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Real Shintani Functions on U(n, 1) III, Construction of

Intertwining Operators

By Masao Tsuzuki

Abstract. We study an integral transform on U(n, 1) (Poisson
integral) in detail. As an application, we obtain a precise formula
of the dimension of the space of U(n − 1, 1) × U(n, 1)-intertwining
operators from an irreducible admissible representaion π0 � π to the
space of smooth functions on U(n, 1) in several cases including when
π0 and π are large discrete series of U(n−1, 1) and U(n, 1) respectively.

0. Introduction and Basic Notations

0.1. Introduction

This is a continuation of [10]. We consider the problem to determine the

space of U(n− 1, 1)×U(n, 1)-intertwining operators from an irreducible ad-

missible representation π∨
0 �π of U(n−1, 1)×U(n, 1) to the space of smooth

functions on U(n, 1). Such an intertwining operator is called a Shintani func-

tional (for π∨
0 � π) and the totality of Shintani functionals is denoted by

I(π0|π). We give a way how to construct non-trivial Shintani functionals

making use of an integral transform. As a result we obtain a multiplicity

one theorem of the space of Shintani functionals in several cases (section 6).

We shall explain contents of this paper. The first three sections are prelim-

inaries. In section 4, we introduce an integral transform, whose study is a

main theme of this paper. We may call our integral transform the Poisson

integral in analogy with the one which appears in the theory of the affine

symmetric spaces ([7], [8] and [3]). Let Pn be a minimal parabolic subgroup

of U(n, 1) and Pn−1 that of U(n − 1, 1) ⊂ U(n, 1). It turns out that the

double coset space Pn−1\U(n, 1)/Pn has three elements among which there

exists a unique open one (Proposition 4.1.1 and Remark 4.1.1). The ex-

plicit determination of the open double coset in U(n, 1) (Proposition 4.1.1)
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enables us to have a ∆U(n− 1, 1)-invariant distribution which belongs to a

principal series representation of U(n− 1, 1)× U(n, 1), when the radial pa-

rameter of the principal series is sufficiently ‘positive’ (Theorem 4.1.1). In

4.2 we examine the asymptotic behavior of the Poisson integrals at ‘infinity’

and evaluate them for the corner K-types making use of the difference-

differential equations obtained in [10]. To have a non-trivial intertwining

operator outside the domain of convergence of the Poisson integral, we have

to obtain an analytic continuation of the intertwining operator defined by

that integral. We first evaluate explicitly the integral for a corner K-type;

then using the differential equations in [10], by an induction on the ‘size’

of the K-type, we prove that the Poisson integral for a vector with a fixed

K-type is expressed in terms of the Gaussian hypergeometric series up to a

polynomial factors to know its meromorphicity (Theorem 5.1.1). In section

6, using Theorem 5.1.1 and the result of [10], we give a sufficient condition

for the space I(π0|π) to be one dimensional (Theorem 6.1.1). Moreover

we obtain a precise formula of dimCI(π0|π), which is 1 or 0 as we already

showed in [10], when π0 and π are principal series or discrete series (The-

orems 6.2.1, 6.3.1, 6.3.2 and 6.3.4). For technical reasons, we discuss in

this paper the intertwining space I(π0|π) mainly which is not the one Iη,π
studied in [10]. We have a theorem which ensures that these two different

intertwining spaces are isomorphic. In the final section we formulate and

prove that theorem (Thereom 7.1.1).

0.2. Basic notations

For a C-vector space V , V ∨ denotes the algebraic dual space of V ,

〈 , 〉 : V × V ∨ → C the natural bi-linear form and IV the identity map of

V . For finite dimensional C-vector spaces V and W , we identify (V ⊗CW )∨

with V ∨⊗CW
∨, and V ∨∨ with V by means of the canonical isomorphisms.

The Lie algebra of a Lie group G is denoted by the corresponding Germann

letter g. For a (g,K)-module (π, V ) with K a compact subgroup of G, its

contragredient is denoted by (π∨, V ∨).

For a positive integer n, let C
n = Mn,1(C) be the space of all column vec-

tors of degree n. We naturally identify the space EndC(Cn) with Mn(C) by

letting a matrix A = (aij)1� i,j �n+1 ∈ Mn(C) operate on x = (xi)1� i�n ∈
C
n as Ax = (

∑n
j=1 aijxj)1� i�n ∈ C

n. We write In for ICn . For positive

integers p and q, we write Op,q the p× q-matrix whose entries are all zero.

For a smooth function f on a Lie group G with its values in a topo-
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logical vector space, put RXf(g) = d
dtf(g exp(tX))|t=0 (resp. LXf(g) =

d
dtf(exp(−tX)g)|t=0) for X ∈ g. Extended action of the universal envelop-

ing algebra is also denoted by R (resp. L).

For a finite dimensional C-vector space W , ‖ · ‖ denotes a norm on W .

1. Preliminaries

1.1. Lie groups, Lie algebras and representations of compact

groups

Let n � 2 be an integer. Let ei, 1 � i � n + 1 be the standard

basis of C
n+1, i.e., ei = (δij)1� j �n+1. Put (x|y) = tx̄wny for x, y ∈ C

n+1

with wn = diag(In,−1). Let Gn denote the Lie group consisting of all

automorphisms of C
n+1 preserving the Hermitian form (x|y), that is

Gn = {g ∈ GLn+1(C)|tḡwng = wn}.

We define subgroups Kn, An and Mn of Gn as

Kn = {diag(k1, k2)| k1 ∈ U(n), k2 ∈ U(1)} ∼= U(n)× U(1),

An =

{
an(r) = diag

(
In−1,

(
ch(r) sh(r)

sh(r) ch(r)

))∣∣∣∣∣ r > 0

}
∼= R

∗
+,

Mn = {mn(x, u) = diag(x, u, u)| x ∈ U(n− 1), u ∈ U(1)}
∼= U(n− 1)× U(1)

with sh(r) = r−r−1

2 , ch(r) = r+r−1

2 . The normalizer M∗
n of Mn in Kn

coincides with Mn∪wnMn and the coset wnMn gives the non-trivial element

of the little Weyl group M∗
n/Mn. Let Zn be the center of Gn.

Let Pn be the stabilizer in Gn of the line C · (en + en+1); Pn is a minimal

parabolic subgroup of Gn having AnMn as a Levi subgroup. Let Nn denote

the unipotent radical of Pn and put N̄n = wnNnw
−1
n .

The map in : Gn−1 �
(
x11 x13
x31 x33

)
→

(
x11 On−1,1 x13

O1,n−1 1 0
x31 0 x33

)
∈ Gn gives an isomor-

phism from Gn−1 onto the stabilizer of the vector en in Gn. In what follows

we identify Gn−1 with in(Gn−1).

We parametrize the irreducible representations of Kn and Mn as in [10,

Section 3]. In particular, any irreducible finite dimensional representation
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of Kn (resp. Mn) is isomorphic to one of τλ’s (resp. σµ’s) with λ = [l ; l0] ∈
L+
n = Λ+

n ×Λ1 (resp. µ = (m ;m0) ∈ ◦L+
n = Λ+

n−1 ×Λ+
1 ) in the notation of

[10, subsection 3.2]. If we want to emphasize the dependence on n, we also

write τnλ for τλ and σnµ for σµ. Let l ∈ Λ+
n and m ∈ Λ+

n−1 with m ⊂ l ([10,

3.1]). Then we have the U(n − 1)-projection pl
m : W (l) → W (m) and the

U(n− 1)-inclusion jml : W (m)→W (l) ([10, Lemma 3.1.1, Lemma 10.1.1]).

For l = (lj)1� j �n ∈ Λ+
n , put ľ = (−ln+1−j)1� j �n. We have W (̌l) ∼= W (l)∨

as U(n)-module.

For q ∈ Λ+
n−2, p ∈ Λ+

n−1 and l ∈ Λ+
n , we put

Λ+
n (p) = {k ∈ Λ+

n | p ⊂ k},
Λ+
n−1(q|l) = {m ∈ Λ+

n−1| q ⊂m ⊂ l}.

1.2. Haar measures

For an element g ∈ Gn, we can write it as

g = νn(g)αn(g)κn(g), νn(g) ∈ Nn, αn(g) ∈ An, κn(g) ∈ Kn

uniquely along the Iwasawa decomposition Gn = NnAnKn. Let dKn(k)

denote the Haar measure of the compact group Kn with total mass one. We

take the Haar measure dN̄n
(n̄) of N̄n such that

∫
N̄n

δn(αn(n̄))dN̄n
(n̄) = 1,

where δn : An → R
∗
+ denotes the quasi-character defined by

δn(an(r)) = r2n, r > 0.(1.2.1)

For a ∈ An and ν ∈ C, we write aν = δn(a)
ν/2n.

2. Non-Unitary Principal Series

2.1. Non-unitary principal series representations

For a finite dimensional unitary representation (σ,W ) of Mn, let Vσn
denote the Fréchet space consisting of all C∞-functions ϕ : Kn → W such

that ϕ(mk) = σ(m)ϕ(k), k ∈ Kn, m ∈ Mn. For ν ∈ C, we have the non-

unitary principal series representation of Gn on Vσn by defining the action

πσ,νn as

(πσ,νn (g)ϕ)(k) = ϕ(κn(kg))αn(kg)
ν+n, ϕ ∈ Vσn , g ∈ Gn, k ∈ Kn.

Then (πσ,νn ,Vσn ) is a smooth Fréchet representation of Gn.
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The underlying (gn,Kn)-module of πσ,νn will be also denoted by πσ,νn . We

write V σn for the space consisting of all Kn-finite vectors in Vσn .
We define the C-bi-linear form [ | ] : Vσn × Vσ

∨
n → C by

[ϕ|ϕ̌] =

∫
Kn

〈ϕ(k), ϕ̌(k)〉dKn(k), ϕ ∈ Vσn , ϕ̌ ∈ Vσ
∨
n .

This pairing is Gn-invariant, i.e.,[
πσ,νn (g)ϕ

∣∣πσ∨,−νn (g)ϕ̌
]

= [ϕ|ϕ̌], ϕ ∈ Vσn , ϕ̌ ∈ Vσ
∨
n , g ∈ Gn.

From now on we mainly consider π = πσ,νn for σ = σn(p;p0) with (p ; p0) ∈
◦L+
n . Note that the central character of π (that is denoted by cn(π) in

[10, 2.3]) is z = |p| + p0. The set L+
n (πσ,νn ) ([10, 4.1]) consists of those

λ = [l ; l0] ∈ L+
n such that l ∈ Λ+

n (p), l0 + |l| = z ([10, Lemma 4.2.1]).

For λ = [l ; l0] ∈ L+
n (π), w ∈ W (l) and w∨ ∈ W (l)∨, we have the

functions ισl (w) ∈ Vσn and ι̌σl (w) ∈ Vσ∨n such that

(ισl (w))(k) = pl
p ◦ τnλ (k)(w), k ∈ Kn,(2.1.1)

(ι̌σl (w∨))(k) = (jpl )∨ ◦ (τnλ )∨(k)(w∨), k ∈ Kn.

The family {ισl | l ∈ Λ+
n (p)} so obtained is a standard system for πσ,νn (see [10,

4.1]). Under the identification W (̌l) ∼= W (l)∨, the family {ι̌σl | l ∈ Λ+
n (p)} is

regarded as a standard system for π∨.

Let ∇±k
l = π∇±k

λ with π = πσ,νn be the Schmid operators introduced in [10,

6.1]

Proposition 2.1.1. For an irreducible unitary representation σ of Mn
with the highest weight (p ; p0) ∈ ◦L+

n , l ∈ Λ+
n (p) and j ∈ {1, · · · , n}, there

exist real numbers Aσj (l) and Bσj (l) such that for ν ∈ C, λ = [l ; l0] ∈
L+
n (πσ,νn ) and j ∈ {1, · · · , n}

∇+j
λ (ισl ) = Aσ,νj (l)ισl+j , ∇−j

λ (ισl ) = Bσ,νj (l)ισl−j(2.1.2)

with

Aσ,νj (l) = (2lj − 2j + 2− p0 + ν + n)Aσj (l),(2.1.3)

Bσ,νj (l) = (2lj − 2j − p0 − ν + n)Bσj (l).

For l ∈ Λ+
n (p), we have Aσj (l) = 0 (resp. Bσj (l) = 0) if and only if l+j �∈

Λ+
n (p) (resp. l−j �∈ Λ+

n (p)).

Proof. [13, p.411, formula (9), (10)]. �
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2.2. The corner Kn-types of principal series

Given σ = σn(p;p0) with (p ; p0) ∈ ◦L+
n and ν ∈ C, we consider the non-

unitary principal series representation π = πσ,νn . Put z = cn(π), the central

character of π.

Definition 2.2.1. λ = [l ; l0] ∈ L+
n (π) is said to be cyclic in π if the

smallest sub (gn,Kn)-module which contains Im(ισl ) coincides with all of

V σn .

Definition 2.2.2. For h ∈ {1, . . . , n − 1}, let l0 = (lk)1� k�n be the

element of Λ+
n (p) defined by lk = pk for 1 � k � h and lk = pk−1 for

h < k � n; l0 is characterized as a unique l ∈ Λ+
n (p) such that l−k �∈ Λ+

n (p)

for 1 � k � h and l+k �∈ Λ+
n (p) for h + 1 � k � n. Then the element

λ
(h)
σ = [l0 ; z − |l0|] of L+

n (π) will be called the h-th corner Kn-type of π.

Note that λ
(h)
σ is the Dh-corner in the terminology of Kraljevic [6].

Lemma 2.2.1. Let h ∈ {1, . . . , n − 1} and λ
(h)
σ = [l0 ; z − |l0|] be the

h-th corner Kn-type of π. The following conditions are equivalent.

(1) λ
(h)
σ is cyclic in π.

(2) For 1 � i � h and l ∈ Λ+
n (p) with l+i ∈ Λ+

n (p), Aσ,νi (l) �= 0. For

h+ 1 � j � n and l ∈ Λ+
n (p) with l−j ∈ Λ+

n (p), Bσ,νj (l) �= 0.

(3) ν is not of the form

ν = −2ph + 2h− 2 + p0 − n− 2y,

∃y ∈ Z+ − {pi − ph + h− i− 1| 1 � i < h},
ν = 2ph − 2h− 2− p0 + n− 2y,

∃y ∈ Z+ − {ph − pj + j − h− 1| h < j � n− 1}.
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(4) ν is not a zero of the holomorphic function

c̃(h)n (σ ; ν) =
∏

1� i<h
(ν + 2pi − 2i− p0 + n)(2.2.1)

×
∏

h<j �n−1

(ν − 2pj + 2j + p0 − n)

×Γ

(
ν + n− p0

2
+ ph − h+ 1

)−1

×Γ

(
ν − n+ p0

2
− ph + h+ 1

)−1

.

Proof. The equivalence of (3) and (4) is easy. By (2.1.3), we have

the equivalence of (2) and (3). Thus it suffices to show that (1) and (2) are

equivalent. Let ∇±k
l be the Schmid operators. Assume that the condition

(2) holds. Let V denote the (gn,C,Kn)-span of Im(ισ,νl0
) in V σn . Putting

δ(l) = |l− l0| for l ∈ Λ+
n (p), we prove that Im(ισl ) is contained in V for all

l ∈ Λ+
n (p) by induction on the number δ(l). If δ(l) = 0, then we have l = l0.

