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Crystalline Fundamental Groups II — Log
Convergent Cohomology and Rigid Cohomology

By Atsushi SHIHO

Abstract. In this paper, we investigate the log convergent coho-
mology in detail. In particular, we prove the log convergent Poincaré
lemma and the comparison theorem between log convergent cohomology
and rigid cohomology in the case that the coefficient is an F'®-isocrystal.
We also give applications to finiteness of rigid cohomology with coeffi-
cient, Berthelot-Ogus theorem for crystalline fundamental groups and
independence of compactification for crystalline fundamental groups.
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Introduction

This paper is the continuation of the previous paper [Shi]. In the previ-
ous paper, we gave a definition of crystalline fundamental groups for certain
fine log schemes over a perfect field of positive characteristic and proved
some fundamental properties of them.

Let us briefly recall what we have done in the previous paper. First,
let K be a field and let f : (X,M) — (Spec K, N) be a morphism
of fine log schemes such that the 0-th log de Rham cohomology
HY%: (X, M)/(Spec K, N)) is equal to K and let « be a K-valued point of
Xipivi={z € X|(f*N)z —~ M3z}. Then we defined the de Rham funda-
mental group 7R ((X, M)/(Spec K, N), z) of (X, M) over (Spec K, N) with
base point x as the Tannaka dual of the category N C'((X, M)/(Spec K, N))
of nilpotent integrable log connections on (X, M) over (Spec K, N). It is a
pro-unipotent algebraic group over K. (For precise definition, see Section
3.1 in [Shi].) Second, let k be a perfect field of characteristic p > 0, let W
be the Witt ring of k£ and let us assume given the diagram

(X, M) L5 (Speck, N) <5 (Spt W, N),

where f is a morphism of fine log schemes of finite type, IV is a fine log
structure on Spf W and ¢ is the canonical exact closed immersion. Assume
moreover that the 0-th log crystalline cohomology H°((X/ W)g%,s, Ox/w)
is equal to W. Let x be a k-valued point of Xy,. Then we defined
the crystalline fundamental group =" ((X, M)/(Spf W, N),z) of (X, M)
over (Spf W, N) with base point x as the Tannaka dual of the category
Nleys((X, M)/ (Spt W, N)) of nilpotent isocrystals on the log crystalline
site ((X,M)/(Spf W, N))crys. It is a pro-unipotent algebraic group over
Ky := Q ®z W. (For precise definition, see Section 4.1 in [Shi].) The
abelianization of it is isomorphic to the dual of the first log crystalline co-
homology (Hurewicz isomorphism), and we have the action of Frobenius on
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it which is isomorphic when f is log smooth integral and of Cartier type. In
the case that N is trivial, X is proper smooth over k and M is the log struc-
ture associated to a normal crossing divisor D on X, the crystalline funda-
mental group 77" ((X, M)/Spf W, z) should be regarded as the crystalline
realization of the (conjectual) motivic fundamental group of U := X — D.
(Note that it is not good to consider the crystalline fundamental group of
U, for the crystalline cohomology of U is not finitely generated in general.)
So it is natural to ask whether 7{"”"((X, M)/Spf W, z) depends only on U
and x and is independent of the choice of the compactification (X, M) of U
as above. We asked it in Problem 4.2.1 of [Shi] and we gave the affirmative
answer in the case dim X < 2, by using resolution of singularities due to
Abhyankar [A] and the structure theorem of a proper birational morphism
between surfaces due to Shafarevich ([Sha]).

Thirdly, we proved the comparison theorem between de Rham fun-
damental groups and crystalline fundamental groups (which we call the
Berthelot-Ogus theorem for fundamental groups), whose statement is as
follows: Let k be a perfect field of characterictic p > 0, W the Witt ring
of £ and V a totally ramified finite extension of W. Denote the fraction
fields of W,V by Ky, K, respectively. Assume we are given the following
commutative diagram of fine log schemes

! fl 1
(Speck,N) < (SpecV,N) <« (SpecK,N)
N\ l
(Spec W, N),

where the two squares are Cartesian, f is proper log smooth integral and
X, is reduced. Assume moreover that H3g ((X, M)/(Spf V, N)) =V holds,
and that we are given a V-valued point = of X.¢;iy. Denote the special fiber
(resp. generic fiber) of x by zj (resp. xg). Then there exists a canonical
isomorphism of pro-algebraic groups

TS (Xp, M)/ (SpEW, N), ) x o K = 78R ((X g, M) /(Spec K, N), 2x).

To prove this theorem, we introduced, in Section 5.1 in [Shi], the notion of
log convergent site and the isocrystals on it. Then we defined the convergent
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fundamental groups as follows. Let k,V, K be as above and let us assume
given the diagram

(Y, My) -% (Speck, N) < (Spf V, N),

where ¢ is a morphism of fine log schemes of finite type, N is a fine log
structure on Spf V' and ¢ is the canonical exact closed immersion. Assume
moreover that the O-th log convergent cohomology H((Y/ V)conv,’Cy/v)
is equal to K. Let x be a k-valued point of Yjtry. Then we defined
the convergent fundamental group 7{°™((Y, My )/(Spf V,N), x) of (Y, My)
over (SpfV,N) with base point x as the Tannaka dual of the category
Neone (Y, My)/(Spf V, N)) of nilpotent isocrystals on the log convergent
site (Y, My )/(Spf V, N))cony- Then the Berthelot-Ogus theorem is the con-
sequence of the following three isomorphisms

(0.0.1) T (( Xy, M)/ (Spf W, N), x1) x g, K
= 1" (X, M) /(Spf V, N), zp),
(0.0.2) " ((Xk, M)/(SpEV, N), )
=7 ((XK, M)/(Spec K, N), k),
(0.0.3) T (X, M)/ (SpE W, N), )

~

Crys((ka )/(ShW) N)axk)v

which were proved in Chapter 5 of [Shil.

In this paper, we investigate the log convergent cohomology (the coho-
mology on log convergent site) of isocrystals in detail. Let k,V, K be as
above and let us assume given the diagram

(X, M) -5 (Speck, N) <5 (SptV, N),

where f is a morphism of fine log schemes of finite type, IV is a fine log
structure on SpfV and ¢ is the canonical exact closed immersion. First,
for a locally free isocrystal £ on log convergent site ((X, M)/(Spf V, N))conv,
we introduce the analytic cohomology (in rigid analytic sense)
Hi ((X,M)/(SpfV,N),E) as the cohomology of log de Rham complex
associated to £ on ‘tubular neighborhood’ of (X, M) (it is a rigid
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analytic space). Then we prove that the log convergent cohomology
HY(((X,M)/(Spf V, N))conv, E) is isomorphic to the analytic cohomology.
This theorem says that the log convergent cohomology can be calculated
by certain de Rham complex. This type of theorem is sometimes called
Poincaré lemma. So we call this theorem log convergent Poincaré lemma.
This is a log version of convergent Poincaré lemma proved by Ogus ([Og2]).
Second, let us consider the case where N is trivial, X is proper smooth and
M 1is the log structure associated to a simple normal crossing divisor D on
X. Put U := X — D and denote the open immersion U — X by j. Then we
define the restriction jT€ of £ to an overconvergent isocrystal (see [Be3] or
Section 1.4 in this paper for the definition of an overconvergent isocrystal
on U) and we construct a canonical homomorphism

(004) H;,n(<X7 M)/Spr,S) - lelg(U/Kh]Tg)

Roughly speaking, both sides are cohomologies of certain de Rham com-
plexes. So we define this homomorphism by constructing a homomorphism
between these de Rham complexes. Then we prove that the homomorphism
(0.0.4) is an isomorphism if £ is trivial or an F?-isocrystal (for definition,
see Definition 2.4.2). Combining with log convergent Poincaré lemma, we
obtain the comparison

(0.0.5) H(((X, M) /Spt V)eony, £) = Hi, (U/K, j1€)

between log convergent cohomology and rigid cohomology. This isomor-
phism is quite natural from the motivic point of view, because both should
be the p-adic realization of the motivic cohomology groups (with certain
‘motivic coefficients’).

The isomorphism (0.0.5) has the following importance: First, one can
relate the left hand side to the log crystalline cohomology of (X, M). (In-
deed, if V' = W holds, it is isomorphic to the log crystalline cohomology
of (X, M) with certain coefficients.) Since X is proper smooth, this allows
us to prove the finiteness of the left hand side: Hence we obtain the finite-
ness of the right hand side. That is, we can prove the finiteness of rigid
cohomology with certain coefficients. The finiteness of rigid cohomology
is proved by Berthelot ([Be4]) and Tsuzuki ([Ts2]) in the case that the
coefficient is trivial or a unit-root overconvergent F'“-isocrystal. (There is
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also a result of Crew [Cr2] in the case of curves.) If we admit a version of
quasi-unipotent conjecture for overconvergent F'*-isocrystals, our finiteness
implies the finiteness of rigid cohomology when the coefficient is an over-
convergent F®-isocrystal. Second, it is known ([Be2]) that the right hand
side of the isomorphism (0.0.5) depends only on U, although one uses a
compactification of U to define it. So the left hand side also depends only
on U. By using this fact in the case of trivial coefficient, we can prove that
71 ((X, M)/Spf W, z) depends only on U and x and it is independent of
the choice of the compactification (X, M) of U as above. That is, we can
give the affirmative answer to Problem 4.2.1 in [Shi] in general case. (We
need to work a little more since the irreducible components of D need not
be smooth in Problem 4.2.1 in [Shi].)

