuous, Π ⊗
B(Rd)⊗B(Rm×d)-measurable mapping. Suppose that f is uniformly Lips-

chitz, i.e.,

there exists a positive constant C such that

|f(w, t, y1, z1) − f(w, t, y2, z2)| ≤ C(|y1 − y2| + |z1 − z2|)(1)

for all (w, t) ∈ W × [0, 1], y1, y2 ∈ Rd, and z1, z2 ∈ Rm×d. Let ξ:W → Rd

be a bounded, continuous, F(1)-measurable functional.
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Now we consider the following BSDE (backward stochastic differential

equation) on (W, (F(t))t∈[0,1], µ).{
−dY (t) = f(B(·), t, Y (t), Z(t))dt− Z(t)∗dB(t),

Y (1) = ξ,
(2)

where ∗ denotes the transpose. A solution of the equation (2) is a pair

(Y,Z) ∈ H2(Rd) ×H2(Rm×d) satisfying

Y (t) = ξ +

∫ 1

t
f(B(·), s, Y (s), Z(s))ds−

∫ 1

t
Z(s)∗dB(s).

Here H2(Rd) denotes the set of all Rd-valued predictable processes

(X(t))t∈[0,1] on (W,µ) such that ‖X‖2 = Eµ
[∫ 1

0 |X(t)|2dt
]
< ∞. The exis-

tence and uniqueness of the solution is well known ([3], [7]).

The main purpose of this paper is to approximate the BSDE by backward

stochastic difference equations.

Now we define a backward stochastic difference equation. Let p1, p2, . . . ,

pm+1 ∈ (0, 1), and {e1, e2, . . . , em+1} ⊂ Rm be a system of vectors in a

general position satisfying

m+1∑
i=1

piei = 0,
m+1∑
i=1

pi = 1,
m+1∑
i=1

el1i e
l2
i pi = δl1,l2 , l1, l2 = 1, 2, . . . ,m.

Here eli is the l’th component of ei and δl1,l2 is the Kronecker’s symbol. Let

(ΩN ,FN , PN ), N ∈ N, be probability spaces. Let ηN(n), n = 1, 2, . . . , N ,

be independent Rm-valued random variables defined on (ΩN ,FN , PN ) such

that

PN{ηN(n) = ei} = pi, i = 1, 2, . . . ,m+ 1.

We define a random walk (SN (n))n∈{0,1,...,N} by

SN (n) =
n∑
k=1

ηN(k), n = 1, 2, . . . , N,

SN (0) = 0,

and a filtration (FN (n))n∈{0,1,...,N} over ΩN by

FN (n) = σ[SN (1), . . . , SN (n)], n = 1, 2, . . . , N,

FN (0) = {∅,Ω}.
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We define a continuous-time process BN by

BN (t) =
1√
N
SN ([Nt]), t ∈ [0, 1].

Now we consider the following backward stochastic difference equation

on (ΩN , PN ).




−∆yN(n) = 1
N f(BN (·), n−1

N , yN(n− 1), zN(n))

− 1√
N
zN(n)∗∆SN (n),

n = 1, 2, . . . , N,

yN(N) = ξ(BN (·)).

(3)

For each discrete-time process (x(n)), we denote ∆x(k) by x(k) − x(k − 1)

for k = 1, 2, . . . N . Let KN be the set of all Rd-valued (FN (n)) -adapted

processes (y(n))n∈{0,1,...,N} on (ΩN , PN ) and LN be the set of all Rm×d-
valued (FN (n))-predictable processes (z(n))n∈{0,1,...,N} on (ΩN , PN ) with

z(0) = 0. A solution to Equation (3) is a pair (yN , zN) ∈ KN×LN satisfying

(3). We prove the existence and uniqueness of a solution to Equation (3)

for sufficiently large N in section 3.

To each process (yN(n), zN(n))n∈{0,1,...,N} ∈ KN × LN , we associate a

continuous-time process (ȳN(t), z̄N(t))t∈[0,1] on (ΩN , PN ) by

(ȳN(t), z̄N(t)) = (yN(�Nt�), zN(�Nt�)), t ∈ [0, 1].

Here �x� is the greatest integer not greater than x, and �x� is the least

integer not less than x.

Let (Y,Z) be the solution of the BSDE (2) and (yN , zN) ∈ KN × LN be

that of the backward stochastic difference equation (3). In this paper, we

prove the following.

Theorem 1.1. We have the weak convergence of the distributions on

W ×D([0, 1];Rd) × L2([0, 1];Rm×d) such that

PN ◦ (BN , ȳN , z̄N)−1 → µ ◦ (B, Y, Z)−1 weakly as N → ∞.
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Douglas, Ma, and Protter [2] has given a numerical method for FBSDE.