Hence Im(ισl0) ⊂ V by definition. Suppose d > 0 and that Im(ισl′) ⊂ V

for l′ with δ(l′) < d. Let l with δ(l) = d. Since δ(l) > 0, l is different

from l0. Thus we have (a) l−i ∈ Λ+
n (p) for an i with 1 � i � h, or (b)

l+i ∈ Λ+
n (p) for some i with h + 1 � i � n. We first consider the case

(a). We have ∇+i
l−i(ι

σ
l−i) = Aσ,νi (l−i)ισl and that the number Aσ,νi (l−i) is

non zero by assumption. Since δ(l−i) = d − 1, we have Im(ισ
l−i) ⊂ V by

induction-assumption. Noting that V is a (gn,Kn)-module, we then have

Im(∇+i
l−i(ι

σ
l−i)) ⊂ V . Hence we obtain Im(ισl ) ⊂ V . In the same way, we can

conclude Im(ισl ) ⊂ V in case (b), noting Bσ,νi (l+i) �= 0 in this case. Thus

we have Im(ισl ) ⊂ V for all l ∈ Λ+
n (p) to get the identity V σn = V . Next

we show that if (2) is not true then V σn has a non trivial proper (gn,C,Kn)-

submodule. Suppose Aσ,να (l) = 0 for an l = (lj)1� j �n ∈ Λ+
n (p) and an α

such that l+α ∈ Λ+
n (p), 2 � α � h. (The other possibilities are similarly

treated.) Let V ′ be the C-span of Im(ισl′) with l′ = (l′k)1� k�n such that

l′ ∈ Λ+
n (p), lα � l′α � pα. Such l′’s form a non empty subset Γ′ of Λ+

n (p),

and Γ′ �= Λ+
n (p) because lα < pα−1. Thus the space V ′ is strictly smaller

than V σn and non-zero. We show V ′ is stable under the action of gn and

Kn. By definition, the Kn-stability of V ′ is clear. So it suffices to prove

that π(X)f ∈ V ′ for X ∈ pn,C (pn is the orthogonal complement of kn in
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gn) and f ∈ V ′. We may assume that f is of the form ισl′(w) with l′ ∈ Γ′

and w ∈ W (l′). There exist vectors w+k ∈ W (l′+k) and w−k ∈ W (l′−k) for

1 � k � n such that

w ⊗X =

n∑
k=1

Iβk(l
′)(w+k) +

n∑
k=1

I−βk(l
′)(w−k).

(For I±βk(l) see [10, Proposition 6.1.1].) From definition and (2.1.2) we have

π(X)(f) =
n∑
k=1

(∇+k
l′ (ισl′))(w

+k) +
n∑
k=1

(∇−k
l′ (ισl′))(w

−k)

=
∑
k∈J+

l′

Aσ,νk (l′)ισl′+k(w
+k) +

∑
k∈J−

l′

Bσ,νk (l′)ισl′−k(w
−k),

where J+
l′ (resp. J−

l′ ) is the set of all 1 � k � n such that l′+k ∈ Λ+
n (p) (resp.

l′−k ∈ Λ+
n (p)). Note α ∈ J+

l′ because l′α � lα < pα−1. By definition we have

that l′−k ∈ Γ′ for k ∈ J−
l′ , and that l′+k ∈ Γ′ for k ∈ J+

l′ − {α}. If lα > l′α,
then l′+α ∈ Γ′ is clear. If l′α = lα, by (2.1.3), Aσ,να (l′) is a constant multiple

of Aσ,να (l). Since Aσ,να (l) is supposed to be zero, we have Aσ,να (l′) = 0. Thus

we obtain π(X)f ∈ V ′. This completes the proof. �

2.3. Knapp-Stein intertwining operators and c-functions

Let ν ∈ C and (σ,W ) a finite dimensional representation of Mn. For a

function ϕ ∈ Vσn , we consider the integral

(2.3.1) Aσ,νn (ϕ : k) =

∫
N̄n

ϕ(κn(n̄wnk))αn(n̄wnk)
ν+ndN̄n

(n̄), k ∈ Kn.

The basic properties of the integral above that we need are following.

Proposition 2.3.1.

(1) If Re(ν) > 0, then the integral (2.3.1) converges absolutely for every

ϕ ∈ Vσn . The function Aσ,νn (ϕ) belongs to the space Vσn .

(2) For every ν ∈ C such that Re(ν) > 0 and ϕ ∈ Vσn , the identity

Aσ,νn (πσ,νn (g)ϕ) = πσ,−νn (g)(Aσ,νn (ϕ)), g ∈ Gn

holds.
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(3) Let ν ∈ C with Re(ν) > 0. For every ϕ ∈ Vσn and every ϕ̌ ∈ Vσ∨n the

formula

lim
r→∞

rn−ν [πσ,νn (an(r))ϕ|ϕ̌] = 〈Aσ,νn (ϕ : wn), ϕ̌(In)〉

holds.

Proof. For (1) and (2) see [12, p.181, Proposition 7.8]. For (3) see

[12, p.198, Lemma 7.2.3]. �

Let ν ∈ C with Re(ν) > 0 and σ = σn(p;p0) with (p ; p0) ∈ ◦L+
n . Since

any irreducible Kn-module occurs in πσ,νn with multiplicity one or zero, for

every l ∈ Λ+
n (p), there exists a complex number cn(σ, ν ; l) such that

Aσ,νn ◦ ισl = cn(σ, ν ; l)ισl .(2.3.2)

The explicit formula of the numbers cn(σ, ν ; l) is obtained in [2, page

976, Theorem 8.2]. From that formula we have that the functions ν �→
cn(σ, ν ; l) are meromorphically continued to the whole C, and also have

Proposition 2.3.2. Let h ∈ {1, . . . , n− 1} and λ
(h)
σ = [l0 ; l0] the h-th

corner Kn-type of πσ,νn . Then we have

cn(σ, ν ; l0) = γ(h)
σ · 2−νΓ(ν)c̃(h)n (σ ; ν),

where c̃
(h)
n (σ ; ν) is the holomorphic function given by (2.2.1) and γ

(h)
σ is a

non-zero constant independent of ν.

3. Shintani Functions

In the first subsection we introduce the intertwining space I(π0|π),

whose study is our main theme of this paper. In the second subsection,

we give an explicit formula of some spherical functions (Shintani functions)

when π∨
0 � π is a principal series representation.
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3.1. Shintani functions

We regard Gn as a Gn ×Gn-space by letting (g1, g2) ∈ Gn ×Gn act on

Gn as (g1, g2) · x = g1xg
−1
2 , x ∈ Gn. Hence the space C∞(Gn) of all C∞-

functions on Gn becomes a smooth Fréchet Gn ×Gn-module naturally. By

restricting the action to the subgroup Gn−1 × Gn, we can regard C∞(Gn)

as a smooth Gn−1 × Gn-module. Let π0 be an admissible (gn−1,C,Kn−1)-

module and π an admissible (gn,C,Kn)-module. We put

(3.1.1) I(π0|π) = Hom(gn−1,C⊕gn,C,Kn−1×Kn)(π
∨
0 � π,C∞(Gn)).

Theorem 3.1.1. For an irreducible (gn−1,C,Kn−1)-module π0 and an

irreducible (gn,C,Kn)-module π, we have

dimCI(π0|π) � 1.

Proof. Let Hn = ZnGn−1. We extend the representation π0 to Hn
so that the extended representation η satisfies cn(η) = cn(π). Then by

Theorem 7.1.1 we have dimCI(π0|π) = dimCIη,π. Since dimCIη,π � 1 by

[10, Theorem 8.1.1], we have the conclusion. �

3.2. Principal series Shintani functions

Let σ0 = σn−1
(q;q0) with (q ; q0) ∈ ◦L+

n−1 and σ = σn(p;p0) with (p ; p0) ∈ ◦L+
n

be irreducible unitary representations of Mn−1 and Mn respectively and

consider the principal series representations π0 = πσ0,ν0n−1 and π = πσ,νn with

ν0, ν ∈ C. In this case we also write I(σ0, ν0|σ, ν) in place of I(πσ0,ν0n−1 |π
σ,ν
n ).

For P ∈ I(σ0, ν0|σ, ν), µ = [m ;m0] ∈ L+
n−1(π0) and λ = [l ; l0] ∈ L+

n (π),

we define a function Pµ,λ : Gn →W (m)⊗W (l)∨ by

〈Pµ,λ(g), w∨
0 ⊗ w〉 = P(ι̌σ0m (w∨

0 )⊗ ισl (w))(g),(3.2.1)

w∨
0 ∈W (m)∨, w ∈W (l).

Then we have

Pµ,λ(k0gk) = τn−1
µ (k0)⊗ (τnλ )∨(k−1)Pµ,λ(g),(3.2.2)

k0 ∈ Kn−1, k ∈ Kn, g ∈ Gn.
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Lemma 3.2.1. We have Gn = Kn−1AnKn with

An = {an−1(r0)an(r)| r0, r > 0}.

Proof. This follows from the decompositions Gn−1 =

Kn−1An−1Kn−1, Gn = Gn−1ZnAnKn ([3, page 108, Theorem 2.4]) and

the relation ZnKn−1 = MnZn−1. �

Lemma 3.2.2. Let P ∈ I(σ0, ν0|σ, ν). There exists a unique family

{fl(m ; r)| l ∈ Λ+
n (p), m ∈ Λ+

n−1(q|l)} of C∞-functions on r > 0 such that

for µ = [m ;m0] ∈ L+
n−1(π0) and λ = [l ; l0] ∈ L+

n (π) the formula

〈Pµ,λ(an−1(r0)
−1an(r)), w

∨
0 ⊗ w〉(3.2.3)

=
∑

n∈Λ+
n−1(q|l)

fl(n ; r)

×
[
ισ0n ◦ pl

n(w)
∣∣πσ∨0 ,−ν0n−1 (an−1(r0)) ◦ ι̌σ0m (w∨

0 )
]
,

w∨
0 ∈W (m)∨, w ∈W (l)

holds.

Proof. First of all, by Theorem 7.1.1, to P ∈ I(σ0, ν0|σ, ν) there

corresponds a unique ΦP ∈ Iη,π such that[
ΦP(v)(g)

∣∣v̌0

]
= P(v̌0 ⊗ v)(g), v̌0 ∈ V

σ∨0
n−1, v ∈ V σn , g ∈ Gn.

Here η denotes the representation of Hn = ZnGn−1 satisfying cn(η) = cn(π).

For a fixed r > 0, we define two functions ϕ1 : R→ C and ϕ2 : R→ C by

ϕ1(t0) = 〈Pµ,λ(an−1(e
t0)−1an(r)), w

∨
0 ⊗ w〉, t0 ∈ R,

ϕ2(t0) =
[
ΦP(ισl (w))(an(r))

∣∣πσ∨0 ,−ν0n−1 (an−1(e
t0)) ◦ ι̌σ0m (w∨

0 )
]
, t0 ∈ R.

By [11, page 461, Lemma 2.6], the functions ϕ1 and ϕ2 are real analytic.

We have

LY pP(ι̌σ0m (w∨
0 )⊗ ισl (w))(an(r))

=
[
ΦP(ισl (w))(an(r))

∣∣πσ∨0 ,−ν0n−1 (Y p) ◦ ι̌σ0m (w∨
0 )
]
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for any p ∈ N, where Y denotes the element of an−1 such that

exp(log(r0)Y ) = an−1(r0) for r0 > 0. This in turn means that ϕ1 and

ϕ2 have the same p-th derivative at t0 = 0 for any p. Since ϕ1 and ϕ2 are

both real analytic functions on R as noticed above, we have ϕ1(t0) = ϕ2(t0)

identically; equivalently

〈Pµ,λ(an−1(r0)
−1an(r)), w

∨
0 ⊗ w〉(3.2.4)

=
[
ΦP(ισl (w))(an(r))

∣∣πσ∨0 ,−ν0n−1 (an−1(r0)) ◦ ι̌σ0m (w∨
0 )
]

for all r > 0 and r0 > 0. Let {fl(n ; r)| l ∈ Λ+
n (p), n ∈ Λ+

n−1(q|l)} be the

standard coefficient of ΦP ([10, Definition 7.1.1]). By definition we have

ΦP(ισl (w))(an(r)) =
∑

n∈Λ+
n−1(q|l)

fl(n ; r) · ισ0n ◦ pl
n(w).

Substitute this formula into (3.2.4). Then we have the formula (3.2.3). The

uniqueness of {fl(m ; r)} is obvious from the formula (3.2.3). �

We call the system {fl(m ; r)| l ∈ Λ+
n (p), m ∈ Λ+

n−1(q|l)} the standard

coefficients of P.

Proposition 3.2.1. Assume both πσ,νn and πσ0,ν0n−1 are irreducible. If

I(σ0, ν0|σ, ν) �= {0}, then q ⊂ p.

Proof. This follows from [10, Proposition 9.2.1] and Theorem 7.1.1. �

Definition 3.2.1. Let σ0 and σ be as above with q ⊂ p. For every

h ∈ {1, . . . , n − 1}, we define µ
(h)
σ0,σ = [m0 ;m0] ∈ L+

n−1(π
σ0,ν0
n−1 ) by putting

m0 = (m0,j)1� j �n−1 with m0,j = qj for j ∈ {1, · · · , h− 1}, m0,h = ph and

m0,j = qj−1 for j ∈ {h+ 1, . . . , n− 1}.

It is easy to see that if λ
(h)
σ = [l0 ; l0] is the h-th corner of πσ,νn then

m0 ∈ Λ+
n−1(q|l0).

Proposition 3.2.2. Let π = πσ,νn and π0 = πσ0,ν0n−1 as above with q ⊂ p.

Put z = |p|+ p0, z0 = |q|+ q0 and κ = |p0− q0|. Let h ∈ {1, . . . , n− 1} and

λ
(h)
σ = [l ; l0] ∈ L+

n (π) the h-th corner Kn-type of π. Let P ∈ I(σ0, ν0|σ, ν)
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and {fl(m ; r)| m ∈ Λ+
n−1(q|l)} the standard coefficients for P. Introducing

the new coordinate x = th2(r), r > 1, we put

ψ(m ;x) = (sh r)−β
(h)(m)(ch r)−α

(h)(m)fl(m ; r),(3.2.5)

0 < x < 1,

β(h)(m) = −
h−1∑
i=1

mi +

n−1∑
i=h+1

mi +

h−1∑
j=1

qj −
n−2∑
j=h

qj + κ,(3.2.6)

α(h)(m) = 2(

h−1∑
i=1

mi −
n−1∑
i=h+1

mi)−
h−1∑
j=1

qj +

n−2∑
j=h

qj(3.2.7)

−
h−1∑
i=1

pi +

n−1∑
i=h+1

pi + ν − n− κ

for m ∈ Λ+
n−1(q|l). Let µ0 = µ

(h)
σ0,σ = [m0 ;m0] ∈ L+

n−1(π0) be as in

Definition 3.2.1.

(1) There exists a unique constant γ(h)(P) such that for 0 < x < 1

ψ(m0 ;x)(3.2.8)

= γ(h)(P)2F1

(
ν − ν0 + 1 + κ

2
,
−ν − ν0 + 1 + κ

2
; 1 + κ ;x

)
.

Moreover the family {ψ(m ; r)| m ∈ Λ+
n−1(q|l)} satisfies the following

recurrence relations.

(E−i
h )m : − 2ai(l ;m−i)Aσ0,ν0

i (m−i)ψ(m−i ;x)

=

n−1∏
β=h+1

(pβ −mi + i− β)

n−1∏
β=h+1,β �=i

(mβ −mi + i− β)

{
2x(1 − x)

d

dx
ψ(m ;x)

+ x

(
−2

n−1∑
β=h+1

mβ +

n−2∑
j=h

qj −
h−1∑
j=1

qj

+ z0 − κ− 2mi + 2i+ ν − n

)
ψ(m ;x)

+

(
2

n−1∑
β=h+1

mβ − |p| +
h−1∑
j=1

qj −
n−2∑
j=h

qj + z − z0 + κ

)
ψ(m ;x)
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+ x(1 − x)

n−1∑
β=h+1

h−1∑
α=1

n−1∏
j=h+1

(pβ −mj + j − β)

n−1∏
j=h+1,j �=β

(pβ − pj + j − β)

× aα(l0 ;m−α)Aσ0,ν0
α (m−α)

pβ −mα + α− β
ψ(m−α ;x)

}

for m ∈ Λ+
n−1(q|l), h < i � n− 1 with m−i ∈ Λ+

n−1(q|l).