Moreover, we note that the log convergent Poincaré lemma allows us to
give an alternative proof of the isomorphisms (0.0.2) and (0.0.3), hence gives
an alternative proof of Berthelot-Ogus theorem for fundamental groups. We
can slightly weaken the hypothesis of the theorem in this new proof: the
conditions ‘f is integral’ and ‘X} is reduced’ are not necessary in the new
proof.

Now let us explain the content of each chapter briefly. In Chapter 1, we
give some preliminary results which we need in later chapters. In Section
1.1, we give a result concerning log schemes which we did not proved in
the previous paper. We introduce the notion ‘of Zariki type’ (for definition,
see Definition 1.1.1), which plays an important role in later chapters. In
Section 1.2, we axiomize the relation between stratifications and integrable
log connections which was proved in the case of certain (formal) log schemes
in [Shi, §3.2]. It is a variant of [Bel, Chap. II]. We use the result in this
section to define the log de Rham complex associated to an isocrystal on log
convergent site on certain rigid analytic space. In Section 1.3, we review the
results on rigid geometry which is due mainly to Berthelot ([Be2], [Be3]).

In Chapter 2, we investigate the log convergent cohomology of isocrystals
in detail. In Section 2.1, we give basic definitions concerning log convergent
site. We slightly change the definition of enlargement and log convergent
site from those in the previous paper, but we prove that these changes cause
no problem. We prove basic descent properties of log convegent site. We
also introduce some new notions such as (pre-)widenings, which is a log
version of widenings in [Og2]. In section 2.2, we introduce the notion of the
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tubular neighborhood for certain closed immersion of a fine log scheme into a
fine log formal scheme, and define the analytic cohomology (in rigid analytic
sense) of log schemes. In Section 2.3, we prove log convergent Poincaré
lemma. That is, we prove that the log convergent cohomology is isomorphic
to the analytic cohomology which is defined above. In Section 2.4, we prove
the comparison theorem between the log convergent cohomology and the
rigid cohomology.

In Chapter 3, we give some applications of the results in the previous
chapter. In Section 3.1, we prove the application of the results in the pre-
vious chapter to the finiteness of rigid cohomology with certain coefficients:
We prove the finiteness of the rigid cohomology in the case that the co-
efficient is an F“-isocryatsl on a log compactification. Moreover, under a
version of a quasi-unipotent conjecture (for overconvergent F®-isocrystals),
we prove the finiteness of the rigid cohomology in the case that the co-
efficient is an overconvergent F'“-isocrystal. In Section 3.2, we give an
alternative proof of the Berthelot-Ogus theorem for fundamental groups,
which is proved in the previous paper, under a slightly weaker assumption.
In Section 3.3, we give the affirmative answer to Problem 4.2.1 in [Shi] in
general case. That is, we prove that, when X is a scheme which is proper
smooth over k£ and M is the log structure associated to a normal crossing
divisor D on X, 71 *((X, M)/Spf W, z) depends only on U := X — D and
x and it is independent of the choice of the compactification (X, M) of U.

After writing the first version of this paper, the author learned that
Chiarellotto, Le Stum and Trihan ([Ch], [Ch-LS], [Ch-LS2], [LS-T]) also
studied on closely related subjects independently. In particular, the defini-
tion of rigid fundamental group which we introduce in Section 3.3 is due to
Chiarellotto and Le Stum. There is also a related work of Mokrane ([Mo]).

This series of papers is a revised version of the author’s thesis in Tokyo
University. The author would like to express his profound gratitude to his
thesis advisor Professor Takeshi Saito for valuable advices and encourage-
ments. He also would like to express his thanks to Professors Yukiyoshi
Nakkajima, Nobuo Tsuzuki and Doctor Kenichi Bannai for useful advices
and conversations. He would like to express his thanks to Doctor Kiran
Kedlaya for pointing out some mistakes in the earlier version of this paper.
The author would like to thank to the referee for reading the first version
of this series of papers carefully and patiently, and for giving him many ad-
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vices. Without his advices, it would be impossible for the author to make
this paper understandable. The author would like to express his thanks to
those who encouraged him during the revision of this paper. Without their
encouragement, he could not finish the revision of this paper. The author
revised this paper during his stay at Université de Paris-Sud. The author
would like to thank to the members there for the hospitality. Finally, the
author would like to apologize to the editors and staffs of Journal of Math-
ematical Sciences, University of Tokyo, especially to Mrs. Ikuko Takagi, for
the long delay of the revision of this paper, and express his thanks for their
patience.

The author was supported by JSPS Research Fellowships for Young
Scientists in 1996-97, while the main part of this work was done. As for
the author’s stay in Univerisité de Paris-Sud, he was supported by JSPS
Postdoctoral Fellowships for Research Abroad.

Conventions

(1) Let V be a complete discrete valuation ring of mixed characteristic
(0,p). A formal scheme T is called a formal V-scheme if T is a p-adic
Noetherian formal scheme over Spf V' and I'(U, Or) is topologically
of finite type over V for any open affine U C T.

(2) For a scheme or a formal scheme T', we denote the category of co-
herent sheaves of Or-modules by Coh(Or) and for a formal scheme
T over Spf V' (where V' is as in (1)), we denote by Coh(K ® Or) the
category of sheaves of K ® Op-modules on T which is isomorphic
to K ® F for some F € Coh(Or), where K denotes the fraction
field of V. For elementary properties of Coh(K ® Or) for a formal
V-scheme T, see [Ogl, §1]. We call an object of Coh(K ® Or) an
isocoherent sheaf on T

(3) In this paper, we use freely the terminologies concerning the log
structure on schemes or formal schemes in the sense of Fontaine,
Illusie and Kato. Basic facts about log structures are written in
[Kk]. See also [Shi, Chap. 2].

(4) Let X — Y be a morphism of formal schemes and let N be a log
structure on Y. Then the log structure on X defined by the pull-
back of the log structure N is also denoted by N, if there will be no
confusions.
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(5) Contrary to the convention of the previous paper [Shi|, we denote
the completed tensor product (resp. completed fiber product) of
topological modules (resp. formal log schemes) by & (resp. X).

(6) For a site S, we will denote the topos associated to S by S™.

Chapter 1. Preliminaries

In this chapter, we give some preliminary results which we need in later
chapters. In Section 1.1, we give a result concerning log schemes which we
did not proved in the previous paper. We introduce the notion ‘of Zariki
type’ (for definition, see Definition 1.1.1), which plays an important role
in later chapters. In Section 1.2, we axiomize the relation between strat-
ifications and integrable log connections, which was proved in the case of
certain (formal) log schemes in [Shi, §3.2]. It is a variant of [Bel, Chap. II].
We use the result in this section to define the log de Rham complex as-
sociated to an isocrystal on log convergent site on certain rigid analytic
space. In Section 1.3, we review the results on rigid geometry which is due
mainly to Berthelot ([Be2], [Be3]). In particular, we recall the definition of
overconvergent (F'“-)isocrystals and the rigid cohomology with coefficient.

1.1. A remark on log schemes

In this section, we prove a property on log schemes which we did not
stated in the prevous paper [Shi].

Recall that a log structure on a (formal) scheme X is a pair (M, «),
where M is a sheaf of monoid on etale site of X and « is a homomor-
phism M — Ox of sheaves of monoids which induces the isomorphism
a~H0%) = O%. (In the previous paper, we defined the notion of log struc-
tures only for schemes and p-adic formal schemes, but we can define it for
any formal schemes.) We call the triple (X, M, «) a log (formal) scheme.
In the following, we often denote (X, M, «) simply as (X, M), by abuse of
notation. As for the definition of ‘fineness’ of a log (formal) scheme, see
[Kk] or [Shi, §2.1].

We introduce a new terminology which plays an important role in later
chapters:

DEFINITION 1.1.1. A fine log scheme (resp. a fine log formal scheme)
(X, M) is said to be of Zariski type if there exists an open covering X =
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(J; X with respect to Zariski topology such that (X;, M|x,) admits a chart
for any 1.

The main result of this section is the following:

PROPOSITION 1.1.2.  Let (X, M) be a fine log scheme (resp. a fine log
formal scheme) of Zariski type and let f : (X, M) — (Y, N) be a morphism
of fine log schemes (resp. fine log formal schemes). Assume that (Y, N)
admits a chart ¢ : Q — N. Then, Zariski locally on X, there exists a chart
(Px — M,Qy — N,Q — P) extending . If f*N — M 1is surjective, we

may assume that the homomorphism Q% — P8P is surjective.

