Real Shintani Functions on $\mathrm{U}(n, 1)$ III, Construction of Intertwining Operators

By Masao Tsuzuki

Abstract

We study an integral transform on $\mathrm{U}(n, 1)$ (Poisson integral) in detail. As an application, we obtain a precise formula of the dimension of the space of $\mathbf{U}(n-1,1) \times \mathbf{U}(n, 1)$-intertwining operators from an irreducible admissible representaion $\pi_{0} \boxtimes \pi$ to the space of smooth functions on $\mathrm{U}(n, 1)$ in several cases including when π_{0} and π are large discrete series of $\mathrm{U}(n-1,1)$ and $\mathrm{U}(n, 1)$ respectively.

0. Introduction and Basic Notations

0.1. Introduction

This is a continuation of [10]. We consider the problem to determine the space of $\mathrm{U}(n-1,1) \times \mathrm{U}(n, 1)$-intertwining operators from an irreducible admissible representation $\pi_{0}^{\vee} \boxtimes \pi$ of $\mathrm{U}(n-1,1) \times \mathrm{U}(n, 1)$ to the space of smooth functions on $\mathrm{U}(n, 1)$. Such an intertwining operator is called a Shintani functional (for $\pi_{0}^{\vee} \boxtimes \pi$) and the totality of Shintani functionals is denoted by $\mathcal{I}\left(\pi_{0} \mid \pi\right)$. We give a way how to construct non-trivial Shintani functionals making use of an integral transform. As a result we obtain a multiplicity one theorem of the space of Shintani functionals in several cases (section 6). We shall explain contents of this paper. The first three sections are preliminaries. In section 4, we introduce an integral transform, whose study is a main theme of this paper. We may call our integral transform the Poisson integral in analogy with the one which appears in the theory of the affine symmetric spaces ([7], [8] and [3]). Let P_{n} be a minimal parabolic subgroup of $\mathrm{U}(n, 1)$ and P_{n-1} that of $\mathrm{U}(n-1,1) \subset \mathrm{U}(n, 1)$. It turns out that the double coset space $P_{n-1} \backslash \mathrm{U}(n, 1) / P_{n}$ has three elements among which there exists a unique open one (Proposition 4.1.1 and Remark 4.1.1). The explicit determination of the open double coset in $\mathrm{U}(n, 1)$ (Proposition 4.1.1)

1991 Mathematics Subject Classification. Primary 11F70; Secondary 22E46, 33C05, 11F67.
enables us to have a $\Delta \mathrm{U}(n-1,1)$-invariant distribution which belongs to a principal series representation of $\mathrm{U}(n-1,1) \times \mathrm{U}(n, 1)$, when the radial parameter of the principal series is sufficiently 'positive' (Theorem 4.1.1). In 4.2 we examine the asymptotic behavior of the Poisson integrals at 'infinity' and evaluate them for the corner K-types making use of the differencedifferential equations obtained in [10]. To have a non-trivial intertwining operator outside the domain of convergence of the Poisson integral, we have to obtain an analytic continuation of the intertwining operator defined by that integral. We first evaluate explicitly the integral for a corner K-type; then using the differential equations in [10], by an induction on the 'size' of the K-type, we prove that the Poisson integral for a vector with a fixed K-type is expressed in terms of the Gaussian hypergeometric series up to a polynomial factors to know its meromorphicity (Theorem 5.1.1). In section 6 , using Theorem 5.1.1 and the result of [10], we give a sufficient condition for the space $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ to be one dimensional (Theorem 6.1.1). Moreover we obtain a precise formula of $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)$, which is 1 or 0 as we already showed in [10], when π_{0} and π are principal series or discrete series (Theorems 6.2.1, 6.3.1, 6.3.2 and 6.3.4). For technical reasons, we discuss in this paper the intertwining space $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ mainly which is not the one $\mathcal{I}_{\eta, \pi}$ studied in [10]. We have a theorem which ensures that these two different intertwining spaces are isomorphic. In the final section we formulate and prove that theorem (Thereom 7.1.1).

0.2. Basic notations

For a \mathbb{C}-vector space V, V^{\vee} denotes the algebraic dual space of V, $\langle\rangle:, V \times V^{\vee} \rightarrow \mathbb{C}$ the natural bi-linear form and I_{V} the identity map of V. For finite dimensional \mathbb{C}-vector spaces V and W, we identify $(V \otimes \mathbb{C} W)^{\vee}$ with $V^{\vee} \otimes_{\mathbb{C}} W^{\vee}$, and $V^{\vee \vee}$ with V by means of the canonical isomorphisms. The Lie algebra of a Lie group G is denoted by the corresponding Germann letter \mathfrak{g}. For a (\mathfrak{g}, K)-module (π, V) with K a compact subgroup of G, its contragredient is denoted by $\left(\pi^{\vee}, V^{\vee}\right)$.

For a positive integer n, let $\mathbb{C}^{n}=\mathrm{M}_{n, 1}(\mathbb{C})$ be the space of all column vectors of degree n. We naturally identify the space $\operatorname{End} \mathbb{C}\left(\mathbb{C}^{n}\right)$ with $\mathrm{M}_{n}(\mathbb{C})$ by letting a matrix $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n+1} \in \mathrm{M}_{n}(\mathbb{C})$ operate on $x=\left(x_{i}\right)_{1 \leqslant i \leqslant n} \in$ \mathbb{C}^{n} as $A x=\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)_{1 \leqslant i \leqslant n} \in \mathbb{C}^{n}$. We write I_{n} for $\mathrm{I}_{\mathbb{C}^{n}}$. For positive integers p and q, we write $\mathrm{O}_{p, q}$ the $p \times q$-matrix whose entries are all zero.

For a smooth function f on a Lie group G with its values in a topo-
logical vector space, put $R_{X} f(g)=\left.\frac{d}{d t} f(g \exp (t X))\right|_{t=0}$ (resp. $L_{X} f(g)=$ $\left.\left.\frac{d}{d t} f(\exp (-t X) g)\right|_{t=0}\right)$ for $X \in \mathfrak{g}$. Extended action of the universal enveloping algebra is also denoted by R (resp. L).

For a finite dimensional \mathbb{C}-vector space $W,\|\cdot\|$ denotes a norm on W.

1. Preliminaries

1.1. Lie groups, Lie algebras and representations of compact groups

Let $n \geqslant 2$ be an integer. Let $\mathrm{e}_{i}, 1 \leqslant i \leqslant n+1$ be the standard basis of \mathbb{C}^{n+1}, i.e., $\mathrm{e}_{i}=\left(\delta_{i j}\right)_{1 \leqslant j \leqslant n+1}$. Put $(\mathrm{x} \mid \mathrm{y})=^{t} \overline{\mathrm{x}} \mathrm{w}_{n} \mathrm{y}$ for $\mathrm{x}, \mathrm{y} \in \mathbb{C}^{n+1}$ with $\mathrm{w}_{n}=\operatorname{diag}\left(\mathrm{I}_{n},-1\right)$. Let G_{n} denote the Lie group consisting of all automorphisms of \mathbb{C}^{n+1} preserving the Hermitian form $(\mathrm{x} \mid \mathrm{y})$, that is

$$
G_{n}=\left\{\left.g \in \mathrm{GL}_{n+1}(\mathbb{C})\right|^{t} \bar{g} \mathrm{w}_{n} g=\mathrm{w}_{n}\right\}
$$

We define subgroups K_{n}, A_{n} and M_{n} of G_{n} as

$$
\begin{aligned}
K_{n} & =\left\{\operatorname{diag}\left(k_{1}, k_{2}\right) \mid k_{1} \in \mathrm{U}(n), k_{2} \in \mathrm{U}(1)\right\} \cong \mathrm{U}(n) \times \mathrm{U}(1), \\
A_{n} & =\left\{\left.\mathrm{a}_{n}(r)=\operatorname{diag}\left(\mathrm{I}_{n-1},\left(\begin{array}{rr}
\operatorname{ch}(r) & \operatorname{sh}(r) \\
\operatorname{sh}(r) & \operatorname{ch}(r)
\end{array}\right)\right) \right\rvert\, r>0\right\} \cong \mathbb{R}_{+}^{*}, \\
M_{n} & =\left\{\mathrm{m}_{n}(x, u)=\operatorname{diag}(x, u, u) \mid x \in \mathrm{U}(n-1), u \in \mathrm{U}(1)\right\} \\
& \cong \mathrm{U}(n-1) \times \mathrm{U}(1)
\end{aligned}
$$

with $\operatorname{sh}(r)=\frac{r-r^{-1}}{2}, \operatorname{ch}(r)=\frac{r+r^{-1}}{2}$. The normalizer M_{n}^{*} of M_{n} in K_{n} coincides with $M_{n} \cup \mathrm{w}_{n} M_{n}$ and the coset $\mathrm{w}_{n} M_{n}$ gives the non-trivial element of the little Weyl group M_{n}^{*} / M_{n}. Let Z_{n} be the center of G_{n}.
Let P_{n} be the stabilizer in G_{n} of the line $\mathbb{C} \cdot\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) ; P_{n}$ is a minimal parabolic subgroup of G_{n} having $A_{n} M_{n}$ as a Levi subgroup. Let N_{n} denote the unipotent radical of P_{n} and put $\bar{N}_{n}=\mathrm{w}_{n} N_{n} \mathrm{w}_{n}^{-1}$.
The map $i_{n}: G_{n-1} \ni\left(\begin{array}{ll}x_{11} & x_{13} \\ x_{31} & x_{33}\end{array}\right) \rightarrow\left(\begin{array}{ccc}x_{11} & 0_{n-1,1} & x_{13} \\ 0_{1, n-1} & 1 & 0 \\ x_{31} & 0 & x_{33}\end{array}\right) \in G_{n}$ gives an isomorphism from G_{n-1} onto the stabilizer of the vector e_{n} in G_{n}. In what follows we identify G_{n-1} with $i_{n}\left(G_{n-1}\right)$.
We parametrize the irreducible representations of K_{n} and M_{n} as in [10, Section 3]. In particular, any irreducible finite dimensional representation
of K_{n} (resp. M_{n}) is isomorphic to one of τ_{λ} 's (resp. σ_{μ} 's) with $\lambda=\left[\mathbf{l} ; l_{0}\right] \in$ $\mathcal{L}_{n}^{+}=\Lambda_{n}^{+} \times \Lambda_{1}$ (resp. $\left.\mu=\left(\mathbf{m} ; m_{0}\right) \in{ }^{\circ} \mathcal{L}_{n}^{+}=\Lambda_{n-1}^{+} \times \Lambda_{1}^{+}\right)$in the notation of [10, subsection 3.2]. If we want to emphasize the dependence on n, we also write τ_{λ}^{n} for τ_{λ} and σ_{μ}^{n} for σ_{μ}. Let $\mathbf{l} \in \Lambda_{n}^{+}$and $\mathbf{m} \in \Lambda_{n-1}^{+}$with $\mathbf{m} \subset \mathbf{l}$ ($[10$, 3.1]). Then we have the $\mathbf{U}(n-1)$-projection $\mathrm{p}_{\mathbf{m}}^{1}: W(\mathbf{l}) \rightarrow W(\mathbf{m})$ and the $\mathrm{U}(n-1)$-inclusion $\mathrm{j}_{\mathbf{l}}^{\mathbf{m}}: W(\mathbf{m}) \rightarrow W(\mathbf{l})([10$, Lemma 3.1.1, Lemma 10.1.1]). For $\mathbf{l}=\left(l_{j}\right)_{1 \leqslant j \leqslant n} \in \Lambda_{n}^{+}$, put $\check{\mathbf{l}}=\left(-l_{n+1-j}\right)_{1 \leqslant j \leqslant n}$. We have $W(\check{\mathbf{l}}) \cong W(\mathbf{l})^{\vee}$ as $\mathrm{U}(n)$-module.
For $\mathbf{q} \in \Lambda_{n-2}^{+}, \mathbf{p} \in \Lambda_{n-1}^{+}$and $\mathbf{l} \in \Lambda_{n}^{+}$, we put

$$
\begin{aligned}
& \Lambda_{n}^{+}(\mathbf{p})=\left\{\mathbf{k} \in \Lambda_{n}^{+} \mid \mathbf{p} \subset \mathbf{k}\right\} \\
& \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})=\left\{\mathbf{m} \in \Lambda_{n-1}^{+} \mid \mathbf{q} \subset \mathbf{m} \subset \mathbf{l}\right\}
\end{aligned}
$$

1.2. Haar measures

For an element $g \in G_{n}$, we can write it as

$$
g=\nu_{n}(g) \alpha_{n}(g) \kappa_{n}(g), \quad \nu_{n}(g) \in N_{n}, \alpha_{n}(g) \in A_{n}, \kappa_{n}(g) \in K_{n}
$$

uniquely along the Iwasawa decomposition $G_{n}=N_{n} A_{n} K_{n}$. Let $d_{K_{n}}(k)$ denote the Haar measure of the compact group K_{n} with total mass one. We take the Haar measure $d_{\bar{N}_{n}}(\bar{n})$ of \bar{N}_{n} such that $\int_{\bar{N}_{n}} \delta_{n}\left(\alpha_{n}(\bar{n})\right) d_{\bar{N}_{n}}(\bar{n})=1$, where $\delta_{n}: A_{n} \rightarrow \mathbb{R}_{+}^{*}$ denotes the quasi-character defined by

$$
\begin{equation*}
\delta_{n}\left(\mathrm{a}_{n}(r)\right)=r^{2 n}, \quad r>0 \tag{1.2.1}
\end{equation*}
$$

For $a \in A_{n}$ and $\nu \in \mathbb{C}$, we write $a^{\nu}=\delta_{n}(a)^{\nu / 2 n}$.

2. Non-Unitary Principal Series

2.1. Non-unitary principal series representations

For a finite dimensional unitary representation (σ, W) of M_{n}, let \mathcal{V}_{n}^{σ} denote the Fréchet space consisting of all C^{∞}-functions $\varphi: K_{n} \rightarrow W$ such that $\varphi(m k)=\sigma(m) \varphi(k), k \in K_{n}, m \in M_{n}$. For $\nu \in \mathbb{C}$, we have the nonunitary principal series representation of G_{n} on \mathcal{V}_{n}^{σ} by defining the action $\pi_{n}^{\sigma, \nu}$ as

$$
\left(\pi_{n}^{\sigma, \nu}(g) \varphi\right)(k)=\varphi\left(\kappa_{n}(k g)\right) \alpha_{n}(k g)^{\nu+n}, \quad \varphi \in \mathcal{V}_{n}^{\sigma}, g \in G_{n}, k \in K_{n}
$$

Then $\left(\pi_{n}^{\sigma, \nu}, \mathcal{V}_{n}^{\sigma}\right)$ is a smooth Fréchet representation of G_{n}.

The underlying $\left(\mathfrak{g}_{n}, K_{n}\right)$-module of $\pi_{n}^{\sigma, \nu}$ will be also denoted by $\pi_{n}^{\sigma, \nu}$. We write V_{n}^{σ} for the space consisting of all K_{n}-finite vectors in \mathcal{V}_{n}^{σ}.
We define the \mathbb{C}-bi-linear form [|]: $\mathcal{V}_{n}^{\sigma} \times \mathcal{V}_{n}^{\sigma^{\vee}} \rightarrow \mathbb{C}$ by

$$
[\varphi \mid \check{\varphi}]=\int_{K_{n}}\langle\varphi(k), \check{\varphi}(k)\rangle d_{K_{n}}(k), \quad \varphi \in \mathcal{V}_{n}^{\sigma}, \check{\varphi} \in \mathcal{V}_{n}^{\sigma^{\vee}}
$$

This pairing is G_{n}-invariant, i.e.,

$$
\left[\pi_{n}^{\sigma, \nu}(g) \varphi \mid \pi_{n}^{\sigma^{\vee},-\nu}(g) \check{\varphi}\right]=[\varphi \mid \check{\varphi}], \quad \varphi \in \mathcal{V}_{n}^{\sigma}, \check{\varphi} \in \mathcal{V}_{n}^{\sigma^{\vee}}, g \in G_{n}
$$

From now on we mainly consider $\pi=\pi_{n}^{\sigma, \nu}$ for $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\left(\mathbf{p} ; p_{0}\right) \in$ ${ }^{\circ} \mathcal{L}_{n}^{+}$. Note that the central character of π (that is denoted by $c_{n}(\pi)$ in $[10,2.3])$ is $z=|\mathbf{p}|+p_{0}$. The set $\mathcal{L}_{n}^{+}\left(\pi_{n}^{\sigma, \nu}\right)([10,4.1])$ consists of those $\lambda=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}$such that $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p}), l_{0}+|\mathbf{l}|=z([10$, Lemma 4.2.1 $])$.

For $\lambda=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}(\pi), w \in W(\mathbf{l})$ and $w^{\vee} \in W(\mathbf{l})^{\vee}$, we have the functions $\iota_{1}^{\sigma}(w) \in \mathcal{V}_{n}^{\sigma}$ and $\check{\iota}_{1}^{\sigma}(w) \in \mathcal{V}_{n}^{\sigma}$ such that

$$
\begin{align*}
& \left(\iota_{1}^{\sigma}(w)\right)(k)=\mathrm{p}_{\mathbf{p}}^{1} \circ \tau_{\lambda}^{n}(k)(w), \quad k \in K_{n}, \tag{2.1.1}\\
& \left(i_{1}^{\sigma}\left(w^{\vee}\right)\right)(k)=\left(\mathrm{j}_{1}^{\mathbf{p}}\right)^{\vee} \circ\left(\tau_{\lambda}^{n}\right)^{\vee}(k)\left(w^{\vee}\right), \quad k \in K_{n} .
\end{align*}
$$

The family $\left\{\iota_{\mathbf{l}}^{\sigma} \mid \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})\right\}$ so obtained is a standard system for $\pi_{n}^{\sigma, \nu}$ (see [10, 4.1]). Under the identification $W(\check{\mathbf{l}}) \cong W(\mathbf{l})^{\vee}$, the family $\left\{\check{\iota}_{\mathbf{1}}^{\sigma} \mid \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})\right\}$ is regarded as a standard system for π^{\vee}.
Let $\nabla_{1}^{ \pm k}={ }^{\pi} \nabla_{\lambda}^{ \pm k}$ with $\pi=\pi_{n}^{\sigma, \nu}$ be the Schmid operators introduced in [10, 6.1]

Proposition 2.1.1. For an irreducible unitary representation σ of M_{n} with the highest weight $\left(\mathbf{p} ; p_{0}\right) \in{ }^{\circ} \mathcal{L}_{n}^{+}, \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ and $j \in\{1, \cdots, n\}$, there exist real numbers $A_{j}^{\sigma}(\mathbf{l})$ and $B_{j}^{\sigma}(\mathbf{l})$ such that for $\nu \in \mathbb{C}, \lambda=\left[\mathbf{l} ; l_{0}\right] \in$ $\mathcal{L}_{n}^{+}\left(\pi_{n}^{\sigma, \nu}\right)$ and $j \in\{1, \cdots, n\}$

$$
\begin{equation*}
\nabla_{\lambda}^{+j}\left(\iota_{\mathbf{1}}^{\sigma}\right)=A_{j}^{\sigma, \nu}(\mathbf{1}) \iota_{\mathbf{1}}{ }^{\sigma j}, \quad \nabla_{\lambda}^{-j}\left(\iota_{\mathbf{1}}^{\sigma}\right)=B_{j}^{\sigma, \nu}(\mathbf{l}) \iota_{\mathbf{1}^{-j}}^{\sigma} \tag{2.1.2}
\end{equation*}
$$

with

$$
\begin{align*}
A_{j}^{\sigma, \nu}(\mathbf{l}) & =\left(2 l_{j}-2 j+2-p_{0}+\nu+n\right) A_{j}^{\sigma}(\mathbf{l}) \tag{2.1.3}\\
B_{j}^{\sigma, \nu}(\mathbf{l}) & =\left(2 l_{j}-2 j-p_{0}-\nu+n\right) B_{j}^{\sigma}(\mathbf{l})
\end{align*}
$$

For $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$, we have $A_{j}^{\sigma}(\mathbf{l})=0$ (resp. $B_{j}^{\sigma}(\mathbf{l})=0$) if and only if $\mathbf{l}^{+j} \notin$ $\Lambda_{n}^{+}(\mathbf{p})\left(\right.$ resp. $\left.\mathbf{l}^{-j} \notin \Lambda_{n}^{+}(\mathbf{p})\right)$.

Proof. [13, p.411, formula (9), (10)].

2.2. The corner K_{n}-types of principal series

Given $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\left(\mathbf{p} ; p_{0}\right) \in{ }^{\circ} \mathcal{L}_{n}^{+}$and $\nu \in \mathbb{C}$, we consider the nonunitary principal series representation $\pi=\pi_{n}^{\sigma, \nu}$. Put $z=c_{n}(\pi)$, the central character of π.

Definition 2.2.1. $\quad \lambda=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}(\pi)$ is said to be cyclic in π if the smallest $\operatorname{sub}\left(\mathfrak{g}_{n}, K_{n}\right)$-module which contains $\operatorname{Im}\left(\iota_{1}^{\sigma}\right)$ coincides with all of V_{n}^{σ}.

Definition 2.2.2. For $h \in\{1, \ldots, n-1\}$, let $\mathbf{l}_{0}=\left(l_{k}\right)_{1 \leqslant k \leqslant n}$ be the element of $\Lambda_{n}^{+}(\mathbf{p})$ defined by $l_{k}=p_{k}$ for $1 \leqslant k \leqslant h$ and $l_{k}=p_{k-1}$ for $h<k \leqslant n ; \mathbf{l}_{0}$ is characterized as a unique $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ such that $\mathbf{l}^{-k} \notin \Lambda_{n}^{+}(\mathbf{p})$ for $1 \leqslant k \leqslant h$ and $\mathbf{l}^{+k} \notin \Lambda_{n}^{+}(\mathbf{p})$ for $h+1 \leqslant k \leqslant n$. Then the element $\lambda_{\sigma}^{(h)}=\left[\mathbf{l}_{0} ; z-\left|\mathbf{l}_{0}\right|\right]$ of $\mathcal{L}_{n}^{+}(\pi)$ will be called the h-th corner K_{n}-type of π.

Note that $\lambda_{\sigma}^{(h)}$ is the D_{h}-corner in the terminology of Kraljevic [6].