(E+i
h )m : − 2bi(l ;m+i)Bσ0,ν0

i (m+i)ψ(m+i ;x)

=

h−1∏
α=1

(pα −mi + i− α)

h−1∏
α=1,α�=i

(mα −mi + i− α)

{
2x(1 − x)

d

dx
ψ(m ;x)

+ x

(
2

h−1∑
α=1

mα +

n−2∑
j=h

qj −
h−1∑
j=1

qj

− z0 − κ+ 2mi − 2i+ n+ ν

)
ψ(m ;x)

+

(
−2

h−1∑
α=1

mα + |p| +
h−1∑
j=1

qj −
n−2∑
j=h

qj − z + z0 + κ

)
ψ(m ;x)

+ x(1 − x)

n−1∑
β=h+1

h−1∑
α=1

h−1∏
j=1

(pα −mj + j − α)

h−1∏
j=1,j �=α

(pα − pj + j − α)

×
bβ(l0 ;m+β)Bσ0,ν0

β (m+β)

pα −mβ + β − α
ψ(m+β ;x)

}

for m ∈ Λ+
n−1(q|l), 1 � i < h with m+i ∈ Λ+

n−1(q|l).

(2) Assume Re(ν) > n. For any m ∈ Λ+
n−1(q|l) the limit ψ(m) =

limx→1−0 ψ(m ;x) exits. We have

(3.2.9) ψ(m0) = γ(h)(P)
Γ(ν)Γ(1 + κ)

Γ

(
ν − ν0 + 1 + κ

2

)
Γ

(
ν + ν0 + 1 + κ

2

) .

Moreover the system {ψ(m)| m ∈ Λ+
n−1(q|l)} satisfies the following

recurrence relations.
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(a)

(2mi − 2i− q0 + ν0 + n− 1)ψ(m−i)

= C−
i (m) · (2mi − 2i− p0 − ν + n)ψ(m)

for m ∈ Λ+
n−1(q|l), h < i � n − 1 with m−i ∈ Λ+

n−1(q|l) with a

system of non-zero constants C−
i (m) which depends only on σ0,

σ and h.

(b)

(2mj − 2j − q0 − ν0 + n+ 1)ψ(m+j)

= C+
j (m) · (2mj − 2j − p0 + ν + n)ψ(m)

for m ∈ Λ+
n−1(q|l), 1 � j < h with m+j ∈ Λ+

n−1(q|l) with a

system of non-zero constants C+
j (m) which depends only on σ0,

σ and h.

Proof. We give a brief indication of the proof. The formula (3.2.8)

follows from the same procedure described in [10, section 9]. The equations

(E+i
h )m and (E−i

h )m are paraphrase of [10, (8.3.1), (8.3.2)]. The formula

(3.2.9) follows from (3.2.8) combined with the formula of 2F1(a, b ; c ; 1) in

[14, 14.11]. By the formula (3.2.8), the function ψ(m0 ;x) on 0 < x < 1

can be extended smoothly around x = 1. By induction on the number

δ(m) = |m−m0|, we can prove by using (E−i
h )m and (E+i

h )m that ψ(m ;x) is

continued smoothly around x = 1. In particular the limit limx→1−0 ψ(m ;x)

exists for any m ∈ Λ+
n−1(q|l). The relations (a) and (b) can be deduced from

(Eh)
+i
m and (Eh)

−i
m by a computation. �

Corollary 3.2.1. Retain the assumptions and the notations in

Proposition 3.2.2. We have

ψ(p) = γ(h)(P)C0

h−1∏
α=1

∏
qα �mα<pα

2mα − 2α− p0 + ν + n

2mα − 2α− q0 − ν0 + n+ 1
(3.2.10)

×
n−1∏
β=h+1

∏
pβ<mβ � qβ−1

2mβ − 2β − p0 − ν + n

2mβ − 2β − q0 + ν0 + n− 1

× Γ(ν)

Γ

(
ν − ν0 + 1 + κ

2

)
Γ

(
ν + ν0 + 1 + κ

2

)
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with a non-zero constant C0 which depends only on σ0, σ and h.

Proof. This follows from the formula (3.2.9) and recurrence relations

(a) and (b). �

4. The Poisson Integrals

In the first subsection, we introduce an integral transform using the open

Pn−1 × Pn-double coset in Gn, which may be considered to be an analogue

of the Poisson integrals in the representation theory of the affine symmetric

spaces ([8], [3]). In 4.2, we compute the constant γ(h)(P) (Proposition 3.2.2

(1)) for P given by the Poisson integral.

4.1. Poisson integrals and their basic properties

Lemma 4.1.1. We have

Pn−1 ∩ Pn = mn−1(U(n− 2), 1).

Proof. Noting

mn−1(U(n− 2), 1)(4.1.1)

=

{
g ∈ Gn

∣∣∣∣ g(en−1 + en+1) = en−1 + en+1, g(en) = en
g(en + en+1) = en + en+1

}
,

Pn−1 = StabGn−1(〈en−1+en+1〉) and Pn = StabGn(〈en+en+1〉), the inclusion

mn−1(U(n− 2), 1) ⊂ Pn−1 ∩ Pn is obvious. We show the converse inclusion.

Let g ∈ Pn−1 ∩ Pn. There exist scalars λ ∈ C
∗ and µ ∈ C

∗ such that

g(en + en+1) = λ(en + en+1),(4.1.2)

g(en−1 + en+1) = µ(en−1 + en+1), g(en) = en.

Substituting (4.1.2) to the equations (g(en)|g(en+en+1)) = (en|en+en+1) =

1 and (g(en+ en+1)|g(en−1 + en+1)) = (en+ en+1|en−1 + en+1) = −1 respec-

tively, we obtain λ̄ = 1 and λµ̄ = 1. Hence g ∈ mn−1(U(n − 2), 1) by

(4.1.1). �

Let ∆(Pn−1 ∩ Pn) be the diagonal subgroup of Pn−1 × Pn.

Proposition 4.1.1.
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(1) The open subset

Ωn = {g ∈ Gn| (g(en+en+1)|en−1 +en+1) �= 0, (g(en+en+1)|en) �= 0}.

is an orbit under the action of Pn−1 × Pn on Gn defined by

(p0, p) · g = p0gp
−1, (p0, p) ∈ Pn−1 × Pn, g ∈ Gn.

(2) The map ψ : Pn−1×Pn → Ωn defined by (p0, p) �→ p0p
−1, passing to the

quotient, induces a diffeomorphism (Pn−1 × Pn)/∆(Pn−1 ∩ Pn) ∼= Ωn.

Proof. For a non-zero v ∈ C
n+1, let 〈v〉 denote the line Cv. The

group Gn naturally acts on PnC, the n-dimensional projective manifold, and

the set F = {〈v〉 ∈ PnC| (v|v) = 0} is the Gn-orbit of 〈en + en+1〉. Since

Pn = Stab(〈en + en+1〉), we have a bijection Gn/Pn ∼= F . We first prove

(1). It suffices to show that the subset

Ω̃n = {〈v〉 ∈ F| (v|en−1 + en+1) �= 0, (v|en) �= 0}

forms a single Pn−1-orbit. Note that 〈en+en+1〉 ∈ Ω̃n. The Pn−1-invariance

of the set Ω̃n follows from the fact that p0 ∈ Pn−1 means p0(en) = en and

p−1
0 (en−1 +en+1) = µ(en−1 +en+1) with a scalar µ ∈ C

∗. Next we show that

for given 〈v1〉, 〈v2〉 ∈ Ω̃n there exists a p0 ∈ Pn−1 such that p0〈v1〉 = 〈v2〉.
By replacing v2 for cv2 with an appropriate c ∈ C

∗ if necessary, we may

assume that (v1|en−1 + en+1) = (v2|en−1 + en+1). (This is possible because

(vi|en−1 + en+1) �= 0 for i = 1, 2.) If we put

wi = vi − (vi|en)en, i = 1, 2,

then, by Witt’s theorem, we have a p0 ∈ Gn such that

p0(en) = en, p0(en−1 + en+1) = λ̄−1(en−1 + en+1),

p0(w1) = λw2

with λ = (v1|en)(v2|en)−1. The first two equations mean p0 ∈ Pn−1. The

last equation can be written as p0(v1) = λv2. Hence p0〈v1〉 = 〈v2〉.
Now we prove assertions in (2). By (1), the map ψ is surjective. We

show that ψ is submersive. This is reduced to showing the surjectivity of

the tangent map of ψ at the base point e = (In+1, In+1) mod ∆(Pn−1 ∩
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Pn), or equivalently to showing gn = p′n−1 + p′n with p′n = Lie(Pn). (Note

that the tangent space of Ωn at In+1 is gn since Ωn is open in Gn.) We

have dimR(p′n−1) + dimR(p′n) − dimR(gn) = (n − 2)2. On the other hand,

Lemma 4.1.1 gives dimR(p′n−1 ∩ p′n) = (n− 2)2. Hence we have the identity

dimR(gn) = dimR(p′n−1)+dimR(p′n)−dimR(p′n−1∩p′n), which in turn means

that the map p′n−1 ⊕ p′n → gn sending (X0, X) ∈ p′n−1 ⊕ p′n to X0 +X ∈ gn

is surjective, or equivalently gn = p′n−1 + p′n as desired. This completes the

proof. �

Proposition 4.1.2.

(1) Let ν0, ν ∈ C. Let σ0 = σn−1
(q;q0) with (q ; q0) ∈ ◦L+

n−1 and σ = σn(p;p0)

with (p ; p0) ∈ ◦L+
n . Assume the condition q ⊂ p. Then there exists

a unique function

ξσ0,σ(ν0, ν) : Gn →W (q)⊗W (p)∨

that satisfies the conditions listed below:

(a) ξσ0,σ(ν0, ν)(g) = 0 for g ∈ Gn − Ωn;

(b) For every p0 = an−1(r0)mn−1un−1 ∈ Pn−1 and p = an(r)mnun ∈
Pn with (mn−1, un−1) ∈Mn−1 ×Nn−1 and (mn, un) ∈Mn ×Nn,

we have

ξσ0,σ(ν0, ν)(p0gp
−1)

= rν0+n−1
0 r−ν+n(σ0(mn−1)⊗ σ∨(mn))ξ

σ0,σ(ν0, ν)(g),

g ∈ Gn;

(c) we have

〈ξσ0,σ(ν0, ν)(In+1), w
∨
0 ⊗ w〉 = 〈pp

q(w), w∨
0 〉,

w∨
0 ∈W (q)∨, w ∈W (p).

(2) The function (ν0, ν, g) �→ ξσ0,σ(ν0, ν)(g) is C∞ on C
2 × Ωn and is

holomorphic with respect to ν0 and ν.

Proof. The conditions in (b) and (c) give the formula

(4.1.3) ξσ0,σ(ν0, ν)(p0p) = rν0+n−1
0 rν−n(σ0(mn−1)⊗ σ∨(m−1

n ))ξ0
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for p0 = an−1(r0)mn−1un−1 ∈ Pn−1 and p = an(r)mnun ∈ Pn, where ξ0 ∈
W (q)⊗W (p)∨ is a unique element satisfying

〈ξ0, w∨
0 ⊗ w〉 = 〈pp

q(w), w∨
0 〉, w∨

0 ∈W (q)∨, w ∈W (p).

The identity (4.1.3) uniquely determines ξσ0,σ(ν0, ν)|Ωn. To show the ex-

istance of ξσ0,σ(ν0, ν), we only have to check that the right-hand side of

the identity (4.1.3) is independent of a choice of expressions g = p0p, p0 ∈
Pn−1, p ∈ Pn. We can confirm this by the Pn−1 ∩ Pn-invariance of ξ0. This

establishes (1). Next we show (2). Let Ψ : R
∗
+ × C

(1) ×Nn−1 × U(n− 1)×
Nn × C

(1) × R
∗
+ → Ωn be the map defined by

Ψ(r0, x0, un−1, h, un, x, r)

= an−1(r0)mn−1(In−2, x0)un−1u
−1
n mn(h, x)−1an(r)

−1,

r0 > 0, r > 0, x0 ∈ C
(1), x ∈ C

(1),

h ∈ U(n− 1), un−1 ∈ Nn−1, un ∈ Nn.

By Proposition 4.1.1 (2), Ψ is a diffeomorphism. By the identity

ξσ0,σ(ν0, ν) ◦Ψ(r0, x0, un−1, h, un, x, r)

= rν0+n−1
0 rn−ν · σ0(mn−1(In−2, x0))⊗ σ∨(mn(h, x))ξ0,

the smoothness of (ν0, ν, g) �→ ξσ0,σ(ν0, ν)(g) on C
2 × Ωn and the holomor-

phicity with respect to (ν0, ν) follows. �

Theorem 4.1.1. Let σ0 and σ be as in Proposition 4.1.2.

(1) Put Xn = {(ν0, ν) ∈ C
2| Re(ν0) + Re(ν) > 1, Re(ν0) < 1 − n}. The

function (ν0, ν, g) → ξσ0,σ(ν0, ν)(g) is continuous on Xn × Gn. For

(ν0, ν) ∈ Xn, we have a linear map Pσ0,σ(ν0, ν) from Vσ
∨
0
n−1 ⊗ Vσn to

C∞(Gn) such that

Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g)(4.1.4)

=

∫
Kn−1×Kn

〈ξσ0,σ(ν0, ν)(k0gk
−1), ϕ0(k0)⊗ ϕ(k)〉

×dKn−1(k0)dKn(k),

ϕ0 ∈ Vσ
∨
0
n−1, ϕ ∈ Vσn .

The function (ν0, ν) �→ Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g) on Xn is holomorphic

for every ϕ0 ∈ Vσ
∨
0
n−1, ϕ ∈ Vσn and g ∈ Gn.
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(2) Suppose (ν0, ν) ∈ Xn. Then Pσ0,σ(ν0, ν) is a non-zero element of the

space I(σ0, ν0|σ, ν).

Proof. By Proposition 4.1.2 (2), we have that the function (ν0, ν, g) �→
ξσ0,σ(ν0, ν)(g) is C∞ on the open dense subset Xn × Ωn of Xn × Gn, and

that ξσ0,σ(ν0, ν)(g) = 0 for g ∈ Gn − Ωn. Hence to prove the continuity of

(ν0, ν, g) �→ ξσ0,σ(ν0, ν)(g) on Xn ×Gn, it suffices to show that

lim
(ν0,ν,g)→(ν′0,ν

′,g′), g∈Ωn

ξσ0,σ(ν0, ν)(g) = 0(4.1.5)

for g′ ∈ Gn − Ωn and (ν ′0, ν
′) ∈ Xn. Take a g in Ωn and express it as

g = Ψ(r0, x0, un−1, h, un, x, r),

r0, r > 0, x0, x ∈ C
(1), h ∈ U(n− 2), un−1 ∈ Nn−1, un ∈ Nn,

where Ψ is the diffeomorphism introduced in the proof of Proposition 4.1.2

(2). We have

r = |(g(en + en+1)|en)|−1,

r0 = |(g(en + en+1)|en)(g(en + en+1)|en−1 + en+1))
−1|.

Since σ0(Mn−1) and σ∨(Mn) are compact, using Proposition 4.1.2 (b) and

the formulas above, we have the estimate

‖ξσ0,σ(ν0, ν)(g)‖(4.1.6)

� C|(g(en + en+1)|en−1 + en+1)|−Re(ν0)−n+1|
× (g(en + en+1)|en)|Re(ν0)+Re(ν)−1, g ∈ Ωn,

with C > 0 a constant independent of g. Now we let (ν0, ν, g) ∈ Xn × Ωn
go to (ν ′0, ν

′, g′) ∈ Xn × (Gn − Ωn). By the definition of Ωn, the right-hand

side of the inequality (4.1.6) tends to 0 as (ν0, ν, g) → (ν ′0, ν
′, g′). This

proves (4.1.5) and establishes the first part of (1). By the continuity just

established, the integral (4.1.4) converges absolutely as long as (ν0, ν) is in

Xn. The holomorphy with respect to (ν0, ν) is clear.