Their method is also found in Ma and Yong [6]. Their result is for the

following FBSDE (forward-backward stochastic differential equation).




dX(t) = b(t,X(t), Y (t), Z(t))dt+ σ(t,X(t), Y (t))dB(t),

−dY (t) = b̂(t,X(t), Y (t), Z(t))dt− Z(t)dB(t),

X(0) = x, Y (T ) = g(X(T )),

(4)

where b, σ, b̂, g are all deterministic smooth functions. In their FBSDE case,

(Y,Z) is represented in terms of a PDE solution and a standard (forward)

SDE solution. They solved their problem by approximating the PDE and

the standard (forward) SDE. They used the combined characteristics and

finite difference method for the PDE and used the first order Euler scheme

for the (forward) SDE.

BSDE (2) we consider here is more general, since our drift term f is

path dependent. Therefore our approach is quite different from that of

their FBSDE. We construct a discrete space-time backward stochastic dif-

ference equation. Considering that BSDE with path-dependent drift term is

very useful in mathematical finance, for example, its approximation is very

important.

2. Representations of Martingales in Terms of a Random Walk

In this section we consider a discrete version of the martingale represen-

tation theorem. This is a preparation for constructing a backward stochastic

difference equation.

In this section and the next section, we fix N ∈ N, and we abbre-

viate ΩN , FN , (FN (n))n∈{0,1,...,N}, PN , ηN , SN , KN , and LN to Ω, F ,

(F(n))n∈{0,1,...,N}, P , η, S, K, and L, respectively for simplicity.

Let H be the set of all Rm-valued (F(n))-predictable processes

(H(n))n∈{0,1,...,N} on Ω with H(0) = 0. Let M be the set of all R-valued

(F(n))-martingales (M(n))n∈{0,1,...,N} on Ω with M(0) = 0.

Lemma 2.1. Let n ∈ {1, 2, . . . , N}. If a function g: (Rm)n → R satis-

fies

E[g(η(1), η(2), . . . η(n))|F(n− 1)] = 0,
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then there exists a mapping a: (Rm)n−1 → Rm satisfying

a(η(1), η(2), . . . , η(n− 1))∗η(n) = g(η(1), η(2), . . . , η(n)).

In the case n = 1, we interpret a as a constant vector in Rm such that

a∗η(n) = g(η(n)).

Proof. Since {e1, e2, . . . , em} is a basis for Rm, there exists a mapping

a: (Rm)n−1 → Rm such that

a(x1, x2, . . . , xn−1)
∗ej = g(x1, x2, . . . , xn−1, ej), j = 1, 2, . . . ,m,

x1, x2, . . . , xn−1 ∈ {e1, e2, . . . , em+1}.

We note that

E[g(η(1), η(2), . . . , η(n))|F(n− 1)]

= E[g(x1, x2, . . . , xn−1, η(n))]
∣∣∣
(x1,x2,...,xn−1)=(η(1),η(2),...,η(n−1))

.

Accordingly, by assumption, we have

E[g(x1, x2, . . . , xn−1, η(n))] = 0, x1, x2, . . . , xn−1 ∈ {e1, e2, . . . , em+1}.

Consequently, from
∑m+1
i=1 piei = 0, we have

g(x1, x2, . . . , xn−1, em+1) = a(x1, x2, . . . , xn−1)
∗em+1,

x1, x2, . . . , xn−1 ∈ {e1, e2, . . . , em+1}.

This proves our Lemma. �

For (H(n))n∈{0,1,...,N} ∈ H, we define R-valued martingale

(H · S(n))n∈{0,1,...,N}

H · S(n) =
n∑
k=1

H(k)∗∆S(k)

=
n∑
k=1

H(k)∗η(k), n = 1, . . . , N,

H · S(0) = 0,
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where

∆S(k) = S(k) − S(k − 1), k = 1, 2, . . . N.

Proposition 2.2. Let M ∈ M. There exists a unique H ∈ H such

that

M = H · S.

Proof. For each n ∈ {1, 2, . . . , N} there exists a function gn: (R
m)n →

R such that

M(n) −M(n− 1) = gn(η(1), η(2), . . . , η(n)).

By virtue of Lemma 2.1, for each n ∈ {1, 2, . . . , N}, there exists a mapping

an: (R
m)n−1 → Rm (a1 is a constant vector in Rm) such that

gn(η(1), η(2), . . . , η(n)) = an(η(1), η(2), . . . , η(n− 1))∗η(n).

