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On the Gevrey Regularity of Solutions of a Class of

Semilinear Elliptic Degenerate Equations on the Plane

By Nguyen Minh TRI

Abstract. We investigate the Gevrey regularity (in particular, the
analyticity) of solutions of semilinear elliptic degenerate equations on
the plane. The method is based on constructing explicit formulas for
fundamental solutions and the Friedman effect near boundary.

¢1. Introduction

In this paper we deal with the Gevrey regularity (in particular, the ana-
lyticity) of solutions of semilinear elliptic degenerate equations of Grushin’s
type on R?. We confine with consideration of a model equation, but we belief
that the method can be applied to treat more general equations. Recently
we have used this method to achieve some progress in studying the Gevrey
regularity of solutions of semilinear subelliptic partial differential equations,
see [1], [2], [3]. First let us define a space generalizing the space of analytic
functions (see for example [4]). Let L, and L, be two sequences of posi-
tive numbers, satisfying the monotonicity condition (})L;Lp—; < ALy (i =
1,2..;n = 1,2...), where A is a positive constant. A function F'(z,v), de-
fined for & = (z1,x2) and for v = (v1,...,v,) in a p—dimensional open set
E, is said to belong to the class C{L,_4;Q|L,_q; E} (a is an integer) if
and only if F'(x,v) is infinitely differentiable and to every pair of compact
subsets g C Q and Ey C FE there correspond constants A; and A, such
that for x € Qyp and v € Ejy

IR (2, v)

jtkyr 7
J1.9..92 5, k1 ky < Aidy Lj—alk—a,
Oxy Oz’ 0vy™*...0v,

I
(145 =53 ki =kijk=01,2.).
=1
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218 Nguyen Minh TRI

We use the notation L_; = 1(: = 0,1,2,...). If F(z,v) = f(z), we simply
write f(x) € C{Lp—q;Q}. Note that C{n!;Q}, (C{n!®;Q}) is the space
of all analytic functions (s-Gevrey functions), respectively, in . Now we
introduce some notations used in the paper

Si={(.B) €LY a+B<tkt >y >a+ (1+k)B -t}

For a function f(x,y) on R? we write 9 f, 8§f, 8a’ﬁf, ~Oapf for 221 (x’y),

oz
O (@y) 940 (2y) oy P f(wy) , respectively. We will consider the following

oyP ' Oxeoyf 0z 0yP
equation
0 0
(1) GkAf+‘If(x,y,f,—f,:L’k—f) =0 in a domain Q C R?
’ oz oy
where o2 82 5
— k—1
Gy = 02 +x W + iz a—y

with (z,y) € Q C R2 A € C,i = v/—1 and k is a positive integer. Since

our consideration is purely local we can assume that € is a bounded domain
in R?. Let us define the following quantities:

4 k+1, k+1

R= (" ") 4 (k412 - 0% p = =

Ap =" P ik + 1) (y —v), A =2 M =ik + 1) (y —v),

k4 k=X

M = A_T_ 2k+2 Ai 2k+2 )

Here we take zf2 = e®2In21 for 21,29 € C and if 21 = re’?, -7 < @ < 7 then
Inz; = lnr + igp Next we rewrite G\ as Xo X1 + i(\ + k)xk_la% where
X1 = &B — T 8y,X2 Bz o 4 Z:Uka% We will find the uniform fundamental
solution of G, », that is

Gk,)\Fk,)\(m7 Yy, u, U) = 6(I —u,y — U)7
in the following form

Fk‘,)\($7yauvv) = F<p)M
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After some computations we arrive at

G Fi
= 16(k + 1) 2% | (B = ) (k4 )2y - 0)2| MR F(p)
+4(k+1)xk71uk+1[k(x2k+2+u2k+2+ (k+1)2(y — )2) (6K 4 4)aF R
x MR2F'(p) + (A2 — k?) 2" W ' MR F(p).

Therefore if F'(p) satisfies the following hypergeometric equation (see [5],
p. 56)

(2) p(1 = p)F"(p) + [c — (1 + a+ b)p|F'(p) — abF(p) =0
with a = 2’%:‘2, b= Qkk;ﬁ?’ c= kiﬂ, then formally we will have
GraFiy = 0.

The general solution of (2) is

E+X k=) k )
Me+22%+2 k+1P

+ C’2P#IF(

F(p) :ClF<

k424X k+2—)\ k+2 >
%+2 ' 2%+2 k+1t)

where F'(a, b, ¢, p) is the Gauss hypergeometric function and C, Cs are some
complex constants (see [5], p. 74). Now we will separately consider the case
k is odd and k is even.

§2. Case k is Odd

Since k is odd we note that 0 < p < 1. Moreover p = 1 if and only if
x =24u # 0,y =v. If w =0 then p = 0 therefore from the result of [6] we

should choose
P45 (33)
o= + -

2“#@(,%) '

If u # 0 then the singularities of F, (z,y,u,v) will be located at the one
of F(p). On the other hand, F'(p) with 0 < p <1 has singularity only when
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p = 1. As p — 1 we have the following asymptotic expansions (see [5], p.
74)

kK+X k=X k )
2k+2’2k+2’/<:+1’p
k
P(sk)

=—T<%%>F@%%>ma1—p»+oa»

Fi(p): = F(

k424X k4+2—X k+2

F T =

2(p) < 2%k+2 ' 2k+2 ’l<:+1’p)
r(#)

BN

We expect that Fj, \(z, y, u,v) has singularity only when = u,y = v. Since

p#+1 — —1 when (z,y) — (—u, v), we should choose

k+2+) k+2—)
(525 )r(522)
Cy=—

24+ 4 k42
27 Bpl (k:+1

such that F'(p) has no singularity at z = —u,y = v. Note that the following
conditions

(3) A#LRN(k+1)+ kA #£L2N(k+1) +k+2],

where N is a non-negative integer,

guarantee that C1,C2 < oo and hence F(p) has a logarithm growth (if
w#0) at (2,) = (u, ).

DEFINITION. The parameter A is called admissible if A\ satisfies the
condition (3).

REMARK 1. Comparing with the well-known results (see [7], [8]) we see
that X is admissible if and only if G}, ) is hypoelliptic (analytic hypoelliptic).
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Therefore if A is admissible then we expect that the function F(p)M, or

k4 E—\ E4X k=X K
F(2k+2>r(2k+2)F(2k+2’ 2k+2° k+1>p>

Fk,)\(x7yaua U) = 9y 1 k+X k—X
+T k 2k+2 A 2k+2
2 k+17TF(—k+1)A+ AZ

k2402 \ 1 ((k22-) k424N k+2-\ k42
$UF< 2k+2 )F( 2k+2 )F< 2k+2 0 2k+2 ’k+1’p)

k+24X k42—

1 1«14
22—k—_H7TF(k+2>A+2k+2 A_2k+2

k+1

will be our desired uniform fundamental solution. Indeed we have the fol-
lowing:

THEOREM 1. Assume that X\ is admissible. Then

GeaFia (7, y,u,v) = 6(x — u,y —v).

PROOF. We begin by fixing (u,v) € R?. First assume that u # 0. Then
AS‘F,Aé € C for every a and (. Let us introduce the following polar
coordinate

T=u+rcosp,y=1v+rsinep.

It is easy to see that Fj(-,-,u,v) € LL (R?) for every 1 < g < oc. Let

loc
Be(u,v) = {(x,9)|r < e} and R2(u,v) = R*\ B:(u,v) = {(z,y) € R?|r > ¢}.
By applying Green’s formula we have for every w(x,y) € C§°(R?)