We have the identity

Pσ0,σ(ν0, ν ;π
σ∨0 ,−ν0
n−1 (g0)ϕ0 ⊗ πσ,νn (g′)ϕ)(g)(4.1.7)

= Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g−1
0 gg′)
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for ϕ0 ∈ Vσ
∨
0
n−1, ϕ ∈ Vσn , g, g′ ∈ Gn and g0 ∈ Gn−1 by applying the integra-

tion formula [12, (7.4), page 170] to the left Mn−1 ×Mn-invariant function

f : Kn−1 ×Kn → C defined by

f(k0, k) = 〈ξσ0,σ(ν0, ν)(k0g0gg
′−1k−1), ϕ0(k0)⊗ ϕ(k)〉,

(k0, k) ∈ Kn−1 ×Kn.

For g ∈ Gn, the bi-linear form Λg : Vσ
∨
0
n−1 × Vσn → C given by

Λg(ϕ0, ϕ) = Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g), ϕ0 ∈ Vσ
∨
0
n−1, ϕ ∈ Vσn .

is continuous with respect to the C∞-topology by the estimate

∣∣Λg(ϕ0, ϕ)
∣∣ � Cg sup

kn−1∈Kn−1

‖ϕ0(kn−1)‖ sup
kn∈Kn

‖ϕ(kn)‖

with Cg = sup(kn−1,kn)∈Kn−1×Kn
‖ξ(σ0, σ ; ν0, ν)(kn−1gkn)‖. The formula

(4.1.7) gives

Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g−1
0 gg′) = Λg(π

σ∨0 ,−ν0
n−1 (g0)ϕ0, π

σ,ν
n (g′)ϕ),

g0 ∈ Gn−1, g, g
′ ∈ Gn.

Since π
σ∨0 ,−ν0
n−1 and πσ,νn are smooth, this shows the function (g0, g

′) →
Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g−1

0 gg′) is C∞. Finally we show that there exist

ϕ0 ∈ Vσ
∨
0
n−1 and ϕ ∈ Vσn such that Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(In+1) �= 0. By

Proposition 4.1.2 (c), the function ξσ0,σ(ν0, ν)(k0k
−1) on Kn−1 ×Kn is not

identically zero. Hence we can find C∞-functions f0 : Kn−1 → W (q)∨ and

f : Kn →W (p) with

∫
Kn−1×Kn

〈ξσ0,σ(ν0, ν)(k0k
−1), f0(k0)⊗ f(k)〉dKn−1(k0)dKn(k) �= 0.

The integral in the left-hand side equals Pσ0,σ(ν0, ν ;ϕ0⊗ϕ)(In+1) with ϕ0 ∈
Vσ

∨
0
n−1 and ϕ ∈ Vσn given by ϕ0(k0) =

∫
Mn−1

σ∨
0 (m0)

−1f0(m0k0)dMn−1(m0),

ϕ(k) =
∫
Mn

σ(m)−1f(mk)dMn(m). This completes the proof. �



186 Masao Tsuzuki

Remark 4.1.1.

(1) As we proved in Proposition 4.1.1, Ωn = Pn−1Pn is a unique open

Pn−1 ×Pn-double coset in Gn. The set Gn −Ωn decomposes into two

distinct Pn−1 × Pn-double cosets Ω′
n and Ω′′

n given as

Ω′
n = {g ∈ Gn|(g(en + en+1)|en−1 + en+1) �= 0,

(g(en + en+1)|en) = 0},
Ω′′
n = {g ∈ Gn|(g(en + en+1)|en−1 + en+1) = (g(en + en+1)|en) = 0}.

(2) In the p-adic situation, analogous integrals as (4.1.4) were used in [4]

to construct a class-one Shintani function.

4.2. Evaluation of the Poisson integrals for corner Kn-types

Let σ0 = σn−1
(q;q0) and σ = σn(p;p0) be as in Proposition 4.1.2. In particular

we assume q ⊂ p. Put z0 = |q| + q0 and z = |p| + p0. Our goal of

this subsection is to obtain an explicit formula of the constant γ(h)(P) for

P = Pσ0,σ(ν0, ν) with (ν0, ν) ∈ Xn. The result is in Theorem 4.2.1.

Proposition 4.2.1. Let (ν0, ν) ∈ Xn and ϕ0 ∈ Vσ
∨
0
n−1 and ϕ ∈ Vσn .

Then we have

lim
r→∞

lim
r0→∞

rn−1+ν0
0 rn−νPσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(an−1(r0)

−1an(r))(4.2.1)

= 〈pp
q(Aσ,νn (ϕ ; wn)),Aσ

∨
0 ,−ν0
n−1 (ϕ0 ; wn−1)〉.

Proof. Put ξ = ξσ0,σ(ν0, ν) and P = Pσ0,σ(ν0, ν). We extend the

function ϕ0 (resp. ϕ) to all of Gn−1 (resp. Gn) by putting

ϕ0(g0) = ϕ0(κn−1(g0))αn−1(g0)
−ν0+n−1, g0 ∈ Gn−1,(4.2.2)

ϕ(g) = ϕ(κn(g))αn(g)
ν+n, g ∈ Gn.

To begin with we prove that there exists a positive constant C and δ such

that ∣∣〈ξ(an−1(r0)n̄0an−1(r0)
−1an(r)n̄

−1an(r)
−1), ϕ0(n̄0)⊗ ϕ(n̄)〉|(4.2.3)

� Cαn−1(n̄0)
2(n−1)αn(n̄)n+δ,

n̄0 ∈ N̄n−1, n̄ ∈ N̄n
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holds. By the estimate (4.1.6) and the Cauchy-Schwarz inequality, we have

∣∣〈ξ(an−1(r0)n̄0an−1(r0)
−1an(r)n̄an(r)

−1), ϕ0(n̄0)⊗ ϕ(n̄)〉|
� C0‖an(r)n̄−1an(r)

−1(en + en+1)‖Re(ν0)+Re(ν)−1

× ‖an−1(r0)n̄
−1
0 an−1(r0)

−1(en−1 + en+1))‖−Re(ν0)−n+1‖ϕ0(n̄0)‖‖ϕ(n̄)‖

with a constant C0. By the Iwasawa decomposition we obtain the estimates

‖an(r)n̄−1an(r)
−1(en + en+1)‖ � C ′αn(an(r)n̄an(r)

−1)−1,

‖ϕ(n̄)‖ � C ′αn(n̄)Re(ν)+n, n̄ ∈ N̄n,

‖an−1(r)n̄
−1
0 an−1(r0)

−1(en−1 + en+1)‖
� C ′αn−1(an−1(r0)n̄0an−1(r0)

−1)−1,

‖ϕ0(n̄0)‖ � C ′αn−1(n̄0)
−Re(ν0)+n−1, n̄0 ∈ N̄n−1

with a positive constant C ′. Since (ν0, ν) ∈ Xn, we consequently have

∣∣〈ξ(an−1(r0)n̄0an−1(r0)
−1an(r)n̄an(r)

−1), ϕ0(n̄0)⊗ ϕ(n̄)〉|
� C1αn(an(r)n̄an(r)

−1)−Re(ν0)−Re(ν)+1αn(n̄)Re(ν)+n

× αn−1(an−1(r0)n̄0an−1(r0)
−1)Re(ν0)+n−1αn−1(n̄0)

−Re(ν0)+n−1.

Finally we use the estimates αn(an(r)n̄an(r)
−1) � αn(n̄), n̄ ∈ N̄n, r � 1

([12, page 188, Lemma 7.16]) to have the desired estimate (4.2.3) with

δ = 1 − Re(ν0) > 0. Now we compute the left-hand side of (4.2.1). First

we apply the integration formula [12, (5.25) page 140], and then use (4.2.2)

and Proposition 4.1.2 (b). We have

rn−1+ν0
0 rn−νP(ϕ0 ⊗ ϕ)(an−1(r0)

−1an(r))(4.2.4)

= rn−1+ν0
0 rn−ν

∫
N̄n−1×N̄n

〈ξ(κn−1(n̄0)an−1(r0)
−1an(r)κn(n̄)−1),

ϕ0(κn−1(n̄0))⊗ ϕ(κn(n̄))〉
×αn−1(n̄0)

2(n−1)αn(n̄)2ndN̄n−1
(n̄0)dN̄n

(n̄)

=

∫
N̄n−1×N̄n

〈ξ(an−1(r0)n̄0an−1(r0)
−1an(r)n̄

−1an(r)
−1),

ϕ0(n̄0)⊗ ϕ(n̄)〉dN̄n−1
(n̄0)dN̄n

(n̄).
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Now let r → +∞ and r0 → +∞. Since (ν0, ν) ∈ Xn, the function ξ is

continuous by Theorem 4.1.1. Hence

lim
r0→+∞

lim
r→+∞

ξ(an−1(r0)n̄0an−1(r0)
−1an(r)n̄

−1an(r)
−1) = ξ(In+1),

n̄0 ∈ N̄n−1, n̄ ∈ N̄n

because limr→+∞ an−1(r0)n̄0an−1(r0)
−1 = In and limr→+∞ an(r)n̄

−1 ·
an(r)

−1 = In+1. Interchanging integration and limit, we have

lim
r0→+∞

lim
r→+∞

rn−1+ν0
0 rn−νP(ϕ0 ⊗ ϕ)(an−1(r0)

−1an(r))(4.2.5)

=

∫
N̄n−1×N̄n

〈ξ(In+1), ϕ0(n̄0)⊗ ϕ(n̄)〉dN̄n−1
(n̄0)dN̄n

(n̄)

= 〈ξ(In+1),Aσ
∨,−ν0
n−1 (ϕ0 : wn−1)⊗Aσ,νn (ϕ : wn)〉.

Here one should note that the condition (ν0, ν) ∈ Xn implies Re(ν) >

0, Re(ν0) < 0, which ensures the convergence of the integrals Aσ
∨
0 ,−ν0
n−1 (ϕ0 :

wn−1) and Aσ,νn (ϕ : wn) (Proposition 2.3.1 (1)). To obtain the first equality

in (4.2.5) above we used dominated convergence theorem, noting the esti-

mate (4.2.3) and the fact that the function n̄ → αn(n̄)n+δ with δ > 0 is

integrable on N̄n([12, page 181, Corollary 7.7]). By Proposition 4.1.2 (c),

we have the conclusion. �

Corollary 4.2.1. Let P = Pσ0,σ(ν0, ν) with (ν0, ν) ∈ Xn. For µ =

[m ;m0] ∈ L+
n−1(π

σ0,ν0
n−1 ) and λ = [l ; l0] ∈ L+

n (πσ,νn ), we have

lim
r→∞

lim
r0→∞

rn−1+ν0
0 rn−ν〈Pµ,λ(an−1(r0)

−1an(r)), w
∨
0 ⊗ w〉(4.2.6)

= (−1)l0−m0cn−1(σ
∨
0 ,−ν0 ; m̌)cn(σ, ν ; l)〈jqm ◦ pp

q ◦ pl
p(w), w∨

0 〉,
w∨

0 ∈W (m)∨, w ∈W (l).

Proof. By (2.3.2), we have

Aσ,νn ◦ ισl (w) = cn(σ, ν ; l)ισl (w),

Aσ
∨
0 ,−ν0
n−1 ◦ ι̌σ0m (w∨

0 ) = cn−1(σ
∨
0 ,−ν0 ; m̌)ι̌σ0m (w∨

0 ).
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Since wn = diag(In,−1), by (2.1.1), we have ι̌σ0m (w∨
0 )(wn−1) = (−1)m0(jqm)∨

and ισl (w)(wn) = (−1)l0pl
p. Noting these remarks, we get the identity (4.2.6)

from (4.2.1). �

Here is the main theorem of this section.

Theorem 4.2.1. Let (ν0, ν) ∈ Xn, and put π0 = πσ0,ν0n−1 and π = πσ,νn .

Let h ∈ {1, · · · , n− 1}. Put γ(h)(σ0, σ ; ν0, ν) = γ(h)(Pσ0,σ(ν0, ν)). Then we

have

γ(h)(σ0, σ ; ν0, ν) = γ(h)
σ0,σ · d̃

(h)
n (σ0, σ ; ν)−1(4.2.7)

× c̃(h)n (σ ; ν)d(h)
n (σ0, σ ; ν0)

× Γ

(
ν − ν0 + 1 + κ

2

)
Γ

(
ν + ν0 + 1 + κ

2

)

with a non zero real number γ
(h)
σ0,σ which depends only on σ0, σ and h. Here

c̃
(h)
n (σ ; ν) is given by (2.2.1) and

d̃(h)
n (σ0, σ ; ν) =

h−1∏
α=1

∏
qα � iα<pα

(ν − p0 + n+ 2iα − 2α)(4.2.8)

×
n−1∏
β=h+1

∏
pβ<iβ � qβ−1

(ν + p0 − n− 2iβ + 2β),

d(h)
n (σ, σ0 ; ν0) =

h−1∏
α=1

∏
qα<jα � pα

(ν0 − 2jα + 2α+ q0 − n+ 1)(4.2.9)

×
n−1∏
β=h+1

∏
pβ � jβ<qβ−1

(ν0 + 2jβ − 2β − 2q0 + n+ 1).

Proof. Let Lm(w∨
0 , w) with l ∈ Λ+

n (p) such that λ = λ
(h)
σ = [l ; l0]

denotes the limit in the left-hand side of (4.2.6). We compute it in a way

different from Corollary 4.2.1. From (3.2.6) and (3.2.7), we have

(4.2.10) α(h)(n) + β(h)(n) + n− ν =
h−1∑
i=1

(ni − pi) +
n−1∑
i=h+1

(pi − ni)
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for n = (nj)1� j �n−1 ∈ Λ+
n−1(q|l). Since pi � ni for 1 � i < h, ni � pi for

h < i � n − 1 and nh = ph, the number (4.2.10) is non-positive and it is

zero if and only if n = p. By Proposition 3.2.2 (2), we have

lim
r→∞

rn−νfl(n ; r) = lim
r→∞

rα
(h)(n)+β(h)(n)+n−ν(4.2.11)

×
(

1 + r−2

2

)α(h)(n)(1− r−2

2

)β(h)(n)

ψ(n)

=

{
0 n ∈ Λ+

n−1(q|l)− {p},
2n−νψ(p) n = p

.

Now by the formula (3.2.3), we have

Lm(w∨
0 , w) =

∑
n∈Λ+

n−1(q|l)

lim
r→∞

rn−νfl(n ; r) lim
r0→∞

rn−1+ν0
0(4.2.12)

×
[
ισ0n ◦ pl

n(w)
∣∣πσ∨0 ,−ν0n−1 (an−1(r0)) ◦ ι̌σ0m (w∨

0 )
]

= 2n−νψ(p) lim
r0→∞

rn−1+ν0
0

×
[
ισ0p ◦ pl

p(w)
∣∣πσ∨0 ,−ν0n−1 (an−1(r0))ι̌

σ0
m (w∨

0 )
]

= 2n−νψ(p)cn−1(σ
∨
0 ,−ν0 ; m̌)

×〈(ισ0p ◦ pl
p(w))(In−1), ι̌

σ0
m (w∨

0 )(wn−1)〉.

The second equality follows from (4.2.11) and the last one follows from

Proposition 2.3.1 (3). By (2.1.1), we easily have

(ισ0p ◦ pl
p(w))(In−1) = pp

q ◦ pl
p(w), (ι̌σ0m (w∨

0 ))(wn−1) = (−1)m0(jqm)∨(w∨
0 ).