Setting H(n) = an(η(1), η(2), . . . , η(n−1)), H(0) = 0, we obtain M = H ·S.
Let us prove the uniqueness. Suppose that M = H · S = K · S with

H,K ∈ H. Then

E

[ N∑
n=1

|H(n) −K(n)|2
]

= E

[∣∣∣ N∑
n=1

(H(n) −K(n))∗η(n)
∣∣∣2] = 0

and therefore |H(n) −K(n)| = 0, n ∈ {1, 2, . . . , N}. �

3. A Difference Equation

In this section, we shall define a backward stochastic difference equation

which admits a unique solution.

We fix N ∈ N and use the abbreviation as in the previous section.

Let

h: Ω × {0, 1, · · · , N} × Rd × Rm×d → Rd

be a random field such that the mapping h(·, n, ·, ·): Ω ×Rd ×Rm×d → Rd

is F(n) ⊗ B(Rd) ⊗ B(Rm×d)-measurable for each n ∈ {0, 1, . . . , N}. We

assume that there is a constant A > 0 such that

|h(ω, n, y1, z1) − h(ω, n, y2, z2)| ≤ A(|y1 − y2| + |z1 − z2|)(5)
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for all y1, y2 ∈ Rd, z1, z2 ∈ Rm×d, ω ∈ Ω, and n ∈ {0, 1, . . . , N}.
Let ζ: Ω → Rd be F(N)-measurable.

We consider the following backward stochastic difference equations


−∆y(n) = 1
N h(n− 1, y(n− 1), z(n)) − 1√

N
z(n)∗∆S(n),

n = 1, 2, . . . , N,

y(N) = ζ.

(6)

In other words,

y(n) = ζ +
1

N

N∑
k=n+1

h(k − 1, y(k − 1), z(k)) − 1√
N

N∑
k=n+1

z(k)∗∆S(k)(7)

for n = 0, 1, . . . , N . A solution is a pair (y, z) ∈ K × L satisfying (7).

We discuss the existence and uniqueness of a solution to this backward

stochastic difference equation.

We define a mapping ϕ:K×L → K×L in the following. Let (y, z) ∈ K×L
be given. Let (M(n))n∈{0,1,...,N} be a martingale given by

M(n) = E
[
ζ +

1

N

N∑
k=1

h(k − 1, y(k − 1), z(k)) |F(n)
]
.

By Proposition 2.2 there exists a unique process z′ ∈ L such that

M(n) = M(0) +
1√
N

n∑
k=1

z′(k)∗∆S(k)

for all n = 0, 1, . . . , N . Define the process y′ ∈ K by

y′(n) = M(n) − 1

N

n∑
k=1

h(k − 1, y(k − 1), z(k))

= E
[
ζ +

1

N

N∑
k=n+1

h(k − 1, y(k − 1), z(k)) |F(n)
]
.

Now we define ϕ(y, z) to be (y′, z′). By this definition, the mapping ϕ maps

a pair (y, z) ∈ K × L into the solution (y′, z′) ∈ K × L of the following

backward stochastic difference equation


−∆y′(n) = 1
N h(n− 1, y(n− 1), z(n)) − 1√

N
z′(n)∗∆S(n),

n = 1, 2, . . . , N,

y′(N) = ζ.

(8)
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Lemma 3.1. A pair (y, z) ∈ K×L is a solution of the backward stochas-

tic difference equation (6) if and only if it is a fixed-point for the mapping

ϕ.

Proof. From Equation (8), it is obvious that a fixed-point for ϕ is a

solution of the backward stochastic difference equation (6). We show the

converse. Let (y, z) be the solution of (6) and (y′, z′) = ϕ(y, z). Then

y′(n) = E
[
y(n) +

1√
N

N∑
k=n+1

z(k)∗∆S(k) |F(n)
]

= y(n).

In particular, we get y(0) = y′(0) = M(0). Then

M(n) = E
[
y(0) +

1√
N

N∑
k=1

z(k)∗∆S(k) |F(n)
]

= M(0) +
1√
N

n∑
k=1

z(k)∗∆S(k).

We obtain z = z′ from the uniqueness in Proposition 2.2. Hence (y, z) is a

fixed-point for ϕ. �

Definition 3.2. We introduce norms ‖ · ‖α, α ≥ 1, in K × L by the

following

‖(y, z)‖α =

{
E

[
sup

n=0,1,...,N
(αn|y(n)|2) +

1

N

N∑
n=1

αn|z(n)|2
]} 1

2

.

Theorem 3.3. There is a universal constant γ such that

‖ϕ(y1, z1) − ϕ(y2, z2)‖2
α(9)

≤
(

1 +
8γ2 + 1

1 − α/2

)
2α2A2

(α− 1)N
‖(y1, z1) − (y2, z2)‖2

α

for all (y1, z1), (y2, z2) ∈ K × L and α ∈ (1, 2).
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Proof. Let (yi, zi) ∈ K × L and (y′i, z
′
i) = ϕ(yi, zi), i = 1, 2. Let

y = y1 − y2 z = z1 − z2 y′ = y′1 − y′2 z′ = z′1 − z′2.