LEMMA 2.2.1. Let $h \in\{1, \ldots, n-1\}$ and $\lambda_{\sigma}^{(h)}=\left[\mathbf{l}_{0} ; z-\left|\mathbf{1}_{0}\right|\right]$ be the h-th corner K_{n}-type of π. The following conditions are equivalent.
(1) $\lambda_{\sigma}^{(h)}$ is cyclic in π.
(2) For $1 \leqslant i \leqslant h$ and $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ with $\mathbf{1}^{+i} \in \Lambda_{n}^{+}(\mathbf{p}), A_{i}^{\sigma, \nu}(\mathbf{l}) \neq 0$. For $h+1 \leqslant j \leqslant n$ and $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ with $\mathbf{l}^{-j} \in \Lambda_{n}^{+}(\mathbf{p}), B_{j}^{\sigma, \nu}(\mathbf{l}) \neq 0$.
(3) ν is not of the form

$$
\begin{aligned}
\nu= & -2 p_{h}+2 h-2+p_{0}-n-2 y, \\
& \exists y \in \mathbb{Z}_{+}-\left\{p_{i}-p_{h}+h-i-1 \mid 1 \leqslant i<h\right\}, \\
\nu= & 2 p_{h}-2 h-2-p_{0}+n-2 y, \\
& \exists y \in \mathbb{Z}_{+}-\left\{p_{h}-p_{j}+j-h-1 \mid h<j \leqslant n-1\right\} .
\end{aligned}
$$

(4) ν is not a zero of the holomorphic function

$$
\begin{align*}
\tilde{c}_{n}^{(h)}(\sigma ; \nu)= & \prod_{1 \leqslant i<h}\left(\nu+2 p_{i}-2 i-p_{0}+n\right) \tag{2.2.1}\\
& \times \prod_{h<j \leqslant n-1}\left(\nu-2 p_{j}+2 j+p_{0}-n\right) \\
& \times \Gamma\left(\frac{\nu+n-p_{0}}{2}+p_{h}-h+1\right)^{-1} \\
& \times \Gamma\left(\frac{\nu-n+p_{0}}{2}-p_{h}+h+1\right)^{-1}
\end{align*}
$$

Proof. The equivalence of (3) and (4) is easy. By (2.1.3), we have the equivalence of (2) and (3). Thus it suffices to show that (1) and (2) are equivalent. Let $\nabla_{1}^{ \pm k}$ be the Schmid operators. Assume that the condition (2) holds. Let V denote the $\left(\mathfrak{g}_{n, \mathbb{C}}, K_{n}\right)$-span of $\operatorname{Im}\left(\iota_{\mathbf{l}_{0}}^{\sigma, \nu}\right)$ in V_{n}^{σ}. Putting $\delta(\mathbf{l})=\left|\mathbf{l}-\mathbf{l}_{0}\right|$ for $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$, we prove that $\operatorname{Im}\left(\iota_{\mathbf{1}}^{\sigma}\right)$ is contained in V for all $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ by induction on the number $\delta(\mathbf{l})$. If $\delta(\mathbf{l})=0$, then we have $\mathbf{l}=\mathbf{l}_{0}$. Hence $\operatorname{Im}\left(\iota_{1_{0}}^{\sigma}\right) \subset V$ by definition. Suppose $d>0$ and that $\operatorname{Im}\left(\iota_{1^{\prime}}^{\sigma}\right) \subset V$ for \mathbf{l}^{\prime} with $\delta\left(\mathbf{l}^{\prime}\right)<d$. Let \mathbf{l} with $\delta(\mathbf{l})=d$. Since $\delta(\mathbf{l})>0, \mathbf{l}$ is different from \mathbf{l}_{0}. Thus we have (a) $\mathbf{l}^{-i} \in \Lambda_{n}^{+}(\mathbf{p})$ for an i with $1 \leqslant i \leqslant h$, or (b) $\mathbf{l}^{+i} \in \Lambda_{n}^{+}(\mathbf{p})$ for some i with $h+1 \leqslant i \leqslant n$. We first consider the case (a). We have $\nabla_{\mathbf{1}^{-i}}^{+i}\left(\iota_{\mathbf{1}^{-i}}^{\sigma}\right)=A_{i}^{\sigma, \nu}\left(\mathbf{1}^{-i}\right) \iota_{\mathbf{1}}^{\sigma}$ and that the number $A_{i}^{\sigma, \nu}\left(\mathbf{1}^{-i}\right)$ is non zero by assumption. Since $\delta\left(\mathbf{1}^{-i}\right)=d-1$, we have $\operatorname{Im}\left(\iota_{1^{-i}}^{\sigma}\right) \subset V$ by induction-assumption. Noting that V is a $\left(\mathfrak{g}_{n}, K_{n}\right)$-module, we then have $\operatorname{Im}\left(\nabla_{1^{-i}}^{+i}\left(\iota_{1^{-i}}^{\sigma}\right)\right) \subset V$. Hence we obtain $\operatorname{Im}\left(\iota_{1}^{\sigma}\right) \subset V$. In the same way, we can conclude $\operatorname{Im}\left(\iota_{1}^{\sigma}\right) \subset V$ in case (b), noting $B_{i}^{\sigma, \nu}\left(\mathbf{l}^{+i}\right) \neq 0$ in this case. Thus we have $\operatorname{Im}\left(\iota_{1}^{\sigma}\right) \subset V$ for all $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ to get the identity $V_{n}^{\sigma}=V$. Next we show that if (2) is not true then V_{n}^{σ} has a non trivial proper $\left(\mathfrak{g}_{n, ~}, K_{n}\right)$ submodule. Suppose $A_{\alpha}^{\sigma, \nu}(\mathbf{l})=0$ for an $\mathbf{l}=\left(l_{j}\right)_{1 \leqslant j \leqslant n} \in \Lambda_{n}^{+}(\mathbf{p})$ and an α such that $\mathbf{l}^{+\alpha} \in \Lambda_{n}^{+}(\mathbf{p}), 2 \leqslant \alpha \leqslant h$. (The other possibilities are similarly treated.) Let V^{\prime} be the \mathbb{C}-span of $\operatorname{Im}\left(\iota_{\mathbf{1}^{\prime}}^{\sigma}\right)$ with $\mathbf{1}^{\prime}=\left(l_{k}^{\prime}\right)_{1 \leqslant k \leqslant n}$ such that $\mathbf{l}^{\prime} \in \Lambda_{n}^{+}(\mathbf{p}), l_{\alpha} \geqslant l_{\alpha}^{\prime} \geqslant p_{\alpha}$. Such \mathbf{l}^{\prime} 's form a non empty subset Γ^{\prime} of $\Lambda_{n}^{+}(\mathbf{p})$, and $\Gamma^{\prime} \neq \Lambda_{n}^{+}(\mathbf{p})$ because $l_{\alpha}<p_{\alpha-1}$. Thus the space V^{\prime} is strictly smaller than V_{n}^{σ} and non-zero. We show V^{\prime} is stable under the action of \mathfrak{g}_{n} and K_{n}. By definition, the K_{n}-stability of V^{\prime} is clear. So it suffices to prove that $\pi(X) f \in V^{\prime}$ for $X \in \mathfrak{p}_{n, \mathbb{C}}$ (\mathfrak{p}_{n} is the orthogonal complement of \mathfrak{k}_{n} in
\mathfrak{g}_{n}) and $f \in V^{\prime}$. We may assume that f is of the form $\iota_{\mathbf{1}^{\prime}}^{\sigma}(w)$ with $\mathbf{l}^{\prime} \in \Gamma^{\prime}$ and $w \in W\left(\mathbf{l}^{\prime}\right)$. There exist vectors $w^{+k} \in W\left(\mathbf{l}^{\prime+k}\right)$ and $w^{-k} \in W\left(\mathbf{l}^{\prime-k}\right)$ for $1 \leqslant k \leqslant n$ such that

$$
w \otimes X=\sum_{k=1}^{n} I_{\beta_{k}}\left(\mathbf{l}^{\prime}\right)\left(w^{+k}\right)+\sum_{k=1}^{n} I_{-\beta_{k}}\left(\mathbf{l}^{\prime}\right)\left(w^{-k}\right)
$$

(For $I_{ \pm \beta_{k}}$ (l) see [10, Proposition 6.1.1].) From definition and (2.1.2) we have

$$
\begin{aligned}
\pi(X)(f) & =\sum_{k=1}^{n}\left(\nabla_{\mathbf{1}^{\prime}}^{+k}\left(\iota_{\mathbf{1}^{\prime}}^{\sigma}\right)\right)\left(w^{+k}\right)+\sum_{k=1}^{n}\left(\nabla_{\mathbf{1}^{\prime}}^{-k}\left(\iota_{\mathbf{1}^{\prime}}^{\sigma}\right)\right)\left(w^{-k}\right) \\
& =\sum_{k \in J_{\mathbf{1}^{\prime}}^{+}} A_{k}^{\sigma, \nu}\left(\mathbf{l}^{\prime}\right) \iota_{\mathbf{1}^{\prime}+k}^{\sigma}\left(w^{+k}\right)+\sum_{k \in J_{\mathbf{1}^{\prime}}^{-}} B_{k}^{\sigma, \nu}\left(\mathbf{l}^{\prime}\right) \iota_{\mathbf{1}^{\prime-k}}^{\sigma}\left(w^{-k}\right)
\end{aligned}
$$

where $J_{\mathbf{1}^{\prime}}^{+}\left(\right.$resp. $\left.J_{\mathbf{1}^{\prime}}^{-}\right)$is the set of all $1 \leqslant k \leqslant n$ such that $\mathbf{l}^{\prime+k} \in \Lambda_{n}^{+}(\mathbf{p})$ (resp. $\left.\mathbf{l}^{\prime-k} \in \Lambda_{n}^{+}(\mathbf{p})\right)$. Note $\alpha \in J_{\mathbf{1}^{\prime}}^{+}$because $l_{\alpha}^{\prime} \leqslant l_{\alpha}<p_{\alpha-1}$. By definition we have that $\mathbf{l}^{\prime-k} \in \Gamma^{\prime}$ for $k \in J_{\mathbf{1}^{\prime}}^{-}$, and that $\mathbf{l}^{\prime+k} \in \Gamma^{\prime}$ for $k \in J_{\mathbf{1}^{\prime}}^{+}-\{\alpha\}$. If $l_{\alpha}>l_{\alpha}^{\prime}$, then $\mathbf{l}^{\prime+\alpha} \in \Gamma^{\prime}$ is clear. If $l_{\alpha}^{\prime}=l_{\alpha}$, by (2.1.3), $A_{\alpha}^{\sigma, \nu}\left(\mathbf{l}^{\prime}\right)$ is a constant multiple of $A_{\alpha}^{\sigma, \nu}(\mathbf{l})$. Since $A_{\alpha}^{\sigma, \nu}(\mathbf{l})$ is supposed to be zero, we have $A_{\alpha}^{\sigma, \nu}\left(\mathbf{l}^{\prime}\right)=0$. Thus we obtain $\pi(X) f \in V^{\prime}$. This completes the proof.

2.3. Knapp-Stein intertwining operators and c-functions

Let $\nu \in \mathbb{C}$ and (σ, W) a finite dimensional representation of M_{n}. For a function $\varphi \in \mathcal{V}_{n}^{\sigma}$, we consider the integral

$$
\begin{equation*}
\mathcal{A}_{n}^{\sigma, \nu}(\varphi: k)=\int_{\bar{N}_{n}} \varphi\left(\kappa_{n}\left(\bar{n} \mathrm{w}_{n} k\right)\right) \alpha_{n}\left(\bar{n} \mathrm{w}_{n} k\right)^{\nu+n} d_{\bar{N}_{n}}(\bar{n}), \quad k \in K_{n} \tag{2.3.1}
\end{equation*}
$$

The basic properties of the integral above that we need are following.
Proposition 2.3.1.
(1) If $\operatorname{Re}(\nu)>0$, then the integral (2.3.1) converges absolutely for every $\varphi \in \mathcal{V}_{n}^{\sigma}$. The function $\mathcal{A}_{n}^{\sigma, \nu}(\varphi)$ belongs to the space \mathcal{V}_{n}^{σ}.
(2) For every $\nu \in \mathbb{C}$ such that $\operatorname{Re}(\nu)>0$ and $\varphi \in \mathcal{V}_{n}^{\sigma}$, the identity

$$
\mathcal{A}_{n}^{\sigma, \nu}\left(\pi_{n}^{\sigma, \nu}(g) \varphi\right)=\pi_{n}^{\sigma,-\nu}(g)\left(\mathcal{A}_{n}^{\sigma, \nu}(\varphi)\right), \quad g \in G_{n}
$$

holds.
(3) Let $\nu \in \mathbb{C}$ with $\operatorname{Re}(\nu)>0$. For every $\varphi \in \mathcal{V}_{n}^{\sigma}$ and every $\check{\varphi} \in \mathcal{V}_{n}^{\sigma^{\vee}}$ the formula

$$
\lim _{r \rightarrow \infty} r^{n-\nu}\left[\pi_{n}^{\sigma, \nu}\left(\mathrm{a}_{n}(r)\right) \varphi \mid \check{\varphi}\right]=\left\langle\mathcal{A}_{n}^{\sigma, \nu}\left(\varphi: \mathrm{w}_{n}\right), \check{\varphi}\left(\mathrm{I}_{n}\right)\right\rangle
$$

holds.

Proof. For (1) and (2) see [12, p.181, Proposition 7.8]. For (3) see [12, p.198, Lemma 7.2.3].

Let $\nu \in \mathbb{C}$ with $\operatorname{Re}(\nu)>0$ and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\left(\mathbf{p} ; p_{0}\right) \in{ }^{\circ} \mathcal{L}_{n}^{+}$. Since any irreducible K_{n}-module occurs in $\pi_{n}^{\sigma, \nu}$ with multiplicity one or zero, for every $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$, there exists a complex number $c_{n}(\sigma, \nu ; \mathbf{l})$ such that

$$
\begin{equation*}
\mathcal{A}_{n}^{\sigma, \nu} \circ \iota_{1}^{\sigma}=c_{n}(\sigma, \nu ; \mathbf{l}) \iota_{1}^{\sigma} . \tag{2.3.2}
\end{equation*}
$$

The explicit formula of the numbers $c_{n}(\sigma, \nu ; \mathbf{l})$ is obtained in [2, page 976, Theorem 8.2]. From that formula we have that the functions $\nu \mapsto$ $c_{n}(\sigma, \nu ; \mathbf{l})$ are meromorphically continued to the whole \mathbb{C}, and also have

Proposition 2.3.2. Let $h \in\{1, \ldots, n-1\}$ and $\lambda_{\sigma}^{(h)}=\left[\mathbf{l}_{0} ; l_{0}\right]$ the h-th corner K_{n}-type of $\pi_{n}^{\sigma, \nu}$. Then we have

$$
c_{n}\left(\sigma, \nu ; \mathbf{1}_{0}\right)=\gamma_{\sigma}^{(h)} \cdot 2^{-\nu} \Gamma(\nu) \tilde{c}_{n}^{(h)}(\sigma ; \nu)
$$

where $\tilde{c}_{n}^{(h)}(\sigma ; \nu)$ is the holomorphic function given by (2.2.1) and $\gamma_{\sigma}^{(h)}$ is a non-zero constant independent of ν.

3. Shintani Functions

In the first subsection we introduce the intertwining space $\mathcal{I}\left(\pi_{0} \mid \pi\right)$, whose study is our main theme of this paper. In the second subsection, we give an explicit formula of some spherical functions (Shintani functions) when $\pi_{0}^{\vee} \boxtimes \pi$ is a principal series representation.

3.1. Shintani functions

We regard G_{n} as a $G_{n} \times G_{n}$-space by letting $\left(g_{1}, g_{2}\right) \in G_{n} \times G_{n}$ act on G_{n} as $\left(g_{1}, g_{2}\right) \cdot x=g_{1} x g_{2}^{-1}, x \in G_{n}$. Hence the space $C^{\infty}\left(G_{n}\right)$ of all $C^{\infty}{ }_{-}$ functions on G_{n} becomes a smooth Fréchet $G_{n} \times G_{n}$-module naturally. By restricting the action to the subgroup $G_{n-1} \times G_{n}$, we can regard $C^{\infty}\left(G_{n}\right)$ as a smooth $G_{n-1} \times G_{n}$-module. Let π_{0} be an admissible ($\mathfrak{g}_{n-1, \mathbb{C}}, K_{n-1}$)module and π an admissible ($\mathfrak{g}_{n}, \mathbb{C}, K_{n}$)-module. We put

$$
\begin{equation*}
\mathcal{I}\left(\pi_{0} \mid \pi\right)=\operatorname{Hom}_{\left(\mathfrak{g}_{n-1}, \mathbb{C} \oplus \mathfrak{g}_{n}, \mathbb{C}, K_{n-1} \times K_{n}\right)}\left(\pi_{0}^{\vee} \boxtimes \pi, C^{\infty}\left(G_{n}\right)\right) \tag{3.1.1}
\end{equation*}
$$

Theorem 3.1.1. For an irreducible $\left(\mathfrak{g}_{n-1,1} \mathbb{C}, K_{n-1}\right)$-module π_{0} and an irreducible $\left(\mathfrak{g}_{n, \mathbb{C}}, K_{n}\right)$-module π, we have

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right) \leqslant 1
$$

Proof. Let $H_{n}=Z_{n} G_{n-1}$. We extend the representation π_{0} to H_{n} so that the extended representation η satisfies $c_{n}(\eta)=c_{n}(\pi)$. Then by Theorem 7.1.1 we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi}$. Since $\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi} \leqslant 1$ by [10, Theorem 8.1.1], we have the conclusion.

3.2. Principal series Shintani functions

Let $\sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}$ with $\left(\mathbf{q} ; q_{0}\right) \in{ }^{\circ} \mathcal{L}_{n-1}^{+}$and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\left(\mathbf{p} ; p_{0}\right) \in{ }^{\circ} \mathcal{L}_{n}^{+}$ be irreducible unitary representations of M_{n-1} and M_{n} respectively and consider the principal series representations $\pi_{0}=\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ and $\pi=\pi_{n}^{\sigma, \nu}$ with $\nu_{0}, \nu \in \mathbb{C}$. In this case we also write $\mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)$ in place of $\mathcal{I}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}} \mid \pi_{n}^{\sigma, \nu}\right)$. For $\mathcal{P} \in \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right), \mu=\left[\mathbf{m} ; m_{0}\right] \in \mathcal{L}_{n-1}^{+}\left(\pi_{0}\right)$ and $\lambda=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}(\pi)$, we define a function $\mathcal{P}_{\mu, \lambda}: G_{n} \rightarrow W(\mathbf{m}) \otimes W(\mathbf{l})^{\vee}$ by

$$
\begin{gather*}
\left\langle\mathcal{P}_{\mu, \lambda}(g), w_{0}^{\vee} \otimes w\right\rangle=\mathcal{P}\left(\check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes \iota_{\mathbf{l}}^{\sigma}(w)\right)(g) \tag{3.2.1}\\
w_{0}^{\vee} \in W(\mathbf{m})^{\vee}, w \in W(\mathbf{l})
\end{gather*}
$$

Then we have

$$
\begin{align*}
& \mathcal{P}_{\mu, \lambda}\left(k_{0} g k\right)=\tau_{\mu}^{n-1}\left(k_{0}\right) \otimes\left(\tau_{\lambda}^{n}\right)^{\vee}\left(k^{-1}\right) \mathcal{P}_{\mu, \lambda}(g), \tag{3.2.2}\\
& \quad k_{0} \in K_{n-1}, k \in K_{n}, g \in G_{n} .
\end{align*}
$$

Lemma 3.2.1. We have $G_{n}=K_{n-1} \mathrm{~A}_{n} K_{n}$ with

$$
\mathrm{A}_{n}=\left\{\mathrm{a}_{n-1}\left(r_{0}\right) \mathrm{a}_{n}(r) \mid r_{0}, r>0\right\}
$$

Proof. This follows from the decompositions $G_{n-1}=$ $K_{n-1} A_{n-1} K_{n-1}, G_{n}=G_{n-1} Z_{n} A_{n} K_{n}$ ([3, page 108, Theorem 2.4]) and the relation $Z_{n} K_{n-1}=M_{n} Z_{n-1}$.

Lemma 3.2.2. Let $\mathcal{P} \in \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)$. There exists a unique family $\left\{f_{\mathbf{l}}(\mathbf{m} ; r) \mid \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p}), \mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ of C^{∞}-functions on $r>0$ such that for $\mu=\left[\mathbf{m} ; m_{0}\right] \in \mathcal{L}_{n-1}^{+}\left(\pi_{0}\right)$ and $\lambda=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}(\pi)$ the formula

$$
\begin{align*}
& \left\langle\mathcal{P}_{\mu, \lambda}\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r)\right), w_{0}^{\vee} \otimes w\right\rangle \tag{3.2.3}\\
& =\sum_{\mathbf{n} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})} f_{\mathbf{l}} \mathbf{(\mathbf { n } ; r)} \\
& \quad \times\left[\iota \iota_{\mathbf{n}}^{\sigma_{0}} \circ \mathrm{p}_{\mathbf{n}}^{\mathbf{l}}(w) \mid \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\mathrm{a}_{n-1}\left(r_{0}\right)\right) \circ \iota_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right] \\
& \quad w_{0}^{\vee} \in W(\mathbf{m})^{\vee}, w \in W(\mathbf{l})
\end{align*}
$$

holds.
Proof. First of all, by Theorem 7.1.1, to $\mathcal{P} \in \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)$ there corresponds a unique $\Phi_{\mathcal{P}} \in \mathcal{I}_{\eta, \pi}$ such that

$$
\left[\Phi_{\mathcal{P}}(v)(g) \mid \check{v}_{0}\right]=\mathcal{P}\left(\check{v}_{0} \otimes v\right)(g), \quad \check{v}_{0} \in V_{n-1}^{\sigma_{0}^{\vee}}, v \in V_{n}^{\sigma}, g \in G_{n}
$$

Here η denotes the representation of $H_{n}=Z_{n} G_{n-1}$ satisfying $c_{n}(\eta)=c_{n}(\pi)$.
For a fixed $r>0$, we define two functions $\varphi_{1}: \mathbb{R} \rightarrow \mathbb{C}$ and $\varphi_{2}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
& \varphi_{1}\left(t_{0}\right)=\left\langle\mathcal{P}_{\mu, \lambda}\left(\mathrm{a}_{n-1}\left(e^{t_{0}}\right)^{-1} \mathrm{a}_{n}(r)\right), w_{0}^{\vee} \otimes w\right\rangle, \quad t_{0} \in \mathbb{R}, \\
& \varphi_{2}\left(t_{0}\right)=\left[\Phi_{\mathcal{P}}\left(\iota_{\mathbf{1}}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right) \mid \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\mathrm{a}_{n-1}\left(e^{t_{0}}\right)\right) \circ \check{i}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right], \quad t_{0} \in \mathbb{R}
\end{aligned}
$$

By [11, page 461, Lemma 2.6], the functions φ_{1} and φ_{2} are real analytic. We have

$$
\begin{aligned}
& L_{Y^{p}} \mathcal{P}\left(\tau_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes \iota_{\mathbf{1}}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right) \\
& =\left[\Phi_{\mathcal{P}}\left(\iota_{\mathbf{1}}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right) \mid \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(Y^{p}\right) \circ \check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right]
\end{aligned}
$$

for any $p \in \mathbb{N}$, where Y denotes the element of \mathfrak{a}_{n-1} such that $\exp \left(\log \left(r_{0}\right) Y\right)=\mathrm{a}_{n-1}\left(r_{0}\right)$ for $r_{0}>0$. This in turn means that φ_{1} and φ_{2} have the same p-th derivative at $t_{0}=0$ for any p. Since φ_{1} and φ_{2} are both real analytic functions on \mathbb{R} as noticed above, we have $\varphi_{1}\left(t_{0}\right)=\varphi_{2}\left(t_{0}\right)$ identically; equivalently

$$
\begin{align*}
& \left\langle\mathcal{P}_{\mu, \lambda}\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathbf{a}_{n}(r)\right), w_{0}^{\vee} \otimes w\right\rangle \tag{3.2.4}\\
& =\left[\Phi_{\mathcal{P}}\left(\iota_{\mathbf{1}}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right) \mid \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\mathrm{a}_{n-1}\left(r_{0}\right)\right) \circ \widetilde{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right]
\end{align*}
$$

for all $r>0$ and $r_{0}>0$. Let $\left\{f_{\mathbf{l}}(\mathbf{n} ; r) \mid \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p}), \mathbf{n} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ be the standard coefficient of $\Phi_{\mathcal{P}}([10$, Definition 7.1.1]). By definition we have

$$
\Phi_{\mathcal{P}}\left(\iota_{\mathbf{1}}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right)=\sum_{\mathbf{n} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})} f_{\mathbf{l}}(\mathbf{n} ; r) \cdot \iota_{\mathbf{n}}^{\sigma_{0}} \circ \mathrm{p}_{\mathbf{n}}^{\mathbf{1}}(w)
$$

Substitute this formula into (3.2.4). Then we have the formula (3.2.3). The uniqueness of $\left\{f_{\mathbf{l}}(\mathbf{m} ; r)\right\}$ is obvious from the formula (3.2.3).

We call the system $\left\{f_{\mathbf{l}}(\mathbf{m} ; r) \mid \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p}), \mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ the standard coefficients of \mathcal{P}.

Proposition 3.2.1. Assume both $\pi_{n}^{\sigma, \nu}$ and $\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ are irreducible. If $\mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right) \neq\{0\}$, then $\mathbf{q} \subset \mathbf{p}$.

Proof. This follows from [10, Proposition 9.2.1] and Theorem 7.1.1.

Definition 3.2.1. Let σ_{0} and σ be as above with $\mathbf{q} \subset \mathbf{p}$. For every $h \in\{1, \ldots, n-1\}$, we define $\mu_{\sigma_{0}, \sigma}^{(h)}=\left[\mathbf{m}_{0} ; m_{0}\right] \in \mathcal{L}_{n-1}^{+}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}}\right)$ by putting $\mathbf{m}_{0}=\left(m_{0, j}\right)_{1 \leqslant j \leqslant n-1}$ with $m_{0, j}=q_{j}$ for $j \in\{1, \cdots, h-1\}, m_{0, h}=p_{h}$ and $m_{0, j}=q_{j-1}$ for $j \in\{h+1, \ldots, n-1\}$.

It is easy to see that if $\lambda_{\sigma}^{(h)}=\left[\mathbf{1}_{0} ; l_{0}\right]$ is the h-th corner of $\pi_{n}^{\sigma, \nu}$ then $\mathbf{m}_{0} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$.