COROLLARY 1.1.3.  Any morphism between fine log schemes (resp. fine
log formal schemes) of Zariski type admits a chart Zariski locally.

In the following, we give a proof of the above proposition in the case of
log schemes. (The case of log formal schemes can be proved in the same
way.) To prove the proposition, we need to introduce the notion of log
scheme with respect to Zariski topology:

DEFINITION 1.1.4.

(1) Let X be a scheme. A pre-log structure with respect to Zariski
topology on X is a pair (M, «), where M is a sheaf of monoids on
Xzar and a : M — Ox is a homomorphism of sheaves of monoids.

(2) A pre-log structure with respect to Zariski topology (M, «) is called
a log structure with respect to Zariski topology if « induces the
isomorphism a1 (0%) — O%.

(3) A log scheme with respect to Zariski topology is a triple (X, M, «),
where X is a scheme and (M, «) is a log structure with respect to
Zariski topology on X. In the following, we denote the log scheme
with respect to Zariski topology (X, M, «) by (X, M), by abuse of
notation.

DEFINITION 1.1.5. Let X be a scheme and let (M,«a) be a pre-log
structure with respect to Zariski topology on X. Then we define the log
structure with respect to Zariski topology (M®, a®) associated to (M, «) as
follows: M® is defined to be the push-out of the diagram

05 < a 1 (05) — M
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in the category of sheaves of monoids on Xy, and a“ is defined to be the
morphism

M®* — Ox; (a,b) — a(a)b (a € M,b € Ox).

DEFINITION 1.1.6. Let (X, M) be a log scheme with respect to Zariski
topology. Then X is said to be fine (resp. fs) if Zariski locally on X,
there exists a fine (resp. fs) monoid P and a homomorphism Py — Ox
on Xz, whose associated log structure with respect to Zariski topology is
isomorphic to M.

DEFINITION 1.1.7.

(1) For a fine log scheme with respect to Zariski topology (X, M), a
chart of (X, M) is a homomorphism Py — M for a fine monoid P
which induces the isomorphism (Px)* = M.

(2) For a morphism f : (X,M) — (Y,N) of fine log schemes with
respect to Zariski topology, a chart of f is a triple (Px — M, Qy —
N,Q — P), where Px — M and Qy — N are charts of M and N
respectively and ) — P is a homomorphism such that the diagram

Qx —— Px

| !

fAIN — M

is commutative.

Then one can prove the following proposition in the similar way to the
case of usual log schemes ([Kk, §2], [Shi, (2.1.10)]). (We omit the proof.)

PRrROPOSITION 1.1.8. Let f: (X,M) — (Y,N) be a morphism of fine
log schemes with respect to Zariski topology. Assume (Y, N) admits a chart
¢ : Qy — N. Then, Zariski locally on X, there exists a chart (Px —
M,Qy 2 N,Q — P) of f extending . If the homomorphism f*N —
M is surjective, we may assume that the homomorphism Q% — P8P is
surjective.
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For a scheme X, let € be the canonical morphism of sites X¢t — X7zar.
For a log structure (M, «) on X, we define the log structure with respect
to Zariski topology (e«M, e ) on X by

exa: e, M — €,0x,, = Ox,,.-

Conversely, for a log structure with respect to Zariski topology (M, a), we
define the log structure (e*M,e*a) as the associated log structure to the
pre-log structure

— eta
e M5 lox, — Ox.,.

Then we have the following proposition, which is the key to the proof of
Proposition 1.1.2.

ProrosiTiON 1.1.9.

(1) Let (X, M) be a fine log scheme with respect to Zariski topology and
let ¢ : Px — M be a chart. Then the homomorphism

* 67150 —1 *
€ep:Px —e M —eM

induces the isomorphism P% = e M.
(2) Let (X, M) be a fine log scheme and let ¢ : Px — M be a chart.
Then the homomorphism

exp: Px — eM
induces the isomorphism P% Ze.M.
Before the proof of the proposition, we prepare a lemma. For a monoid
Q, log structures (resp. log structures with respect to Zariski topology)

(M;, ;) (i = 1,2) and homomorphisms of sheaves of monoids ¢; : Qx —
M;, we denote the set

{f: My — M|y = fopi,ar=azo f}

by Hom‘égt,%m(MhMﬂ (resp. Hom%f;l’m(Ml,Mg).) Then one has the

following elementary lemma:
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LEMMA 1.1.10.  Let (M, apr) be a log structure with respect to Zariski
topology on a scheme X and let (N,ay) be a log structure on X. Let P
be a monoid and let ¢ : Px,, — M, ¢ : Px,, — N be homomorphisms
of sheaves of monoids. Let €*p : Px, — €M, € : Px,, — €N be
the morphisms naturally induced by ¢,, respectively. Then we have the
canonical bijection of sets

(1.1.1) Homlzféﬁw(M, exN) = Hom(}t’e*%qp(e*M, N).

PROOF. Let f be an element of Hom%;f‘;7e*¢(M, e«N). Let g be the
element of Hom(e~'M, N) corresponding to f by the canonical bijection
Hom(M, e, N) = Hom(e 'M, N). Then, by the functoriality of the bijection

Hom(—, e,—) = Hom(e ' —, —),

we have e lay = ayog and goe tp =1, Since N is a log structure, the
homomorphism g factors uniquely as

eIM — M N,

and we have the commutativities €*apr = ayoh,hoe*p = 1. Hence h is an
element in Hom%E*(pw(e*M ,N). One can check easily that the correspon-
dence f < h gives the desired bijection. [J

PROOF OF PRrROPOSITION 1.1.9. To prove the assertion (1), we have
only to prove the following: For any log structure N endowed with a
homomorphism 1 : Px, — N, there exists uniquely a homomorphism
g: €M — N of log structures such that g o €* = 1) holds.

Since ¢ : Px,,, — M is a chart, there exists uniquely a homomorphism
f: M — €,N of log structures with respect to Zariski topology such that
€x) = f o holds. So f is the unique element in Homlzg?;’e*w(M, exN).
Then the unique element ¢ in Hom‘}t’ew@(e*M , N) corresponding to f by
the above lemma satisfies the desired condition. So the assertion (1) is
proved.

Let us prove the assertion (2). Denote the structure morphism M —

Ox,, by aps and denote the composite Px 2 MM Ox., by ap. To
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prove the assertion (2), it suffices to prove that the homomorphism e, :
Px — e, M induces the isomorphism

PX 69(6*01}9)—1((9)( ) 1 L) G*M/O;<(Zar = E*M/E*O;}et,

XZar
First let us note the following:
CramM.  We have the isomorphism e, M/e.0% = e.(M/O% ).

PrOOF OF CLAIM. Let us apply the functor e, to the diagram

1 — O;{et _— M — M/O;((et — 1

l |

1 —— (’))X<et — M®& — ]\45’/(’);}et — 1.

By Hilbert 90, we have R'e, (’))X(Et = 0. So we get the following:

1 - O§Zar - E*M L) 6*(M/O;<<et>

| I I

gp

— e M T (M8 /0% ) —— 1.

L —— 0%,
It suffices to prove the surjectivity of w. Let U C X be an open set and
let a € T(U,e.(M/Ox ) = T(U,M/O%_ ). Then there exists an open cov-
ering U' — U and an element b € T'(U’, e, M8P) = T'(U’, M®P) satisfying
78P(b) = a|ys. To prove the claim, it suffices to prove that b € T'(U’, e, M)
holds. Since a € T'(U, M/Ox. ), there exists an etale covering V' — U and
an element ¢ € I'(V, M) satisfying m(c) = aly. We may assume that the
morphism V' — U factors as the composite of surjective etale morphisms
V — U’ — U. Then we have 7(c) = w8P(b|y). So there exists an element
u € I'(V,Oy) such that bly = cu holds. Hence we have bly € T'(V, M). So
bisin T'(U', M) =T (U, e.M). So we have shown the surjectivity of 7 and
the proof of the claim is finished. [J

By the above claim, it suffices to show the isomorphism

PX @ api0g,,) 1 #M/O,).

ar
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For etale morphism U — X, let oy be the composite

F(X ap)

P I'(X,0x) — (U, Op).

Then, the sheaf Px De,ap)-1(0X

Xzar

) 1 is the sheaf associated to the presheaf
on Xzar
(U CX) = POy rrwox !

Let Ny be the presheaf on Xyz,, defined by
(U € X) e POysrony U~

where ~y,, is the equivalence relation defined as follows: a ~yz,, b holds if
there exists a Zariski covering U := {U; — U}; such that Im(a) = Im(b)
holds in P @aa,l(F(Ui 0% ) 1 for any 7. Let N7 be the presheaf defined by

NI(U) = ﬂnu HO(U’ N0)7

where U runs through Zariski open coverings of U. Then, by definition, N;
is a sheaf and we have Py @(e*ap)*l((’)x ) 1=DMN.