Substituting these identities to (4.2.12), we finally get

Lm(w∨
0 , w) = (−1)z0−|p|2n−νψ(p)cn−1(σ

∨
0 ,−ν0 ; m̌)(4.2.13)

×〈pp
q ◦ pl

p(w), (jqm)∨(w∨
0 )〉.

From (4.2.6) and (4.2.13), we obtain

(−1)m0−l0cn−1(σ
∨
0 ,−ν0 ; m̌)cn(σ, ν ; l)〈pp

q ◦ pl
p(w), (jqm)∨(w∨

0 )〉
= (−1)m02n−νψ(p)cn−1(σ

∨
0 ,−ν0 ; m̌)〈pp

q ◦ pl
p(w), (jqm)∨(w∨

0 )〉.
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for any m ∈ Λ+
n−1(q) and any (w∨

0 , w) ∈W (m)∨ ×W (l0). Hence

(−1)l0cn(σ, ν ; l) = 2n−νψ(p).(4.2.14)

From Corollary 3.2.1, Proposition 2.3.2 and (4.2.14), we have the conclusion

easily. �

5. Analytic Continuation of Poisson Integrals

In this section, we show that the integral (4.1.4) with K-finite ϕ0 ⊗ ϕ

when multiplied by a suitable normalizing factor is continued holomorphi-

cally to a domain of C
2 with respect to (ν0, ν) (Theorem 5.1.1). For that

purpose we use the difference-differential equations for the Shintani func-

tions studied in [10]. The proof of Theorem 5.1.1 is given in 5.2.

5.1. Statement of the theorem

For h ∈ {1, · · · , n− 1}, put

D(h)
σ0,σ = {ν ∈ C| d̃(h)

n (σ0, σ ; ν) �= 0}

Let Dσ0,σ be the union of D
(h)
σ0,σ for h ∈ {1, · · · , n− 1}.

Theorem 5.1.1. Let σ0 = σn−1
(q;q0) and σ = σn(p;p0) with q ⊂ p. Put

κ = |p0 − q0|. For ϕ0 ∈ V
σ∨0
n−1 and ϕ ∈ V σn with (ν0, ν) ∈ Xn put

Rσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g)

= Γ

(
ν − ν0 + 1 + κ

2

)−1

Γ

(
ν + ν0 + 1 + κ

2

)−1

Pσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g).

(1) Let ϕ ∈ V σn , ϕ0 ∈ V
σ∨0
n−1, D0 ∈ U(gn−1,C), D ∈ U(gn,C) and g ∈

Gn. Then the function (ν0, ν) �→ LD0RDRσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g) on

(ν0, ν) ∈ Xn is a holomorphic function and is extended holomorphically

to C×Dσ0,σ.

(2) For every (ν0, ν) ∈ C×Dσ0,σ, the function g �→ Rσ0,σ(ν0, ν ;ϕ0⊗ϕ)(g)

is C∞ on Gn. The linear map ϕ0 ⊗ ϕ �→ Rσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ) gives

rise to an element of I(σ0, ν0|σ, ν).
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(3) For h ∈ {1, . . . , n− 1}, put λ
(h)
σ = [l ; l0] and µ

(h)
σ0,σ = [m ;m0]. Then

there exists a non-zero constant γ
(h)
σ0,σ depending only on σ0, σ and h

such that

Rσ0,σ(ν0, ν ; ι̌σ0m (w∨
0 )⊗ ισl (w))(an(r))(5.1.1)

= γ(h)
σ0,σ · Γ

(h)(σ0, σ ; ν0, ν)

×(sh r)κ(ch r)
∑ h−1

j=1 (qj−pj)+
∑ n−2

j=h (pj+1−qj)−n+ν−κ

×2F1

(−ν0 − ν + 1 + κ

2
,
ν0 − ν + 1 + κ

2
; 1 + κ ; th2(r)

)
·〈pl

m(w), w∨
0 〉,

holds for r > 0, (w∨
0 , w) ∈W (m)∨ ×W (l) with

Γ(h)(σ0, σ ; ν0, ν)(5.1.2)

= d̃(h)
n (σ0, σ ; ν)−1c̃(h)n (σ ; ν)d(h)

n (σ0, σ ; ν0).

Here d̃
(h)
n (σ0, σ ; ν), c̃

(h)
n (σ ; ν) and d

(h)
n (σ0, σ ; ν0) are given by (4.2.8),

(2.2.1) and (4.2.9) respectively.

We give a proof of this theorem in the next subsection.

5.2. The proof of Theorem 5.1.1

We need the following lemma on Gaussian hypergeometric function.

Lemma 5.2.1. Let c ∈ Z with c � 1.

(1) For a fixed 0 � x < 1, the function (a, b) �→ 2F1(a, b ; c ;x) is holo-

morphic on C
2.

(2) For every a, b ∈ C and 0 � x < 1, we have the formula

(1− x)
d

dx
2F1(a, b ; c ;x)

=
(c− a)(c− b)

c
2F1(a, b ; c+ 1 ;x) + (a+ b− c)2F1(a, b ; c ;x)

Proof. The Taylor series of 2F1(a, b ; c ;x) at x = 0 converges on

|x| < 1 locally uniformly with respect to (a, b) ∈ C
2. From this remark (1)
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follows. By comparing the Taylor series expansion of the both sides of the

identity at x = 0, we get the formula of (2). �

Let h ∈ {1, · · · , n− 1}. For every l ∈ Λ+
n (p) and m ∈ Λ+

n−1(q|l), we define

polynomial functions Q(h)(m ; ν0) and P (h)(l ; ν) by

Q(h)(m ; ν0)(5.2.1)

=
h−1∏
α=1

∏
qα<jα � inf(pα,mα)

(ν0 − 2jα + 2α+ q0 − n+ 1)

×
n−1∏
β=h+1

∏
sup(pβ ,mβ)� jβ<qβ−1

(ν0 + 2jβ − 2β − q0 + n+ 1),

P (h)(l ; ν)(5.2.2)

=

h∏
α=1

∏
pα � jα<lα

(ν + 2jα − 2α+ 2− p0 + n)

×
n−1∏
β=h

∏
lβ+1<jβ+1 � pβ

(ν − 2jβ+1 + 2β + 2 + p0 − n).

Lemma 5.2.2. For h ∈ {1, · · · , n− 1}, l ∈ Λ+
n (p) and m ∈ Λ+

n−1(q|l),
put

Γ
(h)
l,m(σ0, σ ; ν0, ν)

=
γ(h)(σ0, σ ; ν0, ν)

P (h)(l ; ν)Q(h)(m ; ν0)
Γ

(
ν − ν0 + 1 + κ

2

)−1

Γ

(
ν + ν0 + 1 + κ

2

)−1

with γ(h)(σ0, σ ; ν0, ν) given by (4.2.7). Then the function (ν0, ν) �→
Γ

(h)
l,m(σ0, σ ; ν0, ν) is holomorphic on (ν0, ν) ∈ C×D

(h)
σ0,σ.

Proof. The functions ν �→ c̃
(h)
n (σ ; ν)P (h)(l ; ν)−1 and ν0 �→

d
(h)
n (σ0, σ ; ν0)Q

(h)(m ; ν0)
−1 are holomorphic on all of C. From Theorem

4.2.1 and this remark, the result follows. �

Lemma 5.2.3. For (ν0, ν) ∈ Xn, let {fl(m ; ν0, ν ; r)| l ∈ Λ+
n (p),m ∈

Λ+
n−1(q|l)} be the standard coefficients of Rσ0,σ(ν0, ν). Then for every l ∈
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Λ+
n (p) and m ∈ Λ+

n−1(q|l), the function (ν0, ν, x) �→ Ψl(m ; ν0, ν ;x) =

(sh r)−β
(h)(m)(ch r)−α

(h)(m)fl(m ; ν0, ν ; r) with x = th2(r) defined on (Xn ∩
(C×D

(h)
σ0,σ))×(0, 1) is a finite C-linear combination of functions of the form

R(ν0, ν)Γ
(h)
l,m(σ0, σ ; ν0, ν)(5.2.3)

×xr1(1− x)r22F1

(−ν0 − ν + 1 + κ

2
,
ν0 − ν + 1 + κ

2
; r3 ;x

)
,

where R(ν0, ν) is a polynomial function, r1, r2, r3 ∈ Z with r3 � κ+ 1.

Proof. The functions fl(m ; ν0, ν ; r) satisfy the system of difference-

differential equations (S±k)l,m and (T±k)l,m given in [10, Theorem 7.4.1].

By changing variables, we can obtain the equations among Ψl(m ; ν0, ν ;x)’s

correspondingly, which we also refer to (S±k)l,m and (T±k)l,m. Put λ
(h)
σ =

[l0 ; l0] (Definition 2.2.2). For a given l ∈ Λ+
n (p), put δ(l) = |l−l0|. Then δ(l)

is a non-negative integer and it is zero if and only if l = l0. For a given l and

m, let (P)l,m be the statement that the function (ν0, ν, x) �→ Ψl(m ; ν0, ν ;x)

is a finite C-linear combination of functions of the form (5.2.3). We prove

the statement (P)l,m by induction on the integer δ(l).

If δ(l) = 0, then we have l = l0. Let m0 = (m0,i)1� i�n−1 ∈ Λ+
n−1(q|l0)

be such that µ
(h)
σ0,σ = [m0 ;m0] (Definition 3.1.1). Then by the explicit

formula (3.2.8), the statement (P)l0,m0 is true. We proceed by induction on

the number |m−m0| � 0 to prove the statement (P)l0,m for m ∈ Λ+
n−1(q|l0).

Assuming the validity of the statements (P)l0,m′ for m′ ∈ Λ+
n−1(q|l0) with

0 < |m′ −m0| < e, we take an m ∈ Λ+
n−1(q|l0) with |m −m0| = e. Since

|m −m0| = e > 0, m is different from m0. Thus we have two possbilities;

(a) there exists an α with 1 � α < h such that m−α ∈ Λ+
n−1(q|l0), or (b)

there exists an β with h < β � n − 1 such that m+β ∈ Λ+
n−1(q|l0). (Note

that m0 is a unique element of Λ+
n−1(q|l0) such that m−i �∈ Λ+

n−1(q|l0) for

all 1 � i < h and m+i �∈ Λ+
n−1(q|l0) for all h < i � n− 1.) By applying the

equation (E+α
h )m−α in case (a) and (E−β

h )l0,m+β in case (b) with noting the

statements (P)l0,m−α and (P)l0,m+β are assumed to be true, we have that

the function (ν0, ν, x) �→ Ψl0(m ; ν0, ν ;x) is a finite C-linear combination
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of those of the form

γ(h)(σ0, σ ; ν0, ν)R(ν0, ν)

Q(ν0)
Γ

(
ν − ν0 + 1 + κ

2

)−1

Γ

(
ν + ν0 + 1 + κ

2

)−1

×Dx

{
xλ(1− x)µ2F1

(−ν0 − ν + 1 + κ

2
,
ν0 − ν + 1 + κ

2
;λ′ ;x

)}
,

where Dx is a differential operator of the form

{c1x(1− x) + c2}
d

dx
+ (a1x+ a2)(1− x)ε, c1, c2, a1, a2 ∈ C, ε = 0, 1,

R(ν0, ν) is a polynomial function and Q(ν0) represent Q(h)(m−α ; ν0) ·
Bσ0,ν0α (m) or Q(h)(m+β ; ν0)A

σ0,ν0
β (m) according to the case (a) or case

(b). Note that P (h)(l0 ; ν) is identically 1 by definition. From Lemma 5.2.1,

the statement (P)l0,m follows since Q(h)(m; ν0) coincides with Q(ν0) up to

a non-zero constant factor. The statements (P)l0,m for all m ∈ Λ+
n−1(q|l0)

are now established.

Let d be a positive integer and assume that the statements (P)l,m
are true for all l ∈ Λ+

n (p) and all m ∈ Λ+
n−1(q|l) with δ(l) < d. Let

l ∈ Λ+
n (p) be any element with δ(l) = d. Since δ(l) > 0, we have l �= l0,

and hence have two possibilities: (a′) there exists an α with 1 � α � h

such that l−α �∈ Λ+
n (p), or (b′) there exists a β with h � β � n − 1 such

that l+(β+1) �∈ Λ+
n (p). We first examine the case (a′). Take an arbitrary

m = (mi)1� i�n−1 ∈ Λ+
n−1(q|l). If lα > mα, then we have m ∈ Λ+

n−1(q|l−α)
and can apply the equation (S+α)l−α,m. In view of Lemma 5.2.1, we can

get the statement (P)l,m from (P)l−α,m, noting that P (h)(l; ν) coincides

with P (h)(l−α ; ν)Aσ,να (l−α) up to a non-zero factor. If lα = mα, then we

see easily that m−α ∈ Λ+
n−1(q|l−α). Hence we can apply the equation

(T+α)l−α,m−α . By Lemma 5.2.1, we can deduce (P)l,m from (P)l−α,m−α

with noting that Q(h)(m−α ; ν0) = Q(h)(m ; ν0) and that P (h)(l−α ; ν)

equals P (h)(l ; ν)Aσ,να (l−α) up to a non-zero constant factor. This settles

the consideration for the case (a′). Next we examine the case (b′). Take

an arbitrary m ∈ Λ+
n−1(q|l). If mβ > lβ+1, then we clearly have m ∈

Λ+
n−1(q|l+(β+1)) and can apply the equation (S−(β+1))l+(β+1),m. Noting that

P (h)(l ; ν) equals P (h)(l+(β+1) ; ν)Bσ,νβ+1(l
+(β+1)) up to a non-zero constant

factor, we have (P)l,m from (P)l+(β+1),m using Lemma 5.2.1. If mβ = lβ+1,

then we can easily have m+β ∈ Λ+
n−1(q|l+(β+1)). Hence we can apply the
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equation (T−(β+1))l+(β+1),m+β . Noting Q(h)(m+β ; ν0) = Q(h)(m ; ν0) and

that P (h)(l ; ν) equals P (h)(l+(β+1) ; ν)Bσ,νβ+1(l
+(β+1)) up to a non-zero con-

stant factor, we obtain the validity of the statement (P)l,m from that of

(P)l+(β+1),m+β by using Lemma 5.2.1. This completes the proof. �

We prove (1) in Theorem 5.1.1. Let ϕ0 ∈ V
σ∨0
n−1, ϕ ∈ V σn , D0 ∈ U(gn−1,C),

D ∈ U(gn,C) and g ∈ Gn. We can write g as g = k−1
0 an−1(r0)

−1an(r)k with

k0 ∈ Kn−1, k ∈ Kn and r0, r > 0 by Lemma 3.2.1. For (ν0, ν) ∈ Xn, we

have

LD0RDRσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g)

= Rσ0,σ(ν0, ν ;π
σ∨0 ,−ν0
n−1 (D0)ϕ0 ⊗ πσ,νn (D)ϕ)(g)

= Rσ0,σ(ν0, ν ;F (ν0, ν))(an−1(r0)
−1an(r)).

with F (ν0, ν) = (π
σ∨0 ,−ν0
n−1 (k0)π

σ∨0 ,−ν0
n−1 (D0)ϕ0)⊗ (πσ,νn (k)πσ,νn (D)ϕ). Since ϕ0

is Kn−1-finite and ϕ is Kn-finite, there exists a finite family of functions

{ψi}i∈I and {Ti(ν0, ν)}i∈I such that ψi is of the form ι̌σ0m (w∨
0 )⊗ ισl (w) with

l ∈ Λ+
n (p), m ∈ Λ+

n−1(q), w∨
0 ∈ W (m)∨ and w ∈ W (l), such that Ti(ν0, ν)

is a polynomial function of ν0, ν and such that

F (ν0, ν) =
∑
i∈I

Ti(ν0, ν) · ψi.