Then we have


−∆y′(n) = 1
N (h(n− 1, y1(n− 1), z1(n))

− h(n− 1, y2(n− 1), z2(n)))

− 1√
N
z′(n)∗∆S(n), n = 1, 2, . . . , N,

y′(N) = 0.

(10)

Now, we observe that

0 = αN |y′(N)|2

= αn|y′(n)|2

+
N∑

k=n+1

{(αk − αk−1)|y′(k − 1)|2 + αk(|y′(k)|2 − |y′(k − 1)|2)}

for all n = 0, 1, . . . , N . Therefore,

αn|y′(n)|2 +
N∑

k=n+1

(αk − αk−1)|y′(k − 1)|2 +
N∑

k=n+1

αk|∆y′(k)|2

=
2

N

N∑
k=n+1

αky′(k − 1)∗(h(k − 1, y1(k − 1), z1(k))

−h(k − 1, y2(k − 1), z2(k)))

− 2√
N

N∑
k=n+1

αky′(k − 1)∗z′(k)∗∆S(k)

for all n = 0, 1, . . . , N . Setting

λ =
2αA2

(α− 1)N

and noting the inequality

|y′(k − 1)||h(k − 1, y1(k − 1), z1(k)) − h(k − 1, y2(k − 1), z2(k))|

≤ A2

λ
|y′(k − 1)|2 +

λ

2
(|y(k − 1)|2 + |z(k)|2),
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we have the following.

αn|y′(n)|2 +
N∑

k=n+1

(αk − αk−1)|y′(k − 1)|2 +
N∑

k=n+1

αk|∆y′(k)|2

≤ 2

N

N∑
k=n+1

αk(
A2

λ
|y′(k − 1)|2 +

λ

2
(|y(k − 1)|2 + |z(k)|2))

− 2√
N

N∑
k=n+1

αky′(k − 1)∗z′(k)∗∆S(k)

for all n = 0, 1, . . . , N .

Furthermore, the observation 2αkA2

Nλ = αk − αk−1 yields the following.

αn|y′(n)|2 +
N∑

k=n+1

αk|∆y′(k)|2(11)

≤ λ

{
α sup
k=0,1,...,N

(αk|y(k)|2) +
1

N

N∑
k=1

αk|z(k)|2
}

− 2√
N

N∑
k=n+1

αky′(k − 1)∗z′(k)∗∆S(k)

for all n = 0, 1, . . . , N . Taking expectation, we get

E


αn|y′(n)|2 +

N∑
k=n+1

αk|∆y′(k)|2

 ≤ λα‖(y, z)‖2

α

for all n = 0, 1, . . . , N .

Now, we have

E[|∆y′(k)|2] ≥ 1

N
E[|z′(k)∗∆S(k)|2]

=
1

N
E[|z′(k)|2].

Therefore,

E


αn|y′(n)|2 +

1

N

N∑
k=n+1

αk|z′(k)|2

 ≤ λα‖(y, z)‖2

α



Approximation of BSDE’s 267

for all n = 0, 1, . . . , N . This implies that

1

N

N∑
k=1

αkE[|z′(k)|2] ≤ λα‖(y, z)‖2
α.(12)

From Davis’s inequality, we obtain the following (γ is a universal constant).

E

[
sup

n=0,1,...,N

∣∣∣ 1√
N

N∑
k=n+1

αky′(k − 1)∗z′(k)∗∆S(k)
∣∣∣]

≤ 2E

[
sup

n=0,1,...,N

∣∣∣ 1√
N

n∑
k=1

αky′(k − 1)∗z′(k)∗∆S(k)
∣∣∣]

≤ 2γE

[( 1

N

N∑
k=1

α2k|y′(k − 1)|2|z′(k)|2
) 1

2

]

≤ γE

[
α

4γ
sup
n

(αn|y′(n)|2) +
4γ

N

N∑
k=1

αk|z′(k)|2
]

≤ α

4
E

[
sup
n

(αn|y′(n)|2)
]

+ 4γ2λα‖(y, z)‖2
α.

This inequality and (11) imply

E

[
sup
n

(αn|y′(n)|2)
]

≤ (8γ2 + 1)λα‖(y, z)‖2
α +

α

2
E

[
sup
n

(αn|y′(n)|2)
]
,

and therefore

E

[
sup
n

(αn|y′(n)|2)
]
≤ 8γ2 + 1

1 − α/2
λα‖(y, z)‖2

α.(13)

Consequently, by (12) and (13), we have our theorem. �

By using the fixed point theorem for the contracting mapping, we have

the following from Theorem 3.3.