XZar

On the other hand, since ap : Px — M is a chart of M, the sheaf
M/ (’))X(et is the sheaf on X associated to the presheaf

(U — X) = P&,10@on) |
Let N{ be the presheaf on X defined by

where ~g is the equivalence relation defined as follows: a ~¢t b holds if
there exists an etale covering U := {U; — U}; such that Im(a) = Im(b)
holds in P& o (TUOF,)) 1 for any 7. Let Nj be the presheaf on Xy defined
by
/ 1 770 /
N{(U) =i FOU, ),

where U runs through etale coverings of U. Then, by definition, Nj is a
sheaf and we have M/ O)XQt = Nj. Hence it suffices to prove the following
claim.
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CrAM. For any open U C X, we have N1(U) = N{(U).

To prove the claim, first we prove the following assertion: For any
open U C X and any etale surjective morphism V' — U, we have the

~

isomorphism No(U) = N{(V). Since V. — U is surjective, we have
o (T(U,08)) = ay (T(V, 05)). Hence we have the isomorphism

Po, v rwosn 1 =L Pastroz) 1

Therefore, to prove the eqality No(U) = Nj(V), it suffices to prove the
equivalence of the relations ~yz,, (for No(U)) and ~e; (for N)(V)) via the
above isomorphism. If a ~z, b, then it is easy to see that a ~e b holds.
Let us prove the converse. Assume a ~ b holds and let {V; — V'}; be an
etale covering such that Im(a) = Im(b) holds in P @a‘—/il(l—\(%’oéi)) 1 for any

i. Let U; be the image of the morphism V; — V' — U. Then {U; — U},
is a Zariski covering and we have the isomorphism

So Im(a) = Im(b) holds in P @a(}j(F(UmOa)) 1, that is, we have a ~z,, b, as

desired. Hence we have Ny(U) = Nj(V).

Now we prove the claim. For an etale coveringf := {U; — U} of U, let
us denote the Zariski covering {Im(U;) C U} by U%**. Then the assertion
in the previous paragraph implies the isomorphism

HO(U% ™ No) = HO(U, NY).

Note that, if &/ runs through etale coverings of U, U%* runs through Zariski
coverings of U. Hence we have

Ny(U) = lim HO@, No) = lim O, N§) = N{(U).
Hence the claim is finished and the proof of proposition is now completed. [J

As an immediate corollary of Proposition 1.1.9, we have the following:
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COROLLARY 1.1.11. There exists a canonical equivalence of categories

(ﬁne log schemes) - ( fine log schemes with )
—

of Zariski type respect to Zariski topology

given by (X, M) — (X,e.M). The quasi-inverse is given by (X, M)
(X, e M).

Now we give a proof of Proposition 1.1.2.

PrROOF OF PrROPOSITION 1.1.2. Let f : (X,M) — (Y,N) be as in
the statement of the proposition and let e, f : (X,e.M) — (Y,e.N) be
the associated morphism between fine log schemes with respect to Zariski
topology. Then e, : Qy — €.N is a chart of (Y, e,N). Then, by Propo-
sition 1.1.8, there exists a chart (Px — e.M,Qy “f N, Q — P) of e.f
extending €,p. Then, by pulling back the chart by €*, we get a chart
(Px — M,Qy £ N,Q — P) of f extending ¢, by Proposition 1.1.9 and
Corollary 1.1.11. O

1.2. Stratifications and integrable connections on formal
groupoids

Let f: (X, M) — (5, N) be a log smooth morphism of fine log schemes
over Q (resp. a formally log smooth morphism of fine log formal V-schemes,
where V' is a complete discrete valuation ring of mixed characteristic). In
the previous paper ([Shi, §3.2]), we proved the equivalence of categories
between the following two categories:

(1) The category C'((X,M)/(S, N)) of coherent sheaves with integrable
log connections (resp. The category C'((X,M)/(S, N)) of isocoher-
ent sheaves with integrable formal log connections).

(2) The category Str((X, M)/(S, N)) of coherent sheaves with log strat-
ifications (resp. The category S/\tr((X, M)/(S,N)) of isocoherent
sheaves with formal log stratifications).

In this section, we remark that we can axiomize this result by using the
notion of a formal groupoid in a topos ([Bel, Chap. II]). So the result in
this section is a variant of a result in [Bel, Chap. II]. We will use this result
to construct the log de Rham complex associated to an isocrystal on log
convergent site on certain rigid analytic space in the next chapter.
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First we recall the notion of formal groupoid, which is defined in [Bel,
Chap. 11.1.1.3].

DEFINITION 1.2.1 (Berthelot). Let T be a topos. A formal groupoid
in T is the data

X = (07 {Pn}nEN7 {pl,n}nENv {pQ,n}nGNa {ﬂ-n}nENa {6n,m}n,m6N7 {Tn}nEN)a

where O is aring in T', { P"},, is a projective system of rings in 7" whose tran-
sition morphisms are surjective, p; n, Tpn, On.m, Tn are the homomorphisms of
rings over O

pi,n:O—>Pn7
Tt P — O,
6m,n:Pm+n—>Pm®OPn7

Tn : P* — P™,

which commute with transition maps of the projective system {P,} and
which are subject to the following conditions:

(1) Tp OPlin = T OP2n = id.
(2) We have

(Sm,n O P1,m+n = q1,mn © P1,m+n, 6m,n O P2m+n = 42,mn © P2,m+n,

where ¢1.m n, ¢2,mn are homomorphisms P™" — P™ @4 P" ob-
tained by composing P — P™ P P" with the canon-
ical homomorphisms P — P™ ®o P", P"* — P™ ®o P".
(3) (mm ®1d) 0 6y and (id @ ) © 8y, coincide with transition maps.
(4) (6mn @1d) 0 Omgnp = (1d & O p) © O ntp-
(5) Tn OPinm = P2n; Tn ©P2n = Pln-
(6)
(7)

6) T, 0Ty = Th.
7) The following diagrams are commutative:
P o Pt €™, pn o png pn @ pn

6n,nT plv"T 6n,n/[ vanT

P2n T2n , P2n T2n O )
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(In the above definition, we regard P™ as a bi-(O, O)-module via the left
(resp. right) O-module struture defined by p1, (resp. pa)). We say that
the formal groupoid X is of characteristic zero if O and P,’s are character-
istic zero as rings in 7.

We introduce the notion of ‘differential log smoothness’ as follows:

DEFINITION 1.2.2. Let T be a topos. A formal groupoid in T'

X = (O, {Pn}neNa {pl,n}neN> {p2,n}nEN> {ﬂ'n}neNa {6n,m}n,m€N7 {Tn}neN)

is said to be differentially log smooth if there exists locally an integer m
and the elements {§;,}7; of P" for n € N which satisfy the following
conditions:

(1) For n’ > n, the transition map P" — P sends Eim 10 &jn-

(2) There exists the canonical isomorphism of left O-algebras

P* =0l (1 <5 <m)]/(LI)"H,

where I, := (gl,na to 7§m,n) - O[fj,n (1 <j< m)]
(3) Omn(&jman +1) = (§m +1) @ (§n +1).

REMARK 1.2.3. A differentially log smooth formal groupoid in a topos
T is adic of finite type in the sense of [Bel, 11.4.2.1].

REMARK 1.2.4. A formal groupoid of characteristic zero in T’

X = (O, {Pn}nGNv {pl,n}nGNv {p?,n}neN, {ﬂ-n}nGNa {6n,m}n,m€Na {Tn}nEN)

is differentially log smooth if and only if there exists locally an integer m
and the elements {t;,}"; of P" for n € N which satisfy the following
conditions:

(1) For n’ > n, the transition map P" — P™ sends tin tO tjn.

(2) There exists the canonical isomorphism of left O-algebras

~

P"Z O[tjn (1 <5 <m))/(In)"t,

where I}, == (tipn, -, tmn) C Oltjn (1 < j <m)].
(3) 5m,n(tj7m+n) =tjm ® 1+1® tin-
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Indeed, assume we are given the elements {t;,};,. Then if we put &, :=
S pq ¥, the elements {¢;,} satisfy the conditions in Definition 1.2.2.

7,m?
Conversely, assume we are given the elements {;, }; as in Definition 1.2.2.
_1)k-1 .
Then if we put ¢, = > ;_; ( 1,1 f;-fn, the elements {t;,} satisfy the

conditions in this remark.

In particular, if X is an adic differentially smooth formal groupoid of
finite type (in the sense of [Bel, I1.4.2.3]) of characteristic zero, it is differ-
entially log smooth.

Let T be a topos and let

X = (Oa {Pn}nENa {pl,n}nENa {p2,n}n€N> {ﬂ-n}nENa {6n,m}n,m€Na {Tn}nGN)

be a differentially log smooth formal groupoid. We put w! := Ker(m; :
P! — O). Then the left action and the right action of O to w® coincide.
So we regard w' as O-module by this action, and let w9 (¢ € N) be the g-th
exterior power of w' over O.