Hence we may assume that F (ν0, ν) is of the form ι̌σ0m (w∨
0 )⊗ ισl (w) without

loss of generality. Furthermore, in view of the formula (3.2.3), in order to

show that the function

(ν0, ν) �→ Rσ0,σ(ν0, ν ; ι̌σ0m (w∨
0 )⊗ ισl (w))(an−1(r0)

−1an(r))

is holomorphically continued to all of C × D
(h)
σ0,σ, it suffices to prove the

corresponding statement for (ν0, ν) �→ Ψl(m ; ν0, ν ;x) for all l ∈ Λ+
n (p)

and all m ∈ Λ+
n−1(q|l). (We note that matrix coefficients of π

σ∨0 ,−ν0
n−1 are

holomorphic with respect to ν0 on all of C.) By lemma 5.2.3, the function

(ν0, ν) �→ Ψl(m ; ν0, ν ;x) defined for (ν0, ν, x) ∈ Xn × (0, 1), ν ∈ D
(h)
σ0,σ

is a finite C-linear combination of those of the form (5.2.3). By Lemma

5.1.1 (1) and Lemma 5.2.2, the function (5.2.3) is holomorphic with respect

to (ν0, ν) ∈ C × D
(h)
σ0,σ. Hence Ψl(m ; ν0, ν ;x) is also holomorphic on

(ν0, ν) ∈ C×D
(h)
σ0,σ.
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The first assertion of (2) is a consequence of the following lemma.

Lemma 5.2.4. Let F : (C ×Dσ0,σ) ×Gn → C be a function satisfying

the following:

(a) For any (ν0, ν) ∈ Xn the function g �→ F (ν0, ν, g) is C∞ on Gn.

(b) For any D ∈ U(gn,C) and any g ∈ Gn the function (ν0, ν) �→
RD,gF (ν0, ν, g) is holomorphic on Xn and is extended holomorphically

to C×Dσ0,σ; the resulting function RD,gF (ν0, ν, g) is locally bounded

on C×Dσ0,σ ×Gn.

Then for any (ν0, ν) ∈ C×Dσ0,σ the function g �→ F (ν0, ν, g) is C∞ on Gn.

Proof. Let U be the set of all (ν0, ν) ∈ C × Dσ0,σ such that the

function F (x0, x, g) is C∞ with respect to g ∈ Gn for all (x0, x) in a neigh-

borhood of (ν0, ν). From the assumption, we have Xn ⊂ U . It suffices to

show that U is open and closed in C×Dσ0,σ; indeed if this is so, U must be

C ×Dσ0,σ itself because C ×Dσ0,σ is connected. It is clear from definition

that U is open. Let (ν0, ν) be a point in C ×Dσ0,σ lying on the closure of

U . Take ε > 0 small enough so that the polydisc centered at (ν0, ν) with

radius ε is in C ×Dσ0,σ. Since (ν0, ν) is in the closure of U , there exists a

point, say (z0, z), in U such that |ν0 − z0| < 4−1ε and |ν − z| < 4−1ε. For

any δ > 0 let ∆δ be the polydisc centered at (z0, z) with radius δ. Then ∆δ
is contained in C×Dσ0,σ for δ < 2−1ε and is in U if δ is small enough. Since

F (ν0, ν, g) is holomorphic on C ×Dσ0,σ by assumption (b), it is expanded

as a Taylor seires at (z0, z):

F (x0, x, g) =
∞∑
n=0

∞∑
m=0

ψn,m(g)

n!m!
(x0 − z0)

n(x− z)m, (x0, x) ∈ ∆δ(5.2.6)

with

ψn,m(g) =
n!m!

(2πi)2

∫
Cδ(z0)

∫
Cδ(z)

F (ζ0, ζ, g)

(ζ0 − z0)n+1(ζ − z)m+1
dζ0dζ.

Here δ is an arbitrary positive number smaller than 2−1ε and Cδ(z) denotes

the path |ζ− z| = δ with the counter-clockwise orientation. If we take the δ
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small enough, then F (ζ0, ζ, g) is smooth with respect to g for all (ζ0, ζ) ∈ ∆δ;

hence ψn,m(g) is C∞ on Gn and

RDψn,m(g) =
n!m!

(2πi)2

∫
Cδ(z0)

∫
Cδ(z)

RD,gF (ζ0, ζ, g)

(ζ0 − z0)n+1(ζ − z)m+1
dζ0dζ.(5.2.7)

By the assumption (b), for a given compact set W of Gn, there exists a

positive C such that |RD,gF (ζ0, ζ, g)| � C for (ζ0, ζ, g) ∈ ∆2−1ε ×W ; hence

we have the estimate

|RDψn,m(g)| � n!m!(2−1ε)n+mC, g ∈W(5.2.8)

The fact that RD,gF (x0, x, g) is holomorphic on C×Dσ0,σ, a fortiori on ∆δ,

with respect to (x0, x), combined with the formula (5.2.7) means that the

power series ∑
n,m

RDψn,m(g)

n!m!
(x0 − z0)

n(x− z)m

is convergent on ∆δ for all δ < 2−1ε. Furthermore, by the estimate (5.2.8),

the convergence is locally uniform with respect to g. Thus F (x0, x, g) is

C∞ with respect to g for all (x0, x) ∈ ∆2−1ε. Since ∆2−1ε is a neighborhood

of (ν0, ν) in C × Dσ0,σ, we indeed have (ν0, ν) ∈ U . Thus U is closed in

C×Dσ0,σ. �

We show the last part of (2). Let ϕ0 and ϕ be as before. It suffices to

prove that for every D0 ∈ gn−1, D ∈ gn and g ∈ Gn the identity

Rσ0,σ(ν0, ν ;π
σ∨0 ,−ν0
n−1 (D0)ϕ0 ⊗ πσ,νn (D)ϕ)(g)(5.2.9)

= (LD0RDRσ0,σ(ν0, ν ;ϕ0 ⊗ ϕ)(g)

holds. If (ν0, ν) ∈ Xn, then (5.2.9) is a consequence of Theorem 4.1.1 (2).

Since both sides of (5.2.9) are holomorphic with respect to (ν0, ν) on C ×
Dσ0,σ as proved above, it is true on all of C × Dσ0,σ by the uniqueness of

the analytic continuation. Finally the formula (5.1.1) follows from (3.2.3),

(3.2.8) and (4.2.7). This completes the proof of Theorem 5.1.1.

6. Multiplicity One Theorem for the Space of Shintani Function-

als

In this section, we have the multiplicity formula for the space I(π0|π) for

some representations π0 and π. Since we already have multiplicity freeness



Construction of Intertwining Operators 199

of the space I(π0|π) in Theorem 3.1.1, we have only to construct a non-

trivial element in the space I(π0|π) to ensure dimCI(π0|π) = 1. Such an

element is provided by the analytic continuation of the (normalized) Poisson

integral obtained in Theorem 5.1.1.

We collect notations used in this section. For given vectors (x1, . . . , xm) ∈
R
m and (y1, . . . , ym+1) ∈ R

m+1,

(x1, . . . , xm) ⊂ (y1, . . . , ym+1)

means that the inequality y1 � x1 � y2 � . . . � xm � ym+1 holds. For

l = (lj)1� j �n ∈ Λ+
n and h ∈ {1, . . . , n}, put l[h] = (l1, . . . , l̂h, . . . , ln).

6.1. Main theorem

Theorem 6.1.1. Let π be an irreducible (gn,C,Kn)-module and π0 an

irreducible (gn−1,C,Kn−1)-module. We assume that there exist an integer

h ∈ {1, . . . , n−1}, a principal series πσ,sn of Gn and a principal series πσ0,s0n−1

of Gn−1 satisfying the following.

(a) HomPn−1∩Pn(σ0, σ) �= {0} and s ∈ Dσ0,σ.

(b) π0 is isomorphic to a quotient of πσ0,s0n−1 and π is isomorphic to a

submodule of πσ,sn .

(c) The Kn−1 × Kn-module (τn−1
µ )∨ � τnλ with λ = λ

(h)
σ and µ = µ

(h)
σ0,σ

occurs in π∨
0 � π.

(d) One of the following three conditions is fulfilled.

(i) c̃
(h)
n (σ ; s)d

(h)
n (σ0, σ ; s0) �= 0.

(ii) ν = s is a simple zero of c̃
(h)
n (σ ; ν); d̃

(h)
n (σ0, σ ; s) = 0;

d
(h)
n (σ0, σ ; s0) �= 0.

(iii) ν = s is a simple zero of c̃
(h)
n (σ ; ν); d̃

(h)
n (σ0, σ ; s) = 0; ν0 = s0

is a simple zero of d
(h)
n (σ0, σ ; s0) and I(πσ0,ν0n−1 |π) = {0} for all

ν0 �= s0 in a neighborhood of s0.

Then dimCI(π0|π) = 1.
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Proof. We first treat the case when one of the conditions (i) and

(ii) of (d) is fulfilled. By (a), we can consider Rσ0,σ(ν0, ν) at (ν0, ν) =

(s0, s) (Theorem 5.1.1). By the formula (5.1.2) and the assumptions (i)

or (ii) of (d), the number Γ(h)(σ0, σ ; s0, s) �= 0, which combined with the

formula (5.1.1) means the composite of Rσ0,σ(s0, s) and ι̌σ0m ⊗ ισl is not zero,

where λ
(h)
σ = [l ; l0] and µ

(h)
σ0σ = [m ;m0]. By (b) we have an inclusion

i : π∨
0 � π ↪→ (πσ0,s0n−1 )∨ � πσ,sn . Since (πσ0,s0n−1 )∨ � πσ,sn has multiplicity free

Kn−1 × Kn-spectrum, (c) means that the map ι̌σ0m ⊗ ισl factors through i.

Consequently we have a non-zero intertwining operator Rσ0,σ(s0, s) ◦ i ∈
I(π0|π) to get the inequality dimCI(π0|π) � 1. Using Theorem 3.1.1, we

obtain dimCI(π0|π) = 1. Next we assume the condition (iii) of (d). For

ϕ0 ∈ V
σ∨0
n−1 and ϕ ∈ V σn , put

R̃(ϕ0 ⊗ ϕ) = ∂0Rσ0,σ(s0, s ;ϕ0 ⊗ ϕ)

with ∂0 denoting the partial derivative with respect to ν0 at ν0 = s0. The

map R̃◦i belongs to ∈ I(π0|π). Indeed, for D0 ∈ U(gn−1,C) and D ∈ U(gn,C)

by differentiating the equation (5.2.9), we have

R̃(π
σ∨0 ,−s0
n−1 (D0)ϕ0 ⊗ πσ,sn (D)ϕ)(g)(6.1.1)

+Rσ0,σ(s0, s ; ∂0π
σ∨0 ,−ν0
n−1 (D0)ϕ0 ⊗ πσ,sn (D)ϕ)(g)

= LD0RDR̃(ϕ0 ⊗ ϕ)(g).

We show that the last condition in (iii) of (d) means the second term in the

left-hand side of (6.1.1) with ϕ0⊗ϕ ∈ Im(i) vanishes. We may assume π and

π∨
0 are submodules of πσ,sn and π

σ∨0 ,−s0
n−1 respectively. Let V and V ∨

0 be the

corresponding subspaces of V σn and V
σ∨0
n−1 respectively. Then Im(i) = V ∨

0 ⊗V .

Take ϕ0 ⊗ ϕ ∈ Im(i) and put ϕ′ = πσ,sn (D)ϕ, ϕ′
0 = ∂0π

σ∨0 ,−ν0
n−1 (D0)ϕ0. Then

we have ϕ′ ∈ V and ϕ′
0 ∈ V

σ∨0
n−1. By the last condition of (d-iii), there

is an ε > 0 such that I(πσ0,ν0n−1 |π) = {0} for all 0 < |ν0 − s0| < ε. Since

Rσ0,σ(ν0, s)|V σ
∨
0
n−1 ⊗ V gives an element of I(πσ0,ν0n−1 |π), it should be zero if

0 < |ν0 − s0| < ε; hence

Rσ0,σ(ν0, s ;ϕ′
0 ⊗ ϕ′) = 0.

Let ν0 → s0. Then this shows that the second term of the left-hand side of

(6.1.1) is zero as long as ϕ0 ⊗ ϕ ∈ Im(i).
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By (6.1.1), combined with the claim just established, we have R̃ ◦ i ∈
I(π0|π). The map R̃ ◦ (ι̌σ0m ⊗ ισl ) is not zero. Indeed, by differentiating

(5.1.1), we see that the first term of the Taylor series of (sh r)−κR̃(ι̌σ0m (w∨
0 )⊗

ισl (w))(an(r)) with respect to x = th2(r) at x = 0 is given by

γ(h)
σ0,σ∂0Γ

(h)(σ0, σ ; s0, s) · 〈pl
m(w), w∨

0 〉.

The first and the second conditions in (iii) of (d) ensure ∂0Γ
(h)(σ0, σ ; s0, s) �=

0.

By the same reasoning as above, we then have R̃ ◦ i ∈ I(π0|π) and

R̃ ◦ i �= 0 to obtain dimCI(π0|π) = 1. �

By Theorem 6.1.1 we can determine the number dimCI(π0|π) explicitly

in several cases.

6.2. The case of principal series

We consider the case when π0 and π are principal series representations.

Theorem 6.2.1. Let σ0 (resp. σ) be an irreducible unitary represen-

tation of Mn−1 (resp. Mn). Let (ν0, ν) ∈ C
2 be such that πσ0,ν0n−1 and πσ,νn

are irreducible. Then we have

dimCI(σ0, ν0|σ, ν) = dimCHomPn−1∩Pn(σ0, σ).

Proof. Let σ = σn(p;p0) and σ0 = σn−1
(q;q0) as in Theorem 5.1.1. Then

the dimension of the space HomPn−1∩Pn(σ0, σ) equals 1 or 0 according to

q ⊂ p or not. By Proposition 3.2.1, it suffices to show dimCI(σ0, ν0|σ, ν) =

1 when q ⊂ p. The irreducibility of πσ0,ν0n−1 and πσ,νn implies

c̃
(h)
n (σ ; ν)d

(h)
n (σ0, σ ; ν0) �= 0 for every h (Lemma 2.2.1). By Theorem 6.1.1

we have dimCI(σ0, ν0|σ, ν) = 1. �

Remark 6.2.1. Actually, even if πσ0,ν0n−1 or πσ,νn is not necessarily irre-

ducible, we have dimCI(σ0, ν0|σ, ν) = 1 only assuming q ⊂ p and

c̃
(h)
n (σ ; ν)d

(h)
n (σ0, σ ; ν0) �= 0.
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6.3. The case involving discrete series and principal series

We consider the case when one of π and π0 is not a principal series

representation but a discrete series representation. We recall the Harish-

Chandra parametrization of the discrete series of Gn. For each integer

h ∈ {0, · · · , n}, let Ξn(h) be the set of n + 1-tuples of real numbers λ =

[(λj)1� j �n ;λn+1] with λj + 2−1n ∈ Z, 1 � j � n+ 1 such that

λ1 > · · · > λh > λn+1 > λh+1 > · · · > λn.

Let Ξn be the union of the sets Ξn(h) for all h ∈ {0, . . . , n}. Then it is known

that to each λ = [(λj)1� j �n ;λn+1] ∈ Ξn(h) there corresponds an irreducible

(gn,C,Kn)-module πnλ (unique up to isomorphism) satisfying the following.

(i) The Casimir element ΩGn of Gn corresponding to the Gn-invariant

form tr(XY ) of gn acts on πnλ by the scalar

πnλ(ΩGn) =

n+1∑
j=1

λ2
j −

n2

4
−
n∑
j=1

(
n− 2j

2

)2

.