(4) /2( ) Fk)\(:c,y,u,v)Gk,_,\w(x,y) d!l?dy
Rz (u,v

= / V(Fk’)\,w,k,)\) d:z;dy—f—/ Fk,)\Bl(w,k:, )\) ds
R2(u,v)

r=e
- / 'IU(x,y)Bg(Fk)\,k) ds,
r=e
where

V(Fpx, w, k, \) = wGr A Fix, Ba(Fix, k) = (1 + iz"ve) X1 Fy, »,
Bi(w, k,\) = (v1 — iz*10) Xow — i(\ + k)2 trow,
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and v = (v1, 1) is the unit outward normal to OR?(u,v). The first integral
in the right side of (4) vanishes. We now compute the second and the third
integral in the right side of (4). When (x,y) tends to (u,v) it is easy to
check that

M = (2uM1 4+ o(1)) 73T (UM 4 o(1)) 7B = 2 F T 4 o(1),
2P = WF L 4 (k4 1)ubr cos o + o(r), 2% = uF + kuF1r cos o + o(r),

Pt = uF T (k= D)uP P cos o + o(r = —Cos ,

)’ V1|8Bg(u,v)
)= —iufsinp 4+ o(1), R = 4u®*2 + o(1),

-k
T2 ’835 (u,v

(k +1)?(cos? pu* +sin? p)

_ 2
1—-p= LS r“ 4+ o(r),

Xip = (k+ 1)2u_k_2(;k cos p + isin p) "+ ofr).

Moreover using the asymptotic expansions (see [5], p. 75)

,(k:+>\ k—X k )
w12 2%+2 k17
r(#)
= +o((1—p)™h),
kA k=)
F(2k—:2)r(2k+2)(1_p)
k4+24 X k4+2—-X k+2
F/
( % +2 ' 2k 2 ’k+1’p>
I ==
k+1 _
= i <k+2)_A +o((1-p)h),
F( 2k+2 >F( 2k+2 )(1 - p)

we deduce immediately that

- / w(@,y) B(For, k) ds
r=&

w(u,v) /2” uFdyp
0

= w(u,v),
27 u2k cos? ¢ + sin? ¢ (u,0)

—

(5) and / Fy\Bi(w,k,\)ds — 0 as € — 0.
r=¢&
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Now from (4), (5) we have

(GeaFrp, w(z,y)) = (Fen, Gr—aw(z,y)) =

(6) = lim Fi \Gr,— w(z,y)dzdy = w(u,v).

=0 Jr>e

From (6) we see that
(7) Gk,)\Fk,)\ zé(x—u,y—v).

Now if u = 0 we can follow the proof in [6], or take the limit in (7) when
u — 0. This completes the proof of Theorem 1. [J

REMARK 2. A similar expression for Fj o is also given in [9]. The
expression of F, y is also given in [10].

It is obvious that we also have the following:

THEOREM 2. Gy, » is hypoelliptic if and only if the hypergeometric equa-
tion (2) has no bounded solution on the interval [0, 1].

Let us denote X| = & —iuf L X} = 2 +ijub 2 and G} , = X,X| +
(A + k)ukila%. Noting that Fj x(x,y,u,v) = F _x(u,v,z,y), from Theo-
rem 1 we can easily deduce the following:

PROPOSITION 1 (Representation formula). Assume that Q C R? is a
bounded domain with piece-wise smooth boundary, f € C?(Q) N CY(Q) and
A is admissible. Then we have

(8) f(x,y):/QFk,,\(fﬂ,y,U,U)Gﬁmf(u,v)dudv
- /a P, ,0) B (£ 0,0,k ~A)ds

+ f(u,v)Bé(Fk,)\(x,y,u,v),k)ds,
o0

where
BY(F(u,0), ks =) = (v1 = iz ) X3 (u,0)
—i(=A+ k‘)uk_lugf(u, v),
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By(Fy (2, y,u,v), k) = <1/1 + iukl/2> X1 Fp (2, y,u,v).
and v = (v1,v2) is the unit outward normal vector on OS2.

For m € Z* let us denote by HI" () the space of all function f € L? ()
such that for any compact K of Q we have 3, 5 yez [lv0a,8flL2(x) < o0
Now we are able to formulate the main theorem of this section.

THEOREM 3. Assume that m > 2k?+6k-+5. Let f be a H".(Q) solution
of the equation (1) and ¥ € C{Ly_q_2;Q|L;_q_2;R3} for every a € [0,2k+
2]. Then f € C{Lp_ok_4;Q}. In particular, if ¥ is a G°—function (or
analytic) of its arguments then so is f.

Proor. The proof of Theorem 3 consists of Theorem 4 and Theo-
rem 5. [J

THEOREM 4. Let U be a C™®—function of its arguments and m > 2k*+
6k + 5. Assume that f € H () is a solution of the equation (1) then
feld>Q).

PrOOF. We begin with establishing the following:

PROPOSITION 2. Letm > 2k*+6k-+5. Assume that f € H" (). Then
(’1j Ys f’ 8x’xkg£) € Hloc (Q)

0,
Proor. It is sufficient to prove that 0, g\II(:E Y, f, am,mk 65) € Lloc<Q)

0,
for every («, 3,7) € Ej—1. Denote by wi, we, w3, respectively, f, 890,:5]“ B?J;

Since m > 2k?+6k+-5, by a theorem of Sobolev we deduce that w1, wo, w3 €
C(9). Using the Faa di Bruno formula we see that 0, gV (x,y, w1, wa2, w3)
is a linear combination of terms of the form

9
a| |\IJ($ y7w17w27w3 ’YHH Oéq]aﬁlIJ Cq]
8xﬁ18yﬁ28wﬂ38wﬁ48w§95 ¢ =1
where ¢ belongs to a finite set, ¥ = (¥1,72,03,94,95), V| < a+ B, a4, +
Bej > 0, qu Cqj = U3+ 04 + Vs, Zq,j(aqmﬂq,j)@,j = (a = 71,8 — ¥2).

Therefore the theorem is proved if we can show this general terms are in
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. . .. . 11 (,y,61,62,63)
(). If all ¢, ; vanish then it is immediate that 92710572063 960 06T

C(2), since ¥ € C™,£&1,&2,&3 € C(Q). Therefore we can assume that there
exists at least one of ¢, ; that differs from 0. Choose qq, jo such that (g, j, >
1 and

L2

loc

Qlgo,jo T (k + 1)5610,j0 = H;E;X (O‘(I,j + (k + 1)ﬂq,j)-
Cq,jzl

Consider the following possibilities
I) Cgo.j0 = 2- We then have ag; + 8;; < m —1— (2k +2) for all ¢,j such
that (;; > 1. Indeed, if ¢ # qo or j # jo and ag; + By > m —1— (2k +2)
then ag, j, + Bgo,jo < k. Therefore

m—1—(2k+2) <ag;+ B, < g+ (k+1)8,; <
< Qlgq,jo T+ (k + 1)ﬂqo7jo < (k + 1)(O‘q07j0 + ﬁQOJO) < k(k + 1)‘

Thus m < k? 4+ 3k + 3, a contradiction.
If ¢ = qo,7 = jo and ag, jo + Bgo,jo > m — 1 — (2k + 2) then we have

m—12>a+ 8> 2(ag,j, + Be.jo) > 2(m —1—(2k+2)) + 1.