We define the differentials d° : O — w! and d! : w! — w? as follows:
First, d° is defined by d°(a) = p21(a) — p11(a). Next let us consider the
morphism

d: P — plgp!

defined by 0 = q1,1,1+¢2,1,1—01,1, where ¢; ,,, , is as in Definition 1.2.1. Then,
by [Bel, p.117], one can see that the morphism 0 induces the morphism

Ker(my : P? — 0) — w' @ w',

which we denote also by 0.
Now we check that the composite

(1.2.1) Ker(my : P2 — O) 2t @w! — w?

kills Ker(P? — P'). Indeed, one can check it locally, so it suffices to
prove the image of p 2(a)&;2£;7 2 by the above map is zero. One can see, by
definition, that 0(p1,2(a)§; 28 2) = —(p1,1(a) ® 1)(§1 @ §ra + &1 @ &)
holds. So it is zero in w?. Hence the composite (1.2.1) induces the morphism

w! — w?. We denote this morphism by d'.
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One can check that the composite d* o d” is equal to zero. Locally, the
morphism d' is characterized by the equation

dl(z aj§j71) = Z do(a]’) NEja.
= =1

We recall the notion of integrable connections and stratifications.

DEFINITION 1.2.5. Let T be a topos and let

X = (O, {Pn}nGNa {pl,n}nENa {p2,n}n€Ny {ﬂ'n}nENa {6n,m}n,m€Na {Tn}neN)

be a differentially log smooth formal groupoid in 7'. Define w9 (¢ = 1,2),d" :

2

O — w! and d' : W' — w? as above.

(1) For an O-module E, a connection on E with respect to X is a

homomorphism
V:E— E®ow'

satisfying V(ae) = aV(e) + e ® d°(a).
(2) A connection V on an O-module E is said to be integrable if we
have V o V = 0, where we extend V to the morphism

E®uw' — F®w?

by V(e®@n) = V(e) An+e®d (n).
For a subcategory C of the category of O-modules, let us denote the category
of objects in C endowed with integrable connections by C(C).

DEFINITION 1.2.6. Let T be a topos and let

X = (O, {Pn}n€N7 {pl,n}n6N7 {pQ,n}nEN7 {ﬂ—n}neNv {6n,m}n7m€Na {Tn}nEN)

be a formal groupoid in T'. For an O-module E, a stratification on E with
respect to X is a family of isomorphisms

€n: P"®0 F — E®pP"
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satisfying the following conditions:

(1) Each €, is P™-linear and ¢y = id holds.
(2) For any n’ > n, €, modulo Ker(P" — P™) coincides with e,,.
(3) (Cocycle condition)  For any n and n/,

(id ® O pr) © €pgry = (€ @ id) 0 (Id @ €7) © (6, ®id) : P o F

L E®P"@P"

holds.

For a subcategory C of the category of O-modules, let us denote the category
of objects in C endowed with stratifications by Str(C).

Then the main result in this section is as follows:

PROPOSITION 1.2.7. Let T be a topos and let

X = (Oa {Pn}nGNa {pl,n}nENa {p2,n}n€Na {ﬂ-n}nGNa {6n,m}n,m€N7 {Tn}nGN)

be a differentially log smooth formal groupoid of characteristic zero. Then
we have the canonical equivalence of categories

c(c) = str(C).

PROOF. One can prove the assertion exactly in the same way as Sec-
tion 3.2 of [Shi|] (see Definition 3.2.6, Lemma 3.2.7 (2), Definition 3.2.8,
Proposition 3.2.9, Definition 3.2.10 and Proposition 3.2.11). O

COROLLARY 1.2.8. Let the notations be as above and let (E,{ey}) be
an object in Str(C). Denote the composite

id
E=0%0E™% Plgop E - E@p P

by 6. Then the object in C(C) corresponging to (E,{e,}) via the equivalence
in the above proposition is given by (E,V), where V : E — E ®o w! is
defined by V(e) = 6(e) —e® 1.
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ProoOF. It is immediate from the construction of the equivalence of
categories. See Section 3.2 in [Shi], especially the proof of [Shi, (3.2.9)]. O

Ezample 1.2.9. Let f: (X,M) — (S,N) be a log smooth morphism
of fine log schemes over Q. Let T be a topos associated to Xe¢;. Then, one
can define a differentially log smooth formal groupoid of characteristic zero

X = (07 {Pn}neNa {pl,n}nENa {pQ,n}nEN> {ﬂ-n}neNa {6n,m}n,m€N7 {Tn}neN)

as follows: Put O := Ox and put P" := Oxn, where (X", M") is the n-th
log infinitesimal neighborhood of (X, M) in (X, M) x (g ny (X, M) ([Shi,
§3.2]). Let p;, be the morphism Oy — Ox» induced by the morphism

(X", M™) — (X, M) x(g.n (X, M) Sl v ar)

and let m, : Oxn — Ox be the morphism induced by the exact closed
immersion (X, M) — (X", M"). Finally, let 6, , 7, be the morphisms
Opnms Tn 111 [Shi, §3.2].

If we apply Proposition 1.2.7 to C = Coh(QOx), we obtain the equivalence
of categories

C((X, M)/ (S5, N)) ~ Str((X, M)/(S,N))
of Propositions 3.2.9 and 3.2.11 (in the case of fine log schemes) in [Shi].

Ezample 1.2.10. Let f: (X, M) — (S,N) be a formally log smooth
morphism of fine log formal V-schemes, where V is a complete discrete
valuation ring of mixed characteristic. Let K be the fraction field of V' and
let T be a topos associated to Xe;. Then, one can define a differentially log
smooth formal groupoid of characteristic zero

X = (O, {Pn}n€N7 {pl,n}n€N7 {p?,n}n€N7 {ﬂ—n}nENv {6n,m}n,m€Na {Tn}nEN)

as follows: Put O := K @y Ox and put P" := K ®y Oxn, where (X", M™)
is the n-th log infinitesimal neighborhood of (X, M) in (X, M) x s n)(X, M)
([Shi, §3.2]). Let p;,m, be as in the previous example and let 6, p, 7, be
the morphisms id ® 6}, ,,,id ® 7, where 67, ,,, 7 is as in [Shi, §3.2].

m,n’ m,ns 'n
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If we apply Proposition 1.2.7 to C = Coh(K ® Ox), we obtain the
equivalence of categories

~

C((X, M)/(S,N)) = Str((X, M)/ (S, N))

of Propositions 3.2.9 and 3.2.11 (in the case of fine log formal schemes) in
[Shi].

REMARK 1.2.11. We can give a proof of Proposition 1.2.7 by using the
system of elements {¢;,} in Remark 1.2.4 and applying the argument in
[Be-Og, §2]. In particular, this proof gives another proof of Propositions
3.2.9, 3.2.11 in [Shi] which uses only the usual differential calculus and
which does not use ‘log differential calculus’ in [Shi, §3.2]. Details are left
to the reader.

1.3. Review of rigid analytic geometry

In this section, we review some basic definitions and known results con-
cerning rigid analytic geometry. The basic references are [Be2] and [Be3|.
See also [Tal, [Be4] and so on.

First we fix some notations. Let k be a perfect field of characteristic
p > 0 and let V be a complete discrete valuation ring of mixed characteristic
with residue field k. Let 7 be a uniformizer of V. Denote the fraction field
of V by K and the algebraic closure of K by K. Let | -| : K — Rxg
be the valuation satisfying |p| = p~! and put I'g := {|z| |z € K*} C Rsq,
I''=Q®z Iy C Ryy.

For n € N, let K{t;,---,t,} be the ring

{> art*|ax € K, |ay| — 0 (k] — o0)}.
kGN"

(That is, K{t1, - ,t,} is the ring of power series which are convergent on
the closed disc of radius 1.) A topological K-algegra A is called a Tate alge-
bra if there exists an integer n € N and an ideal I C K{t1,--- ,t,} (which
is necessarily closed ([Ta])) such that A is isomorphic to K{t;,--- ,t,}/I
as topological K-algebras.

Let A be a Tate algebra and put X := Spm A(:= the set of maximal
ideals of A). Then it is known that one can naturally endow a Grothendieck
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topology in the sense of [Be3, (0.1.1)] (which we denote by fx) and a
structure sheaf of rings Ox with respect to the topology fx ([Be3, (0.1.2)]).
We call the triple (X, 0x,Ox) the affinoid rigid analytic space associated
to A. We denote the triple (X,0x,Ox) simply by X or Spm A, by abuse
of notation.

In the following, for a set X endowed with a Grothedieck topology 0x, we
call an open set (resp. an open covering) with respect to the Grothendieck
topology fx an admissible open set (resp. an admissible open covering). A
triple X := (X,0x,0x), where X is a set endowed with a Grothendieck
topology 0x and Ox is a sheaf of rings on (X, 0x), is called a rigid analytic
space if there exists an admissible open covering X := |, X; of X such that
the triple (X;, 0x|x,, Ox|x;) is an affinoid rigid analytic space for each i.