(ii) The Kn-type τn[l;l0] with l = (lj)1� j �n such that

li = λi + 2−1(2i− n), i ∈ {1, . . . , h},
lj = λj + 2−1(2j − 2− n), j ∈ {h+ 1, . . . , n},
l0 = λn+1 − 2−1(2h− n)

occurs in πnλ with multiplicity one.

The representation πnλ is the discrete series with Harish-Chandra parameter

λ and Blattner parameter [l ; l0]. (See [12, page 310, Theorem 9.20] and [5,

page 57, Theorem 9.2].) The explicit description of the set L+
n (πnλ) is useful

in the following discussion. Here we recall it.

Lemma 6.3.1. Let πnλ be the discrete series of Gn with Harish Chandra

parameter λ ∈ Ξn(h) and the Blattner parameter [l ; l0]. Then L+
n (πnλ) consists

of all the [x ;x0] ∈ L+
n satisfying x0 = l0 + |l| and l ⊂ (x1, . . . , xh, l0 + 2h−

n, xh+1, . . . , xn).

Proof. This follows from [6, page 436, Theorem 6 (i) and page 440,

(2)]. �
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To apply Theorem 6.1.1 we need to know into which principal series a

given representation πnλ can be embedded.

Lemma 6.3.2. Let π = πnλ be a discrete series representation of Gn with

Harish-Chandra parameter λ = [(λj)1� j �n ;λn+1] ∈ Ξn(h), h ∈ {0, . . . , n}
and the Blattner parameter [l ; l0].

(i) Let 0 < h. Put

p = l[h], p0 = λh + λn+1, s = λh − λn+1

and σ = σn(p;p0). Then π is isomorphic to a submodule of πσ,νn . More-

over the j-th corner Kn-type λ
(j)
σ of πσ,νn belongs to L+

n (π) if and only

if 1 � j < h. For 1 � j < h, the function c̃
(j)
n (σ ; ν) has a simple zero

at ν = s.

(ii) Let h < n. Put

p = l[h+ 1], p0 = λn+1 + λh+1, s = λn+1 − λh+1

and σ = σn(p;p0). Then π is isomorphic to a submodule of πσ,νn . More-

over the j-th corner Kn-type λ
(j)
σ of πσ,νn belongs to L+

n (π) if and only

if h < j � n − 1. For h < j � n − 1, the function c̃
(j)
n (σ ; ν) has a

simple zero at ν = s.

Proof. The first assertions in (1) and (2) follow from [6, page 445,

Proposition 3]. The remaining parts follow from definitions immediately. �

The following auxiliary lemma is logically unnecessary but is helpful in

practice when one checks whether the polynomial function (4.2.8) or (4.2.9)

has a zero at a certain point.

Lemma 6.3.3. Let l = (lj)1� j �n ∈ Λ+
n , m = (mi)1� i�n−1 ∈ Λ+

n−1,

p = (pj)1� j �n−1 ∈ Λ+
n−1, q = (qi)1� i�n−2 ∈ Λ+

n−2 and l0, m0 ∈ Z. Let

j ∈ {1, . . . , n−1}, h ∈ {0, . . . , n−1} and k ∈ {0, . . . , n}. Put l̃0 = l0+2k−n,

m̃0 = m0 + 2h− n+ 1, σ0 = σn−1
(q;q0) and σ = σn(p;p0).
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(i) Let 0 < k and q ⊂ l[k] = (p′i)1� i�n−1. Put σ′ = σn(l[k];l0+lk). Then

d̃
(j)
n (σ0, σ

′ ; lk − l̃0) = 0 if and only if qα � l0 + k − n < p′α with an

α ∈ {1, . . . , j−1} or p′β < lk−k+β � qβ−1 with a β ∈ {j+1, . . . , n−1}.

(ii) Let k < n and q ⊂ l[k + 1] = (p′′i )1� i�n−1. Put σ′′ = σn(l[k+1];lk+1+l0).

Then d̃
(j)
n (σ0, σ

′′ ; l̃0 − lk+1) = 0 if and only if qα � lk+1 − k + α < p′α
with an α ∈ {1, . . . , j − 1} or p′β < l0 + k − n + β � qβ−1 with a

β ∈ {j + 1, . . . , n− 1}.

(iii) Let 0 < h and m[h] = (q′i)1� i�n−2 ⊂ p. Put σ′
0 = σn−1

(m[h];m0+mh).

Then d
(j)
n (σ′

0, σ ; m̃0−mh) = 0 if and only if q′α < m0−(n−1)+h+α �
pα with an α ∈ {1, . . . , j − 1} or pβ � mh − h − 1 − β < q′β−1 with a

β ∈ {j + 1, . . . , n− 1}.

(iv) Let h < n − 1 and m[h + 1] = (q′′i )1� i�n−1 ⊂ p. Put σ′′
0 =

σn−1
(m[h+1];mh+1+m0). Then d

(j)
n (σ′′

0 , σ ;mh+1 − m̃0) = 0 if and only

if q′′α < mh+1 − h + α � pα with an α ∈ {1, . . . , j − 1} or pβ �
m0 + h− β − n < q′′β−1 with a β ∈ {j + 1, . . . , n− 1}.

Proof. This follows from (4.2.8) and (4.2.9) immediately. �

We first consider the case when π is a discrete series.

Theorem 6.3.1. Let π = πnλ with λ ∈ Ξn(h) be a discrete series repre-

sentation of Gn and π0 = πσ0,ν0n−1 an irreducible principal series of Gn−1 with

σ0 = σn−1
(q;q0), q = (qj)1� j �n−2 ∈ Λ+

n−2. Let [l ; l0] be the Blattner parameter

of πnλ .

(1) Assume h = 0 or h = n. Then we have I(π0|π) = {0}.

(2) Assume 0 < h < n. Then we have dimCI(π0|π) = 1 if and only if the

condition

(q1, . . . , qh−1, l0 + 2h− n, qh, . . . , qn−2) ⊂ l(6.3.1)

holds, otherwise I(π0|π) = {0}.
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Proof. Let η be the (hn,C,Kn ∩Hn)-module such that η|Zn = πnλ |Zn
with Hn = ZnGn−1. Then by Theorem 7.1.1, we have dimCI(π0|π) =

dimCIη,π. We have m+
1 (η) = +∞, m+

j (η) = qj−1 for j ∈ {2, . . . , n− 1} and

m−
n−1(η) = −∞, m−

i (η) = qi for i ∈ {1, . . . , n−2} in the notation of [10, 8.1].

When h = 0, the condition (c) of [10, Theorem 8.1.1] is not satisfied because

m+
1 (η) = +∞. Hence dimCIη,π = 0 by [10, Theorem 8.1.1]. In the same

way we have dimCIη,π = 0 when h = n. We consider the case 0 < h < n.

We show that dimCI(π0|π) = 1 assuming the condition (6.3.1). We take

σ = σn(p;p0) as in (i) of Lemma 6.3.2 if 1 < h and as in (ii) of Lemma 6.3.2

if h < n− 1. In either cases we have q ⊂ p. By Lemma 6.3.2, π becomes a

(gn,C,Kn)-submodule of the principal series πσ,sn . When 1 < h, it turns out

that λ
(h−1)
σ ∈ L+

n (π), d̃
(h−1)
n (σ0, σ ; s) = 0, d̃

(h)
n (σ0, σ ; s) �= 0 and that the

function c̃
(h−1)
n (σ ; ν) has a simple zero at ν = s. When h < n− 1, it turns

out that λ
(h+1)
σ ∈ L+

n (π), d̃
(h+1)
n (σ0, σ ; s) = 0, d̃

(h)
n (σ0, σ ; s) �= 0 and that

the function c̃
(h+1)
n (σ ; ν) has a simple zero at ν = s. Since π0 = πσ0,ν0n−1 is

irreducible, we have d
(j)
n (σ0, σ ; ν0) �= 0 for all j ∈ {1, . . . , n−1}. Thus all the

assumptions in Theorem 6.1.1 are fulfilled. Hence we have dimCI(π0|π) = 1.

Conversely if I(π0|π) �= {0} or equivalently dimCIη,π = 1 by Theorem 7.1.1,

then [10, Theorem 8.1.1] (with l as above) yields the inequality (6.3.1). �

Next we consider the case when π0 is a discrete series.

Theorem 6.3.2. Let π0 = πn−1
µ be a discrete series representation of

Gn−1 with Harish-Chandra parameter µ ∈ Ξn−1
(h) and π = πσ,νn be an irre-

ducible principal series representation of Gn. Let [m ;m0] be the Blattner

parameter of π0 and σ = σn(p;p0) with p ∈ Λ+
n−1. Put h+ = sup(1, h). Then

dimCI(π0|π) = 1 if and only if m[h+] ⊂ p, otherwise I(π0|π) = {0}.

Proof. Assume the condition m[h+] ⊂ p holds. We consider the case

0 < h < n − 1. Let σ0 = σn−1
(m[h];µn+µh) and s0 = µn − µh. Then from

m[h+] ⊂ p we have q ⊂ p. Since π is irreducible, the number c̃
(j)
n (σ ; ν)

is not zero for all j. Hence the condition (a) of Theorem 6.1.1 is satisfied.

By Lemma 6.3.2 (1), π∨
0 is embedded into (πσ0,s0n−1 )∨. Using Lemma 6.3.1

we can check µ
(h)
σ0,σ ∈ L+

n−1(π0) to know (c) of Theorem 6.1.1 is fulfilled.

With the aid of Lemma 6.3.3 we see that the condition m[h+] ⊂ p implies

d
(h)
n (σ0, σ ; s0) �= 0. Since c̃

(h)
n (σ ; ν) �= 0 as noticed above, the condition
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(d-i) of Theorem 6.1.1 is attained. Now we apply Theorem 6.1.1 to obtain

dimCI(π0|π) = 1. Conversely, if we assume dimCI(π0|π) �= 0, then we have

Iη,π �= {0} by Theorem 7.1.1. Hence by applying [10, Theorem 8.1.1] (with

λ = λ
(n−1)
σ ), we obtain the condition m[h+] ⊂ p. The cases h = 0, n − 1

can be treated similarly. �

6.4. The case of discrete series representation

In this subsection we treat the case when both of π0 and π are large

discrete series. Let π0 = πn−1
µ with µ = [(µj)1� j �n−1 ;µn] ∈ Ξn−1

(h) ,

h ∈ {0, . . . , n − 1} be a discrete series representation of Gn−1 and π = πnλ
with λ = [(λi)1� i�n ;λn+1] ∈ Ξn(k), k ∈ {0, · · · , n} be a discrete series

representation of Gn. Let [m ;m0] ∈ L+
n−1(π0) and [l ; l0] ∈ L+

n (π) be the

Blattner parameters of π0 and π respectively. Put m = (mj)1� j �n−1 and

l = (li)1� i�n.

Theorem 6.4.1. Let π0 and π be as above. We assume 0 < h < n− 1

and 0 < k < n. Then dimCI(π0|π) = 1 if and only if one of the following

conditions is satisfied, otherwise it is zero.

(i) k < h and

(µ1, . . . , µk−1, λn+1, µk, . . . , µn−1) ⊂ (λ1, . . . , λh+1, µn, λh+2, . . . , λn).

(ii) k = h, and

(µ1, . . . , µh−1, λn+1, µh, . . . , µn−1) ⊂ (λ1, . . . , λh+1, µn, λh+2, . . . , λn)

(a)

or

(µ1, . . . , µh, λn+1, µh+1, . . . , µn−1) ⊂ (λ1, . . . , λh, µn, λh+1, . . . , λn).

(b)

(iii) k = h+ 1, and

(µ1, . . . , µh, λn+1, µh+1, . . . , µn−1) ⊂ (λ1, . . . , λh+1, µn, λh+2, . . . , λn)

(a)

or

(µ1, . . . , µh+1, λn+1, µh+2, . . . , µn−1) ⊂ (λ1, . . . , λh, µn, λh+1, . . . , λn).

(b)
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(iv) h+ 1 < k and

(µ1, . . . , µk, λn+1, µk+1, . . . , µn−1) ⊂ (λ1, . . . , λh, µn, λh+1, . . . , λn).

Proof. We show that I(π0|π) �= {0} assuming one of the conditions

(i) to (iv). We take σ0, σ, s0 and s in each cases:

(i) σ0 = σn−1
(m[h+1];µh+1+µn), s0 = µh+1−µn; σ = σn(l[k+1];λn+1+λk+1), s =

λn+1 − λk+1.

(ii) σ0 = σn−1
(m[h+1];µh+1+µn), s0 = µh+1−µn; σ = σn(l[h+1];λn+1+λh+1), s =

λn+1 − λh+1.

(iii) σ0 = σn−1
(m[h];µn+µh), s0 = µn−µh; σ = σn(l[h+1];λn+1+λh+1), s = λn+1−

λh+1.

(iv) σ0 = σn−1
(m[h];µn+µh), s0 = µn−µh; σ = σn(l[k];λk+λn+1), s = λk−λn+1.

In each cases it turns out that the first condition in (a) of Theorem 6.1.1 is

satisfied. With the aid of Lemma 6.3.1 we can confirm that the Kn−1×Kn-
module (τn−1

µ )∨ � τnλ occurs in (π0)
∨ � π with µ = µ

(h+1)
σ0,σ , λ = λ

(h+1)
σ in

case (i) or (ii) and with µ = µ
(h)
σ0,σ, λ = λ

(h)
σ in case (iii) or (iv); hence

the condition (c) of Theorem 6.1.1 is fulfilled. We consider the case (i)

or (ii-a). By using Lemma 6.3.3 we can confirm d
(h+1)
n (σ0, σ ; s0) �= 0,

d̃
(h+1)
n (σ0, σ ; s) = 0. This combined with Lemma 6.3.2 (ii) shows the con-

dition (d-ii) of Theorem 6.1.1 is satisfied. Applying Theorem 6.1.1 we have

dimCI(π0|π) = 1.

In the case (iv) or (iii-a), we also have dimCI(π0|π) = 1 by the same

reasoning as in the case (i) or (ii-a) but with h + 1 replaced by h in the

discussion.

We consider the case (ii-b). We can see that ν0 = s0 is a simple zero

of d(h+1)(σ0, σ ; ν) and d̃
(h+1)
n (σ0, σ ; s) = 0 with the aid of Lemma 6.3.3.

This combined with Lemma 6.3.2 (ii) shows that the first three conditions in

(d-iii) of Theorem 6.1.1 is satisfied. The last condition in (d-iii) of Theorem

6.1.1 follows from Theorem 6.3.1 (2). Indeed, the condition (6.3.1) is not

attained by our choice of q. Since πσ0,ν0n−1 is irreducible for all ν0 �= s0 in a

neighborhood of s0 we have I(πσ0,ν0n−1 |π) = {0} for such a ν0. Now we apply

Theorem 6.1.1 to obtain dimCI(π0|π) = 1.
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In the case (iii-b), by the same reasoning as in the case (ii-b) but with

h+ 1 replaced by h in the discussion, we also have dimCI(π0|π) = 1.

To complete the proof, we have to show that dimCI(π0|π) �= 0 implies

one of the conditions (i) to (iv). Since dimCI(π0|π) �= 0 means dimCIη,π �=
0 by Theorem 7.1.1, we apply [10, Theorem 8.3.1] to get the conditions (i)

to (vi). �

7. Frobenius Reciprocity

The aim of this section is to prove Theorem 7.1.1, which is used in the

proof of Theorem 3.1.1 and Lemma 3.2.1.

7.1. Formulation of the theorem

Let (π0, V0) be an admissible (gn−1,C,Kn−1)-module and (π, V ) an ad-

missible (gn,C,Kn)-module. We assume that both of them have central

characters with cn−1(π0) = c0 and cn(π) = c ([10, 2.3]). Put Hn =

ZnGn−1. Given an admissible (gn−1,C,Kn−1)-module π0 we can extend π0

to a (hn,C,Kn∩Hn)-module uniquely so that the extended representation η

satisfies that η|Zn and π|Zn correspond to the same character of Zn. Then

we can consider the intertwining space Iη,π = Hom(gn,C,Kn)(π, IndGn
Hn

(η)) as

in [10, 2.4].