Therefore m < 4(k + 1), a contradiction.
Next, for ¢, 7 such that (,; > 1, set

Vg,j = max{0,aq; + (k+1)By; + 1+ (2k +2) — m}.
Since 0 < agj + B4, < m—1—(2k +2), we have
Ve,; < max{0,kB,;} < k(m—1— (2k+2)).
From all above arguments we deduce that (g, 8q.5,74.5) € Em—1—(2k+2)

for all ¢, j such that (, ; > 1. Next we claim that qu Y4,iCq,; < - Indeed,
if >, %4,iCq; > v then we deduce that

at(k+1)—2(m—1-(2k+2)>> 7l

q.J
>y>a+ (k+1)F—(m—1).
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Therefore m < 4k 4+ 5, a contradiction.
Now we have

m
. . Ca.j
27 H H (af‘tm agqu wj) a7

q j=1

w
i s ey ) Cad )
= [T (107 05wy )™ € C(9), 7 = 0,
q j=1

since a:wa'a?qvjafq’fwj e Hk2(Q) c 0 ().

loc

IT) 40,50 = 1 and (4; = 0 for ¢ # qo or j # jo. We have

1
Y H H (a?w agww]) R xvaf‘qodo agqoajowjo c L%oc(Q)'
q j=1

III) (4.5, = 1 and there exists (q1,71) # (o, jo) such that (4, j, # 0. Define
V0,50 = max{0, Qgqg.50 T (k+ 1),3(10,]‘0 +1—m}.

As in part I) we can prove that (., 8q.5,%4.5) € Em—1—(2k+2) for ¢ # qo

or j # jo and (aq07j076q07j077qo7jo) € Z;—1. Therefore gﬁyq’jaixq’jagq’jwj S
. . ~ . (0% j j

HIQO’“C+2(Q) C C(Q) for (¢,7) # (g0, jo) and Vw009, 070 9,070 w; € LE (Q).

We also have 7, j, + Z(q $)#£(q0.jo) YaiCag < 7 s in part I). Now the desired
result follows from the decomposition of the general terms. O

(continuing the proof of Theorem 4) f € H™ (Q),m > 2k + 6k + 5 —

loc

¥ € H™ 1(Q) (by Proposition 2). Therefore by a theorem of Grushin we

loc

deduce that f € H™(Q). Repeat the argument again and again we finally

loc

arrive at f € H"(Q) for every positive ¢, i. e. f € C>®(Q). O

loc

Now put rg = 2k + 2. For r € Z, let I', denote the set of pairs of
multi-indices («, 3) such that I, = '} UT2 where

Il = {(a,f):a <ro, 20+ B <r}, T2 = {(@.B) s a > ro,a+ 8 < r—ro).
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For a pair (a, 3) we denote by («, 3)* the minimum of r such that (a, 3) €
I';.. Next define the following norm

1£,Q, = max [0%07F,Q|+ max max |99 f|,

(a,B)€D IES ew)e
0 0
where | f, Q] = max(, . cq <|f| + 8—£ + ‘xka—g‘ )
The next lemma is due to Friedman (see [4]).

LEMMA 1. There exists a constant Cs such that if g(z) is a positive
monotone decreasing function, defined in the interval 0 < z < 1 and satis-

Jying

g(z) < Flwg(z(l — %)) + chr:)l (n>rg+2,C>0),

then g(z) < CCy/z""To~ L,

THEOREM 5. Let f be a C™ solution of the equation (1) and VU €
C{Lp_aq_2;9QLn_q_2;R3} for every a € [0,70]. Then f € C{Lp_ro—2;}.
In particular, if ¥ is a G*—function (or analytic) of its arguments then so

s f.
PrOOF. We begin with the following:

PROPOSITION 3. Assume that U € C{L,_q_2;Q|Ln_q_2;R3} for every
a € [0,rg]. Then there exist constants Cy,Cs such that for every Hy >
1, Hy > CyHZFS if

£, Qg < HoH " DLy o9, 0<d<N+1rg+2<N
then

max_

0 0
(2.)E0 8?8§\P<$7 Yy, J, _f7 xk—f)‘ < C5H0H{V7T071LN—T‘0—1
I7y

or’ Oy

for every (o, B) € I'nyi.
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PRrOOF. For reason of convenience from now on we shall use the fol-
lowing notations

1 if z >0, z" if n>1,
9(2’) = . and Zn = .
0 if z <0, 1 if n <0.

All the constants used in the proof of this Proposition are taken to be greater
than 1. Now it is sufficient to prove the estimate when (o, 3) € In41\I'n.

) 8x’
positive coefficients of terms of the form

As in Proposition 2, 8?85\11(1:,3/, 1o xk%) is a linear combination with

AN (2, y, w1, wa, w3) 3
9 el ) O‘an LR CqJ
©) Oz 8y1928w1930w1948w'95 1;[ H

Substituting w; by one of the terms f, ax,ack g]yc we obtain

O 0y (wy) = OO F, A0y (w) = 0y TR0

Oéq’3
aaq 38[3q 3 _ X3\ (1 _
(wg) =) ke (= m o 1Ok —m + 1)
m=0
X (k—m)aocq,g—m,l—l-ﬁq,gf-

Hence, for j = 1,2,3, we can decompose (;_p)0a, ;—m,1+5,,f into
(k,m)ﬁa%@, (6?38§3f> with (042,,32, k — m) € =1 and (043,,33) S

(agjBqi) —m- Put §=N+1—a—f. Define R =ro—S. It is easy to see
that 0 < R < r¢. Since oy ; < a we deduce that (oy,j, 845) € L (g +8q.,+5)-
Using the inductive assumption we have

o
< qJ) k---(k—m+1)0(k—m+1) (k_m)ﬁaq’j_m,lwwf

m
< (s <aq,j> k- (k—m+1)8(k—m+ 1)H0Hf<q,j+ﬁq7jfm,R72
m

aq. j+Bq.i—m—R—2
X Laq i+Bqj—m—R—2 < C7HOH e Laq,j"‘ﬂq,j_R_z'
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Therefore we deduce that

oes e (x’fg—’yc) <

Xq,5 a
Z ( q,]) k--- (k) —m+ 1)9(]{5 -—m—+ 1) (k_m)aaq‘j,m71+gqyjf

m
m=0

i+08q,;—R—2
< CSHOHlaq’] P Laq’j+ﬁq’j_R—2’

and the general terms can be estimated by
> B R-2
H CgHon{q’] o Laq7j+ﬂq7j—R—2'
j=1

Since ¥ € C{Ly_q; Q| L,_q;R3}, there exist constants Cy, C1g such that

aw"ll(a"? Y, wi, wy, w3)
D919y 02 Ow?? dwl* 8w§95

19 R

(m,y)GQ

(D =01 + 02,0 = I3 + Da + U5).

Set p = a+ B. Now for £ € Riv = v(€) : R — R we take Z(§) =
Z1(v(&)) - Z2(&) where

Z1(6) = ~ Cy 2010 =rav'(§)

i—R 1. 7
7(¢) = Z—Cw bionoat

7!
i=0

and

P pri—R—2 ;
Hi-R-2[, . ¢
v(§) = CSHOZ L Sk 28 -

7!
i=1

By comparing terms of the form (9) with the corresponding terms in -4 i = 7Z(6)
it follows that

o (a1, 510" 1)

x,y)€Q
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Next we introduce the following notation (see [4]): v(§) < h(§) if and only
if v0)(0) < RU)(0) for 1 < j < p. Tt is not difficult to check that, there
exists a constant C2 (independent of p ) such that

HI %31, g 3e
(1 —1)!

v*(€) < (CsHo) sz

=2

And by induction we have

Li—j—p-1&
<< CH jC f[Z JoR-1ZiZj=R15
v (€) sHo) E =

Next, it is easy to verify that Z1(0) = Cy, %5(@’5 0§ CsCoC11Hp, and

d7 Z( i—R &z .
d; ©) = Yy "Lj_p—2. We now compute ﬁ(g)’ S when 2 < 7 <p.