Proposition 3.2.2. Let $\pi=\pi_{n}^{\sigma, \nu}$ and $\pi_{0}=\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ as above with $\mathbf{q} \subset \mathbf{p}$. Put $z=|\mathbf{p}|+p_{0}, z_{0}=|\mathbf{q}|+q_{0}$ and $\kappa=\left|p_{0}-q_{0}\right|$. Let $h \in\{1, \ldots, n-1\}$ and $\lambda_{\sigma}^{(h)}=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}(\pi)$ the h-th corner K_{n}-type of π. Let $\mathcal{P} \in \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)$
and $\left\{f_{\mathbf{1}}(\mathbf{m} ; r) \mid \mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ the standard coefficients for \mathcal{P}. Introducing the new coordinate $x=\operatorname{th}^{2}(r), r>1$, we put

$$
\begin{align*}
\psi(\mathbf{m} ; x)= & (\operatorname{sh} r)^{-\beta^{(h)}(\mathbf{m})}(\operatorname{ch} r)^{-\alpha^{(h)}(\mathbf{m})} f_{\mathbf{l}}(\mathbf{m} ; r), \tag{3.2.5}\\
& 0<x<1, \\
\beta^{(h)}(\mathbf{m})= & -\sum_{i=1}^{h-1} m_{i}+\sum_{i=h+1}^{n-1} m_{i}+\sum_{j=1}^{h-1} q_{j}-\sum_{j=h}^{n-2} q_{j}+\kappa, \tag{3.2.6}\\
\alpha^{(h)}(\mathbf{m})= & 2\left(\sum_{i=1}^{h-1} m_{i}-\sum_{i=h+1}^{n-1} m_{i}\right)-\sum_{j=1}^{h-1} q_{j}+\sum_{j=h}^{n-2} q_{j} \tag{3.2.7}\\
& -\sum_{i=1}^{h-1} p_{i}+\sum_{i=h+1}^{n-1} p_{i}+\nu-n-\kappa
\end{align*}
$$

for $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$. Let $\mu_{0}=\mu_{\sigma_{0}, \sigma}^{(h)}=\left[\mathbf{m}_{0} ; m_{0}\right] \in \mathcal{L}_{n-1}^{+}\left(\pi_{0}\right)$ be as in Definition 3.2.1.
(1) There exists a unique constant $\gamma^{(h)}(\mathcal{P})$ such that for $0<x<1$

$$
\begin{align*}
& \psi\left(\mathbf{m}_{0} ; x\right) \tag{3.2.8}\\
& =\gamma^{(h)}(\mathcal{P})_{2} F_{1}\left(\frac{\nu-\nu_{0}+1+\kappa}{2}, \frac{-\nu-\nu_{0}+1+\kappa}{2} ; 1+\kappa ; x\right)
\end{align*}
$$

Moreover the family $\left\{\psi(\mathbf{m} ; r) \mid \mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ satisfies the following recurrence relations.

$$
\begin{aligned}
\left(\mathrm{E}_{h}^{-i}\right)_{\mathbf{m}}: \quad & -2 a_{i}\left(\mathbf{l} ; \mathbf{m}^{-i}\right) A_{i}^{\sigma_{0}, \nu_{0}}\left(\mathbf{m}^{-i}\right) \psi\left(\mathbf{m}^{-i} ; x\right) \\
= & \frac{\prod_{\beta=h+1}^{n-1}\left(p_{\beta}-m_{i}+i-\beta\right)}{\prod_{\beta=h+1, \beta \neq i}^{n-1}\left(m_{\beta}-m_{i}+i-\beta\right)}\left\{2 x(1-x) \frac{d}{d x} \psi(\mathbf{m} ; x)\right. \\
& +x\left(-2 \sum_{\beta=h+1}^{n-1} m_{\beta}+\sum_{j=h}^{n-2} q_{j}-\sum_{j=1}^{h-1} q_{j}\right. \\
& \left.\quad+z_{0}-\kappa-2 m_{i}+2 i+\nu-n\right) \psi(\mathbf{m} ; x) \\
& +\left(2 \sum_{\beta=h+1}^{n-1} m_{\beta}-|\mathbf{p}|+\sum_{j=1}^{h-1} q_{j}-\sum_{j=h}^{n-2} q_{j}+z-z_{0}+\kappa\right) \psi(\mathbf{m} ; x)
\end{aligned}
$$

$$
\begin{aligned}
& +x(1-x) \sum_{\beta=h+1}^{n-1} \sum_{\alpha=1}^{h-1} \frac{\prod_{j=h+1}^{n-1}\left(p_{\beta}-m_{j}+j-\beta\right)}{\prod_{j=h+1, j \neq \beta}^{n-1}\left(p_{\beta}-p_{j}+j-\beta\right)} \\
& \left.\times \frac{a_{\alpha}\left(\mathbf{l}_{0} ; \mathbf{m}^{-\alpha}\right) A_{\alpha}^{\sigma_{0}, \nu_{0}}\left(\mathbf{m}^{-\alpha}\right)}{p_{\beta}-m_{\alpha}+\alpha-\beta} \psi\left(\mathbf{m}^{-\alpha} ; x\right)\right\}
\end{aligned}
$$

for $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l}), h<i \leqslant n-1$ with $\mathbf{m}^{-i} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$.

$$
\begin{aligned}
\left(\mathrm{E}_{h}^{+i}\right)_{\mathbf{m}}: \quad & -2 b_{i}\left(\mathbf{l} ; \mathbf{m}^{+i}\right) B_{i}^{\sigma_{0}, \nu_{0}}\left(\mathbf{m}^{+i}\right) \psi\left(\mathbf{m}^{+i} ; x\right) \\
= & \frac{\prod_{\alpha=1}^{h-1}\left(p_{\alpha}-m_{i}+i-\alpha\right)}{\prod_{\alpha=1, \alpha \neq i}^{h-1}\left(m_{\alpha}-m_{i}+i-\alpha\right)}\left\{2 x(1-x) \frac{d}{d x} \psi(\mathbf{m} ; x)\right. \\
& +x\left(2 \sum_{\alpha=1}^{h-1} m_{\alpha}+\sum_{j=h}^{n-2} q_{j}-\sum_{j=1}^{h-1} q_{j}\right. \\
& \left.\quad-z_{0}-\kappa+2 m_{i}-2 i+n+\nu\right) \psi(\mathbf{m} ; x) \\
& +\left(-2 \sum_{\alpha=1}^{h-1} m_{\alpha}+|\mathbf{p}|+\sum_{j=1}^{h-1} q_{j}-\sum_{j=h}^{n-2} q_{j}-z+z_{0}+\kappa\right) \psi(\mathbf{m} ; x) \\
+ & x(1-x) \sum_{\beta=h+1}^{\sum_{\alpha=1}^{n-1} \frac{\prod_{j=1}^{h-1}\left(p_{\alpha}-m_{j}+j-\alpha\right)}{\prod_{j=1, j \neq \alpha}^{h-1}\left(p_{\alpha}-p_{j}+j-\alpha\right)}} \\
& \left.\times \frac{b_{\beta}\left(\mathbf{l}_{0} ; \mathbf{m}^{+\beta}\right) B_{\beta}^{\sigma_{0}, \nu_{0}}\left(\mathbf{m}^{+\beta}\right)}{p_{\alpha}-m_{\beta}+\beta-\alpha} \psi\left(\mathbf{m}^{+\beta} ; x\right)\right\}
\end{aligned}
$$

for $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l}), 1 \leqslant i<h$ with $\mathbf{m}^{+i} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$.
(2) Assume $\operatorname{Re}(\nu)>n$. For any $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$ the limit $\psi(\mathbf{m})=$ $\lim _{x \rightarrow 1-0} \psi(\mathbf{m} ; x)$ exits. We have
(3.2.9) $\psi\left(\mathbf{m}_{0}\right)=\gamma^{(h)}(\mathcal{P}) \frac{\Gamma(\nu) \Gamma(1+\kappa)}{\Gamma\left(\frac{\nu-\nu_{0}+1+\kappa}{2}\right) \Gamma\left(\frac{\nu+\nu_{0}+1+\kappa}{2}\right)}$.

Moreover the system $\left\{\psi(\mathbf{m}) \mid \mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ satisfies the following recurrence relations.
(a)

$$
\begin{aligned}
& \left(2 m_{i}-2 i-q_{0}+\nu_{0}+n-1\right) \psi\left(\mathbf{m}^{-i}\right) \\
& =C_{i}^{-}(\mathbf{m}) \cdot\left(2 m_{i}-2 i-p_{0}-\nu+n\right) \psi(\mathbf{m})
\end{aligned}
$$

for $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l}), h<i \leqslant n-1$ with $\mathbf{m}^{-i} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$ with a system of non-zero constants $C_{i}^{-}(\mathbf{m})$ which depends only on σ_{0}, σ and h.
(b)

$$
\begin{aligned}
& \left(2 m_{j}-2 j-q_{0}-\nu_{0}+n+1\right) \psi\left(\mathbf{m}^{+j}\right) \\
& =C_{j}^{+}(\mathbf{m}) \cdot\left(2 m_{j}-2 j-p_{0}+\nu+n\right) \psi(\mathbf{m})
\end{aligned}
$$

for $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l}), 1 \leqslant j<h$ with $\mathbf{m}^{+j} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$ with a system of non-zero constants $C_{j}^{+}(\mathbf{m})$ which depends only on σ_{0}, σ and h.

Proof. We give a brief indication of the proof. The formula (3.2.8) follows from the same procedure described in [10, section 9]. The equations $\left(\mathrm{E}_{h}^{+i}\right)_{\mathrm{m}}$ and $\left(\mathrm{E}_{h}^{-i}\right)_{\mathrm{m}}$ are paraphrase of $[10,(8.3 .1),(8.3 .2)]$. The formula (3.2.9) follows from (3.2.8) combined with the formula of ${ }_{2} F_{1}(a, b ; c ; 1)$ in $[14,14.11]$. By the formula (3.2.8), the function $\psi\left(\mathbf{m}_{0} ; x\right)$ on $0<x<1$ can be extended smoothly around $x=1$. By induction on the number $\delta(\mathbf{m})=\left|\mathbf{m}-\mathbf{m}_{0}\right|$, we can prove by using $\left(\mathrm{E}_{h}^{-i}\right)_{\mathbf{m}}$ and $\left(\mathrm{E}_{h}^{+i}\right)_{\mathbf{m}}$ that $\psi(\mathbf{m} ; x)$ is continued smoothly around $x=1$. In particular the $\operatorname{limit} \lim _{x \rightarrow 1-0} \psi(\mathbf{m} ; x)$ exists for any $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$. The relations (a) and (b) can be deduced from $\left(\mathrm{E}_{h}\right)_{\mathbf{m}}^{+i}$ and $\left(\mathrm{E}_{h}\right)_{\mathbf{m}}^{-i}$ by a computation.

Corollary 3.2.1. Retain the assumptions and the notations in Proposition 3.2.2. We have

$$
\begin{align*}
\psi(\mathbf{p}) & =\gamma^{(h)}(\mathcal{P}) C_{0} \prod_{\alpha=1}^{h-1} \prod_{q_{\alpha} \leqslant m_{\alpha}<p_{\alpha}} \frac{2 m_{\alpha}-2 \alpha-p_{0}+\nu+n}{2 m_{\alpha}-2 \alpha-q_{0}-\nu_{0}+n+1} \tag{3.2.10}\\
& \times \prod_{\beta=h+1}^{n-1} \prod_{p_{\beta}<m_{\beta} \leqslant q_{\beta-1}} \frac{2 m_{\beta}-2 \beta-p_{0}-\nu+n}{2 m_{\beta}-2 \beta-q_{0}+\nu_{0}+n-1} \\
& \times \frac{\Gamma(\nu)}{\Gamma\left(\frac{\nu-\nu_{0}+1+\kappa}{2}\right) \Gamma\left(\frac{\nu+\nu_{0}+1+\kappa}{2}\right)}
\end{align*}
$$

with a non-zero constant C_{0} which depends only on σ_{0}, σ and h.
Proof. This follows from the formula (3.2.9) and recurrence relations (a) and (b).

4. The Poisson Integrals

In the first subsection, we introduce an integral transform using the open $P_{n-1} \times P_{n}$-double coset in G_{n}, which may be considered to be an analogue of the Poisson integrals in the representation theory of the affine symmetric spaces $\left([8]\right.$, [3]). In 4.2, we compute the constant $\gamma^{(h)}(\mathcal{P})$ (Proposition 3.2.2 (1)) for \mathcal{P} given by the Poisson integral.

4.1. Poisson integrals and their basic properties

Lemma 4.1.1. We have

$$
P_{n-1} \cap P_{n}=\mathrm{m}_{n-1}(\mathrm{U}(n-2), 1)
$$

Proof. Noting

$$
\begin{align*}
& \mathrm{m}_{n-1}(\mathrm{U}(n-2), 1) \tag{4.1.1}\\
& =\left\{\begin{array}{l|l}
g \in G_{n} & g\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=\mathrm{e}_{n-1}+\mathrm{e}_{n+1}, \quad g\left(\mathrm{e}_{n}\right)=\mathrm{e}_{n} \\
g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right)=\mathrm{e}_{n}+\mathrm{e}_{n+1}
\end{array}\right\},
\end{align*}
$$

$P_{n-1}=\operatorname{Stab}_{G_{n-1}}\left(\left\langle\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right\rangle\right)$ and $P_{n}=\operatorname{Stab}_{G_{n}}\left(\left\langle\mathrm{e}_{n}+\mathrm{e}_{n+1}\right\rangle\right)$, the inclusion $\mathrm{m}_{n-1}(\mathrm{U}(n-2), 1) \subset P_{n-1} \cap P_{n}$ is obvious. We show the converse inclusion. Let $g \in P_{n-1} \cap P_{n}$. There exist scalars $\lambda \in \mathbb{C}^{*}$ and $\mu \in \mathbb{C}^{*}$ such that

$$
\begin{align*}
& g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right)=\lambda\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right), \tag{4.1.2}\\
& g\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=\mu\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right), \quad g\left(\mathrm{e}_{n}\right)=\mathrm{e}_{n} .
\end{align*}
$$

Substituting (4.1.2) to the equations $\left(g\left(\mathrm{e}_{n}\right) \mid g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right)\right)=\left(\mathrm{e}_{n} \mid \mathrm{e}_{n}+\mathrm{e}_{n+1}\right)=$ 1 and $\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid g\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)\right)=\left(\mathrm{e}_{n}+\mathrm{e}_{n+1} \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=-1$ respectively, we obtain $\bar{\lambda}=1$ and $\lambda \bar{\mu}=1$. Hence $g \in \mathrm{~m}_{n-1}(\mathrm{U}(n-2), 1)$ by (4.1.1).

Let $\Delta\left(P_{n-1} \cap P_{n}\right)$ be the diagonal subgroup of $P_{n-1} \times P_{n}$.
Proposition 4.1.1.
(1) The open subset
$\Omega_{n}=\left\{g \in G_{n} \mid\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right) \neq 0,\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n}\right) \neq 0\right\}$.
is an orbit under the action of $P_{n-1} \times P_{n}$ on G_{n} defined by

$$
\left(p_{0}, p\right) \cdot g=p_{0} g p^{-1}, \quad\left(p_{0}, p\right) \in P_{n-1} \times P_{n}, g \in G_{n}
$$

(2) The map $\psi: P_{n-1} \times P_{n} \rightarrow \Omega_{n}$ defined by $\left(p_{0}, p\right) \mapsto p_{0} p^{-1}$, passing to the quotient, induces a diffeomorphism $\left(P_{n-1} \times P_{n}\right) / \Delta\left(P_{n-1} \cap P_{n}\right) \cong \Omega_{n}$.

Proof. For a non-zero $v \in \mathbb{C}^{n+1}$, let $\langle v\rangle$ denote the line $\mathbb{C} v$. The group G_{n} naturally acts on $\mathbf{P}_{\mathbb{C}}^{n}$, the n-dimensional projective manifold, and the set $\mathcal{F}=\left\{\langle v\rangle \in \mathbf{P}_{\mathbb{C}}^{n} \mid(v \mid v)=0\right\}$ is the G_{n}-orbit of $\left\langle\mathrm{e}_{n}+\mathrm{e}_{n+1}\right\rangle$. Since $P_{n}=\operatorname{Stab}\left(\left\langle\mathrm{e}_{n}+\mathrm{e}_{n+1}\right\rangle\right)$, we have a bijection $G_{n} / P_{n} \cong \mathcal{F}$. We first prove (1). It suffices to show that the subset

$$
\tilde{\Omega}_{n}=\left\{\langle\mathrm{v}\rangle \in \mathcal{F} \mid\left(\mathrm{v} \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right) \neq 0,\left(\mathrm{v} \mid \mathrm{e}_{n}\right) \neq 0\right\}
$$

forms a single P_{n-1}-orbit. Note that $\left\langle\mathrm{e}_{n}+\mathrm{e}_{n+1}\right\rangle \in \tilde{\Omega}_{n}$. The P_{n-1}-invariance of the set $\tilde{\Omega}_{n}$ follows from the fact that $p_{0} \in P_{n-1}$ means $p_{0}\left(\mathrm{e}_{n}\right)=\mathrm{e}_{n}$ and $p_{0}^{-1}\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=\mu\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)$ with a scalar $\mu \in \mathbb{C}^{*}$. Next we show that for given $\left\langle\mathrm{v}_{1}\right\rangle,\left\langle\mathrm{v}_{2}\right\rangle \in \tilde{\Omega}_{n}$ there exists a $p_{0} \in P_{n-1}$ such that $p_{0}\left\langle\mathrm{v}_{1}\right\rangle=\left\langle\mathrm{v}_{2}\right\rangle$. By replacing v_{2} for $c \mathrm{v}_{2}$ with an appropriate $c \in \mathbb{C}^{*}$ if necessary, we may assume that $\left(\mathrm{v}_{1} \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=\left(\mathrm{v}_{2} \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)$. (This is possible because $\left(\mathrm{v}_{i} \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right) \neq 0$ for $i=1,2$.) If we put

$$
\mathrm{w}_{i}=\mathrm{v}_{i}-\left(\mathrm{v}_{i} \mid \mathrm{e}_{n}\right) \mathrm{e}_{n}, \quad i=1,2
$$

then, by Witt's theorem, we have a $p_{0} \in G_{n}$ such that

$$
\begin{aligned}
& p_{0}\left(\mathrm{e}_{n}\right)=\mathrm{e}_{n}, \quad p_{0}\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=\bar{\lambda}^{-1}\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right) \\
& p_{0}\left(\mathrm{w}_{1}\right)=\lambda \mathrm{w}_{2}
\end{aligned}
$$

with $\lambda=\left(\mathrm{v}_{1} \mid \mathrm{e}_{n}\right)\left(\mathrm{v}_{2} \mid \mathrm{e}_{n}\right)^{-1}$. The first two equations mean $p_{0} \in P_{n-1}$. The last equation can be written as $p_{0}\left(\mathrm{v}_{1}\right)=\lambda \mathrm{v}_{2}$. Hence $p_{0}\left\langle\mathrm{v}_{1}\right\rangle=\left\langle\mathrm{v}_{2}\right\rangle$.

Now we prove assertions in (2). By (1), the map ψ is surjective. We show that ψ is submersive. This is reduced to showing the surjectivity of the tangent map of ψ at the base point $e=\left(\mathrm{I}_{n+1}, \mathrm{I}_{n+1}\right) \bmod \Delta\left(P_{n-1} \cap\right.$
$\left.P_{n}\right)$, or equivalently to showing $\mathfrak{g}_{n}=\mathfrak{p}_{n-1}^{\prime}+\mathfrak{p}_{n}^{\prime}$ with $\mathfrak{p}_{n}^{\prime}=\operatorname{Lie}\left(P_{n}\right)$. (Note that the tangent space of Ω_{n} at I_{n+1} is \mathfrak{g}_{n} since Ω_{n} is open in G_{n}.) We have $\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{p}_{n-1}^{\prime}\right)+\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{p}_{n}^{\prime}\right)-\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{g}_{n}\right)=(n-2)^{2}$. On the other hand, Lemma 4.1.1 gives $\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{p}_{n-1}^{\prime} \cap \mathfrak{p}_{n}^{\prime}\right)=(n-2)^{2}$. Hence we have the identity $\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{g}_{n}\right)=\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{p}_{n-1}^{\prime}\right)+\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{p}_{n}^{\prime}\right)-\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{p}_{n-1}^{\prime} \cap \mathfrak{p}_{n}^{\prime}\right)$, which in turn means that the map $\mathfrak{p}_{n-1}^{\prime} \oplus \mathfrak{p}_{n}^{\prime} \rightarrow \mathfrak{g}_{n}$ sending $\left(X_{0}, X\right) \in \mathfrak{p}_{n-1}^{\prime} \oplus \mathfrak{p}_{n}^{\prime}$ to $X_{0}+X \in \mathfrak{g}_{n}$ is surjective, or equivalently $\mathfrak{g}_{n}=\mathfrak{p}_{n-1}^{\prime}+\mathfrak{p}_{n}^{\prime}$ as desired. This completes the proof.

Proposition 4.1.2.

(1) Let $\nu_{0}, \nu \in \mathbb{C}$. Let $\sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}$ with $\left(\mathbf{q} ; q_{0}\right) \in{ }^{\circ} \mathcal{L}_{n-1}^{+}$and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\left(\mathbf{p} ; p_{0}\right) \in{ }^{\circ} \mathcal{L}_{n}^{+}$. Assume the condition $\mathbf{q} \subset \mathbf{p}$. Then there exists a unique function

$$
\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right): G_{n} \rightarrow W(\mathbf{q}) \otimes W(\mathbf{p})^{\vee}
$$

that satisfies the conditions listed below:
(a) $\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)=0$ for $g \in G_{n}-\Omega_{n}$;
(b) For every $p_{0}=\mathrm{a}_{n-1}\left(r_{0}\right) m_{n-1} u_{n-1} \in P_{n-1}$ and $p=\mathrm{a}_{n}(r) m_{n} u_{n} \in$ P_{n} with $\left(m_{n-1}, u_{n-1}\right) \in M_{n-1} \times N_{n-1}$ and $\left(m_{n}, u_{n}\right) \in M_{n} \times N_{n}$, we have

$$
\begin{aligned}
& \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(p_{0} g p^{-1}\right) \\
& =r_{0}^{\nu_{0}+n-1} r^{-\nu+n}\left(\sigma_{0}\left(m_{n-1}\right) \otimes \sigma^{\vee}\left(m_{n}\right)\right) \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g), \\
& \quad g \in G_{n}
\end{aligned}
$$

(c) we have

$$
\begin{aligned}
& \left\langle\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(\mathrm{I}_{n+1}\right), w_{0}^{\vee} \otimes w\right\rangle=\left\langle\mathbf{p}_{\mathbf{q}}^{\mathbf{p}}(w), w_{0}^{\vee}\right\rangle \\
& \quad w_{0}^{\vee} \in W(\mathbf{q})^{\vee}, w \in W(\mathbf{p}) .
\end{aligned}
$$

(2) The function $\left(\nu_{0}, \nu, g\right) \mapsto \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)$ is C^{∞} on $\mathbb{C}^{2} \times \Omega_{n}$ and is holomorphic with respect to ν_{0} and ν.

Proof. The conditions in (b) and (c) give the formula

$$
\begin{equation*}
\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(p_{0} p\right)=r_{0}^{\nu_{0}+n-1} r^{\nu-n}\left(\sigma_{0}\left(m_{n-1}\right) \otimes \sigma^{\vee}\left(m_{n}^{-1}\right)\right) \xi_{0} \tag{4.1.3}
\end{equation*}
$$

for $p_{0}=\mathrm{a}_{n-1}\left(r_{0}\right) m_{n-1} u_{n-1} \in P_{n-1}$ and $p=\mathrm{a}_{n}(r) m_{n} u_{n} \in P_{n}$, where $\xi_{0} \in$ $W(\mathbf{q}) \otimes W(\mathbf{p})^{\vee}$ is a unique element satisfying

$$
\left\langle\xi_{0}, w_{0}^{\vee} \otimes w\right\rangle=\left\langle\mathbf{p}_{\mathbf{q}}^{\mathbf{p}}(w), w_{0}^{\vee}\right\rangle, \quad w_{0}^{\vee} \in W(\mathbf{q})^{\vee}, w \in W(\mathbf{p})
$$

The identity (4.1.3) uniquely determines $\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right) \mid \Omega_{n}$. To show the existance of $\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$, we only have to check that the right-hand side of the identity (4.1.3) is independent of a choice of expressions $g=p_{0} p, p_{0} \in$ $P_{n-1}, p \in P_{n}$. We can confirm this by the $P_{n-1} \cap P_{n}$-invariance of ξ_{0}. This establishes (1). Next we show (2). Let $\Psi: \mathbb{R}_{+}^{*} \times \mathbb{C}^{(1)} \times N_{n-1} \times \mathrm{U}(n-1) \times$ $N_{n} \times \mathbb{C}^{(1)} \times \mathbb{R}_{+}^{*} \rightarrow \Omega_{n}$ be the map defined by

$$
\begin{aligned}
& \Psi\left(r_{0}, x_{0}, u_{n-1}, h, u_{n}, x, r\right) \\
& =\mathrm{a}_{n-1}\left(r_{0}\right) \mathrm{m}_{n-1}\left(\mathrm{I}_{n-2}, x_{0}\right) u_{n-1} u_{n}^{-1} \mathrm{~m}_{n}(h, x)^{-1} \mathrm{a}_{n}(r)^{-1} \\
& \quad r_{0}>0, r>0, x_{0} \in \mathbb{C}^{(1)}, x \in \mathbb{C}^{(1)} \\
& \quad h \in \mathrm{U}(n-1), u_{n-1} \in N_{n-1}, u_{n} \in N_{n}
\end{aligned}
$$

By Proposition 4.1.1 (2), Ψ is a diffeomorphism. By the identity

$$
\begin{aligned}
& \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right) \circ \Psi\left(r_{0}, x_{0}, u_{n-1}, h, u_{n}, x, r\right) \\
& =r_{0}^{\nu_{0}+n-1} r^{n-\nu} \cdot \sigma_{0}\left(\mathrm{~m}_{n-1}\left(\mathrm{I}_{n-2}, x_{0}\right)\right) \otimes \sigma^{\vee}\left(\mathrm{m}_{n}(h, x)\right) \xi_{0}
\end{aligned}
$$

the smoothness of $\left(\nu_{0}, \nu, g\right) \mapsto \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)$ on $\mathbb{C}^{2} \times \Omega_{n}$ and the holomorphicity with respect to $\left(\nu_{0}, \nu\right)$ follows.

Theorem 4.1.1. Let σ_{0} and σ be as in Proposition 4.1.2.
(1) Put $\mathfrak{X}_{n}=\left\{\left(\nu_{0}, \nu\right) \in \mathbb{C}^{2} \mid \operatorname{Re}\left(\nu_{0}\right)+\operatorname{Re}(\nu)>1\right.$, $\left.\operatorname{Re}\left(\nu_{0}\right)<1-n\right\}$. The function $\left(\nu_{0}, \nu, g\right) \rightarrow \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)$ is continuous on $\mathfrak{X}_{n} \times G_{n}$. For $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, we have a linear map $\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$ from $\mathcal{V}_{n-1}^{\sigma_{0}^{\vee}} \otimes \mathcal{V}_{n}^{\sigma}$ to $C^{\infty}\left(G_{n}\right)$ such that

$$
\begin{align*}
& \mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g) \tag{4.1.4}\\
& =\int_{K_{n-1} \times K_{n}}\left\langle\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(k_{0} g k^{-1}\right), \varphi_{0}\left(k_{0}\right) \otimes \varphi(k)\right\rangle \\
& \quad \times d_{K_{n-1}}\left(k_{0}\right) d_{K_{n}}(k), \\
& \quad \varphi_{0} \in \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}, \varphi \in \mathcal{V}_{n}^{\sigma} .
\end{align*}
$$

The function $\left(\nu_{0}, \nu\right) \mapsto \mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g)$ on \mathfrak{X}_{n} is holomorphic for every $\varphi_{0} \in \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}, \varphi \in \mathcal{V}_{n}^{\sigma}$ and $g \in G_{n}$.
(2) Suppose $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$. Then $\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$ is a non-zero element of the space $\mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)$.