Let P be a formal V-scheme and let Px be the set of closed sub formal
schemes Z C P which are integral and finite flat over Spf V. Then, for any
open affine formal scheme P D U := Spf A, we have the isomorphism of sets
Uk = Spm (K ® A). So, one can introduce a structure of an affinoid rigid
analytic space on Uy for any affine open U C P. Then, by [Be3, (0.2.3)],
one can glue these structures and so one can define the structure of a rigid
analytic space on Px. We call this rigid analytic space the rigid analytic
space associated to P. We define the specialization map sp : Pk — P by
Z — (support of Z). Then sp is a morphism of sites ([Be3, (0.2.3)]).

Let ¢ : X — P be a locally closed immersion of a k-scheme X into a
formal V-scheme P. Then we define the tubular neighborhood | X|[p of X
in P by | X[p:=sp }(X). Let us assume that P is affine and i is a closed
immersion. Suppose that the defining ideal of X in P is generated by 7
and f1, fa,- -+, fn € T'(P,Op). Then one can check the equality

[X[p={z € P | |fi(z)] <1 (1 <i<n)},
where f;(z) := fimodz € k(z)(:= the residue field of z € Pg).

Let i : X — P be a closed immersion of a k-scheme X into an affine
formal scheme P. Let fi,---, f, be as above. For || < A < 1, we define
the (open) tubular neighborhood | X[p of X in P of radius A by

[X[pa=A{z € Px|[filz)| <A (1<i<n)}
and for |7] < A < 1,A € I', we define the closed tubular neighborhood
[X]p of X in P of radius X\ by

[(X]pa={z € Pr|[fi(z)| <A (1 <i<n)}
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This definition is independent of the choice of f;’s by the assumption |r| < A
([Be3, (1.1.8)]). Hence we can define | X[p and [X]p ) even when P is not
necessarily affine. It is known that the tubular neighborhoods | X [p x, [X]p
are admissible open sets of Pk.

Let i : X — P := Spf A be a closed immersion of a k-scheme X into
an affine formal scheme P and let f1,---, f, be as above. Let A := |7T\“/b,
where a,b € N,a < b. Then [X]p is naturally isomorphic to the affinoid
rigid analytic space Spm B, where

B:= (K @y A){t1, -, ty} /(7% — fb,- - 7%, — f2).

Let A be a topological V-algebra which is topologically of finite type
over V', and let X < P be the canonical closed immersion Spec A/(7) —
Spf A{t1,--- ,ty,}. Then we call the rigid analytic space

1X[pi={z € P |[ti(z)] <1 (1<i<n)}

the n-dimensional unit open disc over A and denote it by D%. For |r| <
A< 1,A €T, we call the rigid analytic space

|X[p—[X]pa = {2 € Px | A < [ti(a)] <1 (1 <i<n)}

the n-dimensional open annulus of radius between A and 1 over A and
denote it by Cz)\. We call the functions t1, - - - ,t, the coordinates of D’j‘,)\,
Chx

A rigid analytic space X is called quasi-Stein if there exists an admissible
covering X = [J7; X; by increasing family of affinoid rigid analytic spaces
{Xi}ien such that the image of the map I'(X;11,Ox, ) — I'(X;, Oy;) is
dense for each i € N. For example, D}, (" , are quasi-Stein. The following
theorem of Kiehl is important: 7

THEOREM 1.3.1 (Theorem B of Kiehl). For a quasi-Stein rigid
analytic space X and a coherent Ox-module E, we have the vanishing
H{(X,E)=0(i >0).

COROLLARY 1.3.2. Let f : X — Y be a morphism of sites from a
rigid analytic space X to a rigid analytic space Y (resp. a scheme Y') such
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that f~1(U) is quasi-Stein for any sufficiently small admissible open affinoid
rigid analytic space (resp. any sufficiently small affine open) U C Y. Then,
for any coherent Ox-module E, we have the vanishing R'f.E =0 (i > 0).

We recall here an important theorem on the structure of tubular neigh-
borhoods ([Be3, (1.3.2)]):

THEOREM 1.3.3 (Weak fibration theorem). Suppose we are given the
following diagram
X — P

[

where X is a k-scheme, P, P' are formal V -schemes, u is a formally smooth
V -morphism of relative dimension n and horizontal arrows are closed im-
mersions. Denote the morphism P — Pk of rigid analytic spaces as-
sociated to u by ug. Then there exists an open covering P :=J, Po and

isomorphisms fo | X [pNug' (Pax) — (X [pNPax) x D% such that the
following diagram is commutative:

X [P0 (Pax) —— (X[pNPaxc) x D}

UKJ, 1-st proj.l

]X[pﬂPQ,K — }X[pﬂPQ’K.

Now we recall some notions concerning strict neighborhood. We recall
also a part of strong fibration theorem, which we need later.

Let j : X — Y be an open immersion between k-schemes and let Y — P
be a closed immersion of Y into a formal V-scheme P. Put Z :=Y — X.
Then, an admissible open set U C|Y[p containing | X[p is called a strict
neighborhood of | X[p in |Y[p if (U,]Z]p) is an admissible covering of |Y[p.
It is known that the intersection of two strict neighborhoods is again a
strict neighborhood. Hence the set of strict neighborhoods forms a filtered
category.
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For strict neighborhoods U’ C U of | X[p in |Y[p, denote the inclusion
map by apys and denote the map oy |,y simply by ay. Then, for a strict
neighborhood U and an Op-module E, we define the sheaf jTE on ]Y[p by

-i- T *
JE = h_r)nU, ayrsog B,

where U’ runs through strict neighborhoods of |X[p in ]Y[p which are
contained in U.

We give an example of strict neighborhoods which we use later. Let
X CY — P be as above. Then, for |1| <A< 1,A €T, Uy :=]Y[p—[X]p)
is a strict neighborhood of | X[p in |Y'[p. Denote the open immersion Uy —
1Y [p by ja. Then, [Be3, (2.1.1.5)] implies that we have the isomorphism

I'E 11m/\_}1 Iz B
for an O}y [,-module E.

We recall basic functorialities for strict neighborhoods and the functor
3T ([Be3, (1.2.7),(2.1.4)]):

PROPOSITION 1.3.4. Let us consider the following diagram

X 2Ly Lop

where X, X', Y)Y’ are k-schemes, P and P' are formal V-schemes, j and
j' are open immersions and i and i are closed immersions. Denote the
morphism of rigid analytic spaces |Y'[pr—]Y [p induced by u by ur . Then:
(1) For a strict neighborhood U of | X[p in Y [p, (urx) 1 (U) is a strict
neighborhood of | X'[pr in |Y'[pr.
(2) For any O)y(,-module E, there exists a canonical homomorphism

uijTE — (§) i E

and it is an isomorphism if v=1(X) = X' holds.
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We also recall the following proposition of Berthelot ([Be3, (1.3.5)]),
which is a part of strong fibration theorem.

THEOREM 1.3.5. Assume we are given the diagram
X 2oy S p

ol

X 2.y ", p

where X,Y,Y’ are k-schemes, P and P’ are formal V -schemes, j and j' are
open immersions and i and i are closed immersions. Denote the closure
of X in P' xpY by X. Assume moreover that u is formally etale on
a neighborhood of X and that the restriction of v to X is proper. Then
the morphism ug : Pj, — Pk induces an isomorphism between a strict
neighborhood of | X [p in |Y'[pr and a strict neighborhood of | X[p in |Y|[p.

Next we recall the definition of (over)convergent (F-)isocrystals, the de
Rham complex associated to (over)convergent isocrystals and rigid coho-
mology (and analytic cohomology) with coefficient.

Let X C Y be an open immersion of k-schemes of finite type and let
Y — P be a closed immersion into a formal V-scheme which is formally
smooth over SpfV on a neighborhood of X. For n € N, let P(n) be the
(n + 1)-fold fiber product of P over Spf V. Then the projections

pi: P(1) —P (i=12), py:P@2)—P1) (1<i<j<3y)
and the diagonal morphism A’ : P < P(1) induce the morphisms
pi Y [py—IY[p (i=1,2),  pij:|Y[pey—IY[pqy (1<i<j<3)
and the diagonal morphism A :]Y [p—]Y[p(y), respectively. By Proposition
1.3.4 (2), one can see that the above morphisms induce the functors
D; : (jJr(’)}y[P—modules) — (ij(’)]y[Pm—modules),
2 (jTO]y[P(U—modules) — (jTO]Y[P(Q)—modules),

AT (jTO]Y[P<1>—modules) — (jTO]y[P—modules),
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respectively. Now we define an overconvergent isocrystal on the triple
(X,Y, P) as follows:

DEFINITION 1.3.6. Let the notations be as above. Then an overconver-
gent isocrystal on the triple (X,Y, P) is a pair (F,¢€), where E is a locally
free jTO]y[ »-module of finite type and € is a jTO]y[P ( 1)—linear isomorphism
psE — piE satisfying A*(e) = id and piy(e) o phs(e) = pis(e). We de-
note the category of overconvergent isocrystals on the triple (X,Y, P) by
I'(X,Y, P).