If2<y < R + 2 then using that fact that 0 < R < rg we deduce that

47, (€) L v (¢
. < i Li m :
dgi ’5:0 = 09;(7” B2 a¢i L:o

~—

J!

j
<Cy> Ch(CsHo)’CElm

i=1
j .
(10) < (R + 2>!0901108H0 2(080110121{0)2_1 < Ci3HoH;
i=1
pI‘OVided H1 Z (08011012H0)T0+1.
IfR+3<j<2R+4 then

& 71 (€) L (¢
- < o :
d&J )£=0 - CQZECHL B=270ded e=o

~—

J
‘ iy Lj—i—r—2j!
< 092011(08]{0)10{21[%_12 2Hj i—R— 1#
) — 151
= G—i+1)l!

J
< Cu Y (CsCuiCroHoHy ') " HoH] "L g s
=1
(11) < CisHoH] "L _p_o
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provided H1 > CgCnCleo.
If 5 > 2R + 5, we have

& Z1(€)
J
d€ o
R+2 i ~Ni— j—1—R— .
< C i C11(CsHo)'Cry 1H{ " 1Lj—i—R—L7!
=N\ & il —i+1)!
(12) R_2
+jz Cll CSHO Cile‘] R le R— 2L] —i—R— 1]'
(5 —
s il(j—i+1)!
4 i 011 CgHy)' 012 Li g 2j!
ilj—i+1)! '
i=j—R—1

The first sum in (12) is estimated by
(13) CroHoH] ™™~ 2Lg R—2

provided Hy > CgC11C1oHp as for R+3 < j <2R+ 4.
By using the monotonicity condition on L, the second sum in (12) is esti-
mated by

i—R—2 . i1 gpj—i—R— ,
c ]Z Ciy(CsHo)'Ciy ' H "' Li_p_oL;_;_p_1j!
9i:R+3 G —i+1)!
_ CuHoH{™"*j\L; ap s
= U—zR—m!
j—R-2 1
X B 3 s s
12;3 (—-R-1)G—i+1)-(—i-R)
(14) < CigHoHI B 2L _p o,

provided Hy, > CgCh1C12Hy.
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For the third sum we see that

J i i ~vi—1 .
C11(CsHy)'Cy " Li—p—2j!
G ) il(j—i+1)!

i=j—R—1

J
o L,_p_
< CyCyCry HoHI 721 E __mher
i=j—R—1
j—R-2
(15) < CioHoHj Lj_p_a,

if H; > (CsC11C12Hy)?.
By (10)—(15) and taking H1 > (CngCHCleO)TO“ = C4Hgk+3 we obtain

d?Z(§)
dér

£=0

< CZO Z ( >HOH10 p j—R—2
p

+Cn Y <p->H0Hf_R_2LjR2Cfo_j_RijR2
j=R+3

< 022H0H€7R72Lp—R—2'

Hence

CLTCONE

max
e

)) < szHon_R_QLprq
< CsHoHY "™ 'Ly yy 1. O
REMARK 3. The constants Cy,C5 depend on ) increasingly in the

sense that with the same Cy4,Cs5, Proposition 3 remains valid if we sub-
stitute Q by any Q' C Q.

COROLLARY 1. Under the same hypotheses of Proposition 8 with d <
N + 1 replaced by d < N, then

e 070w (2., .57 451 )|

< C5<\f,Q|N+1 + HonV_TO_lLN—ro—1>
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for every (o, B) € Ty

PrOOF. Indeed, as in the proof of Proposition 3 all typical terms, ex-

cept 887\1;810‘85 wj, can be estimated by |- |y. Replacing wj, by one of
1, %,wkg—i, we have
ov ov ov ov
8 85 8048/3 _aaaﬁ 814—048/3
aw (wl) ow f 8'(1/2 1 Q(w) w f
ov \I’
By 108 (w8) = 5= 1Bt f+

‘I/ «
Bon Z ( ) (k=m+1)0(k —m~+1) (—m)Oa-m1+sf-

The terms 8‘1’ 80‘85]‘, v 81+°‘8ﬂf, Jus k0a,1+8f are estimated by
Cslf, QNt1- The last sum is majorized as in Proposition 3. [J

(continuing the proof of Theorem 5) Since G,y is elliptic if « # 0 it suffices
to consider the case (0,0) € 2 and 2 is a small neighborhood of (0,0). Let

us define a distance

max { [zF1 — | (k4 1)|ly — 0|}, for zu >0,
max {2F 1 + uF (K + 1)y —o|},  for zu <0.

pl(.0). () = {
For two sets S, 59 the distance between them is defined as

S1,82) = inf z,y), (u,v)).
p(S1,52) (x,y)€S1,(u,v)€Szp(( ), ( )

Let VT (T < 1) be the cube with edges of size (in the p metric) 27, which
are parallel to the coordinate axes and centered at (0, 0). Denote by V6T the
subcube which is homothetic with V7 and such that the distance between
its boundary and the boundary of V7 is §. We shall prove by induction that
if T is small enough then there exist constants Hy, H; with Hy > C4Hgk+3
such that

(16) £, Vil | < Hy for 0<n <6k+4,
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and

Hi\n—ro—2
(17) ‘f: V;ST‘TL < HO(Tl) Lnfr072
for n > 6k 4+ 4, and ¢ sufficiently small.

Hence the desired conclusion follows. (16) follows easily from the C°
smoothness assumption on f. Assume that (17) holds for n = N. We
shall prove it for n = N + 1. Put & = 6(1 — 1/N),8” = 6(1 — 4/N).
Fix (z,y) € Vi and then define o = p((z,y),0V?) and 6 = o/N. Let
Vz(x,y) denote the cube with center at (x,y) and edges of length 26 which
are parallel to the coordinate axes, and Ss(z,y) the boundary of Vz(x,y).
Note that ¢ > ¢, and Vi(z,y) C Vg Let Ep, E3(Es2, Ey) be edges of
Ss(x,y) which are parallel to Oz(Oy) respectively. We have to estimate
max(xyy)evﬁT‘Vaayg(af‘laglfﬂ for all (o, 8,7v) € Z1,(a1,61) € I'yy1, and
max(xyy)evéT‘(8f+a18§1f)‘ for all (a1,01) € T'nyy1,00 > 1,61 > 1. But
when (aq, 1) € I'y we have already the desired estimate. Hence it suffices

to obtain the estimate only for (a1,01) € I'nvy1\I'v. Let us abbreviate
g* 98 _pots

307 598 JgapP S (93,85 , 8385 , respectively.