Proof. By Proposition 4.1.2 (2), we have that the function $\left(\nu_{0}, \nu, g\right) \mapsto$ $\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)$ is C^{∞} on the open dense subset $\mathfrak{X}_{n} \times \Omega_{n}$ of $\mathfrak{X}_{n} \times G_{n}$, and that $\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)=0$ for $g \in G_{n}-\Omega_{n}$. Hence to prove the continuity of $\left(\nu_{0}, \nu, g\right) \mapsto \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)$ on $\mathfrak{X}_{n} \times G_{n}$, it suffices to show that

$$
\begin{equation*}
\lim _{\left(\nu_{0}, \nu, g\right) \rightarrow\left(\nu_{0}^{\prime}, \nu^{\prime}, g^{\prime}\right), g \in \Omega_{n}} \xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)=0 \tag{4.1.5}
\end{equation*}
$$

for $g^{\prime} \in G_{n}-\Omega_{n}$ and $\left(\nu_{0}^{\prime}, \nu^{\prime}\right) \in \mathfrak{X}_{n}$. Take a g in Ω_{n} and express it as

$$
\begin{aligned}
& g=\Psi\left(r_{0}, x_{0}, u_{n-1}, h, u_{n}, x, r\right) \\
& \quad r_{0}, r>0, x_{0}, x \in \mathbb{C}^{(1)}, h \in \mathrm{U}(n-2), u_{n-1} \in N_{n-1}, u_{n} \in N_{n}
\end{aligned}
$$

where Ψ is the diffeomorphism introduced in the proof of Proposition 4.1.2 (2). We have

$$
\begin{aligned}
& r=\left|\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n}\right)\right|^{-1} \\
& \left.r_{0}=\mid\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n}\right)\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)\right)^{-1} \mid
\end{aligned}
$$

Since $\sigma_{0}\left(M_{n-1}\right)$ and $\sigma^{\vee}\left(M_{n}\right)$ are compact, using Proposition 4.1.2 (b) and the formulas above, we have the estimate

$$
\begin{align*}
& \left\|\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)(g)\right\| \tag{4.1.6}\\
& \leqslant C\left|\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)\right|^{-\operatorname{Re}\left(\nu_{0}\right)-n+1} \mid \\
& \times\left.\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n}\right)\right|^{\operatorname{Re}\left(\nu_{0}\right)+\operatorname{Re}(\nu)-1}, \quad g \in \Omega_{n}
\end{align*}
$$

with $C>0$ a constant independent of g. Now we let $\left(\nu_{0}, \nu, g\right) \in \mathfrak{X}_{n} \times \Omega_{n}$ go to $\left(\nu_{0}^{\prime}, \nu^{\prime}, g^{\prime}\right) \in \mathfrak{X}_{n} \times\left(G_{n}-\Omega_{n}\right)$. By the definition of Ω_{n}, the right-hand side of the inequality (4.1.6) tends to 0 as $\left(\nu_{0}, \nu, g\right) \rightarrow\left(\nu_{0}^{\prime}, \nu^{\prime}, g^{\prime}\right)$. This proves (4.1.5) and establishes the first part of (1). By the continuity just established, the integral (4.1.4) converges absolutely as long as $\left(\nu_{0}, \nu\right)$ is in \mathfrak{X}_{n}. The holomorphy with respect to $\left(\nu_{0}, \nu\right)$ is clear.

We have the identity

$$
\begin{align*}
& \mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(g_{0}\right) \varphi_{0} \otimes \pi_{n}^{\sigma, \nu}\left(g^{\prime}\right) \varphi\right)(g) \tag{4.1.7}\\
& =\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)\left(g_{0}^{-1} g g^{\prime}\right)
\end{align*}
$$

for $\varphi_{0} \in \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}, \varphi \in \mathcal{V}_{n}^{\sigma}, g, g^{\prime} \in G_{n}$ and $g_{0} \in G_{n-1}$ by applying the integration formula [12, (7.4), page 170] to the left $M_{n-1} \times M_{n}$-invariant function $f: K_{n-1} \times K_{n} \rightarrow \mathbb{C}$ defined by

$$
\begin{aligned}
& f\left(k_{0}, k\right)=\left\langle\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(k_{0} g_{0} g g^{\prime-1} k^{-1}\right), \varphi_{0}\left(k_{0}\right) \otimes \varphi(k)\right\rangle, \\
& \quad\left(k_{0}, k\right) \in K_{n-1} \times K_{n} .
\end{aligned}
$$

For $g \in G_{n}$, the bi-linear form $\Lambda_{g}: \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}} \times \mathcal{V}_{n}^{\sigma} \rightarrow \mathbb{C}$ given by

$$
\Lambda_{g}\left(\varphi_{0}, \varphi\right)=\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g), \quad \varphi_{0} \in \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}, \varphi \in \mathcal{V}_{n}^{\sigma}
$$

is continuous with respect to the C^{∞}-topology by the estimate

$$
\left|\Lambda_{g}\left(\varphi_{0}, \varphi\right)\right| \leqslant C_{g} \sup _{k_{n-1} \in K_{n-1}}\left\|\varphi_{0}\left(k_{n-1}\right)\right\| \sup _{k_{n} \in K_{n}}\left\|\varphi\left(k_{n}\right)\right\|
$$

with $C_{g}=\sup _{\left(k_{n-1}, k_{n}\right) \in K_{n-1} \times K_{n}}\left\|\xi\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right)\left(k_{n-1} g k_{n}\right)\right\|$. The formula (4.1.7) gives

$$
\begin{aligned}
& \mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)\left(g_{0}^{-1} g g^{\prime}\right)=\Lambda_{g}\left(\pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(g_{0}\right) \varphi_{0}, \pi_{n}^{\sigma, \nu}\left(g^{\prime}\right) \varphi\right) \\
& \quad g_{0} \in G_{n-1}, g, g^{\prime} \in G_{n}
\end{aligned}
$$

Since $\pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}$ and $\pi_{n}^{\sigma, \nu}$ are smooth, this shows the function $\left(g_{0}, g^{\prime}\right) \rightarrow$ $\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)\left(g_{0}^{-1} g g^{\prime}\right)$ is C^{∞}. Finally we show that there exist $\varphi_{0} \in \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}$ and $\varphi \in \mathcal{V}_{n}^{\sigma}$ such that $\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)\left(\mathrm{I}_{n+1}\right) \neq 0$. By Proposition 4.1.2 (c), the function $\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(k_{0} k^{-1}\right)$ on $K_{n-1} \times K_{n}$ is not identically zero. Hence we can find C^{∞}-functions $f_{0}: K_{n-1} \rightarrow W(\mathbf{q})^{\vee}$ and $f: K_{n} \rightarrow W(\mathbf{p})$ with

$$
\int_{K_{n-1} \times K_{n}}\left\langle\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\left(k_{0} k^{-1}\right), f_{0}\left(k_{0}\right) \otimes f(k)\right\rangle d_{K_{n-1}}\left(k_{0}\right) d_{K_{n}}(k) \neq 0 .
$$

The integral in the left-hand side equals $\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)\left(\mathrm{I}_{n+1}\right)$ with $\varphi_{0} \in$ $\mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}$ and $\varphi \in \mathcal{V}_{n}^{\sigma}$ given by $\varphi_{0}\left(k_{0}\right)=\int_{M_{n-1}} \sigma_{0}^{\vee}\left(m_{0}\right)^{-1} f_{0}\left(m_{0} k_{0}\right) d_{M_{n-1}}\left(m_{0}\right)$, $\varphi(k)=\int_{M_{n}} \sigma(m)^{-1} f(m k) d_{M_{n}}(m)$. This completes the proof.

Remark 4.1.1.
(1) As we proved in Proposition 4.1.1, $\Omega_{n}=P_{n-1} P_{n}$ is a unique open $P_{n-1} \times P_{n}$-double coset in G_{n}. The set $G_{n}-\Omega_{n}$ decomposes into two distinct $P_{n-1} \times P_{n}$-double cosets Ω_{n}^{\prime} and $\Omega_{n}^{\prime \prime}$ given as

$$
\begin{aligned}
& \Omega_{n}^{\prime}=\left\{g \in G_{n} \mid\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right) \neq 0\right. \\
&\left.\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n}\right)=0\right\} \\
& \Omega_{n}^{\prime \prime}=\left\{g \in G_{n} \mid\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)=\left(g\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right) \mid \mathrm{e}_{n}\right)=0\right\}
\end{aligned}
$$

(2) In the p-adic situation, analogous integrals as (4.1.4) were used in [4] to construct a class-one Shintani function.

4.2. Evaluation of the Poisson integrals for corner K_{n}-types

Let $\sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}$ and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ be as in Proposition 4.1.2. In particular we assume $\mathbf{q} \subset \mathbf{p}$. Put $z_{0}=|\mathbf{q}|+q_{0}$ and $z=|\mathbf{p}|+p_{0}$. Our goal of this subsection is to obtain an explicit formula of the constant $\gamma^{(h)}(\mathcal{P})$ for $\mathcal{P}=\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$ with $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$. The result is in Theorem 4.2.1.

Proposition 4.2.1. $\operatorname{Let}\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$ and $\varphi_{0} \in \mathcal{V}_{n-1}^{\sigma_{0}^{\vee}}$ and $\varphi \in \mathcal{V}_{n}^{\sigma}$. Then we have

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \lim _{r_{0} \rightarrow \infty} r_{0}^{n-1+\nu_{0}} r^{n-\nu} \mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r)\right) \tag{4.2.1}\\
& =\left\langle\mathrm{p}_{\mathbf{q}}^{\mathbf{p}}\left(\mathcal{A}_{n}^{\sigma, \nu}\left(\varphi ; \mathrm{w}_{n}\right)\right), \mathcal{A}_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\varphi_{0} ; \mathrm{w}_{n-1}\right)\right\rangle .
\end{align*}
$$

Proof. Put $\xi=\xi^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$ and $\mathcal{P}=\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$. We extend the function φ_{0} (resp. φ) to all of G_{n-1} (resp. G_{n}) by putting

$$
\begin{align*}
& \varphi_{0}\left(g_{0}\right)=\varphi_{0}\left(\kappa_{n-1}\left(g_{0}\right)\right) \alpha_{n-1}\left(g_{0}\right)^{-\nu_{0}+n-1}, \quad g_{0} \in G_{n-1} \tag{4.2.2}\\
& \varphi(g)=\varphi\left(\kappa_{n}(g)\right) \alpha_{n}(g)^{\nu+n}, \quad g \in G_{n}
\end{align*}
$$

To begin with we prove that there exists a positive constant C and δ such that

$$
\begin{align*}
& \left|\left\langle\xi\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) \bar{n}^{-1} \mathrm{a}_{n}(r)^{-1}\right), \varphi_{0}\left(\bar{n}_{0}\right) \otimes \varphi(\bar{n})\right\rangle\right| \tag{4.2.3}\\
& \leqslant C \alpha_{n-1}\left(\bar{n}_{0}\right)^{2(n-1)} \alpha_{n}(\bar{n})^{n+\delta}, \\
& \quad \bar{n}_{0} \in \bar{N}_{n-1}, \bar{n} \in \bar{N}_{n}
\end{align*}
$$

holds. By the estimate (4.1.6) and the Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \left|\left\langle\xi\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) \bar{n} \mathrm{a}_{n}(r)^{-1}\right), \varphi_{0}\left(\bar{n}_{0}\right) \otimes \varphi(\bar{n})\right\rangle\right| \\
& \leqslant C_{0}\left\|\mathrm{a}_{n}(r) \bar{n}^{-1} \mathrm{a}_{n}(r)^{-1}\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right)\right\|^{\operatorname{Re}\left(\nu_{0}\right)+\operatorname{Re}(\nu)-1} \\
& \left.\quad \times \| \mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0}^{-1} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1}\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)\right)\left\|^{-\operatorname{Re}\left(\nu_{0}\right)-n+1}\right\| \varphi_{0}\left(\bar{n}_{0}\right)\| \| \varphi(\bar{n}) \|
\end{aligned}
$$

with a constant C_{0}. By the Iwasawa decomposition we obtain the estimates

$$
\begin{aligned}
& \left\|\mathrm{a}_{n}(r) \bar{n}^{-1} \mathrm{a}_{n}(r)^{-1}\left(\mathrm{e}_{n}+\mathrm{e}_{n+1}\right)\right\| \leqslant C^{\prime} \alpha_{n}\left(\mathrm{a}_{n}(r) \bar{n} \mathrm{a}_{n}(r)^{-1}\right)^{-1} \\
& \|\varphi(\bar{n})\| \leqslant C^{\prime} \alpha_{n}(\bar{n})^{\operatorname{Re}(\nu)+n}, \quad \bar{n} \in \bar{N}_{n} \\
& \left\|\mathrm{a}_{n-1}(r) \bar{n}_{0}^{-1} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1}\left(\mathrm{e}_{n-1}+\mathrm{e}_{n+1}\right)\right\| \\
& \leqslant C^{\prime} \alpha_{n-1}\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1}\right)^{-1}, \\
& \left\|\varphi_{0}\left(\bar{n}_{0}\right)\right\| \leqslant C^{\prime} \alpha_{n-1}\left(\bar{n}_{0}\right)^{-\operatorname{Re}\left(\nu_{0}\right)+n-1}, \quad \bar{n}_{0} \in \bar{N}_{n-1}
\end{aligned}
$$

with a positive constant C^{\prime}. Since $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, we consequently have

$$
\begin{aligned}
& \left|\left\langle\xi\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) \bar{n} \mathrm{a}_{n}(r)^{-1}\right), \varphi_{0}\left(\bar{n}_{0}\right) \otimes \varphi(\bar{n})\right\rangle\right| \\
& \leqslant C_{1} \alpha_{n}\left(\mathrm{a}_{n}(r) \bar{n} \mathrm{a}_{n}(r)^{-1}\right)^{-\operatorname{Re}\left(\nu_{0}\right)-\operatorname{Re}(\nu)+1} \alpha_{n}(\bar{n})^{\operatorname{Re}(\nu)+n} \\
& \quad \times \alpha_{n-1}\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1}\right)^{\operatorname{Re}\left(\nu_{0}\right)+n-1} \alpha_{n-1}\left(\bar{n}_{0}\right)^{-\operatorname{Re}\left(\nu_{0}\right)+n-1} .
\end{aligned}
$$

Finally we use the estimates $\alpha_{n}\left(\mathrm{a}_{n}(r) \bar{n} \mathrm{a}_{n}(r)^{-1}\right) \geqslant \alpha_{n}(\bar{n}), \bar{n} \in \bar{N}_{n}, r \geqslant 1$ ([12, page 188, Lemma 7.16]) to have the desired estimate (4.2.3) with $\delta=1-\operatorname{Re}\left(\nu_{0}\right)>0$. Now we compute the left-hand side of (4.2.1). First we apply the integration formula [12, (5.25) page 140], and then use (4.2.2) and Proposition 4.1.2 (b). We have

$$
\begin{align*}
& r_{0}^{n-1+\nu_{0}} r^{n-\nu} \mathcal{P}\left(\varphi_{0} \otimes \varphi\right)\left(a_{n-1}\left(r_{0}\right)^{-1} a_{n}(r)\right) \tag{4.2.4}\\
& =r_{0}^{n-1+\nu_{0}} r^{n-\nu} \int_{\bar{N}_{n-1} \times \bar{N}_{n}}\left\langle\xi\left(\kappa_{n-1}\left(\bar{n}_{0}\right) \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) \kappa_{n}(\bar{n})^{-1}\right),\right. \\
& \left.\varphi_{0}\left(\kappa_{n-1}\left(\bar{n}_{0}\right)\right) \otimes \varphi\left(\kappa_{n}(\bar{n})\right)\right\rangle \\
& \quad \times \alpha_{n-1}\left(\bar{n}_{0}\right)^{2(n-1)} \alpha_{n}(\bar{n})^{2 n} d_{\bar{N}_{n-1}}\left(\bar{n}_{0}\right) d_{\bar{N}_{n}}(\bar{n}) \\
& =\int_{\bar{N}_{n-1} \times \bar{N}_{n}}\left\langle\xi\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) \bar{n}^{-1} \mathrm{a}_{n}(r)^{-1}\right),\right. \\
& \left.\quad \varphi_{0}\left(\bar{n}_{0}\right) \otimes \varphi(\bar{n})\right\rangle d_{\bar{N}_{n-1}}\left(\bar{n}_{0}\right) d_{\bar{N}_{n}}(\bar{n})
\end{align*}
$$

Now let $r \rightarrow+\infty$ and $r_{0} \rightarrow+\infty$. Since $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, the function ξ is continuous by Theorem 4.1.1. Hence

$$
\begin{aligned}
& \lim _{r_{0} \rightarrow+\infty} \lim _{r \rightarrow+\infty} \xi\left(\mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) \bar{n}^{-1} \mathrm{a}_{n}(r)^{-1}\right)=\xi\left(\mathrm{I}_{n+1}\right) \\
& \quad \bar{n}_{0} \in \bar{N}_{n-1}, \bar{n} \in \bar{N}_{n}
\end{aligned}
$$

because $\lim _{r \rightarrow+\infty} \mathrm{a}_{n-1}\left(r_{0}\right) \bar{n}_{0} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1}=\mathrm{I}_{n}$ and $\lim _{r \rightarrow+\infty} \mathrm{a}_{n}(r) \bar{n}^{-1}$. $\mathrm{a}_{n}(r)^{-1}=\mathrm{I}_{n+1}$. Interchanging integration and limit, we have

$$
\begin{align*}
& \lim _{r_{0} \rightarrow+\infty} \lim _{r \rightarrow+\infty} r_{0}^{n-1+\nu_{0}} r^{n-\nu} \mathcal{P}\left(\varphi_{0} \otimes \varphi\right)\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r)\right) \tag{4.2.5}\\
& =\int_{\bar{N}_{n-1} \times \bar{N}_{n}}\left\langle\xi\left(\mathrm{I}_{n+1}\right), \varphi_{0}\left(\bar{n}_{0}\right) \otimes \varphi(\bar{n})\right\rangle d_{\bar{N}_{n-1}}\left(\bar{n}_{0}\right) d_{\bar{N}_{n}}(\bar{n}) \\
& =\left\langle\xi\left(\mathrm{I}_{n+1}\right), \mathcal{A}_{n-1}^{\sigma^{\vee},-\nu_{0}}\left(\varphi_{0}: \mathrm{w}_{n-1}\right) \otimes \mathcal{A}_{n}^{\sigma, \nu}\left(\varphi: \mathrm{w}_{n}\right)\right\rangle .
\end{align*}
$$

Here one should note that the condition $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$ implies $\operatorname{Re}(\nu)>$ $0, \operatorname{Re}\left(\nu_{0}\right)<0$, which ensures the convergence of the integrals $\mathcal{A}_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\varphi_{0}\right.$: $\left.\mathrm{w}_{n-1}\right)$ and $\mathcal{A}_{n}^{\sigma, \nu}\left(\varphi: \mathrm{w}_{n}\right)$ (Proposition 2.3.1 (1)). To obtain the first equality in (4.2.5) above we used dominated convergence theorem, noting the estimate (4.2.3) and the fact that the function $\bar{n} \rightarrow \alpha_{n}(\bar{n})^{n+\delta}$ with $\delta>0$ is integrable on $\bar{N}_{n}([12$, page 181, Corollary 7.7]). By Proposition 4.1.2 (c), we have the conclusion.

Corollary 4.2.1. Let $\mathcal{P}=\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$ with $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$. For $\mu=$ $\left[\mathbf{m} ; m_{0}\right] \in \mathcal{L}_{n-1}^{+}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}}\right)$ and $\lambda=\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}\left(\pi_{n}^{\sigma, \nu}\right)$, we have

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \lim _{r_{0} \rightarrow \infty} r_{0}^{n-1+\nu_{0}} r^{n-\nu}\left\langle\mathcal{P}_{\mu, \lambda}\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathbf{a}_{n}(r)\right), w_{0}^{\vee} \otimes w\right\rangle \tag{4.2.6}\\
& =(-1)^{l_{0}-m_{0}} c_{n-1}\left(\sigma_{0}^{\vee},-\nu_{0} ; \check{\mathbf{m}}\right) c_{n}(\sigma, \nu ; \mathbf{l})\left\langle j_{\mathbf{m}}^{\mathbf{q}} \circ \mathrm{p}_{\mathbf{q}}^{\mathbf{p}} \circ \mathrm{p}_{\mathbf{p}}^{\mathbf{l}}(w), w_{0}^{\vee}\right\rangle, \\
& \quad w_{0}^{\vee} \in W(\mathbf{m})^{\vee}, w \in W(\mathbf{l}) .
\end{align*}
$$

Proof. By (2.3.2), we have

$$
\begin{aligned}
& \mathcal{A}_{n}^{\sigma, \nu} \circ \iota_{\mathbf{1}}^{\sigma}(w)=c_{n}(\sigma, \nu ; \mathbf{l}) \iota_{\mathbf{1}}^{\sigma}(w), \\
& \mathcal{A}_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}} \circ \check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)=c_{n-1}\left(\sigma_{0}^{\vee},-\nu_{0} ; \check{\mathbf{m}}\right) \breve{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)
\end{aligned}
$$

Since $\mathrm{w}_{n}=\operatorname{diag}\left(\mathrm{I}_{n},-1\right)$, by (2.1.1), we have $\check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\left(\mathrm{w}_{n-1}\right)=(-1)^{m_{0}}\left(\mathrm{j}_{\mathbf{m}}^{\mathbf{q}}\right)^{\vee}$ and $\iota_{1}^{\sigma}(w)\left(\mathrm{w}_{n}\right)=(-1)^{l_{0}} \mathrm{p}_{\mathbf{p}}^{1}$. Noting these remarks, we get the identity (4.2.6) from (4.2.1).

Here is the main theorem of this section.
Theorem 4.2.1. $\operatorname{Let}\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, and put $\pi_{0}=\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ and $\pi=\pi_{n}^{\sigma, \nu}$. Let $h \in\{1, \cdots, n-1\}$. Put $\gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right)=\gamma^{(h)}\left(\mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)\right)$. Then we have

$$
\begin{align*}
\gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right) & =\gamma_{\sigma_{0}, \sigma}^{(h)} \cdot \tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu\right)^{-1} \tag{4.2.7}\\
& \times \tilde{c}_{n}^{(h)}(\sigma ; \nu) d_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}\right) \\
& \times \Gamma\left(\frac{\nu-\nu_{0}+1+\kappa}{2}\right) \Gamma\left(\frac{\nu+\nu_{0}+1+\kappa}{2}\right)
\end{align*}
$$

with a non zero real number $\gamma_{\sigma_{0}, \sigma}^{(h)}$ which depends only on σ_{0}, σ and h. Here $\tilde{c}_{n}^{(h)}(\sigma ; \nu)$ is given by (2.2.1) and
(4.2.8) $\tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu\right)=\prod_{\alpha=1}^{h-1} \prod_{q_{\alpha} \leqslant i_{\alpha}<p_{\alpha}}\left(\nu-p_{0}+n+2 i_{\alpha}-2 \alpha\right)$

$$
\times \prod_{\beta=h+1}^{n-1} \prod_{p_{\beta}<i_{\beta} \leqslant q_{\beta-1}}\left(\nu+p_{0}-n-2 i_{\beta}+2 \beta\right)
$$

(4.2.9) $d_{n}^{(h)}\left(\sigma, \sigma_{0} ; \nu_{0}\right)=\prod_{\alpha=1}^{h-1} \prod_{q_{\alpha}<j_{\alpha} \leqslant p_{\alpha}}\left(\nu_{0}-2 j_{\alpha}+2 \alpha+q_{0}-n+1\right)$

$$
\times \prod_{\beta=h+1}^{n-1} \prod_{p_{\beta} \leqslant j_{\beta}<q_{\beta-1}}\left(\nu_{0}+2 j_{\beta}-2 \beta-2 q_{0}+n+1\right)
$$

Proof. Let $L_{\mathbf{m}}\left(w_{0}^{\vee}, w\right)$ with $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ such that $\lambda=\lambda_{\sigma}^{(h)}=\left[\mathbf{l} ; l_{0}\right]$ denotes the limit in the left-hand side of (4.2.6). We compute it in a way different from Corollary 4.2.1. From (3.2.6) and (3.2.7), we have

$$
\begin{equation*}
\alpha^{(h)}(\mathbf{n})+\beta^{(h)}(\mathbf{n})+n-\nu=\sum_{i=1}^{h-1}\left(n_{i}-p_{i}\right)+\sum_{i=h+1}^{n-1}\left(p_{i}-n_{i}\right) \tag{4.2.10}
\end{equation*}
$$

for $\mathbf{n}=\left(n_{j}\right)_{1 \leqslant j \leqslant n-1} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{1})$. Since $p_{i} \geqslant n_{i}$ for $1 \leqslant i<h, n_{i} \geqslant p_{i}$ for $h<i \leqslant n-1$ and $n_{h}=p_{h}$, the number (4.2.10) is non-positive and it is zero if and only if $\mathbf{n}=\mathbf{p}$. By Proposition 3.2.2 (2), we have
(4.2.11) $\lim _{r \rightarrow \infty} r^{n-\nu} f_{\mathbf{l}}(\mathbf{n} ; r)=\lim _{r \rightarrow \infty} r^{\alpha^{(h)}(\mathbf{n})+\beta^{(h)}(\mathbf{n})+n-\nu}$

$$
\begin{aligned}
& \times\left(\frac{1+r^{-2}}{2}\right)^{\alpha^{(h)}(\mathbf{n})}\left(\frac{1-r^{-2}}{2}\right)^{\beta^{(h)}(\mathbf{n})} \psi(\mathbf{n}) \\
= & \begin{cases}0 & \mathbf{n} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})-\{\mathbf{p}\}, \\
2^{n-\nu} \psi(\mathbf{p}) & \mathbf{n}=\mathbf{p}\end{cases}
\end{aligned}
$$

Now by the formula (3.2.3), we have

$$
\begin{align*}
L_{\mathbf{m}}\left(w_{0}^{\vee}, w\right)= & \sum_{\mathbf{n} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{1})} \lim _{r \rightarrow \infty} r^{n-\nu} f_{\mathbf{1}}(\mathbf{n} ; r) \lim _{r_{0} \rightarrow \infty} r_{0}^{n-1+\nu_{0}} \tag{4.2.12}\\
& \times\left[\iota_{\mathbf{n}}^{\sigma_{0}} \circ \mathbf{p}_{\mathbf{n}}^{1}(w) \mid \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\mathrm{a}_{n-1}\left(r_{0}\right)\right) \circ \check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right] \\
= & 2^{n-\nu} \psi(\mathbf{p}) \lim _{r_{0} \rightarrow \infty} r_{0}^{n-1+\nu_{0}} \\
& \times\left[\iota_{\mathbf{p}}^{\sigma_{0}} \circ \mathbf{p}_{\mathbf{p}}^{1}(w) \mid \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(\mathrm{a}_{n-1}\left(r_{0}\right)\right) \check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right] \\
= & 2^{n-\nu} \psi(\mathbf{p}) c_{n-1}\left(\sigma_{0}^{\vee},-\nu_{0} ; \check{\mathbf{m}}\right) \\
& \times\left\langle\left(\iota_{\mathbf{p}}^{\sigma_{0}} \circ \mathbf{p}_{\mathbf{p}}^{1}(w)\right)\left(\mathrm{I}_{n-1}\right), \iota_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\left(\mathrm{w}_{n-1}\right)\right\rangle .
\end{align*}
$$

The second equality follows from (4.2.11) and the last one follows from Proposition 2.3.1 (3). By (2.1.1), we easily have

$$
\left(\iota_{\mathbf{p}}^{\sigma_{0}} \circ \mathrm{p}_{\mathbf{p}}^{1}(w)\right)\left(\mathrm{I}_{n-1}\right)=\mathrm{p}_{\mathbf{q}}^{\mathbf{p}} \circ \mathrm{p}_{\mathbf{p}}^{1}(w), \quad\left(\check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right)\right)\left(\mathrm{w}_{n-1}\right)=(-1)^{m_{0}}\left(\mathrm{j}_{\mathbf{m}}^{\mathbf{q}}\right)^{\vee}\left(w_{0}^{\vee}\right)
$$

Substituting these identities to (4.2.12), we finally get

$$
\begin{align*}
L_{\mathbf{m}}\left(w_{0}^{\vee}, w\right)= & (-1)^{z_{0}-|\mathbf{p}|} 2^{n-\nu} \psi(\mathbf{p}) c_{n-1}\left(\sigma_{0}^{\vee},-\nu_{0} ; \check{\mathbf{m}}\right) \tag{4.2.13}\\
& \times\left\langle\mathrm{p}_{\mathbf{q}}^{\mathbf{p}} \circ \mathrm{p}_{\mathbf{p}}^{\mathbf{1}}(w),\left(\mathrm{j}_{\mathbf{m}}^{\mathbf{q}}\right)^{\vee}\left(w_{0}^{\vee}\right)\right\rangle .
\end{align*}
$$

From (4.2.6) and (4.2.13), we obtain

$$
\begin{aligned}
& (-1)^{m_{0}-l_{0}} c_{n-1}\left(\sigma_{0}^{\vee},-\nu_{0} ; \check{\mathbf{m}}\right) c_{n}(\sigma, \nu ; \mathbf{l})\left\langle\mathrm{p}_{\mathbf{q}}^{\mathbf{p}} \circ \mathrm{p}_{\mathbf{p}}^{\mathbf{1}}(w),\left(\mathrm{j}_{\mathbf{m}}^{\mathbf{q}}\right)^{\vee}\left(w_{0}^{\vee}\right)\right\rangle \\
& =(-1)^{m_{0}} 2^{n-\nu} \psi(\mathbf{p}) c_{n-1}\left(\sigma_{0}^{\vee},-\nu_{0} ; \check{\mathbf{m}}\right)\left\langle\mathrm{p}_{\mathbf{q}}^{\mathbf{p}} \circ \mathrm{p}_{\mathbf{p}}^{1}(w),\left(\mathrm{j}_{\mathbf{m}}^{\mathbf{q}}\right)^{\vee}\left(w_{0}^{\vee}\right)\right\rangle
\end{aligned}
$$

for any $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q})$ and any $\left(w_{0}^{\vee}, w\right) \in W(\mathbf{m})^{\vee} \times W\left(\mathbf{l}_{0}\right)$. Hence

$$
\begin{equation*}
(-1)^{l_{0}} c_{n}(\sigma, \nu ; \mathbf{l})=2^{n-\nu} \psi(\mathbf{p}) \tag{4.2.14}
\end{equation*}
$$

From Corollary 3.2.1, Proposition 2.3 .2 and (4.2.14), we have the conclusion easily.