Theorem 7.1.1. Let π0, η and π be as above. Then there exists a

unique linear bijection P �→ ΦP from I(π0|π) to Iη,π such that

(7.1.1) P(v∨0 ⊗ v)(g) = 〈ΦP(v)(g), v∨0 〉, v∨0 ∈ V ∨
0 , v ∈ V, g ∈ Gn.

Before we begin the proof of Theorem 7.1.1, it may be useful to give

a main point of the discussion, because the argument is technically a little

complicated. To compare two spaces I(π0|π) and Iη,π, we first introduce

an auxiliary (gn,C,Kn)-module ρη, whose nature is best understood if we

write it as Hom(hn,C,Kn∩Hn)(V
∨
0 , C∞(Gn)). It is natural to expect that ρη is

‘the same’ as the induced module IndGn
Hn

(η). Actually to make precise this

statement and to establish it (Theorem 7.1.2) is the main point of the whole

argument. Indeed, if ρη ∼= IndGn
Hn

(η) is true, then the identification

I(π0|π) ∼= Hom(gn,C,Kn)(π,Hom(hn,C,Kn∩Hn)(V
∨
0 , C∞(Gn))) ∼= Iη,π
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is valid and Theorem 7.1.1 follows.

To formulate precisely the statement stated above we need some no-

tations. Let F = V∞
0 and F∨ = (V ∨

0 )∞ be the smooth Fréchet Hn-

modules that are the canonical globalizations of η and η∨ respectively, and

〈 , 〉 : F × F∨ → C the canonical Hn-invariant pairing ([1]). The actions of

Hn on F and on F∨ are also denoted by η and η∨ respectively. Let Hη be

the space of all maps ψ : V ∨
0 ×Gn → C such that

(a) ψ(v∨, g) is linear with respect to v∨ ∈ V ∨
0 for a fixed g, and is C∞

with respect to g ∈ Gn for a fixed v∨;

(b) for k0 ∈ Kn ∩Hn, X0 ∈ hn, v
∨ ∈ V ∨

0 and g ∈ Gn, we have

ψ(η∨(X0)v
∨, g) = LX0,gψ(v∨, g), ψ(η∨(k0)v

∨, g) = ψ(v∨, k−1
0 g);

(c) for v∨ ∈ V ∨
0 the function g �→ ψ(v∨, g) is right Kn-finite.

By defining the operators ρη(X) and ρη(k) with X ∈ gn and k ∈ Kn as

(ρη(X)ψ)(v∨, g) = RX,gψ(v∨, g), (ρη(k)ψ)(v∨, g) = ψ(v∨, gk)

for (v∨, g) ∈ V ∨
0 × Gn, we have a (gn,C,Kn)-module (ρη,Hη). Let

C∞
η (Hn\Gn)0 be the space of right Kn-finite functions F : Gn → F such

that F (hg) = η(h)F (g) for all (h, g) ∈ Hn × Gn. By the right translation

we have the induced representation IndGn
Hn

(η) on that space ([10, 2.4]).

Theorem 7.1.2. There exists a unique linear map F �→ ψF from

C∞
η (Hn\Gn)0 to Hη such that

ψF (v∨, g) = 〈v∨, F (g)〉, v∨ ∈ V ∨
0 , g ∈ Gn,(7.1.2)

that gives a (gn,C,Kn)-isomorphism IndGn
Hn

(η) ∼= ρη.

Now we give the proof of Theorem 7.1.1 using Theorem 7.1.2 whose proof

is given in the next subsection. Let P ∈ I(π0|π). Given a vector v ∈ V , we

have an element ψv ∈ Hη such that

ψv(v
∨, g) = P(v∨ ⊗ v)(g), (v∨, g) ∈ V ∨

0 ×Gn.
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By Theorem 7.1.2, we have a function ΦP(v) ∈ C∞
η (Hn\Gn)0 such that

ψv(v
∨, g) = 〈v∨,ΦP(v)(g)〉, v∨ ∈ V ∨

0 , g ∈ Gn.

By a routine argument, we can prove that the map ΦP : V → C∞
η (Hn\Gn)0

so obtained is a (gn,C,Kn)-homomorphism satisfying the formula (7.1.1).

Conversely given Φ ∈ Iη,π, the formula (7.1.1) with ΦP replaced by Φ

defines the map P : V ∨
0 ⊗ V → C∞(Gn), which turns out to be in I(π0|π).

The map Iη,π → I(π0|π) so defined provides the inverse map of P �→ ΦP .

This completes the proof of Theorem 7.1.1.

7.2. Proof of Theorem 7.1.2

Let pn (resp. qn) be the orthogonal complement of kn (resp. hn) in gn

with respect to the Killing form of gn.

For λ ∈ L+
n , let C∞

η,τλ
(pn ∩ qn) be the space of all C∞-functions ϕ :

pn ∩ qn → Hom(Wλ,F) such that

(7.2.1) ϕ(Ad(k0)X) = η(k0) ◦ ϕ(X) ◦ τλ(k−1
0 ), k0 ∈ Kn ∩Hn.

The space C∞
η,τλ

(Hn\Gn/Kn) = HomKn(Wλ, C
∞
η (Hn\Gn)) consists of all

C∞-functions F : Gn → Hom(Wλ,F) such that F (hgk) = η(h)◦F (g)◦τλ(k)
for (h, g, k) ∈ Hn ×Gn ×Kn.

Lemma 7.2.1. The map

C∞
η,τλ

(Hn\Gn/Kn)→ C∞
η,τλ

(pn ∩ qn)

which sends a fuction F ∈ C∞
η,τλ

(Hn\Gn/Kn) to the function ϕ = (F ◦
exp)|(pn ∩ qn) is a linear bijection.

Proof. It is known that the map (Y,X, k) �→ exp(Y ) exp(X)k is a

diffeomorphism from (hn ∩ pn) × (pn ∩ qn) × Kn onto Gn ([3, page 106,

Proposition 2.2]). Hence, given ϕ ∈ C∞
η,τλ

(pn ∩ qn), if we put

Fϕ(exp(Y ) exp(X)k) = η(exp(Y )) ◦ ϕ(X) ◦ τλ(k),
(Y,X, k) ∈ (hn ∩ pn)× (pn ∩ qn)×Kn,

then we have a C∞-function Fϕ : Gn → Hom(Wλ,F). Let g ∈ Gn, k ∈ Kn,

h ∈ Hn. By the decomposition Gn = exp(hn∩pn) exp(pn∩qn)Kn mentioned
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above and the Cartan decomposition Hn = exp(hn ∩ pn)(Kn ∩Hn), we can

write g and h as g = exp(Y ) exp(X)k1 and h = exp(Y0)k0 with Y, Y0 ∈ hn∩
pn, X ∈ pn∩qn, k0 ∈ Kn∩Hn and k1 ∈ Kn. Using the Cartan decomposition

for Hn again, we have exp(Y0) exp(Ad(k0)Y ) = exp(Y ′
0)k

′
0 with k′0 ∈ Kn∩Hn

and Y ′
0 ∈ hn∩pn. Then since hgk = exp(Y ′

0) exp(Ad(k′0k0)X)k′0k0k1k, using

(7.2.1), we have

Fϕ(hgk) = η(exp(Y ′
0)) ◦ ϕ(Ad(k′0k0)X) ◦ τλ(k′0k0k1k)

= η(exp(Y0) exp(Ad(k0)Y )k′0
−1) ◦ η(k′0) ◦ ϕ(Ad(k0)X)

◦ τλ(k′0)−1 ◦ τλ(k′0k0k1k)

= η(exp(Y0) exp(Ad(k0)Y )) ◦ η(k0) ◦ ϕ(X) ◦ τλ(k−1
0 ) ◦ τλ(k0k1k)

= η(exp(Y0)k0 exp(Y )) ◦ ϕ(X) ◦ τλ(k1k)

= η(h) ◦ η(exp(Y )) ◦ ϕ(X) ◦ τλ(k1) ◦ τλ(k)
= η(h) ◦ Fϕ(g) ◦ τλ(k).

Thus Fϕ ∈ C∞
η,τλ

(Hn\Gn/Kn). It is easy to check that the map ϕ �→ Fϕ
just constructed gives the inverse map of F �→ (F ◦ exp)|(pn ∩ qn). �

Let λ ∈ L+
n . The space Hη[λ] = HomKn(τλ, ρ

η|Kn) is identified with the

totality of maps f : V ∨
0 ×Gn ×Wλ → C such that

(i) f(v∨, g, w), as a function of (v∨, g), satisfies the conditions (a), (b)

and (c) in 7.1, and it is linear with respect to w ∈Wλ;

(ii) f(v∨, g, τλ(k)w) = f(v∨, gk, w), v∨ ∈ V ∨
0 , g ∈ Gn, w ∈ Wλ, k ∈

Kn.

Lemma 7.2.2. Let f ∈ Hη[λ].

(1) For any (X,w) ∈ (pn ∩ qn)×Wλ, the linear form

v∨ �→ f(v∨, exp(X), w), v∨ ∈ V ∨
0

on V ∨
0 is Kn ∩Hn-finite.

(2) For (X,w) ∈ (pn ∩ qn) × Wλ, there exists a unique Kn ∩ Hn-finite

vector vf (X ;w) ∈ Fη such that

(7.2.2) 〈v∨, vf (X ;w)〉 = f(v∨, exp(X), w), v∨ ∈ V ∨
0 .
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For a fixed X ∈ pn ∩ qn, the vector vf (X ;w) depends on w ∈ Wλ
linearly.

Proof. (1) Let x = exp(X) with X ∈ pn ∩ qn. For w ∈ Wλ and

k0 ∈ Kn ∩Hn, let l(k0 ;w) be the linear form on V ∨
0 defined by

〈l(k0 ;w), v∨〉 = f(η∨(k0)v
∨, x, w), v∨ ∈ V ∨

0 .

We show that for a fixed w ∈ Wλ, the C-span of the linear forms l(k0 ;w)

with k0 ∈ Kn ∩ Hn is of finite dimension. Take a k0 ∈ Kn ∩ Hn; we can

write it of the form k0 = diag(u, t0, t) with u ∈ U(n− 1), t0, t ∈ U(1). Put

m = diag(t−1u, 1, 1) and z0 = diag(tIn−1, t0, t); thenm ∈Mn and k0 = mz0.

Since z0 is in the center of Hn, we have η∨(z0)v
∨ = tc0−c0 t−c0v∨. Hence using

the property (i) and (ii) of f above and noting that m is commutative with

x, we have

〈l(k0 ;w), v∨〉 = f(η∨(m)η∨(z0)v
∨, x, w)

= tc0−c0 t−c0f(η∨(m)v∨, x, w)

= tc0−c0 t−c0f(v∨,m−1x,w)

= tc0−c0 t−c0f(v∨, xm−1, w)

= tc0−c0 t−c0f(v∨, x, τλ(m
−1)w)

= tc0−c0 t−c0〈l(In+1 ; τλ(m
−1)w), v∨〉

for v∨ ∈ V ∨
0 . From this computation, we have l(k0 ;w) = tc0−c0 t−c0 · l(In+1 :

τλ(m
−1)w). Hence the C-span of linear forms l(k0 ;w) for k0 ∈ Kn ∩Hn is

contained in that of linear forms l(In+1 ; τλ(m)w) for m ∈Mn. Hence

dim〈l(k0 ;w)| k0 ∈ Kn ∩Hn〉C � dim〈l(In+1 ; τλ(m)w)| m ∈Mn〉C
� dimC(Wλ).

Since Wλ is finite dimensional, this completes the proof.

(2) Let V ∨
0

∨ be the space of Kn ∩ Hn-finite linear forms on V ∨
0 . Then

as a consequence of the admissibility of η, the natural map V0 → V ∨
0

∨ is

bijective. From this fact, combined with (1), the existance of vf (X ;w)

follows. �

By Lemma 7.2.2 (2), we have the map ϕf from pn∩qn to Hom(Wλ,F) such

that

(7.2.3) (ϕf (X))(w) = vf (X ;w), X ∈ pn ∩ qn, w ∈Wλ.
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Lemma 7.2.3. Let f ∈ Hη[λ]. Then the function ϕf : pn ∩ qn →
Hom(Wλ,F) is C∞. Furthermore, it belongs to the space C∞

η,τλ
(pn ∩ qn).

Proof. We use the notations in the proof of Lemma 7.2.2. Let w ∈
Wλ. Since vf (X ;w) corresponds to l(In+1 ;w) by the natural (hn,C,Kn ∩
Hn)-isomorphism V0 → V ∨

0
∨, it is implicitly proved in the proof of the

previous proposition that the smallest Kn ∩Hn-submodule of F contaning

the vector vf (X ;w) is contained in the sum of images of h ∈
HomMn(〈τλ(Mn)w〉C,F). From this, combined with the fact that η is

Mn-admissible, we have that the function X �→ (ϕf (X))(w) takes its val-

ues in a finite dimensional subspace. Since X �→ 〈v∨, (ϕf (X))(w)〉 =

f(v∨, exp(X), w) is C∞ for any v∨ ∈ V ∨
0 , the map ϕf (X)(w) is C∞ on

pn∩qn also. In order to show that ϕf belongs to C∞
η,τλ

(pn∩qn) we have only

to check that it satisfies the condition (7.2.1). Let X ∈ pn∩ qn, x = exp(X)

and k0 ∈ Kn ∩Hn. By using the property (i) of f , we have

f(v∨, k0xk
−1
0 , w) = f(η∨(k−1

0 )v∨, x, τλ(k
−1
0 )w), v∨ ∈ V ∨

0 .

By (7.2.2), this can be written as follows.

〈v∨, vf (Ad(k0)X ;w)〉 = 〈η∨(k−1
0 )v∨, vf (X ; τλ(k

−1
0 )w)〉

= 〈v∨, η(k0) · vf (X ; τλ(k
−1
0 )w)〉.

Thus the equation (7.2.1) is proved. �

Lemma 7.2.4. Let λ ∈ L+
n . Then there exists a linear map f �→ Ff

from Hη[λ] to C∞
η,τλ

(Hn\Gn/Kn) such that

〈v∨, (Ff (exp(X)))(w)〉 = f(v∨, exp(X), w),(7.2.3)

v∨ ∈ V ∨
0 , X ∈ pn ∩ qn, w ∈Wλ.

Proof. Let f ∈ Hη[λ]. By Lemma 7.2.1 and Lemma 7.2.3, the exis-

tance of Ff follows. The uniqueness of Ff follows from the fact that V0 is

dense in F . �
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Now we begin the proof of Theorem 7.1.2. Since Ψ : F �→ ψF is a Kn-

homomorphism, it is enough to prove that for any λ ∈ L+
n the induced map

Ψλ : C∞
η,τλ

(Hn\Gn/Kn) → Hη[λ] is bijective. We shall show that the map

f �→ Ff in Lemma 7.2.4 gives the inverse map of Ψλ.

For any F ∈ C∞
η,τλ

(Hn\Gn/Kn), put f = Ψλ(F ). Then from (7.1.2), we

have

f(v∨, exp(X), w) = 〈v∨, (F (exp(X)))(w)〉, v∨ ∈ V ∨
0 , a ∈ An, w ∈Wλ.

Hence we have Ff = F by (7.2.3). For any f ∈ Hη[λ], from (7.1.2), we have

Ψλ(Ff )(v
∨, exp(X), w) = 〈v∨, (Ff (exp(X)))(w)〉,

v∨ ∈ V ∨
0 , a ∈ An, w ∈Wλ.

Hence by (7.2.3), we obtain Ψλ(Ff ) = f . This completes the proof. �
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