Then the following proposition is known ([Be3, (2.3.1)]):

PROPOSITION 1.3.7. The category IT(X,Y,P) is independent of the
choice of Y — P up to canonical equivalence. That s, if we have an-
other closed immersion Y — @ which satisfies the same condition as
Y — P and a morphism f : Q — P compatible with the closed im-

mersions Y — PY — @ which is formally smooth on a neighborhood of
X, then the functor

I'(X,Y,P) — I'(X,Y,Q)
induced by the morphism of rigid analytic spaces
Ylomy—1Y[pm (n=0,1,2)
is an equivalence of categories.
Next, let X — Y be an open immersion of k-schemes. Take a diagram
(1.3.1) y L y@® L pe)

where Y(® is a simplicial k-scheme, P(®) is a simplicial formal V-scheme
such that P(" is formally smooth over Spf V on a neighborhood of the image
of X" := X xy Y™ fis a Zariski hypercovering and i is a morphism of
simplicial formal schemes which induces the closed immersions Y (™ — pP(%)
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for each n. (Note that there exists such a diagram.) Let us denote the
functor

IT(x© y© pO)y i x® y® p)y
(resp. IT()((O)yy(U),p(O)) . ]T(X(l),y(1)7p(1)) )

induced by the projection of triples

g (XD, Yy phy . (xO y© pO)y ;=12
(resp. gy : (X, y® POy — (xO y®H ply 1<i<j<3) )

by ¢ (resp. q;"j), and denote the functor
IT()((l)’Y(l)’p(l)) N [T(X(O)’Y(O),p(o))
induced by the diagonal
A (xO Yy plOy — (x® y® p)

by A*. Then we define the category of overconvergent isocrystals on (X,Y)
as the category of pairs (€, ), where £ is an object in IT(X(©) y(©) p(0)
and ¢ is an isomorphism ¢3& — ¢i€ in IT(x®, y® pM)y satisfying
A*(p) = id and ¢j5(¢) © ¢35(¢) = ¢i5(¢). One can see, by using Propo-
sition 1.3.7, that this definition is independent of the choice of the diagram
(1.3.1). We denote the category of overconvergent isocrystals on (X,Y") by
I'(X,Y).

In the case where X =Y holds, we call an object in IT(X, X) a conver-
gent isocrystal on X. It is known ([Be3, (2.3.4)]) that the category IT(X, X)
is equivalent to the category of convergent isocrystals on X over SpfV in
the sense of Ogus [Ogl], which we denoted by Icony(X/V') in the previous
paper [Shi.

For a separated k-scheme of finite type, the following proposition is
known ([Be3, (2.3.5)]):

PROPOSITION 1.3.8. Let X be a separated k-scheme of finite type, and
let X C X be a k-compactification. Then the category IT(X,X) is inde-
pendent of the choice of the k-compactification X C X, up to canonical
equivalence.



32 Atsushi SHIHO

Under the situation of Proposition 1.3.8, we call an object in the category
I'(X,X) an overconvergent isocrystal on X and we denote the category
I'(X, X) simply by I'(X).

We define the notion of an overconvergent F“-isocrystal as follows:

DEFINITION 1.3.9. Let X be a separated scheme of finite type over k
and let Fx : X — X, F} : Spec k — Spec k be the absolute Frobenius
endomorphisms. Let a € N;a > 0 and assume there exists a morphism
o : Spf V. — Spf V' which coincides with F}’ modulo the maximal ideal of
V. Then we have the following commutative diagram:

x 2 x

! !

i
Speck —— Speck

! !

SpfV —7— SpfV.

For an overconvergent isocrystal £ on X, denote the pull-back of E by
(F'¢, Ff, o) in the above diagram by F'**E. An overconvergent F®-isocrys-
tal on X with respect to o is a pair (€, ®), where £ is an overconvergent
isocrystal on X and ® is an isomorphism F**E - E.

Now we recall the definition of the de Rham complex associated to an
overconvergent isocrystal.

First, for a rigid analytic space X, we put Zx := Ker(Ox®0Ox — Ox)
and let QY :=Zx/Z%. For q € N, we define Q% as the ¢-th exterior power
of 24 over Ox. We call the sheaf Q% as the sheaf of ¢-th differential forms
on X, as in the usual case.

Now let j : X — Y be an open immersion of k-schemes and let Y — P
be a closed immersion into a formal V-scheme which is formally smooth on
a neighborhood of X. Let P(n) (n € N) be the (n+ 1)-fold fiber product of
P over Spf V. For n € N, let P" be the n-th infinitesimal neighborhood of
P in P(1). Let

Tn: P — P" (neN),

Smn 2 P xp P" — P™™  (m,n € N),
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be the morphisms induced by the morphisms

P1);  (z,y) = (y,),
PA); ((z,9), (y,2) = (,2),

respectively. Let us define the data

X = (O> {pn}nEN> {pl,n}n6N7 {pQ,n}nENa {Trn}nGNa {6;,m}n,m€N7 {T;L}nEN)

as follows: Let O := jTO]y[P and P" := jTO]y[Pn. (Since Y [pr is home-
omorphic to |Y[p, we can regard P" as a sheaf on |Y[p.) Let p;, (i =
1,2,n € N) be the homomorphism O — P" corresponding to the mor-
phism |Y[pn—]Y[p induced by the i-th projection, let m, be the homo-
morphism P" — O corresponding to the morphism |Y[p—]Y [pr induced
by the closed immersion P — P" let 7/, be the homomorphism P"* — P"
corresponding to the morphism Y [pn—]Y[pr induced by the morphism
7, and let &), , be the homomorphism P™"*" — P™ ©@p P™ correspond-
ing to the morphism Y [pmy,pr—]Y[pm+n induced by 6, ,. Then it is
known ([Be3, (2.2.2)]) that the data X is an adic differentially smooth for-
mal groupoid of finite type of characteristic zero in the topos associated to
1Y[p.

Note that the canonical closed immersion P" — P(1) induces the mor-
phism of rigid analytic spaces |Y[pn—]Y[p(1), which we denote by A,.
Denote the homomorphism

NGO ) = 5T Oy — T Oy
by 6,,.

Now let (E, €) be an object in IT(X,Y) = I(X,Y, P). Then we define

the P"-linear isomorphism €, : P" ® E — E ® P" as the composite

n _ n —1_x*
PreE=P ®9mA51jTO1Y[p<1> A P2k

ideA; e n
P ®‘9"’A771ﬁ013’[13(1

A'DiE=E® P
)
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Then {€,}nen is a stratification on E with respect to the formal groupoid
X. Hence, by Proposition 1.2.7, {€,},, defines an integrable connection

V. FE —>E®JTO]Y

(P

P 1
lp J Q]Y[P =E ®O]Y[P Q]Y

Then we define the de Rham complex on |Y[p associated to the overcon-
vergent isocrystal £ := (FE, €) by the complex

v v v v
DR([Y[p,€) :=[0 = E = E@0y,(, Yy(, = -+ = B @0y, Yy, = -+

where we extend V to

q q+1
E ®O]Y[P Q]Y[P — B ®O]Y[P Q]Y[P
by setting
x®@n— V(x) An+z®dn.

Now we give the definition of rigid cohomology with coefficient. First,
let X C Y be an open immersion of k-schemes of finite type and let £ be
an overconvergent isocrystal on (X,Y’). Take a diagram as (1.3.1) and let
£™ be the pull-back of € to IT( X y(™) = 1f(x ™) vy P()) Then we
define the rigid cohomology of the pair (X,Y") with coefficient £ by

Hiy(X CY/K,E) == H'(Y,Rf.Rsp"DR(Y ™ 10y, £)),
where sp(*) denotes the specialization map JY(*)[p)— V(®).

It is known that the following proposition holds ([Be2]):

PROPOSITION 1.3.10 (Berthelot). Let us assume given the following
commutative diagram

X 2.y ‘", p

where j : X — Y is an open immersion of k-schemes of finite type and i,
are closed immersions into formal V-schemes which are formally smooth
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on a neighborhood of X. Assume moreover that u is formally smooth on
a neighborhood of X. Let ug :|Y[pr—]Y[p be the morphism induced by
w. Then, for an object £ in I'(X,Y)(= I'(X,Y,P) = I'(X,Y, P)), the
canonical homomorphism

DR(]Y[p,g) — RuK,*DR(]Y[p/, 5)
1S a quasi-isomorphism.

As a consequence, one can check that the above definition of rigid co-
homology Hﬁig(X C Y/K,&) is independent of the choice of the diagram
(1.3.1). (Details are left to the reader.)