5. Analytic Continuation of Poisson Integrals

In this section, we show that the integral (4.1.4) with K-finite $\varphi_{0} \otimes \varphi$ when multiplied by a suitable normalizing factor is continued holomorphically to a domain of \mathbb{C}^{2} with respect to $\left(\nu_{0}, \nu\right)$ (Theorem 5.1.1). For that purpose we use the difference-differential equations for the Shintani functions studied in [10]. The proof of Theorem 5.1.1 is given in 5.2.

5.1. Statement of the theorem

For $h \in\{1, \cdots, n-1\}$, put

$$
\mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}=\left\{\nu \in \mathbb{C} \mid \tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu\right) \neq 0\right\}
$$

Let $\mathfrak{D}_{\sigma_{0}, \sigma}$ be the union of $\mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}$ for $h \in\{1, \cdots, n-1\}$.
THEOREM 5.1.1. Let $\sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}$ and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\mathbf{q} \subset \mathbf{p}$. Put $\kappa=\left|p_{0}-q_{0}\right|$. For $\varphi_{0} \in V_{n-1}^{\sigma_{0}^{\vee}}$ and $\varphi \in V_{n}^{\sigma}$ with $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$ put

$$
\begin{aligned}
& \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g) \\
& =\Gamma\left(\frac{\nu-\nu_{0}+1+\kappa}{2}\right)^{-1} \Gamma\left(\frac{\nu+\nu_{0}+1+\kappa}{2}\right)^{-1} \mathcal{P}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g)
\end{aligned}
$$

(1) Let $\varphi \in V_{n}^{\sigma}, \varphi_{0} \in V_{n-1}^{\sigma_{0}^{\vee}}, D_{0} \in U\left(\mathfrak{g}_{n-1, \mathbb{C}}\right), D \in U\left(\mathfrak{g}_{n, \mathbb{C}}\right)$ and $g \in$ G_{n}. Then the function $\left(\nu_{0}, \nu\right) \mapsto L_{D_{0}} R_{D} \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g)$ on $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$ is a holomorphic function and is extended holomorphically to $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$.
(2) For every $\left(\nu_{0}, \nu\right) \in \mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$, the function $g \mapsto \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g)$ is C^{∞} on G_{n}. The linear map $\varphi_{0} \otimes \varphi \mapsto \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)$ gives rise to an element of $\mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)$.
(3) For $h \in\{1, \ldots, n-1\}$, put $\lambda_{\sigma}^{(h)}=\left[\mathbf{l} ; l_{0}\right]$ and $\mu_{\sigma_{0}, \sigma}^{(h)}=\left[\mathbf{m} ; m_{0}\right]$. Then there exists a non-zero constant $\gamma_{\sigma_{0}, \sigma}^{(h)}$ depending only on σ_{0}, σ and h such that

$$
\begin{align*}
& \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; i_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes \iota_{1}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right) \tag{5.1.1}\\
& =\gamma_{\sigma_{0}, \sigma}^{(h)} \cdot \Gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right) \\
& \quad \times(\operatorname{sh} r)^{\kappa}(\operatorname{ch} r)^{\sum \sum_{j=1}^{h-1}\left(q_{j}-p_{j}\right)+\sum_{j=h}^{n-2}\left(p_{j+1}-q_{j}\right)-n+\nu-\kappa} \\
& \quad \times{ }_{2} F_{1}\left(\frac{-\nu_{0}-\nu+1+\kappa}{2}, \frac{\nu_{0}-\nu+1+\kappa}{2} ; 1+\kappa ; \operatorname{th}^{2}(r)\right) \\
& \quad \cdot\left\langle\mathrm{p}_{\mathbf{m}}^{1}(w), w_{0}^{\vee}\right\rangle
\end{align*}
$$

holds for $r>0,\left(w_{0}^{\vee}, w\right) \in W(\mathbf{m})^{\vee} \times W(\mathbf{l})$ with

$$
\begin{align*}
& \Gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right) \tag{5.1.2}\\
& =\tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu\right)^{-1} \tilde{c}_{n}^{(h)}(\sigma ; \nu) d_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}\right)
\end{align*}
$$

Here $\tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu\right), \tilde{c}_{n}^{(h)}(\sigma ; \nu)$ and $d_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}\right)$ are given by (4.2.8), (2.2.1) and (4.2.9) respectively.

We give a proof of this theorem in the next subsection.

5.2. The proof of Theorem 5.1.1

We need the following lemma on Gaussian hypergeometric function.
Lemma 5.2.1. Let $c \in \mathbb{Z}$ with $c \geqslant 1$.
(1) For a fixed $0 \leqslant x<1$, the function $(a, b) \mapsto{ }_{2} F_{1}(a, b ; c ; x)$ is holomorphic on \mathbb{C}^{2}.
(2) For every $a, b \in \mathbb{C}$ and $0 \leqslant x<1$, we have the formula

$$
\begin{aligned}
& (1-x) \frac{d}{d x}{ }_{2} F_{1}(a, b ; c ; x) \\
& =\frac{(c-a)(c-b)}{c}{ }_{2} F_{1}(a, b ; c+1 ; x)+(a+b-c)_{2} F_{1}(a, b ; c ; x)
\end{aligned}
$$

Proof. The Taylor series of ${ }_{2} F_{1}(a, b ; c ; x)$ at $x=0$ converges on $|x|<1$ locally uniformly with respect to $(a, b) \in \mathbb{C}^{2}$. From this remark (1)
follows. By comparing the Taylor series expansion of the both sides of the identity at $x=0$, we get the formula of (2).

Let $h \in\{1, \cdots, n-1\}$. For every $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ and $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$, we define polynomial functions $Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right)$ and $P^{(h)}(\mathbf{l} ; \nu)$ by

$$
\begin{align*}
& Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right) \tag{5.2.1}\\
& =\prod_{\alpha=1}^{h-1} \prod_{q_{\alpha}<j_{\alpha} \leqslant \inf \left(p_{\alpha}, m_{\alpha}\right)}\left(\nu_{0}-2 j_{\alpha}+2 \alpha+q_{0}-n+1\right) \\
& \quad \times \prod_{\beta=h+1}^{n-1} \prod_{\sup \left(p_{\beta}, m_{\beta}\right) \leqslant j_{\beta}<q_{\beta-1}}\left(\nu_{0}+2 j_{\beta}-2 \beta-q_{0}+n+1\right), \\
& =\prod_{\alpha=1}^{(h)}(\mathbf{l} ; \nu) \tag{5.2.2}\\
& \quad \prod_{p_{\alpha} \leqslant j_{\alpha}<l_{\alpha}}^{h}\left(\nu+2 j_{\alpha}-2 \alpha+2-p_{0}+n\right) \\
& \quad \times \prod_{\beta=h l_{\beta+1}<j_{\beta+1} \leqslant p_{\beta}}^{n-1} \prod\left(\nu-2 j_{\beta+1}+2 \beta+2+p_{0}-n\right) .
\end{align*}
$$

Lemma 5.2.2. For $h \in\{1, \cdots, n-1\}, \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ and $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$, put

$$
\begin{aligned}
& \Gamma_{\mathbf{l}, \mathbf{m}}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right) \\
& =\frac{\gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right)}{P^{(h)}(\mathbf{l} ; \nu) Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right)} \Gamma\left(\frac{\nu-\nu_{0}+1+\kappa}{2}\right)^{-1} \Gamma\left(\frac{\nu+\nu_{0}+1+\kappa}{2}\right)^{-1}
\end{aligned}
$$

with $\gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right)$ given by (4.2.7). Then the function $\left(\nu_{0}, \nu\right) \mapsto$ $\Gamma_{\mathbf{l}, \mathbf{m}}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right)$ is holomorphic on $\left(\nu_{0}, \nu\right) \in \mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}$.

Proof. The functions $\nu \mapsto \tilde{c}_{n}^{(h)}(\sigma ; \nu) P^{(h)}(\mathbf{l} ; \nu)^{-1}$ and $\nu_{0} \mapsto$ $d_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}\right) Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right)^{-1}$ are holomorphic on all of \mathbb{C}. From Theorem 4.2.1 and this remark, the result follows.

Lemma 5.2.3. For $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, let $\left\{f_{\mathbf{1}}\left(\mathbf{m} ; \nu_{0}, \nu ; r\right) \mid \mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p}), \mathbf{m} \in\right.$ $\left.\Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})\right\}$ be the standard coefficients of $\mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$. Then for every $\mathbf{l} \in$
$\Lambda_{n}^{+}(\mathbf{p})$ and $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$, the function $\left(\nu_{0}, \nu, x\right) \mapsto \Psi_{\mathbf{l}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)=$ $(\operatorname{sh} r)^{-\beta^{(h)}(\mathbf{m})}(\operatorname{ch} r)^{-\alpha^{(h)}(\mathbf{m})} f_{\mathbf{1}}\left(\mathbf{m} ; \nu_{0}, \nu ; r\right)$ with $x=\operatorname{th}^{2}(r)$ defined on $\left(\mathfrak{X}_{n} \cap\right.$ $\left.\left(\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}\right)\right) \times(0,1)$ is a finite \mathbb{C}-linear combination of functions of the form

$$
\begin{align*}
& R\left(\nu_{0}, \nu\right) \Gamma_{1, \mathbf{m}}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right) \tag{5.2.3}\\
& \times x^{r_{1}}(1-x)^{r_{2}}{ }_{2} F_{1}\left(\frac{-\nu_{0}-\nu+1+\kappa}{2}, \frac{\nu_{0}-\nu+1+\kappa}{2} ; r_{3} ; x\right),
\end{align*}
$$

where $R\left(\nu_{0}, \nu\right)$ is a polynomial function, $r_{1}, r_{2}, r_{3} \in \mathbb{Z}$ with $r_{3} \geqslant \kappa+1$.

Proof. The functions $f_{\mathbf{1}}\left(\mathbf{m} ; \nu_{0}, \nu ; r\right)$ satisfy the system of differencedifferential equations $\left(\mathrm{S}^{ \pm k}\right)_{\mathbf{1 , \mathbf { m }}}$ and $\left(\mathrm{T}^{ \pm k}\right)_{\mathbf{l}, \mathbf{m}}$ given in [10, Theorem 7.4.1]. By changing variables, we can obtain the equations among $\Psi_{\mathbf{l}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)$'s correspondingly, which we also refer to $\left(\mathrm{S}^{ \pm k}\right)_{\mathbf{1 , m}}$ and $\left(\mathrm{T}^{ \pm k}\right)_{1, \mathbf{m}}$. Put $\lambda_{\sigma}^{(h)}=$ $\left[\mathbf{l}_{0} ; l_{0}\right]$ (Definition 2.2.2). For a given $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$, put $\delta(\mathbf{l})=\left|\mathbf{l}-\mathbf{l}_{0}\right|$. Then $\delta(\mathbf{l})$ is a non-negative integer and it is zero if and only if $\mathbf{l}=\mathbf{l}_{0}$. For a given \mathbf{l} and \mathbf{m}, let $(\mathrm{P})_{\mathbf{1}, \mathbf{m}}$ be the statement that the function $\left(\nu_{0}, \nu, x\right) \mapsto \Psi_{\mathbf{l}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)$ is a finite \mathbb{C}-linear combination of functions of the form (5.2.3). We prove the statement $(\mathrm{P})_{\mathbf{l}, \mathrm{m}}$ by induction on the integer $\delta(\mathbf{l})$.

If $\delta(\mathbf{l})=0$, then we have $\mathbf{l}=\mathbf{l}_{0}$. Let $\mathbf{m}_{0}=\left(m_{0, i}\right)_{1 \leqslant i \leqslant n-1} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ be such that $\mu_{\sigma_{0}, \sigma}^{(h)}=\left[\mathbf{m}_{0} ; m_{0}\right]$ (Definition 3.1.1). Then by the explicit formula (3.2.8), the statement $(\mathrm{P})_{\mathbf{l}_{0}, \mathbf{m}_{0}}$ is true. We proceed by induction on the number $\left|\mathbf{m}-\mathbf{m}_{0}\right| \geqslant 0$ to prove the statement $(\mathrm{P})_{\mathbf{l}_{0}, \mathbf{m}}$ for $\mathbf{m} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$. Assuming the validity of the statements $(P)_{\mathbf{l}_{0}, \mathbf{m}^{\prime}}$ for $\mathbf{m}^{\prime} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ with $0<\left|\mathbf{m}^{\prime}-\mathbf{m}_{0}\right|<e$, we take an $\mathbf{m} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ with $\left|\mathbf{m}-\mathbf{m}_{0}\right|=e$. Since $\left|\mathbf{m}-\mathbf{m}_{0}\right|=e>0, \mathbf{m}$ is different from \mathbf{m}_{0}. Thus we have two possbilities; (a) there exists an α with $1 \leqslant \alpha<h$ such that $\mathbf{m}^{-\alpha} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$, or (b) there exists an β with $h<\beta \leqslant n-1$ such that $\mathbf{m}^{+\beta} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$. (Note that \mathbf{m}_{0} is a unique element of $\Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ such that $\mathbf{m}^{-i} \notin \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ for all $1 \leqslant i<h$ and $\mathbf{m}^{+i} \notin \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ for all $h<i \leqslant n-1$.) By applying the equation $\left(\mathrm{E}_{h}^{+\alpha}\right)_{\mathbf{m}^{-\alpha}}$ in case (a) and $\left(\mathrm{E}_{h}^{-\beta}\right)_{\mathbf{l}_{0}, \mathbf{m}^{+\beta}}$ in case (b) with noting the statements $(\mathrm{P})_{\mathbf{l}_{0}, \mathbf{m}^{-\alpha}}$ and $(\mathrm{P})_{\mathbf{l}_{0}, \mathbf{m}^{+\beta}}$ are assumed to be true, we have that the function $\left(\nu_{0}, \nu, x\right) \mapsto \Psi_{\mathbf{l}_{0}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)$ is a finite \mathbb{C}-linear combination
of those of the form

$$
\begin{aligned}
& \frac{\gamma^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}, \nu\right) R\left(\nu_{0}, \nu\right)}{Q\left(\nu_{0}\right)} \Gamma\left(\frac{\nu-\nu_{0}+1+\kappa}{2}\right)^{-1} \Gamma\left(\frac{\nu+\nu_{0}+1+\kappa}{2}\right)^{-1} \\
& \times D_{x}\left\{x^{\lambda}(1-x)^{\mu}{ }_{2} F_{1}\left(\frac{-\nu_{0}-\nu+1+\kappa}{2}, \frac{\nu_{0}-\nu+1+\kappa}{2} ; \lambda^{\prime} ; x\right)\right\}
\end{aligned}
$$

where D_{x} is a differential operator of the form

$$
\left\{c_{1} x(1-x)+c_{2}\right\} \frac{d}{d x}+\left(a_{1} x+a_{2}\right)(1-x)^{\epsilon}, \quad c_{1}, c_{2}, a_{1}, a_{2} \in \mathbb{C}, \epsilon=0,1
$$

$R\left(\nu_{0}, \nu\right)$ is a polynomial function and $Q\left(\nu_{0}\right)$ represent $Q^{(h)}\left(\mathbf{m}^{-\alpha} ; \nu_{0}\right)$. $B_{\alpha}^{\sigma_{0}, \nu_{0}}(\mathbf{m})$ or $Q^{(h)}\left(\mathbf{m}^{+\beta} ; \nu_{0}\right) A_{\beta}^{\sigma_{0}, \nu_{0}}(\mathbf{m})$ according to the case (a) or case (b). Note that $P^{(h)}\left(\mathbf{l}_{0} ; \nu\right)$ is identically 1 by definition. From Lemma 5.2.1, the statement $(\mathrm{P})_{\mathbf{l}_{0}, \mathbf{m}}$ follows since $Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right)$ coincides with $Q\left(\nu_{0}\right)$ up to a non-zero constant factor. The statements $(\mathrm{P})_{\mathbf{l}_{0}, \mathbf{m}}$ for all $\mathbf{m} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}_{0}\right)$ are now established.

Let d be a positive integer and assume that the statements $(\mathrm{P})_{1, \mathrm{~m}}$ are true for all $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ and all $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$ with $\delta(\mathbf{l})<d$. Let $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ be any element with $\delta(\mathbf{l})=d$. Since $\delta(\mathbf{l})>0$, we have $\mathbf{l} \neq \mathbf{l}_{0}$, and hence have two possibilities: $\left(a^{\prime}\right)$ there exists an α with $1 \leqslant \alpha \leqslant h$ such that $\mathbf{l}^{-\alpha} \notin \Lambda_{n}^{+}(\mathbf{p})$, or $\left(b^{\prime}\right)$ there exists a β with $h \leqslant \beta \leqslant n-1$ such that $\mathbf{l}^{+(\beta+1)} \notin \Lambda_{n}^{+}(\mathbf{p})$. We first examine the case $\left(a^{\prime}\right)$. Take an arbitrary $\mathbf{m}=\left(m_{i}\right)_{1 \leqslant i \leqslant n-1} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$. If $l_{\alpha}>m_{\alpha}$, then we have $\mathbf{m} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}^{-\alpha}\right)$ and can apply the equation $\left(\mathrm{S}^{+\alpha}\right)_{\mathbf{1}^{-\alpha}, \mathbf{m}}$. In view of Lemma 5.2.1, we can get the statement $(\mathrm{P})_{\mathbf{l}, \mathbf{m}}$ from $(\mathrm{P})_{\mathbf{l}^{-\alpha}, \mathbf{m}}$, noting that $P^{(h)}(\mathbf{l} ; \nu)$ coincides with $P^{(h)}\left(\mathbf{1}^{-\alpha} ; \nu\right) A_{\alpha}^{\sigma, \nu}\left(\mathbf{1}^{-\alpha}\right)$ up to a non-zero factor. If $l_{\alpha}=m_{\alpha}$, then we see easily that $\mathbf{m}^{-\alpha} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{1}^{-\alpha}\right)$. Hence we can apply the equation $\left(\mathbf{T}^{+\alpha}\right)_{\mathbf{1}^{-\alpha}, \mathbf{m}^{-\alpha}}$. By Lemma 5.2.1, we can deduce $(\mathrm{P})_{\mathbf{1}, \mathbf{m}}$ from $(\mathrm{P})_{\mathbf{1}^{-\alpha}, \mathbf{m}^{-\alpha}}$ with noting that $Q^{(h)}\left(\mathbf{m}^{-\alpha} ; \nu_{0}\right)=Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right)$ and that $P^{(h)}\left(\mathbf{l}^{-\alpha} ; \nu\right)$ equals $P^{(h)}(\mathbf{l} ; \nu) A_{\alpha}^{\sigma, \nu}\left(\mathbf{l}^{-\alpha}\right)$ up to a non-zero constant factor. This settles the consideration for the case $\left(a^{\prime}\right)$. Next we examine the case $\left(b^{\prime}\right)$. Take an arbitrary $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$. If $m_{\beta}>l_{\beta+1}$, then we clearly have $\mathbf{m} \in$ $\Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}^{+(\beta+1)}\right)$ and can apply the equation $\left(\mathrm{S}^{-(\beta+1)}\right)_{\mathbf{l}^{+(\beta+1)}, \mathbf{m}}$. Noting that $P^{(h)}(\mathbf{l} ; \nu)$ equals $P^{(h)}\left(\mathbf{l}^{+(\beta+1)} ; \nu\right) B_{\beta+1}^{\sigma, \nu}\left(\mathbf{l}^{+(\beta+1)}\right)$ up to a non-zero constant factor, we have $(\mathrm{P})_{\mathbf{l}, \mathbf{m}}$ from $(\mathrm{P})_{\mathbf{l}^{+(\beta+1)}, \mathbf{m}}$ using Lemma 5.2.1. If $m_{\beta}=l_{\beta+1}$, then we can easily have $\mathbf{m}^{+\beta} \in \Lambda_{n-1}^{+}\left(\mathbf{q} \mid \mathbf{l}^{+(\beta+1)}\right)$. Hence we can apply the
equation $\left(\mathbf{T}^{-(\beta+1)}\right)_{\mathbf{l}^{+(\beta+1)}, \mathbf{m}^{+\beta}}$. Noting $Q^{(h)}\left(\mathbf{m}^{+\beta} ; \nu_{0}\right)=Q^{(h)}\left(\mathbf{m} ; \nu_{0}\right)$ and that $P^{(h)}(\mathbf{l} ; \nu)$ equals $P^{(h)}\left(\mathbf{l}^{+(\beta+1)} ; \nu\right) B_{\beta+1}^{\sigma, \nu}\left(\mathbf{l}^{+(\beta+1)}\right)$ up to a non-zero constant factor, we obtain the validity of the statement $(\mathrm{P})_{1, m}$ from that of $(\mathrm{P})_{\mathbf{1}^{+(\beta+1)}, \mathbf{m}^{+\beta}}$ by using Lemma 5.2.1. This completes the proof.