LEMMA 2. Assume that (o, B,7) € 21 and (a1,01) € U'ny1. Then if
oy > 1,01 > 1 there exists a constant Ca3 such that

max T! +Oa,8 ((9f13§1f(x7 y))|

(:v,y)GV5
Hy\N-ro-1 . 1
Nl +H0<7> Ln—ro—1 (T’“‘H + E))

£ Vs

<Cay3 (T’“}fl

Proor. Differentiating the equation (1) oy times in x and ; times in
y then applying the representation formula (8) for Q = Vi (x,y) we have

0% 0P f(, ) = /V B 0 (A ) + Bl 0)dude
&\ T,y

_ / Fi(,y, u,0) B, (02008 f (u,v), k, —\)ds
Sg,(a:,y)

" / 50 F (u, 0) By(Fir (2 1, 1w, 0), k) s,
S&(xhy)
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where
Alu,v) = - mm%m} (m) 2 (2k 41— m)u OGO f
m=1 m
" min{kzlvo‘l} (al) (k= 1) (k — myub—1-mgo-masi+l f
m=1 m
and

B(u,v):—ﬁglagl‘ll<u,v, gf kgij)

Therefore differentiating 0, g gives

100,(071 05" f(2,9))
= / ’yaa,,@Fk:,)\(xay7u7v)(A(u7U) + B(uav))dUdv
Vz(2,y)

_/ ( )'yaa,ﬁFk,)\(x7yvua v)Bi(@,‘fl@flf(u,v),k,—)\)ds
7y

+/ AP (u, v) 10 5 By (Frx (0, Y, u, v), k)ds
(2,y)
(18) =: Il+[2+[3.

It is not difficult to show that

o

(19) |+0a,5F]yr< Coa “:c’““ —~

Indeed, (19) follows from the set of estimates on Vp

0 <p <1, max{|F{(p)|,|F5(p)|} < Cos(1 —p)~' < CosRRT",

_1
L [F2(p)|} < 0273%31 Y, 0< R < R< O,

‘M| :R_Tﬁ_zv maX{’%—Jf ; xkaa—]f } SCQQRiéa

max {|F1(p)

kapk-H
dy

I

max{’a ‘ ) k@p }<C’30R R~ 2’21227 max{‘a%};:l

(20) <C5n R 2k+2 .

uk+1|2+(k/’+ 1)2‘3/—1]‘2} g C’24R1_%
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Next we estimate A(u,v). Consider three cases
I) a; = 1. We have u2*=19' ™2 = 2=191(95™) with (0,81 + 1) € T'y.
Therefore we have

| A(u, )|

Hy\N-ro—2
) LN —ry—1.

< 032H0( 5

V& (x,y)

IT) 2 < ay <4k + 4. In this case we have $; < N — 3. If m = a3 then

B H{\N—ro—2
) <)
o Hi\N—ro—2
(21) ORIy < O ) N=ro=2

since (0,51 +2),(0,81+1) €e Tn_1. If 2 <y <2k+2 and m < oy then it
is easy to verify that (a1 —m—1,081 +2),(as —m—1,51+1) € I'y. Hence
by the inductive assumptions we have on Vz(z,y)

‘u2k—m831—m651+2f‘ S ‘81:5 (831_m_1851+2f) ’

< 035H0(%>N_T0_2

}uk—m—lagq—magﬁ—lf‘ < ‘8111 (831_m_1851+1f) {

N—rg—2;

H
(22) < 036H0< !

7)va"on

N—ro—2-

If 2k +3 < a3 <4k +4 and 1 < m < a1 we have the same estimates
for uzk*m831*m851+2f, uk*mflag‘lfmflﬁglﬂf as in (22), since (o —m —
1,ﬁ1+2),(0¢1 —m — 1,/61+1) e I'y.

If2k+3 < a; <4k+4 and m = 1 then a; —m > 4 and (a1 — 3,01 +
2),(a1 — 3,81+ 1) € Ty, with o —3 > 2,6, +1 > 2. Therefore if
we writes u2k_1831_1851+2f, uk_Qﬁfjl_l(?ngf as u%_l@g(agl_?’@gl”f),
uk=29? (83‘1_385 1 f), respectively, and use the inductive assumptions we
still have the estimate (22) for u%_lﬁfjl_la{?l”f, uk_2831_1851+1f.
Therefore combining (21), (22) yields

N—rg—2
[A(u,v) Y

H
< 037H0< 5 LN—ry-1.

Vs (I,y)
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III) If oy > 4k + 5 then we can write

uP OO f (u,v) = w9 TN () ).

ukfmflagq fmagﬁrlf(u’ U) — ukfmflag (agtl*mf?agﬂrlf(u, ’U)) y

where (o —m—2,614+2), (e —m—2,61+1) € ’nyy1—mand o —m—2 >
1,61 > 1. Therefore by inductive assumptions we see that

min{2k,a1}

o Hi{\N—-ro—m—1
<Css Y. (ﬁ;)Ho(é,l) Ly—ry—m—1

Vs (z,y) m=1

H.\ N—ro—2
< CSQHO(é_’l) ’

| A(u, )|

N—rg—1-
Hence in both cases we have

(23) Aluv) e

< C40H0(7

N—rog—1-
V&(x7y)

On the other hand, from Corollary 1 and the inductive assumption we have

e Buol| < C(AVEve () In).

E

Vs (x’y)

Combining (19), (23), (24) we obtain

Hy\ N—ro—1
‘Il‘ S C41<|f7 ‘/;5,1’1|N+1 + HO( 1) LN—T’()—l)

K
_1
(25) x/ [!xkﬂ —uk+1‘2+(k‘+1)2|y—v|2] * dudv
V&(Izy)
1 Hi\N—-ro—1
<CpTT (|f, Vsl |41+ Ho (%) ’ LNfr071>~

A) Let us now estimate the third integral in (18). Consider two cases:

1 1
1) |z| < (26)% 1. It is clear that |u| < 3% on Ss(x,y). We have the
following estimate

(26) | 00,8 X1 Fr 5|
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Indeed, (26) results from the following set of estimates on Sz(x,y)

max{|F(p)|, |F'(p)|,|F"(p)|} < Cus if 2u <0,
0<p<Cys<1if zu>0
= max{|F(p)|, ‘F’(p)|, ‘F”(ZJ)H < Cye if zu>0,

max {| 20 | maM oM mk?j\}g%g—;,

max {| 221, |u ’“gf; V< CusRi RO,

|M|:Rim Ci&? <R, 0< R <R < Cs6%,

ma { 8x8u’ u kgig)")xkgzau‘ & kgygi‘} < s R %53,
(27)  max { aizguH 8m6v‘ & ayau‘ ja* kaiapv‘} < CoR™ 7.

Since a; > 1 we can write 831851f(u, v) = 0} (831_18§1f(u,v)). Therefore
we have

C53HQ H N—-1-rg
( > N—rg—1

<
(28) 14 :

1

1
2) |z| > (26)k+r1. We then have zu > 0, |u| > 27k+r1|x| > g+ on Si(x,y).
In this case p is not bounded away from 1 as in (27) hence the estimates in
(27) for F(p), F'(p), F"(p) are not necessarily true. But we use the following

set of estimates

1 1
CsyR7+2 < |u| < Cs5RZ+2, C566° < Ry < C5762, 562 < R,

_1
(29)  [F(p)| < CsoR2R, 2, |F'(p)] < CooRR;", [F"(p)| < Cer R* Ry,

and the estimates in (27) (except the estimates for p, F'(p), F'(p), F" (p)) to
deduce that

(30) +0a,3X1 Fi 2
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It implies that

| (902" f (4, v)) 100,51 P

Sz (z,y)
k a1 9061 'Vaang{Fkv/\
= | b (0 0 f(u,v)) LTI
S&(l’,y)
Ce3 k qon 58
< 190 .
< r x| Wropal )|

On the other hand ukaﬁlﬁglf(u,v) = uFo} (83165171]”(%1))). It follows
that

(31) |I3] < Cégq f: V:S/ ’N‘/ (v1 +iu Vg)ds‘
()