Corollary 3.4. If (1+ 8γ2+1
1−α/2) 2α2A2

(α−1)N < 1, then the backward stochas-

tic difference equation (6) admits a unique solution (y, z) ∈ K × L.
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4. A Connection between BSDE and Difference Equation

Here we introduce a metric space of pairs of a random variable and a

probability measure. See [5] for the details.

Let p > 1 be a real number. Let P(M) be the set of all probabil-

ity measures defined on a Polish space M . Let N be an arcwise con-

nected separable metric space. Let disM and disN be distance functions

on M and N respectively. We denote by X p
M ;N the set of all pairs (X, ν)

which consists of a measurable map X:M → N and ν ∈ P(M) such that∫
M disN(X(x), y)pν(dx) < ∞ for any y ∈ N . We define a function Dis

(p)
M ;N

from X p
M ;N ×X p

M ;N into [0,∞) by

Dis
(p)
M ;N((X1, ν1), (X2, ν2))

= inf

{(∫
M×M

((disM(x1, x2) ∧ 1)

+ disN(X1(x1), X2(x2)))
pν(dx1, dx2)

) 1
p ;

ν ∈ P(M ×M), ν ◦ π−1
1 = ν1, ν ◦ π−1

2 = ν2

}
,

where πi:M ×M → M (i = 1, 2) are canonical projections given by

π1(x1, x2) = x1, π2(x1, x2) = x2, x1, x2 ∈ M.

Definition 4.1. Let (Xn, νn), (X, ν) ∈ X p
M ;N , n ≥ 1. We say that

(Xn, νn) → (X, ν) in X p
M ;N , n → ∞ if Dis

(p)
M ;N((Xn, νn), (X, ν)) → 0, n →

∞.

Remark 4.2. Note that W , D([0, 1];Rd), and L2([0, 1];Rm×d) are ar-

cwise connected separable metric spaces.

Now we think of the situation in Introduction. We denote by µN the

distribution of BN on W : µN = PN ◦B−1
N . From Donsker’s theorem ([1]),

we have

µN → µ weakly as N → ∞.
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Definition 4.3. Let N ≥ 1 and (y, z) ∈ KN × LN . We define contin-

uous-time process (ȳ(t), z̄(t))t∈[0,1] on ΩN by

(ȳ(t), z̄(t)) = (y(�Nt�), z(�Nt�)), t ∈ [0, 1],

and continuous-time process (FN (t; (y, z)))t∈[0,1] = (F 0
N (t; (y, z)),

F 1
N (t; (y, z)))t∈[0,1] on W by

FN (w, t; (y, z)) =

{
(y(ω, �Nt�), z(ω, �Nt�)), w = BN (ω), t ∈ [0, 1],

(0, 0), otherwise.

Let β be a real number such that β > 8C2(16γ2 + 3). Here C is a

constant in the inequality (1). Choose a positive integer N1 such that

eβ/N ∈ (1, 2) for all N ≥ N1.

We consider Corollary 3.4 for α = eβ/N (N ≥ N1) and A = C. Note that C

is independent of N . Taking into account that

(
1 +

8γ2 + 1

1 − α/2

)
2α2C2

(α− 1)N
=

(
1 +

8γ2 + 1

1 − α/2

)
α2

(
eβ/N − 1

β/N

)−1 2C2

β

→ 2C2(16γ2 + 3)

β
, N → ∞,

we have the following.

Remark 4.4. There exists a positive integer N0 ≥ N1 such that (1 +
8γ2+1

1−eβ/N/2) 2e2β/NC2

(eβ/N−1)N
≤ 1

4 for all N ≥ N0.

In this section, let N be sufficiently large such that N ≥ N0.

Definition 4.5. Let ϕN = (ϕ0
N , ϕ

1
N):KN × LN → KN × LN be the

mapping that maps (y, z) ∈ KN × LN into the solution (y′, z′) ∈ KN × LN
of the backward stochastic difference equation




−∆y′(n) = 1
N f(BN (·), n−1

N , y(n− 1), z(n)) − 1√
N
z′(n)∗∆SN (n),

n = 1, 2, . . . , N, PN -a.s.

y′(N) = ξ(BN (·)).
(14)
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Let Φ = (Φ0,Φ1):H2(Rd)×H2(Rm×d) → H2(Rd)×H2(Rm×d) be the map-

ping that maps (Y,Z) ∈ H2(Rd) ×H2(Rm×d) into the solution (Y ′, Z ′) ∈
H2(Rd) ×H2(Rm×d) of the following BSDE

{
−dY ′(t) = f(B(·), t, Y (t), Z(t))dt− Z ′(t)∗dB(t), t ∈ [0, 1], µ-a.s.