We prove (1) in Theorem 5.1.1. Let $\varphi_{0} \in V_{n-1}^{\sigma_{0}^{\vee}}, \varphi \in V_{n}^{\sigma}, D_{0} \in U\left(\mathfrak{g}_{n-1, \mathbb{C}}\right)$, $D \in U\left(\mathfrak{g}_{n, \mathbb{C}}\right)$ and $g \in G_{n}$. We can write g as $g=k_{0}^{-1} \mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r) k$ with $k_{0} \in K_{n-1}, k \in K_{n}$ and $r_{0}, r>0$ by Lemma 3.2.1. For $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, we have

$$
\begin{aligned}
& L_{D_{0}} R_{D} \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g) \\
& =\mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(D_{0}\right) \varphi_{0} \otimes \pi_{n}^{\sigma, \nu}(D) \varphi\right)(g) \\
& =\mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; F\left(\nu_{0}, \nu\right)\right)\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r)\right)
\end{aligned}
$$

with $F\left(\nu_{0}, \nu\right)=\left(\pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(k_{0}\right) \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(D_{0}\right) \varphi_{0}\right) \otimes\left(\pi_{n}^{\sigma, \nu}(k) \pi_{n}^{\sigma, \nu}(D) \varphi\right)$. Since φ_{0} is K_{n-1}-finite and φ is K_{n}-finite, there exists a finite family of functions $\left\{\psi_{i}\right\}_{i \in I}$ and $\left\{T_{i}\left(\nu_{0}, \nu\right)\right\}_{i \in I}$ such that ψ_{i} is of the form $\check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes \iota_{\mathbf{1}}^{\sigma}(w)$ with $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p}), \mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q}), w_{0}^{\vee} \in W(\mathbf{m})^{\vee}$ and $w \in W(\mathbf{l})$, such that $T_{i}\left(\nu_{0}, \nu\right)$ is a polynomial function of ν_{0}, ν and such that

$$
F\left(\nu_{0}, \nu\right)=\sum_{i \in I} T_{i}\left(\nu_{0}, \nu\right) \cdot \psi_{i}
$$

Hence we may assume that $F\left(\nu_{0}, \nu\right)$ is of the form $\breve{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes \iota_{1}^{\sigma}(w)$ without loss of generality. Furthermore, in view of the formula (3.2.3), in order to show that the function

$$
\left(\nu_{0}, \nu\right) \mapsto \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \check{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes \iota_{\mathbf{1}}^{\sigma}(w)\right)\left(\mathrm{a}_{n-1}\left(r_{0}\right)^{-1} \mathrm{a}_{n}(r)\right)
$$

is holomorphically continued to all of $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}$, it suffices to prove the corresponding statement for $\left(\nu_{0}, \nu\right) \mapsto \Psi_{\mathbf{l}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)$ for all $\mathbf{l} \in \Lambda_{n}^{+}(\mathbf{p})$ and all $\mathbf{m} \in \Lambda_{n-1}^{+}(\mathbf{q} \mid \mathbf{l})$. (We note that matrix coefficients of $\pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}$ are holomorphic with respect to ν_{0} on all of \mathbb{C}.) By lemma 5.2.3, the function $\left(\nu_{0}, \nu\right) \mapsto \Psi_{\mathbf{l}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)$ defined for $\left(\nu_{0}, \nu, x\right) \in \mathfrak{X}_{n} \times(0,1), \nu \in \mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}$ is a finite \mathbb{C}-linear combination of those of the form (5.2.3). By Lemma 5.1.1 (1) and Lemma 5.2.2, the function (5.2.3) is holomorphic with respect to $\left(\nu_{0}, \nu\right) \in \mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}$. Hence $\Psi_{\mathbf{l}}\left(\mathbf{m} ; \nu_{0}, \nu ; x\right)$ is also holomorphic on $\left(\nu_{0}, \nu\right) \in \mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}^{(h)}$.

The first assertion of (2) is a consequence of the following lemma.
Lemma 5.2.4. Let $F:\left(\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}\right) \times G_{n} \rightarrow \mathbb{C}$ be a function satisfying the following:
(a) For any $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$ the function $g \mapsto F\left(\nu_{0}, \nu, g\right)$ is C^{∞} on G_{n}.
(b) For any $D \in U\left(\mathfrak{g}_{n, \mathbb{C}}\right)$ and any $g \in G_{n}$ the function $\left(\nu_{0}, \nu\right) \mapsto$ $R_{D, g} F\left(\nu_{0}, \nu, g\right)$ is holomorphic on \mathfrak{X}_{n} and is extended holomorphically to $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$; the resulting function $R_{D, g} F\left(\nu_{0}, \nu, g\right)$ is locally bounded on $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma} \times G_{n}$.

Then for any $\left(\nu_{0}, \nu\right) \in \mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ the function $g \mapsto F\left(\nu_{0}, \nu, g\right)$ is C^{∞} on G_{n}.

Proof. Let U be the set of all $\left(\nu_{0}, \nu\right) \in \mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ such that the function $F\left(x_{0}, x, g\right)$ is C^{∞} with respect to $g \in G_{n}$ for all $\left(x_{0}, x\right)$ in a neighborhood of $\left(\nu_{0}, \nu\right)$. From the assumption, we have $\mathfrak{X}_{n} \subset U$. It suffices to show that U is open and closed in $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$; indeed if this is so, U must be $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ itself because $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ is connected. It is clear from definition that U is open. Let $\left(\nu_{0}, \nu\right)$ be a point in $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ lying on the closure of U. Take $\epsilon>0$ small enough so that the polydisc centered at $\left(\nu_{0}, \nu\right)$ with radius ϵ is in $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$. Since $\left(\nu_{0}, \nu\right)$ is in the closure of U, there exists a point, say $\left(z_{0}, z\right)$, in U such that $\left|\nu_{0}-z_{0}\right|<4^{-1} \epsilon$ and $|\nu-z|<4^{-1} \epsilon$. For any $\delta>0$ let Δ_{δ} be the polydisc centered at $\left(z_{0}, z\right)$ with radius δ. Then Δ_{δ} is contained in $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ for $\delta<2^{-1} \epsilon$ and is in U if δ is small enough. Since $F\left(\nu_{0}, \nu, g\right)$ is holomorphic on $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ by assumption (b), it is expanded as a Taylor seires at $\left(z_{0}, z\right)$:

$$
\begin{equation*}
F\left(x_{0}, x, g\right)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\psi_{n, m}(g)}{n!m!}\left(x_{0}-z_{0}\right)^{n}(x-z)^{m}, \quad\left(x_{0}, x\right) \in \Delta_{\delta} \tag{5.2.6}
\end{equation*}
$$

with

$$
\psi_{n, m}(g)=\frac{n!m!}{(2 \pi i)^{2}} \int_{C_{\delta}\left(z_{0}\right)} \int_{C_{\delta}(z)} \frac{F\left(\zeta_{0}, \zeta, g\right)}{\left(\zeta_{0}-z_{0}\right)^{n+1}(\zeta-z)^{m+1}} d \zeta_{0} d \zeta
$$

Here δ is an arbitrary positive number smaller than $2^{-1} \epsilon$ and $C_{\delta}(z)$ denotes the path $|\zeta-z|=\delta$ with the counter-clockwise orientation. If we take the δ
small enough, then $F\left(\zeta_{0}, \zeta, g\right)$ is smooth with respect to g for all $\left(\zeta_{0}, \zeta\right) \in \Delta_{\delta}$; hence $\psi_{n, m}(g)$ is C^{∞} on G_{n} and

$$
\begin{equation*}
R_{D} \psi_{n, m}(g)=\frac{n!m!}{(2 \pi i)^{2}} \int_{C_{\delta}\left(z_{0}\right)} \int_{C_{\delta}(z)} \frac{R_{D, g} F\left(\zeta_{0}, \zeta, g\right)}{\left(\zeta_{0}-z_{0}\right)^{n+1}(\zeta-z)^{m+1}} d \zeta_{0} d \zeta \tag{5.2.7}
\end{equation*}
$$

By the assumption (b), for a given compact set W of G_{n}, there exists a positive C such that $\left|R_{D, g} F\left(\zeta_{0}, \zeta, g\right)\right| \leqslant C$ for $\left(\zeta_{0}, \zeta, g\right) \in \Delta_{2^{-1} \epsilon} \times W$; hence we have the estimate

$$
\begin{equation*}
\left|R_{D} \psi_{n, m}(g)\right| \leqslant n!m!\left(2^{-1} \epsilon\right)^{n+m} C, \quad g \in W \tag{5.2.8}
\end{equation*}
$$

The fact that $R_{D, g} F\left(x_{0}, x, g\right)$ is holomorphic on $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$, a fortiori on Δ_{δ}, with respect to $\left(x_{0}, x\right)$, combined with the formula (5.2.7) means that the power series

$$
\sum_{n, m} \frac{R_{D} \psi_{n, m}(g)}{n!m!}\left(x_{0}-z_{0}\right)^{n}(x-z)^{m}
$$

is convergent on Δ_{δ} for all $\delta<2^{-1} \epsilon$. Furthermore, by the estimate (5.2.8), the convergence is locally uniform with respect to g. Thus $F\left(x_{0}, x, g\right)$ is C^{∞} with respect to g for all $\left(x_{0}, x\right) \in \Delta_{2^{-1} \epsilon}$. Since $\Delta_{2^{-1} \epsilon}$ is a neighborhood of $\left(\nu_{0}, \nu\right)$ in $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$, we indeed have $\left(\nu_{0}, \nu\right) \in U$. Thus U is closed in $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$.

We show the last part of (2). Let φ_{0} and φ be as before. It suffices to prove that for every $D_{0} \in \mathfrak{g}_{n-1}, D \in \mathfrak{g}_{n}$ and $g \in G_{n}$ the identity

$$
\begin{align*}
& \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(D_{0}\right) \varphi_{0} \otimes \pi_{n}^{\sigma, \nu}(D) \varphi\right)(g) \tag{5.2.9}\\
& =\left(L_{D_{0}} R_{D} \mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu ; \varphi_{0} \otimes \varphi\right)(g)\right.
\end{align*}
$$

holds. If $\left(\nu_{0}, \nu\right) \in \mathfrak{X}_{n}$, then (5.2.9) is a consequence of Theorem 4.1.1 (2). Since both sides of (5.2.9) are holomorphic with respect to $\left(\nu_{0}, \nu\right)$ on $\mathbb{C} \times$ $\mathfrak{D}_{\sigma_{0}, \sigma}$ as proved above, it is true on all of $\mathbb{C} \times \mathfrak{D}_{\sigma_{0}, \sigma}$ by the uniqueness of the analytic continuation. Finally the formula (5.1.1) follows from (3.2.3), (3.2.8) and (4.2.7). This completes the proof of Theorem 5.1.1.

6. Multiplicity One Theorem for the Space of Shintani Functionals

In this section, we have the multiplicity formula for the space $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ for some representations π_{0} and π. Since we already have multiplicity freeness
of the space $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ in Theorem 3.1.1, we have only to construct a nontrivial element in the space $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ to ensure $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$. Such an element is provided by the analytic continuation of the (normalized) Poisson integral obtained in Theorem 5.1.1.

We collect notations used in this section. For given vectors $\left(x_{1}, \ldots, x_{m}\right) \in$ \mathbb{R}^{m} and $\left(y_{1}, \ldots, y_{m+1}\right) \in \mathbb{R}^{m+1}$,

$$
\left(x_{1}, \ldots, x_{m}\right) \subset\left(y_{1}, \ldots, y_{m+1}\right)
$$

means that the inequality $y_{1} \geqslant x_{1} \geqslant y_{2} \geqslant \ldots \geqslant x_{m} \geqslant y_{m+1}$ holds. For $\mathbf{l}=\left(l_{j}\right)_{1 \leqslant j \leqslant n} \in \Lambda_{n}^{+}$and $h \in\{1, \ldots, n\}$, put $\mathbf{l}[h]=\left(l_{1}, \ldots, \hat{l}_{h}, \ldots, l_{n}\right)$.

6.1. Main theorem

THEOREM 6.1.1. Let π be an irreducible ($\mathfrak{g}_{n}, \mathbb{C}, K_{n}$)-module and π_{0} an irreducible $\left(\mathfrak{g}_{n-1, \mathbb{C}}, K_{n-1}\right)$-module. We assume that there exist an integer $h \in\{1, \ldots, n-1\}$, a principal series $\pi_{n}^{\sigma, s}$ of G_{n} and a principal series $\pi_{n-1}^{\sigma_{0}, s_{0}}$ of G_{n-1} satisfying the following.
(a) $\operatorname{Hom}_{P_{n-1} \cap P_{n}}\left(\sigma_{0}, \sigma\right) \neq\{0\}$ and $s \in \mathfrak{D}_{\sigma_{0}, \sigma}$.
(b) π_{0} is isomorphic to a quotient of $\pi_{n-1}^{\sigma_{0}, s_{0}}$ and π is isomorphic to a submodule of $\pi_{n}^{\sigma, s}$.
(c) The $K_{n-1} \times K_{n}$-module $\left(\tau_{\mu}^{n-1}\right)^{\vee} \boxtimes \tau_{\lambda}^{n}$ with $\lambda=\lambda_{\sigma}^{(h)}$ and $\mu=\mu_{\sigma_{0}, \sigma}^{(h)}$ occurs in $\pi_{0}^{\vee} \boxtimes \pi$.
(d) One of the following three conditions is fulfilled.
(i) $\tilde{c}_{n}^{(h)}(\sigma ; s) d_{n}^{(h)}\left(\sigma_{0}, \sigma ; s_{0}\right) \neq 0$.
(ii) $\nu=s$ is a simple zero of $\tilde{c}_{n}^{(h)}(\sigma ; \nu) ; \tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; s\right)=0$; $d_{n}^{(h)}\left(\sigma_{0}, \sigma ; s_{0}\right) \neq 0$.
(iii) $\nu=s$ is a simple zero of $\tilde{c}_{n}^{(h)}(\sigma ; \nu) ; \tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; s\right)=0 ; \nu_{0}=s_{0}$ is a simple zero of $d_{n}^{(h)}\left(\sigma_{0}, \sigma ; s_{0}\right)$ and $\mathcal{I}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}} \mid \pi\right)=\{0\}$ for all $\nu_{0} \neq s_{0}$ in a neighborhood of s_{0}.

Then $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$.

Proof. We first treat the case when one of the conditions (i) and (ii) of (d) is fulfilled. By (a), we can consider $\mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, \nu\right)$ at $\left(\nu_{0}, \nu\right)=$ $\left(s_{0}, s\right)$ (Theorem 5.1.1). By the formula (5.1.2) and the assumptions (i) or (ii) of (d), the number $\Gamma^{(h)}\left(\sigma_{0}, \sigma ; s_{0}, s\right) \neq 0$, which combined with the formula (5.1.1) means the composite of $\mathcal{R}^{\sigma_{0}, \sigma}\left(s_{0}, s\right)$ and $\check{\iota}_{\mathbf{m}}^{\sigma_{0}} \otimes \iota_{\mathbf{1}}^{\sigma}$ is not zero, where $\lambda_{\sigma}^{(h)}=\left[\mathbf{l} ; l_{0}\right]$ and $\mu_{\sigma_{0} \sigma}^{(h)}=\left[\mathbf{m} ; m_{0}\right]$. By (b) we have an inclusion $i: \pi_{0}^{\vee} \boxtimes \pi \hookrightarrow\left(\pi_{n-1}^{\sigma_{0}, s_{0}}\right)^{\vee} \boxtimes \pi_{n}^{\sigma, s}$. Since $\left(\pi_{n-1}^{\sigma_{0}, s_{0}}\right)^{\vee} \boxtimes \pi_{n}^{\sigma, s}$ has multiplicity free $K_{n-1} \times K_{n}$-spectrum, (c) means that the map $\check{\iota}_{\mathbf{m}}^{\sigma_{0}} \otimes \iota_{\mathbf{1}}^{\sigma}$ factors through i. Consequently we have a non-zero intertwining operator $\mathcal{R}^{\sigma_{0}, \sigma}\left(s_{0}, s\right) \circ i \in$ $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ to get the inequality $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right) \geqslant 1$. Using Theorem 3.1.1, we obtain $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$. Next we assume the condition (iii) of (d). For $\varphi_{0} \in V_{n-1}^{\sigma_{0}^{\vee}}$ and $\varphi \in V_{n}^{\sigma}$, put

$$
\tilde{\mathcal{R}}\left(\varphi_{0} \otimes \varphi\right)=\partial_{0} \mathcal{R}^{\sigma_{0}, \sigma}\left(s_{0}, s ; \varphi_{0} \otimes \varphi\right)
$$

with ∂_{0} denoting the partial derivative with respect to ν_{0} at $\nu_{0}=s_{0}$. The map $\tilde{\mathcal{R}} \circ i$ belongs to $\in \mathcal{I}\left(\pi_{0} \mid \pi\right)$. Indeed, for $D_{0} \in U\left(\mathfrak{g}_{n-1}, \mathbb{C}\right)$ and $D \in U\left(\mathfrak{g}_{n, \mathbb{C}}\right)$ by differentiating the equation (5.2.9), we have

$$
\begin{align*}
& \tilde{\mathcal{R}}\left(\pi_{n-1}^{\sigma_{0}^{\vee},-s_{0}}\left(D_{0}\right) \varphi_{0} \otimes \pi_{n}^{\sigma, s}(D) \varphi\right)(g) \tag{6.1.1}\\
& \quad+\mathcal{R}^{\sigma_{0}, \sigma}\left(s_{0}, s ; \partial_{0} \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(D_{0}\right) \varphi_{0} \otimes \pi_{n}^{\sigma, s}(D) \varphi\right)(g) \\
& =L_{D_{0}} R_{D} \tilde{\mathcal{R}}\left(\varphi_{0} \otimes \varphi\right)(g)
\end{align*}
$$

We show that the last condition in (iii) of (d) means the second term in the left-hand side of (6.1.1) with $\varphi_{0} \otimes \varphi \in \operatorname{Im}(i)$ vanishes. We may assume π and π_{0}^{\vee} are submodules of $\pi_{n}^{\sigma, s}$ and $\pi_{n-1}^{\sigma_{0}^{\vee},-s_{0}}$ respectively. Let V and V_{0}^{\vee} be the corresponding subspaces of V_{n}^{σ} and $V_{n-1}^{\sigma_{0}^{\vee}}$ respectively. Then $\operatorname{Im}(i)=V_{0}^{\vee} \otimes V$. Take $\varphi_{0} \otimes \varphi \in \operatorname{Im}(i)$ and put $\varphi^{\prime}=\pi_{n}^{\sigma, s}(D) \varphi, \varphi_{0}^{\prime}=\partial_{0} \pi_{n-1}^{\sigma_{0}^{\vee},-\nu_{0}}\left(D_{0}\right) \varphi_{0}$. Then we have $\varphi^{\prime} \in V$ and $\varphi_{0}^{\prime} \in V_{n-1}^{\sigma_{0}^{\vee}}$. By the last condition of (d-iii), there is an $\epsilon>0$ such that $\mathcal{I}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}} \mid \pi\right)=\{0\}$ for all $0<\left|\nu_{0}-s_{0}\right|<\epsilon$. Since $\mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, s\right) \mid V_{n-1}^{\sigma_{0}^{\vee}} \otimes V$ gives an element of $\mathcal{I}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}} \mid \pi\right)$, it should be zero if $0<\left|\nu_{0}-s_{0}\right|<\epsilon$; hence

$$
\mathcal{R}^{\sigma_{0}, \sigma}\left(\nu_{0}, s ; \varphi_{0}^{\prime} \otimes \varphi^{\prime}\right)=0
$$

Let $\nu_{0} \rightarrow s_{0}$. Then this shows that the second term of the left-hand side of (6.1.1) is zero as long as $\varphi_{0} \otimes \varphi \in \operatorname{Im}(i)$.

By (6.1.1), combined with the claim just established, we have $\tilde{\mathcal{R}} \circ i \in$ $\mathcal{I}\left(\pi_{0} \mid \pi\right)$. The map $\tilde{\mathcal{R}} \circ\left(\tilde{\iota}_{\mathbf{m}}^{\sigma_{0}} \otimes \iota_{\mathbf{1}}^{\sigma}\right)$ is not zero. Indeed, by differentiating (5.1.1), we see that the first term of the Taylor series of $(\operatorname{sh} r)^{-\kappa} \tilde{\mathcal{R}}\left(\tilde{\iota}_{\mathbf{m}}^{\sigma_{0}}\left(w_{0}^{\vee}\right) \otimes\right.$ $\left.\iota_{1}^{\sigma}(w)\right)\left(\mathrm{a}_{n}(r)\right)$ with respect to $x=\operatorname{th}^{2}(r)$ at $x=0$ is given by

$$
\gamma_{\sigma_{0}, \sigma}^{(h)} \partial_{0} \Gamma^{(h)}\left(\sigma_{0}, \sigma ; s_{0}, s\right) \cdot\left\langle\mathbf{p}_{\mathbf{m}}^{1}(w), w_{0}^{\vee}\right\rangle
$$

The first and the second conditions in (iii) of (d) ensure $\partial_{0} \Gamma^{(h)}\left(\sigma_{0}, \sigma ; s_{0}, s\right) \neq$ 0 .

By the same reasoning as above, we then have $\tilde{\mathcal{R}} \circ i \in \mathcal{I}\left(\pi_{0} \mid \pi\right)$ and $\tilde{\mathcal{R}} \circ i \neq 0$ to obtain $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$.

By Theorem 6.1 .1 we can determine the number $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)$ explicitly in several cases.

6.2. The case of principal series

We consider the case when π_{0} and π are principal series representations.

Theorem 6.2.1. Let σ_{0} (resp. σ) be an irreducible unitary representation of $M_{n-1}\left(\right.$ resp. $\left.M_{n}\right)$. Let $\left(\nu_{0}, \nu\right) \in \mathbb{C}^{2}$ be such that $\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ and $\pi_{n}^{\sigma, \nu}$ are irreducible. Then we have

$$
\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)=\operatorname{dim}_{\mathbb{C}} \operatorname{Hom}_{P_{n-1} \cap P_{n}}\left(\sigma_{0}, \sigma\right)
$$

Proof. Let $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ and $\sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}$ as in Theorem 5.1.1. Then the dimension of the space $\operatorname{Hom}_{P_{n-1} \cap P_{n}}\left(\sigma_{0}, \sigma\right)$ equals 1 or 0 according to $\mathbf{q} \subset \mathbf{p}$ or not. By Proposition 3.2.1, it suffices to show $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)=$ 1 when $\mathbf{q} \subset \mathbf{p}$. The irreducibility of $\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ and $\pi_{n}^{\sigma, \nu}$ implies $\tilde{c}_{n}^{(h)}(\sigma ; \nu) d_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}\right) \neq 0$ for every h (Lemma 2.2.1). By Theorem 6.1.1 we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)=1$.

REmARK 6.2.1. Actually, even if $\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ or $\pi_{n}^{\sigma, \nu}$ is not necessarily irreducible, we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\sigma_{0}, \nu_{0} \mid \sigma, \nu\right)=1$ only assuming $\mathbf{q} \subset \mathbf{p}$ and $\tilde{c}_{n}^{(h)}(\sigma ; \nu) d_{n}^{(h)}\left(\sigma_{0}, \sigma ; \nu_{0}\right) \neq 0$.

6.3. The case involving discrete series and principal series

We consider the case when one of π and π_{0} is not a principal series representation but a discrete series representation. We recall the HarishChandra parametrization of the discrete series of G_{n}. For each integer $h \in\{0, \cdots, n\}$, let $\Xi_{(h)}^{n}$ be the set of $n+1$-tuples of real numbers $\lambda=$ $\left[\left(\lambda_{j}\right)_{1 \leqslant j \leqslant n} ; \lambda_{n+1}\right]$ with $\lambda_{j}+2^{-1} n \in \mathbb{Z}, 1 \leqslant j \leqslant n+1$ such that

$$
\lambda_{1}>\cdots>\lambda_{h}>\lambda_{n+1}>\lambda_{h+1}>\cdots>\lambda_{n}
$$

Let Ξ^{n} be the union of the sets $\Xi_{(h)}^{n}$ for all $h \in\{0, \ldots, n\}$. Then it is known that to each $\lambda=\left[\left(\lambda_{j}\right)_{1 \leqslant j \leqslant n} ; \lambda_{n+1}\right] \in \Xi_{(h)}^{n}$ there corresponds an irreducible ($\mathfrak{g}_{n, \mathbb{C}}, K_{n}$)-module π_{λ}^{n} (unique up to isomorphism) satisfying the following.
(i) The Casimir element $\Omega_{G_{n}}$ of G_{n} corresponding to the G_{n}-invariant form $\operatorname{tr}(X Y)$ of \mathfrak{g}_{n} acts on π_{λ}^{n} by the scalar

$$
\pi_{\lambda}^{n}\left(\Omega_{G_{n}}\right)=\sum_{j=1}^{n+1} \lambda_{j}^{2}-\frac{n^{2}}{4}-\sum_{j=1}^{n}\left(\frac{n-2 j}{2}\right)^{2}
$$

(ii) The K_{n}-type $\tau_{\left[1 ; l_{0}\right]}^{n}$ with $\mathbf{l}=\left(l_{j}\right)_{1 \leqslant j \leqslant n}$ such that

$$
\begin{aligned}
l_{i} & =\lambda_{i}+2^{-1}(2 i-n), \quad i \in\{1, \ldots, h\} \\
l_{j} & =\lambda_{j}+2^{-1}(2 j-2-n), \quad j \in\{h+1, \ldots, n\} \\
l_{0} & =\lambda_{n+1}-2^{-1}(2 h-n)
\end{aligned}
$$

occurs in π_{λ}^{n} with multiplicity one.
The representation π_{λ}^{n} is the discrete series with Harish-Chandra parameter λ and Blattner parameter $\left[\mathbf{l} ; l_{0}\right]$. (See [12, page 310, Theorem 9.20] and [5, page 57, Theorem 9.2].) The explicit description of the set $\mathcal{L}_{n}^{+}\left(\pi_{\lambda}^{n}\right)$ is useful in the following discussion. Here we recall it.

Lemma 6.3.1. Let π_{λ}^{n} be the discrete series of G_{n} with Harish Chandra parameter $\lambda \in \Xi_{(h)}^{n}$ and the Blattner parameter $\left[\mathbf{l} ; l_{0}\right]$. Then $\mathcal{L}_{n}^{+}\left(\pi_{\lambda}^{n}\right)$ consists of all the $\left[\mathbf{x} ; x_{0}\right] \in \mathcal{L}_{n}^{+}$satisfying $x_{0}=l_{0}+|\mathbf{l}|$ and $\mathbf{l} \subset\left(x_{1}, \ldots, x_{h}, l_{0}+2 h-\right.$ $\left.n, x_{h+1}, \ldots, x_{n}\right)$.

Proof. This follows from [6, page 436, Theorem 6 (i) and page 440, (2)].

To apply Theorem 6.1.1 we need to know into which principal series a given representation π_{λ}^{n} can be embedded.