CesHo r HI\N—1-70
= <_) N=ro—t

B) We now estimate the second integral in (18).
1) We first estimate the integrals along the edges Eo and Ej. Integrating
by parts gives

| / 1003 Fi B (03 00 £, e, ~N) vl
E>UEy4

< Cg6 ‘/ aang)\)B/(aalaﬁl 1f,k )\)dv’
EQUE4

OEsUOE, )

’fa VgﬂN CgsHo s Hi\N—r0—1
S ( ) N—ro—1
6-06) = H \%

| O Fin B (01051 £, =)

< Cgy

2) We now estimate the integrals along the edges F; and F3. Integrating
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by parts gives

| / 10a,Fi B (03 00 £, i, =) dul
FE1UFE3

< / A = K|, Oa,p Fioa|[u* 051 07 fldu
FE1UEs

+ ‘ / +Oa,pFi ("0 1O f — uogr o)t f)du‘
FE1UEs3
< 069 <‘/ 8&(78&5}7}67/\) (Zukag‘l 851]" — “2k831_1851+1f) du’
F1UE3
bl (12500 ] + a0 04
FE1UEs

OFE1U0FE3 >

|2 Ou g P (10 00 £ — uto 101 )

’f»V;”N CrnHy s Hy\N-ro—1
< < > N—ro—1

6-6) = H \6§

< (o 5

Therefore we deduce that

(32) 12| <

CroHy ( Hi\N-ro-1
Gty MYty

1 o

We complete the proof of Lemma 2 by combining the estimates (18), (25),
(28), (31), (32). O

LEMMA 3. Assume that (o, 3,7v) € Z1. Then there exists a constant
C'73 such that

max ’7(9@75 (aé\““lf(x,y))’

(xyy)evéT
Hl N—-ro—1 1 1
v T Ho <7) Ln—ro—1 (TW + E>> '

T
f"/é//

<Cr3 (T’“lfl
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Proor. 1) |z| < (25)#1. Instead of Vz(z,y) we take the cube
Vis(z,y). As in Lemma 2 the following formula holds

’yaa,ﬁ(aé\urlf(may)) = /V (25) ‘yaa,,@Fk:,)\(xay>u7v)B(u7v)dUdU
462,y

- /S G SR AC s (TR
45\T,Y

+ / 81])V+1f(u, v)Wﬁa,ﬁBé(FkM\(:r, Yy, u,v), k)ds
S45(I,y)
(33) =: Iy + Is + Is,

where

aN—H af kg)

B(u,v) = —W\Il(u,v,f,%,u e

Since Vys(z,y) C V:g;, as in Lemma 2, we have

1 Hi\N—ro—1
[I4| < CraTHH (\f7 Vi N + Ho(%) LN—m—l)-

We now estimate I, I in (33).

A) First consider the integrals along Eg and E4, where Eg, E4 denote the
edges of Syz, which are parallel to Oy. We note that |u| > (2&)’@%1 on
E», Ey.

1) To estimate Ig, as in Lemma 2, we note that

ONTLE) L0, s BYF)
| (0N F) O p B Fi b

C
=G
EoUE,

with (0,1,k) € E; and (0, N) € I'y. Therefore

Cr6Ho r HH\N—1-70
<_) N—-ro—1-

‘/ _ atj)vﬂfvaa,ﬁBé(Fk,,\,k)dv’ <=5 5
FEoUE,4 1

2) As in Lemma 2, integrating by parts gives the following estimate for I4:

‘/~ _ vaoeﬂFk:,/\Bi (afjvﬂf,k, f)\)dv‘ <
EoUEy

N‘f7 ‘/51’:‘1\7 < CrsHy (Hl)N*TO*l
7 5 > H1 5 N—ro—1-
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B) Consider now integrals along the edges E’l and Eg, where El, Eg denote
the edges of S5, which are parallel to Ox.
1) To estimate I, as in Lemma 2, we have

Cr9
OusX(Fial|, <2 ana
\7 0,841 k,A‘EIUEB and  |ul

— k+2

O k+1 E~'1UE~3

Hence we get

/ B 8{,\7“f78a75B§Fk7,\du

F1UFEs
LV CsoHy / Hy\N-r0-1
‘76{/ ~du§ﬂ<_1) " 1.
(6 — &")wr1 JEUEs Hy \¢

/ _ uk@% (djjvf) VaaﬂX{Fky,\du
FE1UEs

< Cyi

2) To estimate I5, we first note that
wFON T f 4+ ida T ON T = G\ (0 F) — 0300 f
=0, (Giaf) — 020, f

of of
_ _gN k 924N
= —0, \I/(u,v, ,—au,u _811) 050, f.

It implies that

(34)

/ 0, sFr 2B (Qﬂvﬂf, k,—\)du
FE1UE3

< +

/ _ u*0,(9) £) 500,500 Fi adlu
F1UFE3

/ 81]}\[\1/ fy(’“)aﬁFk?)\du
E1UE3

_|_
OE1UOFE3

+ ‘ukﬁi (81],Vf) »yaaﬁFk’)\ /~ } 85 (811&81{\’]‘) W&mFmdu .
FE1UEs

By Proposition 3 and the inductive assumptions the first three terms in the
right hand side of (34) can be estimated by

083’f7 ‘/(Sjlj‘N CgaHy s Hi\N—m0—-1
77 < (_) N—rg—1-
5—% o \s
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To estimate the last integral in the right hand side of (34) we again integrate
by parts:

| 0@ 1) P Fendu
FE1UEs3

< + B}L@f,\’fﬁaﬁFk,A

| 00 f 00k Fadu
EyUES OF1U0E;
N NYE

< Css|f, Vin|n (; + /E y d“’)
1 3

CS6H0<H1)N—TO—1
< — | — Ln_;_1.
< s Nero—1

1
O'1+k_+1

IT) |z|] > (26)%1. We now consider the representation formula for
Gévﬂf(x, y) in Vz(x,y). As above, the volume integral can be estimated by

1 H\N—-ro—1
CgrT'F+1 (\f, Vo N1+ (—1> Lmefl)-

6
For the boundary integral we again split into 2 cases:
1
A) First we estimate the integral involving Bj. Since |u| > F&+1
Ss(x,y), as in Lemma 2 we obtain the following estimate

on

‘/ 81{V+1f76a’ﬁB§(Fk’,\,k)ds‘ < CEEHO(%)N T L
Sz (z,y) 1

B) Now we estimate the integral involving B]. Along F; and E; we can
estimate exactly as in Lemma 2.

Consider now the boundary integral along £y and F3. As in this Lemma
I) B) 2) we have

N—rg—1
<C’89Ho ﬂ) o o

I (aN+1 _
/E oy OaFaBL (O T N du| < = (=

This completes the proof of Lemma 3. [J
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LEMMA 4. Assume that (a,3,7) € Z1. Then there exists a constant

Cgo such that
max | 10a5(07 " f(2,y))|

(xvy)evﬁ
1 Hi\N—ro—1 1 1
<Coo (T'““ £ Ver | + Ho (%) LN-—ry—1 (T +T 4 E>>

ProOOF. We have the following representation formula for
100,6(0) T f (2,y)) in Vs (2, y):

0,01 Ot f(2,y))
_ / 03 Fin (2, .10, 0) (A, 0) + B(u, v))dudy
V&(Ivy)

— / +Oa3Fix(,y,u,v)B] (a{f*m“f(u, v), k, —)\)ds
S&(I7y)

[ O w0) Dup BB, . 0). s
S&(I7y)