Y ′(1) = ξ.
(15)

For each N ≥ N0, let (yN , zN) ∈ KN × LN . First we show how to

obtain ϕN(yN , zN) and Φ(Y,Z). We define random variables GN :W → Rd,

N ≥ N0 by

GN = ξ +

∫ 1

0
f(B(·), [Ns]

N
,FN (s; (yN , zN)))ds, µN -a.s.(16)

Then it follows that

GN ◦BN = ξ ◦BN +
1

N

N∑
k=1

f(BN (·), k − 1

N
, yN(k − 1), zN(k)), PN -a.s.

For each N ≥ N0, from Proposition 2.2, there exists a unique z′N ∈ LN such

that

EPN [GN ◦BN |FN (n)] − EPN [GN ◦BN ] =
1√
N

n∑
k=1

z′N(k)∗∆SN (k),

n = 0, 1, . . . , N, PN -a.s.

Define y′N ∈ KN , N ≥ N0 by

y′N(n) = EPN [GN ◦BN |FN (n)] − 1

N

n∑
k=1

f(BN (·), k − 1

N
, yN(k − 1), zN(k))

for n = 0, 1, . . . , N . Note that (y′N , z
′
N) ∈ KN × LN is a unique solution of

the following backward stochastic difference equation




−∆y′N(n) = 1
N f(BN (·), n−1

N , yN(n− 1), zN(n))

− 1√
N
z′N(n)∗∆SN (n), n = 1, 2, . . . , N, PN -a.s.

y′N(N) = ξ(BN (·)).
(17)
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Thus we get ϕN(yN , zN) = (y′N , z
′
N). Letting (MN (t))t∈[0,1] be the càdlàg

version of the martingale (EµN [GN |F(t)])t∈[0,1], we get the following ex-

pression

MN (t) −MN (0) =

∫ t

0
F 1
N (s;ϕN(yN , zN))∗dB(s), t ∈ [0, 1], µN -a.s.

F 0
N (t;ϕN(yN , zN)) = MN (t) −

∫ [Nt]
N

0
f(B(·), [Ns]

N
,FN (s; (yN , zN)))ds,

t ∈ [0, 1], µN -a.s.

Let (Y,Z) ∈ H2(Rd)×H2(Rm×d). We define a random variable G:W →
Rd by

G = ξ +

∫ 1

0
f(B(·), s, Y (s), Z(s))ds.(18)

Letting (M(t))t∈[0,1] be the continuous martingale (Eµ[G|F(t)])t∈[0,1], there

exists a unique Z ′ ∈ H2(Rm×d) such that

M(t) −M(0) =

∫ t

0
Z ′(t)∗dB(s), t ∈ [0, 1], µ-a.s.

Define Y ′ ∈ H2(Rd) by

Y ′(t) = M(t) −
∫ t

0
f(B(·), s, Y (s), Z(s))ds.

Note that (Y ′, Z ′) ∈ H2(Rd) × H2(Rm×d) is a unique solution of the fol-

lowing BSDE




−dY ′(t) = f(B(·), t, Y (t), Z(t))dt− Z ′(t)∗dB(t),

t ∈ [0, 1], µ-a.s.

Y ′(1) = ξ.

(19)

Thus we get Φ(Y,Z) = (Y ′, Z ′).

Let p be a real number such that p > 1. The purpose of this section is

to prove the following.
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Theorem 4.6. Let (yN , zN) ∈ KN × LN , N ≥ N0 and (Y,Z) ∈
H2(Rd) ×H2(Rm×d). Assume that

(FN (·; (yN , zN)), µN) → ((Y,Z), µ)

in X p
W ;D([0,1];Rd)×L2([0,1];Rm×d)

, N → ∞.

Then we have

(FN (·;ϕN(yN , zN)), µN) → (Φ(Y,Z), µ)

in X p
W ;D([0,1];Rd)×L2([0,1];Rm×d)

, N → ∞.

Now we denote

XN (t) =

∫ [Nt]
N

0
f(B(·), [Ns]

N
,FN (s; (yN , zN)))ds

X(t) =

∫ t

0
f(B(·), s, Y (s), Z(s))ds.

We get the following.

Lemma 4.7. Under the assumption of Theorem 4.6,

(XN , µN) → (X,µ) in X p
W ;D([0,1];Rd)

, N → ∞.

Proof. From the assumption of Theorem 4.6 and Proposition 5 in [5],

we see that there exist a probability space (Ω,F , P ) and random variables

ΛN ,Λ: Ω → W , N ≥ N0, such that the following three conditions are satis-

fied.