Lemma 6.3.2. Let $\pi=\pi_{\lambda}^{n}$ be a discrete series representation of G_{n} with Harish-Chandra parameter $\lambda=\left[\left(\lambda_{j}\right)_{1 \leqslant j \leqslant n} ; \lambda_{n+1}\right] \in \Xi_{(h)}^{n}, h \in\{0, \ldots, n\}$ and the Blattner parameter $\left[\mathbf{l} ; l_{0}\right]$.
(i) Let $0<h$. Put

$$
\mathbf{p}=\mathbf{l}[h], \quad p_{0}=\lambda_{h}+\lambda_{n+1}, \quad s=\lambda_{h}-\lambda_{n+1}
$$

and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$. Then π is isomorphic to a submodule of $\pi_{n}^{\sigma, \nu}$. Moreover the j-th corner K_{n}-type $\lambda_{\sigma}^{(j)}$ of $\pi_{n}^{\sigma, \nu}$ belongs to $\mathcal{L}_{n}^{+}(\pi)$ if and only if $1 \leqslant j<h$. For $1 \leqslant j<h$, the function $\tilde{c}_{n}^{(j)}(\sigma ; \nu)$ has a simple zero at $\nu=s$.
(ii) Let $h<n$. Put

$$
\mathbf{p}=\mathbf{l}[h+1], \quad p_{0}=\lambda_{n+1}+\lambda_{h+1}, \quad s=\lambda_{n+1}-\lambda_{h+1}
$$

and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$. Then π is isomorphic to a submodule of $\pi_{n}^{\sigma, \nu}$. Moreover the j-th corner K_{n}-type $\lambda_{\sigma}^{(j)}$ of $\pi_{n}^{\sigma, \nu}$ belongs to $\mathcal{L}_{n}^{+}(\pi)$ if and only if $h<j \leqslant n-1$. For $h<j \leqslant n-1$, the function $\tilde{c}_{n}^{(j)}(\sigma ; \nu)$ has a simple zero at $\nu=s$.

Proof. The first assertions in (1) and (2) follow from [6, page 445, Proposition 3]. The remaining parts follow from definitions immediately.

The following auxiliary lemma is logically unnecessary but is helpful in practice when one checks whether the polynomial function (4.2.8) or (4.2.9) has a zero at a certain point.

Lemma 6.3.3. Let $\mathbf{l}=\left(l_{j}\right)_{1 \leqslant j \leqslant n} \in \Lambda_{n}^{+}, \mathbf{m}=\left(m_{i}\right)_{1 \leqslant i \leqslant n-1} \in \Lambda_{n-1}^{+}$, $\mathbf{p}=\left(p_{j}\right)_{1 \leqslant j \leqslant n-1} \in \Lambda_{n-1}^{+}, \mathbf{q}=\left(q_{i}\right)_{1 \leqslant i \leqslant n-2} \in \Lambda_{n-2}^{+}$and $l_{0}, m_{0} \in \mathbb{Z}$. Let $j \in\{1, \ldots, n-1\}, h \in\{0, \ldots, n-1\}$ and $k \in\{0, \ldots, n\}$. Put $\tilde{l}_{0}=l_{0}+2 k-n$, $\tilde{m}_{0}=m_{0}+2 h-n+1, \sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}$ and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$.
(i) Let $0<k$ and $\mathbf{q} \subset \mathbf{l}[k]=\left(p_{i}^{\prime}\right)_{1 \leqslant i \leqslant n-1}$. Put $\sigma^{\prime}=\sigma_{\left(\mathbf{l}[k] ; l_{0}+l_{k}\right)}^{n}$. Then $\tilde{d}_{n}^{(j)}\left(\sigma_{0}, \sigma^{\prime} ; l_{k}-\tilde{l}_{0}\right)=0$ if and only if $q_{\alpha} \leqslant l_{0}+k-n<p_{\alpha}^{\prime}$ with an $\alpha \in\{1, \ldots, j-1\}$ or $p_{\beta}^{\prime}<l_{k}-k+\beta \leqslant q_{\beta-1}$ with $a \beta \in\{j+1, \ldots, n-1\}$.
(ii) Let $k<n$ and $\mathbf{q} \subset \mathbf{l}[k+1]=\left(p_{i}^{\prime \prime}\right)_{1 \leqslant i \leqslant n-1}$. Put $\sigma^{\prime \prime}=\sigma_{\left(\mathbf{l}[k+1] ; l_{k+1}+l_{0}\right)}^{n}$. Then $\tilde{d}_{n}^{(j)}\left(\sigma_{0}, \sigma^{\prime \prime} ; \tilde{l}_{0}-l_{k+1}\right)=0$ if and only if $q_{\alpha} \leqslant l_{k+1}-k+\alpha<p_{\alpha}^{\prime}$ with an $\alpha \in\{1, \ldots, j-1\}$ or $p_{\beta}^{\prime}<l_{0}+k-n+\beta \leqslant q_{\beta-1}$ with a $\beta \in\{j+1, \ldots, n-1\}$.
(iii) Let $0<h$ and $\mathbf{m}[h]=\left(q_{i}^{\prime}\right)_{1 \leqslant i \leqslant n-2} \subset \mathbf{p}$. Put $\sigma_{0}^{\prime}=\sigma_{\left(\mathbf{m}[h] ; m_{0}+m_{h}\right)}^{n-1}$. Then $d_{n}^{(j)}\left(\sigma_{0}^{\prime}, \sigma ; \tilde{m}_{0}-m_{h}\right)=0$ if and only if $q_{\alpha}^{\prime}<m_{0}-(n-1)+h+\alpha \leqslant$ p_{α} with an $\alpha \in\{1, \ldots, j-1\}$ or $p_{\beta} \leqslant m_{h}-h-1-\beta<q_{\beta-1}^{\prime}$ with a $\beta \in\{j+1, \ldots, n-1\}$.
(iv) Let $h<n-1$ and $\mathbf{m}[h+1]=\left(q_{i}^{\prime \prime}\right)_{1 \leqslant i \leqslant n-1} \subset \mathbf{p}$. Put $\sigma_{0}^{\prime \prime}=$ $\sigma_{\left(\mathbf{m}[h+1] ; m_{h+1}+m_{0}\right)}^{n-1}$. Then $d_{n}^{(j)}\left(\sigma_{0}^{\prime \prime}, \sigma ; m_{h+1}-\tilde{m}_{0}\right)=0$ if and only if $q_{\alpha}^{\prime \prime}<m_{h+1}-h+\alpha \leqslant p_{\alpha}$ with an $\alpha \in\{1, \ldots, j-1\}$ or $p_{\beta} \leqslant$ $m_{0}+h-\beta-n<q_{\beta-1}^{\prime \prime}$ with $a \beta \in\{j+1, \ldots, n-1\}$.

Proof. This follows from (4.2.8) and (4.2.9) immediately.
We first consider the case when π is a discrete series.
Theorem 6.3.1. Let $\pi=\pi_{\lambda}^{n}$ with $\lambda \in \Xi_{(h)}^{n}$ be a discrete series representation of G_{n} and $\pi_{0}=\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ an irreducible principal series of G_{n-1} with $\sigma_{0}=\sigma_{\left(\mathbf{q} ; q_{0}\right)}^{n-1}, \mathbf{q}=\left(q_{j}\right)_{1 \leqslant j \leqslant n-2} \in \Lambda_{n-2}^{+}$. Let $\left[\mathbf{l} ; l_{0}\right]$ be the Blattner parameter of π_{λ}^{n}.
(1) Assume $h=0$ or $h=n$. Then we have $\mathcal{I}\left(\pi_{0} \mid \pi\right)=\{0\}$.
(2) Assume $0<h<n$. Then we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$ if and only if the condition

$$
\begin{equation*}
\left(q_{1}, \ldots, q_{h-1}, l_{0}+2 h-n, q_{h}, \ldots, q_{n-2}\right) \subset \mathbf{l} \tag{6.3.1}
\end{equation*}
$$

holds, otherwise $\mathcal{I}\left(\pi_{0} \mid \pi\right)=\{0\}$.

Proof. Let η be the $\left(\mathfrak{h}_{n, \mathbb{C}}, K_{n} \cap H_{n}\right)$-module such that $\eta\left|Z_{n}=\pi_{\lambda}^{n}\right| Z_{n}$ with $H_{n}=Z_{n} G_{n-1}$. Then by Theorem 7.1.1, we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=$ $\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi}$. We have $m_{1}^{+}(\eta)=+\infty, m_{j}^{+}(\eta)=q_{j-1}$ for $j \in\{2, \ldots, n-1\}$ and $m_{n-1}^{-}(\eta)=-\infty, m_{i}^{-}(\eta)=q_{i}$ for $i \in\{1, \ldots, n-2\}$ in the notation of $[10,8.1]$. When $h=0$, the condition (c) of [10, Theorem 8.1.1] is not satisfied because $m_{1}^{+}(\eta)=+\infty$. Hence $\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi}=0$ by [10, Theorem 8.1.1]. In the same way we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi}=0$ when $h=n$. We consider the case $0<h<n$. We show that $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$ assuming the condition (6.3.1). We take $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ as in (i) of Lemma 6.3.2 if $1<h$ and as in (ii) of Lemma 6.3.2 if $h<n-1$. In either cases we have $\mathbf{q} \subset \mathbf{p}$. By Lemma 6.3.2, π becomes a $\left(\mathfrak{g}_{n}, \mathbb{C}, K_{n}\right)$-submodule of the principal series $\pi_{n}^{\sigma, s}$. When $1<h$, it turns out that $\lambda_{\sigma}^{(h-1)} \in \mathcal{L}_{n}^{+}(\pi), \tilde{d}_{n}^{(h-1)}\left(\sigma_{0}, \sigma ; s\right)=0, \tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; s\right) \neq 0$ and that the function $\tilde{c}_{n}^{(h-1)}(\sigma ; \nu)$ has a simple zero at $\nu=s$. When $h<n-1$, it turns out that $\lambda_{\sigma}^{(h+1)} \in \mathcal{L}_{n}^{+}(\pi), \tilde{d}_{n}^{(h+1)}\left(\sigma_{0}, \sigma ; s\right)=0, \tilde{d}_{n}^{(h)}\left(\sigma_{0}, \sigma ; s\right) \neq 0$ and that the function $\tilde{c}_{n}^{(h+1)}(\sigma ; \nu)$ has a simple zero at $\nu=s$. Since $\pi_{0}=\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ is irreducible, we have $d_{n}^{(j)}\left(\sigma_{0}, \sigma ; \nu_{0}\right) \neq 0$ for all $j \in\{1, \ldots, n-1\}$. Thus all the assumptions in Theorem 6.1.1 are fulfilled. Hence we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$. Conversely if $\mathcal{I}\left(\pi_{0} \mid \pi\right) \neq\{0\}$ or equivalently $\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi}=1$ by Theorem 7.1.1, then [10, Theorem 8.1.1] (with \mathbf{l} as above) yields the inequality (6.3.1).

Next we consider the case when π_{0} is a discrete series.
Theorem 6.3.2. Let $\pi_{0}=\pi_{\mu}^{n-1}$ be a discrete series representation of G_{n-1} with Harish-Chandra parameter $\mu \in \Xi_{(h)}^{n-1}$ and $\pi=\pi_{n}^{\sigma, \nu}$ be an irreducible principal series representation of G_{n}. Let $\left[\mathbf{m} ; m_{0}\right]$ be the Blattner parameter of π_{0} and $\sigma=\sigma_{\left(\mathbf{p} ; p_{0}\right)}^{n}$ with $\mathbf{p} \in \Lambda_{n-1}^{+}$. Put $h^{+}=\sup (1, h)$. Then $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$ if and only if $\mathbf{m}\left[h^{+}\right] \subset \mathbf{p}$, otherwise $\mathcal{I}\left(\pi_{0} \mid \pi\right)=\{0\}$.

Proof. Assume the condition $\mathbf{m}\left[h^{+}\right] \subset \mathbf{p}$ holds. We consider the case $0<h<n-1$. Let $\sigma_{0}=\sigma_{\left(\mathbf{m}[h] ; \mu_{n}+\mu_{h}\right)}^{n-1}$ and $s_{0}=\mu_{n}-\mu_{h}$. Then from $\mathbf{m}\left[h^{+}\right] \subset \mathbf{p}$ we have $\mathbf{q} \subset \mathbf{p}$. Since π is irreducible, the number $\tilde{c}_{n}^{(j)}(\sigma ; \nu)$ is not zero for all j. Hence the condition (a) of Theorem 6.1.1 is satisfied. By Lemma 6.3.2 (1), π_{0}^{\vee} is embedded into $\left(\pi_{n-1}^{\sigma_{0}, s_{0}}\right)^{\vee}$. Using Lemma 6.3.1 we can check $\mu_{\sigma_{0}, \sigma}^{(h)} \in \mathcal{L}_{n-1}^{+}\left(\pi_{0}\right)$ to know (c) of Theorem 6.1.1 is fulfilled. With the aid of Lemma 6.3.3 we see that the condition $\mathbf{m}\left[h^{+}\right] \subset \mathbf{p}$ implies $d_{n}^{(h)}\left(\sigma_{0}, \sigma ; s_{0}\right) \neq 0$. Since $\tilde{c}_{n}^{(h)}(\sigma ; \nu) \neq 0$ as noticed above, the condition
(d-i) of Theorem 6.1.1 is attained. Now we apply Theorem 6.1.1 to obtain $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$. Conversely, if we assume $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right) \neq 0$, then we have $\mathcal{I}_{\eta, \pi} \neq\{0\}$ by Theorem 7.1.1. Hence by applying [10, Theorem 8.1.1] (with $\left.\lambda=\lambda_{\sigma}^{(n-1)}\right)$, we obtain the condition $\mathbf{m}\left[h^{+}\right] \subset \mathbf{p}$. The cases $h=0, n-1$ can be treated similarly.

6.4. The case of discrete series representation

In this subsection we treat the case when both of π_{0} and π are large discrete series. Let $\pi_{0}=\pi_{\mu}^{n-1}$ with $\mu=\left[\left(\mu_{j}\right)_{1 \leqslant j \leqslant n-1} ; \mu_{n}\right] \in \Xi_{(h)}^{n-1}$, $h \in\{0, \ldots, n-1\}$ be a discrete series representation of G_{n-1} and $\pi=\pi_{\lambda}^{n}$ with $\lambda=\left[\left(\lambda_{i}\right)_{1 \leqslant i \leqslant n} ; \lambda_{n+1}\right] \in \Xi_{(k)}^{n}, k \in\{0, \cdots, n\}$ be a discrete series representation of G_{n}. Let $\left[\mathbf{m} ; m_{0}\right] \in \mathcal{L}_{n-1}^{+}\left(\pi_{0}\right)$ and $\left[\mathbf{l} ; l_{0}\right] \in \mathcal{L}_{n}^{+}(\pi)$ be the Blattner parameters of π_{0} and π respectively. Put $\mathbf{m}=\left(m_{j}\right)_{1 \leqslant j \leqslant n-1}$ and $\mathbf{l}=\left(l_{i}\right)_{1 \leqslant i \leqslant n}$.

ThEOREM 6.4.1. Let π_{0} and π be as above. We assume $0<h<n-1$ and $0<k<n$. Then $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$ if and only if one of the following conditions is satisfied, otherwise it is zero.
(i) $k<h$ and

$$
\left(\mu_{1}, \ldots, \mu_{k-1}, \lambda_{n+1}, \mu_{k}, \ldots, \mu_{n-1}\right) \subset\left(\lambda_{1}, \ldots, \lambda_{h+1}, \mu_{n}, \lambda_{h+2}, \ldots, \lambda_{n}\right)
$$

(ii) $k=h$, and
(a)

$$
\left(\mu_{1}, \ldots, \mu_{h-1}, \lambda_{n+1}, \mu_{h}, \ldots, \mu_{n-1}\right) \subset\left(\lambda_{1}, \ldots, \lambda_{h+1}, \mu_{n}, \lambda_{h+2}, \ldots, \lambda_{n}\right)
$$

or
(b)

$$
\left(\mu_{1}, \ldots, \mu_{h}, \lambda_{n+1}, \mu_{h+1}, \ldots, \mu_{n-1}\right) \subset\left(\lambda_{1}, \ldots, \lambda_{h}, \mu_{n}, \lambda_{h+1}, \ldots, \lambda_{n}\right)
$$

(iii) $k=h+1$, and
(a)

$$
\left(\mu_{1}, \ldots, \mu_{h}, \lambda_{n+1}, \mu_{h+1}, \ldots, \mu_{n-1}\right) \subset\left(\lambda_{1}, \ldots, \lambda_{h+1}, \mu_{n}, \lambda_{h+2}, \ldots, \lambda_{n}\right)
$$

or
(b)

$$
\left(\mu_{1}, \ldots, \mu_{h+1}, \lambda_{n+1}, \mu_{h+2}, \ldots, \mu_{n-1}\right) \subset\left(\lambda_{1}, \ldots, \lambda_{h}, \mu_{n}, \lambda_{h+1}, \ldots, \lambda_{n}\right)
$$

(iv) $h+1<k$ and

$$
\left(\mu_{1}, \ldots, \mu_{k}, \lambda_{n+1}, \mu_{k+1}, \ldots, \mu_{n-1}\right) \subset\left(\lambda_{1}, \ldots, \lambda_{h}, \mu_{n}, \lambda_{h+1}, \ldots, \lambda_{n}\right)
$$

Proof. We show that $\mathcal{I}\left(\pi_{0} \mid \pi\right) \neq\{0\}$ assuming one of the conditions (i) to (iv). We take $\sigma_{0}, \sigma, s_{0}$ and s in each cases:
(i) $\sigma_{0}=\sigma_{\left(\mathbf{m}[h+1] ; \mu_{h+1}+\mu_{n}\right)}^{n-1}, s_{0}=\mu_{h+1}-\mu_{n} ; \quad \sigma=\sigma_{\left(\mathbf{l}[k+1] ; \lambda_{n+1}+\lambda_{k+1}\right)}^{n}, s=$ $\lambda_{n+1}-\lambda_{k+1}$.
(ii) $\sigma_{0}=\sigma_{\left(\mathbf{m}[h+1] ; \mu_{h+1}+\mu_{n}\right)}^{n-1}, \quad s_{0}=\mu_{h+1}-\mu_{n} ; \quad \sigma=\sigma_{\left(\left[1[+1] ; \lambda_{n+1}+\lambda_{h+1}\right)\right.}^{n}, s=$ $\lambda_{n+1}-\lambda_{h+1}$.
(iii) $\sigma_{0}=\sigma_{\left(\mathbf{m}[h] ; \mu_{n}+\mu_{h}\right)}^{n-1}, s_{0}=\mu_{n}-\mu_{h} ; \quad \sigma=\sigma_{\left(\mathbf{1}[h+1] ; \lambda_{n+1}+\lambda_{h+1}\right)}^{n}, s=\lambda_{n+1}-$ λ_{h+1}.
(iv) $\sigma_{0}=\sigma_{\left(\mathbf{m}[h] ; \mu_{n}+\mu_{h}\right)}^{n-1}, s_{0}=\mu_{n}-\mu_{h} ; \quad \sigma=\sigma_{\left(\mathbf{l}[k] ; \lambda_{k}+\lambda_{n+1}\right)}^{n}, s=\lambda_{k}-\lambda_{n+1}$.

In each cases it turns out that the first condition in (a) of Theorem 6.1.1 is satisfied. With the aid of Lemma 6.3 .1 we can confirm that the $K_{n-1} \times K_{n^{-}}$ module $\left(\tau_{\mu}^{n-1}\right)^{\vee} \boxtimes \tau_{\lambda}^{n}$ occurs in $\left(\pi_{0}\right)^{\vee} \boxtimes \pi$ with $\mu=\mu_{\sigma_{0}, \sigma}^{(h+1)}, \lambda=\lambda_{\sigma}^{(h+1)}$ in case (i) or (ii) and with $\mu=\mu_{\sigma_{0}, \sigma}^{(h)}, \lambda=\lambda_{\sigma}^{(h)}$ in case (iii) or (iv); hence the condition (c) of Theorem 6.1.1 is fulfilled. We consider the case (i) or (ii-a). By using Lemma 6.3.3 we can confirm $d_{n}^{(h+1)}\left(\sigma_{0}, \sigma ; s_{0}\right) \neq 0$, $\tilde{d}_{n}^{(h+1)}\left(\sigma_{0}, \sigma ; s\right)=0$. This combined with Lemma 6.3 .2 (ii) shows the condition (d-ii) of Theorem 6.1.1 is satisfied. Applying Theorem 6.1.1 we have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$.

In the case (iv) or (iii-a), we also have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$ by the same reasoning as in the case (i) or (ii-a) but with $h+1$ replaced by h in the discussion.

We consider the case (ii-b). We can see that $\nu_{0}=s_{0}$ is a simple zero of $d^{(h+1)}\left(\sigma_{0}, \sigma ; \nu\right)$ and $\tilde{d}_{n}^{(h+1)}\left(\sigma_{0}, \sigma ; s\right)=0$ with the aid of Lemma 6.3.3. This combined with Lemma 6.3.2 (ii) shows that the first three conditions in (d-iii) of Theorem 6.1.1 is satisfied. The last condition in (d-iii) of Theorem 6.1.1 follows from Theorem 6.3.1 (2). Indeed, the condition (6.3.1) is not attained by our choice of \mathbf{q}. Since $\pi_{n-1}^{\sigma_{0}, \nu_{0}}$ is irreducible for all $\nu_{0} \neq s_{0}$ in a neighborhood of s_{0} we have $\mathcal{I}\left(\pi_{n-1}^{\sigma_{0}, \nu_{0}} \mid \pi\right)=\{0\}$ for such a ν_{0}. Now we apply Theorem 6.1.1 to obtain $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$.

In the case (iii-b), by the same reasoning as in the case (ii-b) but with $h+1$ replaced by h in the discussion, we also have $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right)=1$.

To complete the proof, we have to show that $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right) \neq 0$ implies one of the conditions (i) to (iv). Since $\operatorname{dim}_{\mathbb{C}} \mathcal{I}\left(\pi_{0} \mid \pi\right) \neq 0$ means $\operatorname{dim}_{\mathbb{C}} \mathcal{I}_{\eta, \pi} \neq$ 0 by Theorem 7.1.1, we apply [10, Theorem 8.3.1] to get the conditions (i) to (vi).

7. Frobenius Reciprocity

The aim of this section is to prove Theorem 7.1.1, which is used in the proof of Theorem 3.1.1 and Lemma 3.2.1.

7.1. Formulation of the theorem

Let $\left(\pi_{0}, V_{0}\right)$ be an admissible $\left(\mathfrak{g}_{n-1, \mathbb{C}}, K_{n-1}\right)$-module and (π, V) an admissible $\left(\mathfrak{g}_{n, \mathbb{C}}, K_{n}\right)$-module. We assume that both of them have central characters with $c_{n-1}\left(\pi_{0}\right)=c_{0}$ and $c_{n}(\pi)=c([10,2.3])$. Put $H_{n}=$ $Z_{n} G_{n-1}$. Given an admissible ($\mathfrak{g}_{n-1, \mathbb{C}}, K_{n-1}$)-module π_{0} we can extend π_{0} to a ($\mathfrak{h}_{n}, \mathbb{C}, K_{n} \cap H_{n}$)-module uniquely so that the extended representation η satisfies that $\eta \mid Z_{n}$ and $\pi \mid Z_{n}$ correspond to the same character of Z_{n}. Then we can consider the intertwining space $\mathcal{I}_{\eta, \pi}=\operatorname{Hom}_{\left(\mathfrak{g}_{n, \mathrm{C}}, K_{n}\right)}\left(\pi, \operatorname{Ind}_{H_{n}}^{G_{n}}(\eta)\right)$ as in $[10,2.4]$.

Theorem 7.1.1. Let π_{0}, η and π be as above. Then there exists a unique linear bijection $\mathcal{P} \mapsto \Phi_{\mathcal{P}}$ from $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ to $\mathcal{I}_{\eta, \pi}$ such that

$$
\begin{equation*}
\mathcal{P}\left(v_{0}^{\vee} \otimes v\right)(g)=\left\langle\Phi_{\mathcal{P}}(v)(g), v_{0}^{\vee}\right\rangle, \quad v_{0}^{\vee} \in V_{0}^{\vee}, v \in V, g \in G_{n} \tag{7.1.1}
\end{equation*}
$$

Before we begin the proof of Theorem 7.1.1, it may be useful to give a main point of the discussion, because the argument is technically a little complicated. To compare two spaces $\mathcal{I}\left(\pi_{0} \mid \pi\right)$ and $\mathcal{I}_{\eta, \pi}$, we first introduce an auxiliary $\left(\mathfrak{g}_{n}, \mathbb{C}, K_{n}\right)$-module ρ^{η}, whose nature is best understood if we
 'the same' as the induced module $\operatorname{Ind}_{H_{n}}^{G_{n}}(\eta)$. Actually to make precise this statement and to establish it (Theorem 7.1.2) is the main point of the whole argument. Indeed, if $\rho^{\eta} \cong \operatorname{Ind}_{H_{n}}^{G_{n}}(\eta)$ is true, then the identification

$$
\mathcal{I}\left(\pi_{0} \mid \pi\right) \cong \operatorname{Hom}_{\left(\mathfrak{g}_{n}, \mathbb{C}, K_{n}\right)}\left(\pi, \operatorname{Hom}_{\left(\mathfrak{h}_{\left.n, \mathbb{C}, K_{n} \cap H_{n}\right)}\left(V_{0}^{\vee}, C^{\infty}\left(G_{n}\right)\right)\right) \cong \mathcal{I}_{\eta, \pi} .}\right.
$$

is valid and Theorem 7.1.1 follows.
To formulate precisely the statement stated above we need some notations. Let $\mathcal{F}=V_{0}^{\infty}$ and $\mathcal{F}^{\vee}=\left(V_{0}^{\vee}\right)^{\infty}$ be the smooth Fréchet $H_{n^{-}}$ modules that are the canonical globalizations of η and η^{\vee} respectively, and $\langle\rangle:, \mathcal{F} \times \mathcal{F}^{\vee} \rightarrow \mathbb{C}$ the canonical H_{n}-invariant pairing ([1]). The actions of H_{n} on \mathcal{F} and on \mathcal{F}^{\vee} are also denoted by η and η^{\vee} respectively. Let \mathcal{H}^{η} be the space of all maps $\psi: V_{0}^{\vee} \times G_{n} \rightarrow \mathbb{C}$ such that
(a) $\psi\left(v^{\vee}, g\right)$ is linear with respect to $v^{\vee} \in V_{0}^{\vee}$ for a fixed g, and is C^{∞} with respect to $g \in G_{n}$ for a fixed v^{\vee};
(b) for $k_{0} \in K_{n} \cap H_{n}, X_{0} \in \mathfrak{h}_{n}, v^{\vee} \in V_{0}^{\vee}$ and $g \in G_{n}$, we have

$$
\psi\left(\eta^{\vee}\left(X_{0}\right) v^{\vee}, g\right)=L_{X_{0}, g} \psi\left(v^{\vee}, g\right), \quad \psi\left(\eta^{\vee}\left(k_{0}\right) v^{\vee}, g\right)=\psi\left(v^{\vee}, k_{0}^{-1} g\right)
$$

(c) for $v^{\vee} \in V_{0}^{\vee}$ the function $g \mapsto \psi\left(v^{\vee}, g\right)$ is right K_{n}-finite.