(35) =: I; 4+ Ig + Iy,

where

min{2k,N—ro+1}
N — 1
A(u,v) = — Z < ;?—'— >2k~-~(2k:+1—m)
m=1

% u2k—mai\f—m+l—magf

min{k—1,N—ro+1}
N — o + 1
_ 1) (ke —

i m; < . )(k: )+ (k—m)
% ukflfmagfro+lfmaif,

and

B(u,v) = —QZLV*TOJrl\I/(u,U, ,g—i,uk%)

Therefore, as in Lemma 2, the first integral in (35) is estimated by

1 Hi\ N—ro—1
CorTw+1 (\ﬁ Ve | N+1 +Ho(71> LN—ro—l)-
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I) For Iy, as in Lemma 2 A), we have the following estimate

ON oL f 0 By (Fix, k)ds
S&(Z‘,y)

CooHp s Hi\ N—ro—1
< 92 0(71> LN—ro—l-

H,y

IT) Now we estimate Ig.
A) We first estimate the integrals along F2 and F4. Note that

(0 +iu"0y) (0 0% f)

= (0y + ")) (0, — iw*oy + uk0y) (8) T f)

= O, (i) Tt — w00 4+ G\ (08T f)
— it 0, f

min{2k,N—r¢} N1
— _9N-Toy — T ok(2k — 1) (26 — 1
0, S (V) @k me )

m=1
% u2k—m87i\f—r0—magf
min{k—1,N—ro}

N —
— QA > < TO)(k—l)(k—Q)...(k—m)
m=1 m
uk—m—lai\/—m—ma})f
+ 0y (k) Tt —uPR oY TO0N) f—idut IO 00, f
=: 0 (o) ~rott — 9N T09l) f + L.
By the inductive assumptions, Proposition 3, and the condition N > 6k+4,
it is easily seen that

Ho s Hy\N-r0-1
<C ( ) Ly v 1.
LUE, 93H1 5 N—rg—1

Therefore integrating by parts gives

/ 00,5 Fu B (O £k, —\)dv
EoUEy

Hy\N-ro—1
Ly
H1< 5 ) N=ro—1

< Coq
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+ ‘ / (10, (N0 f) — u? 0L (O "0 0L F)) 40,3 0p Fy rdv
FEoUFE,

+ | (koY ot = wOYT09)) £ 400

OF2UOE,
H(] <H1>N—7’0—1
H,

< Cos 5

N—rg—1-

B) The integrals along £ and E3 now can be estimated in the same manner
as in Lemma 2. [J

LEMMA 5. Assume that (a1,01) € Tn41\I'n,o1 > 1,61 > 1. Then
there exists a constant Cog such that

max_| (077205 f(x,y))]

(w,y)GvéT
H{\N-ro—1 1 1
N+1 +H0<7> LnN—ro—1 (Tk'*'l + E))

<Cos (T’“}fl |V

Proor. Differentiating 8?185 ' the equation (1) we obtain

(36) 02(0M 05 f(x,y)) = —01 05 W(x,y, f, I f,z"8sf)

min{2k,a }
- > (m)%(% — 1) (2k — m+ Doy N f(w, y)
m
m=0
min{k—1,a1}
—in Y (Z;) (= 1)k = 2) - (k = m)a* 1P "0 f (2, y)
m=0

= —J1 — J2 — J3.

By Corollary 1 and Lemmas 2-4 we see that

_1
(37) ‘J1’ §097<Tk+1‘f7‘/57;}]\/+1
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To estimate .Jo, J3 we consider two cases:
I) (6751 S To-
A) For m < « the typical terms

z,y)

r,y), T

x2k—maix’127m,,31 +2f(

k—m—laalfm,ﬁl +1 f(
1,2

in (36) can be rewritten as
2o (TR ), af T o (BT f (2, )

with (o —m—1, 1+2), (cy —m—1, 1 +1) € I'yy1. Hence by the inductive
assumptions and Lemmas 2-4 we have

min{2k,a; —1}

g::o <(:T1>2k(2k_1)"-(2k—m+1)

% ka—mafz1*maQﬁ1+2f(m’ y)‘

min{k—1,a7—1}

+‘M n; (2>(k—1)(k—2)---(k—m)

% xk—m—lalalfm82,31+1f(x7 y)‘

HO Hl N—T‘()—].
Ni1 T o <7> Ln_—ry-1 |-

B) m = a;. By Lemma 3 we have

1
= T
(38) < Cog <Tk+1 | f, Vi

max{|z2 oY f(w,y)|, [0S (@ y) [}
HO Hl N—’I’()—].
v g, <7) LN—ro—1

since (0, 51 +2), (0,51 +1) € Iy
Combining (38) and (39) we deduce that

H H N—rg—1
T 0 1
f7 V:S”'N-i—l + E <T) LN—T‘()—I).

1
= T
(39) < Cyo (Tfm | f, Vi

(40) | Jo| + | J3] < Choo <T
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IT) a3 > 2k + 3. In this case we have a; —m > 3.

A) m = 0, then kaafi%’ﬁle(x,y), afk*l@iljﬁl“f(x,y) in (36) can be
rewritten as x2K9? (8?712_2’51+2f(x, Y)), k=192 (8(1)"12_2’ﬂ1+1f(x, y)) with (c1—
2,01+2)€lNy1, (a1 —2,61+1) ey and a; —2 > 1,5, > 1. Hence

1Oy ()| = [0 (PP ()|

HO Hl N—rg—1
< CIOIE <7) LN_ry—1,

(41) |02 f (2, y)| < TF |02 (0052042 (2,) .

By m > 1, a1 < 4k + 3, then wzk_mai{m’ﬁlﬂf(m,y),

xk—m—lgflz_mﬁl“‘lf(z,y) in (36) can be rewritten as

PR Oy T f () 0T (0T f ()

with (e —m—2,81+2), (a1 —m—2,61+1) e [y and oy —m—2 > 1,3, > 1.
Hence by the inductive assumptions we obtain

min{2k,a1}

> (‘2) 2h(2k — 1) -+ (2k —m + 1)z?mo "m0 T2 £ (1 4))
m=1
min{k—1,a1} o
+ |ix mZ:l (ml>(k—1)(k—2)---(k—m)

% xk—m—la?lfma§1+1f(x’ y)

H H N—rg—1
(42) < ClOQF(l) <71> Ln_ry—1.

C) m>1,a1 > 4k + 4, then

2k—maf112*m,,31+2f( k—m—l@?g*m,ﬁ1 +1 f(

r,y)

x x7y)7x

in (36) can be rewritten as

PR o7y T f () 0T (0 TR f ()
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with (g —m—2,614+2), (a1 —m—2,61+1) € Tnyy1—m and oy —m —2 >
1,61 > 1. Hence by the inductive assumptions we have

min{2k,a1}
> (Onj> 2k(2k — 1)+ (2k — m + 1)z ~m9P O f(x,y)
m=1
min{k—1,01} o
s e eon

% xk_m_lﬁfl_m851+1f($, y)

H H N—’I’O—l
(43) < 0103F(1) <71) Ln_ry—1.

Combining (41), (42) and (43) we see that

1 o
(44) | J2| + |J3| < Croa (T’““ ‘512 (31,12 2”81+2f($7y))‘

HO Hl N—rg—1
0=t Ln_po_1].
+H1<6> N—ro—1

By (36), (37), (40), (44) we deduce that

max max | 0%(8005" f(x,y
(041,51)EFN+1\FN (w,y)€V5T| 1( 1 2 ( ))‘
a1>1,6121

1
< CrosTH+H max max | 62(o™ aﬁ1f .y
(QI:BI)GFN+1\FN (fﬁ,y)GV(ST‘ 1( 1 2 ( ))‘
a1 >1,61>1

_1
(45) + C1o6 (T’““ |/, Vﬁ }N+1

H1 N-ro—1 1 1
Hy (2L Ly (Tk : —) .
- 0< 6 ) Nero=t o Hy
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k+1
Finally, in (45) choosing T' < (;) yields

2C106
max max | 2 5a13ﬂ1f 2y
(al»ﬁl)erN+1\FN (937y)€V6T’ 1 ( 1 2 ( ))‘
a1>1,61>1

T
fu‘/:y’

N—rg—1
< Cyor | TF (1 L T L
< Clor Ni1 T 4o s N—r0—1< + H1> .