(1) P ◦ Λ−1
N = µN , P ◦ Λ−1 = µ,

(2) lim
N→∞

EP [(disW (ΛN ,Λ) ∧ 1)p] = 0,

(3) lim
N→∞

EP
[(

disD([0,1];Rd)(F
0
N (ΛN , ·; (yN , zN)), Y (Λ, ·))

+
(∫ 1

0 |F 1
N (ΛN , t; (yN , zN)) − Z(Λ, t)|2dt

) 1
2
)p]

= 0.

Here disW and disD([0,1];Rd) are Skorohod metrics.
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Since f is bounded, we have

EP
[

sup
0≤t≤1

|XN (ΛN , t) −
∫ t

0
f(ΛN ,

[Ns]

N
,FN (ΛN , s; (yN , zN)))ds|p

]

≤ EP
[

sup
0≤t≤1

∣∣∣∫ t

[Nt]
N

f(ΛN ,
[Ns]

N
,FN (ΛN , s; (yN , zN)))ds

∣∣∣p]

→ 0, N → ∞.

We also have

EP
[

sup
0≤t≤1

∣∣∣∫ t

0
f(ΛN ,

[Ns]

N
,FN (ΛN , s; (yN , zN)))ds−X(Λ, t)

∣∣∣p]

≤ EP
[∫ 1

0

∣∣∣f(ΛN ,
[Ns]

N
,FN (ΛN , s; (yN , zN)))

−f(Λ, s, Y (Λ, s), Z(Λ, s))
∣∣∣pds] → 0, N → ∞.

Then we have

lim
N→∞

EP [disD([0,1];Rd)(XN ◦ ΛN , X ◦ Λ)p] = 0.(20)

It completes the proof. �

A consequence of Lemma 4.7 is the following.

Corollary 4.8. Under the assumption of theorem 4.6,

(GN , µN) → (G,µ) in X p
W ;Rd , N → ∞.

Proof. From Lemma 4.7 and Lemma 7 in [5],

inf
{
lim sup
N→∞

EµN [disD([0,1];Rd)(XN ,Θ)p]

+Eµ[disD([0,1];Rd)(X,Θ)p] ; Θ ∈ Cb(W ;D([0, 1];Rd))
}

= 0,

where Cb(W ;D([0, 1];Rd)) denotes the set of continuous mappings Θ from

W to D([0, 1];Rd) such that

sup
w∈W

disD([0,1];Rd)(0,Θ(w)) < ∞.
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Note that

|XN (w)(1) − Θ(w)(1)| ≤ disD([0,1];Rd)(XN (w),Θ(w)),

|X(w)(1) − Θ(w)(1)| ≤ disD([0,1];Rd)(X(w),Θ(w))

for any w ∈ W . Consequently,

inf
{
lim sup
N→∞

EµN [|XN (1) − ψ|p] + Eµ[|X(1) − ψ|p] ; ψ ∈ Cb(W ;Rd)
}

= 0.

Noting that GN = ξ+XN (1), G = ξ+X(1), and ξ ∈ Cb(W ;Rd), we obtain

inf
{
lim sup
N→∞

EµN [|GN − ψ|p] + Eµ[|G− ψ|p] ; ψ ∈ Cb(W ;Rd)
}

= 0.

Therefore by Lemma 7 in [5], we have our Corollary. �

Proof of Theorem 4.6. Combining Corollary 4.8 with Theorem 11

in [5], we obtain the following. Under the assumption of theorem 4.6, we

have

(F 1
N (·;ϕN(yN , zN)), µN) → (Φ1(Y,Z), µ) in X p

W ;L2([0,1];Rm×d)
, N → ∞,

and

(MN , µN) → (M,µ) in X p
W ;D([0,1];Rd)

, N → ∞.

From Lemma 4.7, we obtain the following. Under the assumption of

theorem 4.6,

(F 0
N (·;ϕN(yN , zN)), µN) → (Φ0(Y,Z), µ) in X p

W ;D([0,1];Rd)
, N → ∞.

Therefore we conclude Theorem 4.6. �

5. Main Result

Let N be sufficiently large such that N ≥ N0 (See Remark 4.4) and

p > 1 be a real number.

We endow W ×D([0, 1];Rd) × L2([0, 1];Rm×d) with the metric

dis((w, y, z), (w̃, ỹ, z̃)) = disW (w, w̃) + disD([0,1];Rd)(y, ỹ)

+
(∫ 1

0
|z(t) − z̃(t)|2dt

) 1
2 ,

(w, y, z), (w̃, ỹ, z̃) ∈ W ×D([0, 1];Rd) × L2([0, 1];Rm×d).
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Here disW and disD([0,1];Rd) are Skorohod metrics.