By defining the operators $\rho^{\eta}(X)$ and $\rho^{\eta}(k)$ with $X \in \mathfrak{g}_{n}$ and $k \in K_{n}$ as

$$
\left(\rho^{\eta}(X) \psi\right)\left(v^{\vee}, g\right)=R_{X, g} \psi\left(v^{\vee}, g\right), \quad\left(\rho^{\eta}(k) \psi\right)\left(v^{\vee}, g\right)=\psi\left(v^{\vee}, g k\right)
$$

for $\left(v^{\vee}, g\right) \in V_{0}^{\vee} \times G_{n}$, we have a $\left(\mathfrak{g}_{n}, \mathbb{C}, K_{n}\right)$-module $\left(\rho^{\eta}, \mathcal{H}^{\eta}\right)$. Let $C_{\eta}^{\infty}\left(H_{n} \backslash G_{n}\right)^{0}$ be the space of right K_{n}-finite functions $F: G_{n} \rightarrow \mathcal{F}$ such that $F(h g)=\eta(h) F(g)$ for all $(h, g) \in H_{n} \times G_{n}$. By the right translation we have the induced representation $\operatorname{Ind}_{H_{n}}^{G_{n}}(\eta)$ on that space ([10, 2.4]).

Theorem 7.1.2. There exists a unique linear map $F \mapsto \psi_{F}$ from $C_{\eta}^{\infty}\left(H_{n} \backslash G_{n}\right)^{0}$ to \mathcal{H}^{η} such that

$$
\begin{equation*}
\psi_{F}\left(v^{\vee}, g\right)=\left\langle v^{\vee}, F(g)\right\rangle, \quad v^{\vee} \in V_{0}^{\vee}, g \in G_{n} \tag{7.1.2}
\end{equation*}
$$

that gives a $\left(\mathfrak{g}_{n}, \mathbb{C}, K_{n}\right)$-isomorphism $\operatorname{Ind}_{H_{n}}^{G_{n}}(\eta) \cong \rho^{\eta}$.
Now we give the proof of Theorem 7.1.1 using Theorem 7.1.2 whose proof is given in the next subsection. Let $\mathcal{P} \in \mathcal{I}\left(\pi_{0} \mid \pi\right)$. Given a vector $v \in V$, we have an element $\psi_{v} \in \mathcal{H}^{\eta}$ such that

$$
\psi_{v}\left(v^{\vee}, g\right)=\mathcal{P}\left(v^{\vee} \otimes v\right)(g), \quad\left(v^{\vee}, g\right) \in V_{0}^{\vee} \times G_{n}
$$

By Theorem 7.1.2, we have a function $\Phi_{\mathcal{P}}(v) \in C_{\eta}^{\infty}\left(H_{n} \backslash G_{n}\right)^{0}$ such that

$$
\psi_{v}\left(v^{\vee}, g\right)=\left\langle v^{\vee}, \Phi_{\mathcal{P}}(v)(g)\right\rangle, \quad v^{\vee} \in V_{0}^{\vee}, g \in G_{n}
$$

By a routine argument, we can prove that the map $\Phi_{\mathcal{P}}: V \rightarrow C_{\eta}^{\infty}\left(H_{n} \backslash G_{n}\right)^{0}$ so obtained is a $\left(\mathfrak{g}_{n, \mathbb{C}}, K_{n}\right)$-homomorphism satisfying the formula (7.1.1). Conversely given $\Phi \in \mathcal{I}_{\eta, \pi}$, the formula (7.1.1) with $\Phi_{\mathcal{P}}$ replaced by Φ defines the map $\mathcal{P}: V_{0}^{\vee} \otimes V \rightarrow C^{\infty}\left(G_{n}\right)$, which turns out to be in $\mathcal{I}\left(\pi_{0} \mid \pi\right)$. The map $\mathcal{I}_{\eta, \pi} \rightarrow \mathcal{I}\left(\pi_{0} \mid \pi\right)$ so defined provides the inverse map of $\mathcal{P} \mapsto \Phi_{\mathcal{P}}$. This completes the proof of Theorem 7.1.1.

7.2. Proof of Theorem 7.1.2

Let \mathfrak{p}_{n} (resp. \mathfrak{q}_{n}) be the orthogonal complement of \mathfrak{k}_{n} (resp. \mathfrak{h}_{n}) in \mathfrak{g}_{n} with respect to the Killing form of \mathfrak{g}_{n}.

For $\lambda \in \mathcal{L}_{n}^{+}$, let $C_{\eta, \tau_{\lambda}}^{\infty}\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)$ be the space of all C^{∞}-functions φ : $\mathfrak{p}_{n} \cap \mathfrak{q}_{n} \rightarrow \operatorname{Hom}\left(W_{\lambda}, \mathcal{F}\right)$ such that

$$
\begin{equation*}
\varphi\left(\operatorname{Ad}\left(k_{0}\right) X\right)=\eta\left(k_{0}\right) \circ \varphi(X) \circ \tau_{\lambda}\left(k_{0}^{-1}\right), \quad k_{0} \in K_{n} \cap H_{n} \tag{7.2.1}
\end{equation*}
$$

The space $C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right)=\operatorname{Hom}_{K_{n}}\left(W_{\lambda}, C_{\eta}^{\infty}\left(H_{n} \backslash G_{n}\right)\right)$ consists of all C^{∞}-functions $F: G_{n} \rightarrow \operatorname{Hom}\left(W_{\lambda}, \mathcal{F}\right)$ such that $F(h g k)=\eta(h) \circ F(g) \circ \tau_{\lambda}(k)$ for $(h, g, k) \in H_{n} \times G_{n} \times K_{n}$.

Lemma 7.2.1. The map

$$
C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right) \rightarrow C_{\eta, \tau_{\lambda}}^{\infty}\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)
$$

which sends a fuction $F \in C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right)$ to the function $\varphi=(F \circ$ $\exp) \mid\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)$ is a linear bijection.

Proof. It is known that the map $(Y, X, k) \mapsto \exp (Y) \exp (X) k$ is a diffeomorphism from $\left(\mathfrak{h}_{n} \cap \mathfrak{p}_{n}\right) \times\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right) \times K_{n}$ onto G_{n} ([3, page 106, Proposition 2.2]). Hence, given $\varphi \in C_{\eta, \tau_{\lambda}}^{\infty}\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)$, if we put

$$
\begin{aligned}
& F_{\varphi}(\exp (Y) \exp (X) k)=\eta(\exp (Y)) \circ \varphi(X) \circ \tau_{\lambda}(k), \\
& (Y, X, k) \in\left(\mathfrak{h}_{n} \cap \mathfrak{p}_{n}\right) \times\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right) \times K_{n}
\end{aligned}
$$

then we have a C^{∞}-function $F_{\varphi}: G_{n} \rightarrow \operatorname{Hom}\left(W_{\lambda}, \mathcal{F}\right)$. Let $g \in G_{n}, k \in K_{n}$, $h \in H_{n}$. By the decomposition $G_{n}=\exp \left(\mathfrak{h}_{n} \cap \mathfrak{p}_{n}\right) \exp \left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right) K_{n}$ mentioned
above and the Cartan decomposition $H_{n}=\exp \left(\mathfrak{h}_{n} \cap \mathfrak{p}_{n}\right)\left(K_{n} \cap H_{n}\right)$, we can write g and h as $g=\exp (Y) \exp (X) k_{1}$ and $h=\exp \left(Y_{0}\right) k_{0}$ with $Y, Y_{0} \in \mathfrak{h}_{n} \cap$ $\mathfrak{p}_{n}, X \in \mathfrak{p}_{n} \cap \mathfrak{q}_{n}, k_{0} \in K_{n} \cap H_{n}$ and $k_{1} \in K_{n}$. Using the Cartan decomposition for H_{n} again, we have $\exp \left(Y_{0}\right) \exp \left(\operatorname{Ad}\left(k_{0}\right) Y\right)=\exp \left(Y_{0}^{\prime}\right) k_{0}^{\prime}$ with $k_{0}^{\prime} \in K_{n} \cap H_{n}$ and $Y_{0}^{\prime} \in \mathfrak{h}_{n} \cap \mathfrak{p}_{n}$. Then since $h g k=\exp \left(Y_{0}^{\prime}\right) \exp \left(\operatorname{Ad}\left(k_{0}^{\prime} k_{0}\right) X\right) k_{0}^{\prime} k_{0} k_{1} k$, using (7.2.1), we have

$$
\begin{aligned}
F_{\varphi}(h g k)= & \eta\left(\exp \left(Y_{0}^{\prime}\right)\right) \circ \varphi\left(\operatorname{Ad}\left(k_{0}^{\prime} k_{0}\right) X\right) \circ \tau_{\lambda}\left(k_{0}^{\prime} k_{0} k_{1} k\right) \\
= & \eta\left(\exp \left(Y_{0}\right) \exp \left(\operatorname{Ad}\left(k_{0}\right) Y\right) k_{0}^{\prime}-1\right) \circ \eta\left(k_{0}^{\prime}\right) \circ \varphi\left(\operatorname{Ad}\left(k_{0}\right) X\right) \\
& \circ \tau_{\lambda}\left(k_{0}^{\prime}\right)^{-1} \circ \tau_{\lambda}\left(k_{0}^{\prime} k_{0} k_{1} k\right) \\
= & \eta\left(\exp \left(Y_{0}\right) \exp \left(\operatorname{Ad}\left(k_{0}\right) Y\right)\right) \circ \eta\left(k_{0}\right) \circ \varphi(X) \circ \tau_{\lambda}\left(k_{0}^{-1}\right) \circ \tau_{\lambda}\left(k_{0} k_{1} k\right) \\
= & \eta\left(\exp \left(Y_{0}\right) k_{0} \exp (Y)\right) \circ \varphi(X) \circ \tau_{\lambda}\left(k_{1} k\right) \\
= & \eta(h) \circ \eta(\exp (Y)) \circ \varphi(X) \circ \tau_{\lambda}\left(k_{1}\right) \circ \tau_{\lambda}(k) \\
= & \eta(h) \circ F_{\varphi}(g) \circ \tau_{\lambda}(k) .
\end{aligned}
$$

Thus $F_{\varphi} \in C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right)$. It is easy to check that the map $\varphi \mapsto F_{\varphi}$ just constructed gives the inverse map of $F \mapsto(F \circ \exp) \mid\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)$.

Let $\lambda \in \mathcal{L}_{n}^{+}$. The space $\mathcal{H}^{\eta}[\lambda]=\operatorname{Hom}_{K_{n}}\left(\tau_{\lambda}, \rho^{\eta} \mid K_{n}\right)$ is identified with the totality of maps $f: V_{0}^{\vee} \times G_{n} \times W_{\lambda} \rightarrow \mathbb{C}$ such that
(i) $f\left(v^{\vee}, g, w\right)$, as a function of $\left(v^{\vee}, g\right)$, satisfies the conditions (a), (b) and (c) in 7.1, and it is linear with respect to $w \in W_{\lambda}$;
(ii) $f\left(v^{\vee}, g, \tau_{\lambda}(k) w\right)=f\left(v^{\vee}, g k, w\right), \quad v^{\vee} \in V_{0}^{\vee}, g \in G_{n}, w \in W_{\lambda}, k \in$ K_{n}.

Lemma 7.2.2. Let $f \in \mathcal{H}^{\eta}[\lambda]$.
(1) For any $(X, w) \in\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right) \times W_{\lambda}$, the linear form

$$
v^{\vee} \mapsto f\left(v^{\vee}, \exp (X), w\right), \quad v^{\vee} \in V_{0}^{\vee}
$$

on V_{0}^{\vee} is $K_{n} \cap H_{n}$-finite.
(2) For $(X, w) \in\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right) \times W_{\lambda}$, there exists a unique $K_{n} \cap H_{n}$-finite vector $v_{f}(X ; w) \in \mathcal{F}_{\eta}$ such that

$$
\begin{equation*}
\left\langle v^{\vee}, v_{f}(X ; w)\right\rangle=f\left(v^{\vee}, \exp (X), w\right), \quad v^{\vee} \in V_{0}^{\vee} \tag{7.2.2}
\end{equation*}
$$

For a fixed $X \in \mathfrak{p}_{n} \cap \mathfrak{q}_{n}$, the vector $v_{f}(X ; w)$ depends on $w \in W_{\lambda}$ linearly.

Proof. (1) Let $x=\exp (X)$ with $X \in \mathfrak{p}_{n} \cap \mathfrak{q}_{n}$. For $w \in W_{\lambda}$ and $k_{0} \in K_{n} \cap H_{n}$, let $l\left(k_{0} ; w\right)$ be the linear form on V_{0}^{\vee} defined by

$$
\left\langle l\left(k_{0} ; w\right), v^{\vee}\right\rangle=f\left(\eta^{\vee}\left(k_{0}\right) v^{\vee}, x, w\right), \quad v^{\vee} \in V_{0}^{\vee}
$$

We show that for a fixed $w \in W_{\lambda}$, the \mathbb{C}-span of the linear forms $l\left(k_{0} ; w\right)$ with $k_{0} \in K_{n} \cap H_{n}$ is of finite dimension. Take a $k_{0} \in K_{n} \cap H_{n}$; we can write it of the form $k_{0}=\operatorname{diag}\left(u, t_{0}, t\right)$ with $u \in \mathrm{U}(n-1)$, $t_{0}, t \in \mathrm{U}(1)$. Put $m=\operatorname{diag}\left(t^{-1} u, 1,1\right)$ and $z_{0}=\operatorname{diag}\left(t \mathrm{I}_{n-1}, t_{0}, t\right)$; then $m \in M_{n}$ and $k_{0}=m z_{0}$. Since z_{0} is in the center of H_{n}, we have $\eta^{\vee}\left(z_{0}\right) v^{\vee}=t_{0}^{c_{0}-c} t^{-c_{0}} v^{\vee}$. Hence using the property (i) and (ii) of f above and noting that m is commutative with x, we have

$$
\begin{aligned}
\left\langle l\left(k_{0} ; w\right), v^{\vee}\right\rangle & =f\left(\eta^{\vee}(m) \eta^{\vee}\left(z_{0}\right) v^{\vee}, x, w\right) \\
& =t_{0}^{c_{0}-c} t^{-c_{0}} f\left(\eta^{\vee}(m) v^{\vee}, x, w\right) \\
& =t_{0}^{c_{0}-c} t^{-c_{0}} f\left(v^{\vee}, m^{-1} x, w\right) \\
& =t_{0}^{c_{0}-c} t^{-c_{0}} f\left(v^{\vee}, x m^{-1}, w\right) \\
& =t_{0}^{c_{0}-c} t^{-c_{0}} f\left(v^{\vee}, x, \tau_{\lambda}\left(m^{-1}\right) w\right) \\
& =t_{0}^{c_{0}-c} t^{-c_{0}}\left\langle l\left(\mathrm{I}_{n+1} ; \tau_{\lambda}\left(m^{-1}\right) w\right), v^{\vee}\right\rangle
\end{aligned}
$$

for $v^{\vee} \in V_{0}^{\vee}$. From this computation, we have $l\left(k_{0} ; w\right)=t_{0}^{c_{0}-c} t^{-c_{0}} \cdot l\left(\mathrm{I}_{n+1}\right.$: $\left.\tau_{\lambda}\left(m^{-1}\right) w\right)$. Hence the \mathbb{C}-span of linear forms $l\left(k_{0} ; w\right)$ for $k_{0} \in K_{n} \cap H_{n}$ is contained in that of linear forms $l\left(\mathrm{I}_{n+1} ; \tau_{\lambda}(m) w\right)$ for $m \in M_{n}$. Hence

$$
\begin{aligned}
\operatorname{dim}\left\langle l\left(k_{0} ; w\right) \mid k_{0} \in K_{n} \cap H_{n}\right\rangle \mathbb{C} & \leqslant \operatorname{dim}\left\langle l\left(\mathrm{I}_{n+1} ; \tau_{\lambda}(m) w\right) \mid m \in M_{n}\right\rangle_{\mathbb{C}} \\
& \leqslant \operatorname{dim}_{\mathbb{C}}\left(W_{\lambda}\right)
\end{aligned}
$$

Since W_{λ} is finite dimensional, this completes the proof.
(2) Let $V_{0}^{\vee \vee}$ be the space of $K_{n} \cap H_{n}$-finite linear forms on V_{0}^{\vee}. Then as a consequence of the admissibility of η, the natural map $V_{0} \rightarrow V_{0}^{\vee \vee}$ is bijective. From this fact, combined with (1), the existance of $v_{f}(X ; w)$ follows.

By Lemma 7.2.2 (2), we have the map φ_{f} from $\mathfrak{p}_{n} \cap \mathfrak{q}_{n}$ to $\operatorname{Hom}\left(W_{\lambda}, \mathcal{F}\right)$ such that

$$
\begin{equation*}
\left(\varphi_{f}(X)\right)(w)=v_{f}(X ; w), \quad X \in \mathfrak{p}_{n} \cap \mathfrak{q}_{n}, w \in W_{\lambda} \tag{7.2.3}
\end{equation*}
$$

Lemma 7.2.3. Let $f \in \mathcal{H}^{\eta}[\lambda]$. Then the function $\varphi_{f}: \mathfrak{p}_{n} \cap \mathfrak{q}_{n} \rightarrow$ $\operatorname{Hom}\left(W_{\lambda}, \mathcal{F}\right)$ is C^{∞}. Furthermore, it belongs to the space $C_{\eta, \tau_{\lambda}}^{\infty}\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)$.

Proof. We use the notations in the proof of Lemma 7.2.2. Let $w \in$ W_{λ}. Since $v_{f}(X ; w)$ corresponds to $l\left(\mathrm{I}_{n+1} ; w\right)$ by the natural ($\mathfrak{h}_{n, \mathbb{C}}, K_{n} \cap$ H_{n})-isomorphism $V_{0} \rightarrow V_{0}^{\vee \vee}$, it is implicitly proved in the proof of the previous proposition that the smallest $K_{n} \cap H_{n}$-submodule of \mathcal{F} contaning the vector $v_{f}(X ; w)$ is contained in the sum of images of $h \in$ $\operatorname{Hom}_{M_{n}}\left(\left\langle\tau_{\lambda}\left(M_{n}\right) w\right\rangle_{\mathbb{C}}, \mathcal{F}\right)$. From this, combined with the fact that η is M_{n}-admissible, we have that the function $X \mapsto\left(\varphi_{f}(X)\right)(w)$ takes its values in a finite dimensional subspace. Since $X \mapsto\left\langle v^{\vee},\left(\varphi_{f}(X)\right)(w)\right\rangle=$ $f\left(v^{\vee}, \exp (X), w\right)$ is C^{∞} for any $v^{\vee} \in V_{0}^{\vee}$, the map $\varphi_{f}(X)(w)$ is C^{∞} on $\mathfrak{p}_{n} \cap \mathfrak{q}_{n}$ also. In order to show that φ_{f} belongs to $C_{\eta, \tau_{\lambda}}^{\infty}\left(\mathfrak{p}_{n} \cap \mathfrak{q}_{n}\right)$ we have only to check that it satisfies the condition (7.2.1). Let $X \in \mathfrak{p}_{n} \cap \mathfrak{q}_{n}, x=\exp (X)$ and $k_{0} \in K_{n} \cap H_{n}$. By using the property (i) of f, we have

$$
f\left(v^{\vee}, k_{0} x k_{0}^{-1}, w\right)=f\left(\eta^{\vee}\left(k_{0}^{-1}\right) v^{\vee}, x, \tau_{\lambda}\left(k_{0}^{-1}\right) w\right), \quad v^{\vee} \in V_{0}^{\vee}
$$

By (7.2.2), this can be written as follows.

$$
\begin{aligned}
\left\langle v^{\vee}, v_{f}\left(\operatorname{Ad}\left(k_{0}\right) X ; w\right)\right\rangle & =\left\langle\eta^{\vee}\left(k_{0}^{-1}\right) v^{\vee}, v_{f}\left(X ; \tau_{\lambda}\left(k_{0}^{-1}\right) w\right)\right\rangle \\
& =\left\langle v^{\vee}, \eta\left(k_{0}\right) \cdot v_{f}\left(X ; \tau_{\lambda}\left(k_{0}^{-1}\right) w\right)\right\rangle
\end{aligned}
$$

Thus the equation (7.2.1) is proved.

Lemma 7.2.4. Let $\lambda \in \mathcal{L}_{n}^{+}$. Then there exists a linear map $f \mapsto F_{f}$ from $\mathcal{H}^{\eta}[\lambda]$ to $C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right)$ such that

$$
\begin{align*}
& \left\langle v^{\vee},\left(F_{f}(\exp (X))\right)(w)\right\rangle=f\left(v^{\vee}, \exp (X), w\right), \tag{7.2.3}\\
& v^{\vee} \in V_{0}^{\vee}, X \in \mathfrak{p}_{n} \cap \mathfrak{q}_{n}, w \in W_{\lambda}
\end{align*}
$$

Proof. Let $f \in \mathcal{H}^{\eta}[\lambda]$. By Lemma 7.2.1 and Lemma 7.2.3, the existance of F_{f} follows. The uniqueness of F_{f} follows from the fact that V_{0} is dense in \mathcal{F}.

Now we begin the proof of Theorem 7.1.2. Since $\Psi: F \mapsto \psi_{F}$ is a $K_{n^{-}}$ homomorphism, it is enough to prove that for any $\lambda \in \mathcal{L}_{n}^{+}$the induced map $\Psi_{\lambda}: C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right) \rightarrow \mathcal{H}^{\eta}[\lambda]$ is bijective. We shall show that the map $f \mapsto F_{f}$ in Lemma 7.2.4 gives the inverse map of Ψ_{λ}.

For any $F \in C_{\eta, \tau_{\lambda}}^{\infty}\left(H_{n} \backslash G_{n} / K_{n}\right)$, put $f=\Psi_{\lambda}(F)$. Then from (7.1.2), we have

$$
f\left(v^{\vee}, \exp (X), w\right)=\left\langle v^{\vee},(F(\exp (X)))(w)\right\rangle, \quad v^{\vee} \in V_{0}^{\vee}, a \in A_{n}, w \in W_{\lambda}
$$

Hence we have $F_{f}=F$ by (7.2.3). For any $f \in \mathcal{H}^{\eta}[\lambda]$, from (7.1.2), we have

$$
\begin{aligned}
& \Psi_{\lambda}\left(F_{f}\right)\left(v^{\vee}, \exp (X), w\right)=\left\langle v^{\vee},\left(F_{f}(\exp (X))\right)(w)\right\rangle, \\
& v^{\vee} \in V_{0}^{\vee}, a \in A_{n}, w \in W_{\lambda} .
\end{aligned}
$$

Hence by (7.2.3), we obtain $\Psi_{\lambda}\left(F_{f}\right)=f$. This completes the proof.

References

[1] Casselman, W., Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math. XLI 3 (1989), 385-438.
[2] Eguchi, M., Koizumi, S. and M. Mamiuda, The expression of Harish-Chandra C-functions of semisimple Lie groups $\operatorname{Spin}(n, 1), S U(n, 1)$, J. Math. Soc. Japan 51 (1999), 955-985.
[3] Heckman, G. and H. Schrichtkrull, Harmonic analysis and spherical functions on symmetric spaces, Academic Press, perspectives in mathematics, vol. 16, S. Helgason, editor, (1994).
[4] Murase, A. and T. Sugano, Shintani functions and automorphic L-functions for $G L(m)$, Tohoku Math. J. 46 (1996), 165-202.
[5] Kraljevic, H., Representations of the universal covering group of the group $S U(n, 1)$, Glesnik Mathematicki 8 (28) No. 1, (1973), 23-72.
[6] Kraljevic, H., On representations of the group $S U(n, 1)$, Trans. Amer. Math. Soc. 221 No. 2, (1976), 433-448.
[7] Oshima, T., Poisson transformations on affine symmetric spaces, Proc. Japan Acad. A55 (1979), 323-327.
[8] Oshima, T. and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric space, Inv. Math. 57 (1980), 1-81.
[9] Tsuzuki, M., Real Shintani functions and multiplicity free property for the symmetric pair $(S U(2,1), S(U(1,1) \times U(1)))$, J. Math. Sci. Univ. of Tokyo 4 (1997), 663-727.
[10] Tsuzuki, M., Real Shintani functions on $\mathbf{U}(n, 1)$, J. Math. Sci. Univ. Tokyo 8 (2001), 609-688.
[11] Kashiwara, M. and W. Schmid, Quasi-Equivariant D-modules, Equivariant Drived Category, and Representations of Reductive Lie Groups, in Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Math. vol. 123, Birkhäuser Boston (1994).
[12] Knapp, A. W., Representation theory of semisimple Lie groups, Princeton University Press, Princeton New Jersey, (1986).
[13] Vilenkin, N. Ja. and A. U. Klimyk, Representation of Lie Groups and Special Functions, vol. 3, Mathematics and Its Applications, Kluwer Academic Publishers, (1992).
[14] Whittaker, E. T. and G. N. Watson, A course of MODERN ANALYSIS, Cambridge at the university press, (1963).
(Received January 29, 2001)
Department of Mathematics
Sophia University
7-1 Kioi-cho, Chiyoda-ku
Tokyo 102-8554, Japan
E-mail: tsuzuki@mm.sophia.ac.jp