This completes the proof of Lemma 5. [

(continuing the proof of the Theorem 5) Put | f, Vil |[y11 = ¢(§). Combining
Lemmas 2-5 gives

9(8) < Ciog (T’*lg(é (1 - %))

Hy\ Vot 1 1
Hy (2L Ly (Tk ; —) .
* 0( 0 > N=ro=t o H,

Choosing T' < (1/10120108)k+1 then by Lemma 1 we deduce that

H,y

N—rg—1 L 1
< 3 kFT — .
9(6) < ChrooHo ( s > LNn_ro—1 <Tk+1 + Hl)

If T is chosen to be small enough such that T' < (1/20109)k+1 and choosing
Hy > 2Chg9 (in addition to Hy > C4H§k+3 ) we arrive at

H N—rg—1
g(6) < Hy <71> Ln_7y-1-

That means

T Hl N—T’()—l
\f, Vs [Ny < Ho <7> LN _ry-1-

The proof of Theorem 5 is therefore completed. [
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§3. Case k is Even

In this case we will prove a similar result as in §2 for A = 2N (k + 1),
where N is an integer, by establishing the explicit fundamental solutions of
Gran(k+1)- Let us maintain the notations used for p, Ay, A_, M, Fy y, ...
from the very beginning of the paper (now, of course, with an even k).
If (u,v) # (0,v) is fixed then the real parts of Ay, A_ change sign when

k4+X k=)

(z,y) passes through (—u,v). Therefore M = A,***2A_***2 may have
singularities alone the half-line (z,v) with x < —u for an arbitrary complex
number A. But if A = 2N (k + 1), then it is not difficult to see that M =

_k4x k=)
AL P2 A2 s smooth alone the half-line (z,v) with < —u, that is

M(-, -, u,v) € C®(R2\{(u,v),(—u,v)}). Moreover when k is even and u # 0
we have —oo < p < 1. More precisely, p — 1 when (z,y) — (u,v), and
p — —oo when (x,y) — (—u,v). If N <0 and p — —oo then we have the
following asymptotic expansions (see [5], p. 63)

k k k )

r :F(i—N,i N,
1(p) % + 2 kr2 VU Er?P

), {(—pr%’iﬂ

B k k

(ot +N) {05 + N)
(2kﬁ2+N+”>F(%+N+”)

>
=0T (ks = N)T (555 = N)nl(n + 20!

2N—1 (2k+2 N+n)F(2N—n) p"},

p~"[log(—p) + an]+

k
_|_ —p 2k+2+N E

k
=0 Dot — N)D(5k5 + N —n)n!

2k +2 "2k + 2 "k+1
() {(—p) BE-N
o k2 k2
r(g3+N) \0(42 +N)

Fg(p):F(k+2 k+2 k+2,p)
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k42 &
XZ (2kiz+N+n)F<m+N+n>
n= 0F(k+2 N)F(L_N)n!(n+2]\7)!

p~"[log(—p) + bn]+
2k+2 %12

k+2 2N-1 F(Z’Z% _N+TL>F(2N_n) _n}
b )

+(—p)_2k+2+N Z
k+2 k42
n=0 F(zl:ﬂ N>F(ﬁ+N—n)n!

where

W(
w<2k:+2 +”)—¢(2k112—2z\7_n)7
(142N +n)+ (1 +n)
(s

k42

- 2N +7) - o ~2N - )
(0 + +n)—Y T n

and (z) = % is the polygamma function. Therefore if we choose the

expressions for constants C1,Cy as in the beginning of the paper (with A

replaced by 2N (k+1)), we will have Fy, o (41) (%, y, u, v) € C°(R?\(u,v)),

with  Fyon(41) (=%, v,u,v) = 0. Similar conclusions hold for

Fron(er1) (@, y, u,0) when N > 0. If N =0, then

% (2@;;?(2%; Do v
= (5 £ ) -
: Z %;:g )?(I;k(kj:k;;,)? “"[log(—p) + dy)
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where

Cn :2w(1+”)_w<2k112 +”) _‘Z’<2ki2 _”)’

dn =20 (1 +n) = w<2kk122 + ”) - w(fkﬁ - ”)

Hence Fyo(z,y,u,v) € C°°(R?\(u,v)), with

km
COt 2k+2

4k

Fro(—u,v,u,v) =

THEOREM 6. Let ¥ € C{L, o 2;9Q|Ly_q_2;R3} for every a € [0,70).
Assume that m > 2k* + 6k +5,\ = 2N(k + 1), and f is a H".(Q) solu-
tion of the equation (1). Then f € C{Lyp_r,—2;Q}. In particular, if ¥ is
G*—function (or analytic) of its arguments then so is f.

PrROOF. Almost all the arguments used for the case when k is odd can
be applied here. Therefore we only give the sketch of the proof. Instead of
the distance p in §2 we use the following metric

pl((u,v), (x,y)) = max {|karl — P (k4 1))y — U]}

To establish (19) we consider 3 cases:
If 0 < p <1 then we use (20) to deduce (19).
If =1 < p < 0 then we have the following set of estimates:

zu <0, [4zF M < R, max{|z], |ul} < 0110R2k1+2, |M| = R‘ﬁ,
0 _
2_1R1 < R < Ry, max{‘a ’ } kP }SCHIR 2k1+2’
x

OM | | 1OM

HlaX{’F(p)’, ‘F/(p)’} < Chi9, max{‘a—x , o9

} < CisR2,
If p < —1 then by using asymptotic expansions of F(p) we have

k
wu <0, R< Wb 9 u| < [af < 2lul, M| = R,

0114R2k+2 < mln{\mf |u|} < max{\m] |u|} < 0115R2k+2,
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| Py onrerny| < Criez ™™,

- { ’ OFy oN (k41)

1k OF L oN (k1)
X
ox

dy

9

‘} < Cpypz kL

Next we note that the estimate (26) is still true. Indeed, if 0 < p <1 then
the part of (27), which relates to the case 0 < zu, can be used to deduce
(26). If —1 < p < 0 then we use 62 < Ry < 2R < C11362 together with the
part of (27), which relates to the case xu < 0, to obtain (26). If p < —1
then we have

1 1
zu < 0, Cr1oR{™? < min{|z|, |ul} < max{|z|,|u|} < Ci20R{*,

| Fron(esny) < Crau™,

OFon(k+1) | | 1 OFk2N(k+1) k-1
T myaVNRT L) A e S e < T
max{ 30 ), u o ‘} < Ciu ;
PFyonet)| | 1 Fran(e+1) k
) ) < —k=2
max{ 0xou ’ 0zOv } < Cragu ’

9 2
Ch1246° < Ry < C12507,

e 1 FLan(et)
Oyov

O%F,
k k2N (k+1)
max{ x 7@y8u

Y

} < Chagu 72

Finally the set of estimates (29) and therefore the estimate (30) remain
unchanged since we have 0 < zu (or 0 <p <1.) O
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