Now let (yN , zN) ∈ KN ×LN be the solution of the backward stochastic

difference equation (3) on (ΩN , PN ), N ≥ N0. Let (Y,Z) ∈ H2(Rd) ×
H2(Rm×d) be the solution of the BSDE (2). In this section, we prove the

following main theorem. Theorem 1.1 is an easy consequence of Theorem

5.1.

Theorem 5.1. It follows that

((B,FN (·; (yN , zN))), µN) → ((B, Y, Z), µ)

in X p
W ;W×D([0,1];Rd)×L2([0,1];Rm×d)

, N → ∞.

For each N ≥ N0, we define a sequence (y
(l)
N , z

(l)
N )l=0,1,2,... in KN × LN

by

(y
(0)
N , z

(0)
N ) = (0, 0)

(y
(l)
N , z

(l)
N ) = ϕlN(y

(0)
N , z

(0)
N ), l = 1, 2, . . . .

Here ϕN is in Definition 4.5. We can define (ȳ
(l)
N , z̄

(l)
N ), (ȳN , z̄N),

FN (·; (y(l)
N , z

(l)
N )) for each N, l by Definition 4.3.

We define a sequence (Y (l), Z(l))l=0,1,2,... in H2(Rd) ×H2(Rm×d) by

(Y (0), Z(0)) = (0, 0)

(Y (l), Z(l)) = Φl(Y (0), Z(0)), l = 1, 2, . . . .

Here Φ is in Definition 4.5.

By [3] or [7], we have

lim
l→∞

Eµ
[

sup
t∈[0,1]

|Y (l)(t) − Y (t)|2 +

∫ 1

0
|Z(l)(t) − Z(t)|2dt

]
= 0.

Hence we have the following.

Lemma 5.2.

lim
l→∞

Eµ
[
dis((B, Y (l), Z(l)), (B, Y, Z))2

]
= 0.



276 Toshiyuki Nakayama

Proposition 5.3. For each l = 0, 1, 2, . . ., we have

((B,FN (·; (y(l)
N , z

(l)
N ))), µN) → ((B, Y (l), Z(l)), µ)

in X p
W ;W×D([0,1];Rd)×L2([0,1];Rm×d)

, N → ∞.

Proof. In the case l = 0, we have FN (·; (y(0)
N , z

(0)
N )) = (0, 0) and

(B,µN) → (B,µ) in X p
W ;W , N → ∞

by [5]. Using Theorem 4.6, we obtain Proposition by induction. �

Lemma 5.4.

lim
l→∞

sup
N

EPN

[
dis((BN , ȳ

(l)
N , z̄

(l)
N ), (BN , ȳN , z̄N))2

]
= 0.

Proof. From Theorem 3.3, it follows that

‖(y(l)
N , z

(l)
N ) − (y

(l−1)
N , z

(l−1)
N )‖2

α(21)

≤
(

1 +
8γ2 + 1

1 − α/2

)
2α2C2

(α− 1)N
‖(y(l−1)

N , z
(l−1)
N ) − (y

(l−2)
N , z

(l−2)
N )‖2

α

for all l = 2, 3, . . ., natural number N , and real number α ∈ (1, 2). Here C

is a constant in the equation (1) and ‖ · ‖α is one defined in Definition 3.2

of section 3. Recalling Remark 4.4, we have

‖(y(l)
N , z

(l)
N ) − (y

(l−1)
N , z

(l−1)
N )‖eβ/N ≤ 1

2
‖(y(l−1)

N , z
(l−1)
N ) − (y

(l−2)
N , z

(l−2)
N )‖eβ/N

for all N ≥ N0 and l = 2, 3, . . .. Therefore, for every N ≥ N0, we obtain

‖(y(l)
N , z

(l)
N ) − (yN , zN)‖1 ≤

∞∑
l′=l+1

‖(y(l′)
N , z

(l′)
N ) − (y

(l′−1)
N , z

(l′−1)
N )‖1

≤
∞∑

l′=l+1

‖(y(l′)
N , z

(l′)
N ) − (y

(l′−1)
N , z

(l′−1)
N )‖eβ/N
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≤
∞∑

l′=l+1

(1

2

)l′−1
‖(y(1)

N , z
(1)
N )‖eβ/N

=
(1

2

)l−1
EPN

[
sup

n=0,1,...,N
(eβ

n
N |y(1)

N (n)|2) +
1

N

N∑
k=1

eβ
n
N |z(1)

N (n)|2
]

≤ eβ
(1

2

)l−1
‖(y(1)

N , z
(1)
N )‖1.

Since sup
N

‖(y(1)
N , z

(1)
N )‖1 is finite, the proof is complete. �

From Lemma 5.2, Proposition 5.3, and Lemma 5.4, we conclude Theo-

rem 5.1.
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