In the case where X = Y holds, we denote the rigid cohomology
Hi (X C X/K, &) of the pair X C X with coefficient € € I'(X, X) by
H! (X/K,E) and call it the analytic cohomology (in rigid analytic sense)
of X with coefficient £. Note that the definition in this case is much sim-
pler than the general case, since jT = id holds in this case. (In particular,
we do not need the notion of strict neighborhoods in this case.) Conver-
gent Poincaré lemma of Ogus ([Og2, (0.5.4), (0.6.6)]) implies that the ana-
lytic cohomology H: (X/K,&) is isomorphic to the convergent cohomology
H(X/V)conys E)-

For a separated k-scheme X, the following proposition is known ([Be2]):

PROPOSITION 1.3.11 (Berthelot). Let X be a separated k-scheme of fi-
nite type, and let X C X be a k-compactification of X. Let £ be an object in
I'(X) = I'(X, X). Then the rigid cohomology Hfig(X C X/K,€) of (X, X)
with coefficient € is independent of the choice of the k-compactification
X cX.

Under the situation of Proposition 1.3.11, we denote the group Hﬁig(X C
X /K, &) simply by Hﬁig(X/K, &) and call it the rigid cohomology of X with
coeflicient £.

REMARK 1.3.12. Let X be a smooth scheme over k. Then we have the
rigid cohomology Hﬁig(X/K, —) and the analytic cohomology H{ (X/K,—).
In the case where X is proper over k, the two cohomologies are the same,
but they are not isomorphic in general.
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The analytic cohomology is not a good p-adic cohomology theory, for it
is not finite-dimensional in general even in the case that the coefficient is
trivial. On the other hand, the rigid cohomology is expected to be a good
p-adic cohomology theory in the case where the coefficient is an overconver-
gent F“isocrystal. In fact, in the case where the coefficient is trivial or a
unit-root overconvergent F'®-isocrystal, it is finite-dimensional and satisfies
several nice properties ([Be4], [Be5], [Ts2]).

Finally, we recall the definition of the rigid analytic space associated to
certain formal schemes over Spf V' which are not necessarily p-adic ([Be3,
(0.2.6), (0.2.7)]), which we need in later chapters.

Let P be a Noetherian formal scheme over Spf V' and let Z be an ideal
of definition. Let Py C P be the scheme defined by Z, and suppose that it
is locally of finite type over Spf V. We define the rigid analytic space Px
associated to P. (In the case that P is a formal V-scheme, the rigid analytic
space Pk coincides with the previous one.) Suppose first that P := Spf A
is affine, and let fi,---, f, be a generator of the ideal I := I'(P,Z) of A.
For n € Nyn > 1, let B), be the ring

(A[tlv"' 7t7“]/(f{1 —mty, 7f1? _WtT))/\a

where " denotes the p-adic completion. For n < n’ € N, let B,y — B,, be
the continuous ring homomorphism over A which sends t; to f”/*”ti. Then,
via the morphism of rigid analytic spaces

Spm (K ®y B,) — Spm (K ®y By)

associated to the above ring homomorphism, Spm (K ®y B,,) is identified
with the admissible open set {z | |f;(z)| < ||/ (1 <i <)} of Spm (K @y
B,/). We define the rigid analytic space Pg as the union of Spm (K ®y
By,)’s. It is known that this definition is independent of the choice of the
system of generators (fi,- -, fr) of I. In the case that P is not necessarily
affine, we take an affine open covering P = |JP; of P and define Pg as
the union of P; k’s. It is known that this definition is well-defined. We
can define the specialization map sp : Px — P as the union of the maps
Spm (K @y By,) — Spf B,, — P.

As for the relation of the above construction and the tubular neighbor-
hood, the following proposition is known ([Be3, (0.2.7)]):
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ProrosSITION 1.3.13. Let P, Py be as above and let X C Py be a closed
subscheme. Denote the completion of P along X by P. Then the canonical

morphism Py — Py induces the isomorphism of rigid analytic spaces
P —]X[p.

Chapter 2. Log Convergent Site Revisited

The purpose of this chapter is to develop the theory of cohomologies of
isocrystals on log convergent site in detail. First, In Section 2.1, we recall
the definition of log convergent site (which are introduced in Chapter 5 in
[Shi]), and prove basic properties of them. We also introduce some new
notions, such as pre-widenings and widenings, which we use later. They
are the log version of widenings introduced by Ogus ([Og2]). Note that we
will slightly change the definition of log convergent site, but this change
causes no problem. (See Proposition 2.1.7.)

In Section 2.2, we extend the notion of tubular neighborhood to the case
of closed immersion of certain log formal schemes, and we define the analytic
cohomology (in rigid analytic sense) of log schemes with coefficients. In
Section 2.3, we prove that the cohomology of a locally free isocrystal on log
convergent site is isomorphic to the analytic cohomology defined in Section
2.2. The theorem of this type is often called as Poincaré lemma. So we call
this theorem the log convergent Poincaré lemma. This is a generalization
of convergent Poincaré lemma of Ogus ([Og2]). Finally, in Section 2.4, we
prove that the analytic cohomology of certain log schemes X := (X, M) is
isomorphic to the rigid cohomology of Xi,iy in the case where the coefficient
is an F'%-isocrystal on ((X,M)/V )cony. We use the results of Baldassarri
and Chiarellotto developed in [Ba-Ch| and [Ba-Ch2] in local situation.

Throughout this chapter, k denotes a perfect field of characteristic p > 0
and V denotes a complete discrete valuation ring of mixed characteristic
with residue field k. Let m be a uniformizer of V and denote the fraction
field of V by K. Let | - | be the normalized valuation of K (:= the algebraic
closure of K), and let I'g,I" C Rsg be |K*|, Q ®z Iy, respectively. For a
formal V-scheme T, denote the closed sub formal scheme defined by the
ideal {x € Or|p"zr = Ofor some n} by Ty. Tj is the largest closed sub
formal scheme of T which is flat over Spf V.

2.1. Log convergent site
In this section, first we give the definition of enlargement and log con-
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vergent site. We slightly change the definitions of them from those in [Shi].
But we remark that the category of isocrystals on log convergent site is
unchanged. After that, we define the notion of pre-widening and widening,
which are generalizations of the notion of enlargement. They are the log
version of the corresponding notions introduced in [Og2]. Finally, we prove
some basic properties of log convergent site and the category of isocrystals
on it which we need later. We also recall the definition of direct limit site
and an acyclicity property of it, which are due to Ogus ([Og2]).

Throughout this section, let (X, M) be a fine log scheme of finite type
over k and let us fix a diagram

(2.1.1) (X, M) - (Speck, N) < (Spf V, N)

of fine log formal V-schemes, where f is of finite type and ¢ is the canonical
exact closed immersion.

First, we define the notion of enlargement. Note that we change the
definition from that in [Shi]. The definition here is a log version of that in
[Og2], while the definition in [Shi] is a log version of that in [Ogl].

DEFINITION 2.1.1.

(1) An enlargement of (X, M) over (SpfV,N) is a 4-tuple ((T, Mr),
(Z,Mz),i,z), where (T, Mr) is a fine log formal V-scheme over
(Spf V, N) such that T is flat over SpfV, (Z,Mz) is a fine log
scheme over (Spec k, N), i is an exact closed immersion (Z, Mz) —
(T, M) over (Spf V, N) such that Z contains Spec (Op/pOr)req and
z is a morphism (Z, Mz) — (X, M) over (Speck, N). We often
denote an enlargement ((T', Mr),(Z, Mz),1i,z) simply by T

(2) Let T := ((T, MT), (Z, Mz),’i, Z) and T := ((T/, MT/), (Z/, MZI),
i’,2") be enlargements. Then we define a morphism g : T — T" of
enlargements as a pair of morphisms

gl : (T7 MT) — (T/7MT/)7
go (Za MZ) — (ZlaMZ/)a

such that g; o7 =4 0 gy and z = 2’ o g5 hold.
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We denote the category of enlargements of (X, M) over (SpfV,N) by
Enl((X, M)/(Spf V, N)), or simply by Enl((X/V)l®8).

REMARK 2.1.2. In this remark, for a formal V-scheme S, denote the
closed subscheme Spec (Og/pOg)reqa by So. In the previous paper [Shi], we
defined an enlargement of (X, M) over (SpfV, N) as the triple (T, Mr, 2),
where (T, M) is a fine log formal V-scheme over (Spf V, N) (where T is not
necessarily flat over Spf V') and z is a morphism (T, Mr) — (X, M) over
(Speck, N). Let us denote the category of enlargements of (X, M) over
(Spf V, N) in this sense by Enl'((X, M)/(Spf V, N)) (or Enl'((X/V)!8), for
short). Then we have the canonical functor

® : Enl((X/V)°8) — Enl'((X/V)'8)
which is defined by
(T, Mr),(Z, Mz),i,z) — (T, Mz, (To, Mr|1,) — (Z, Mz) — (X, M)),
and the canonical functor
@' : Enl'((X/V)°8) — Enl((X/V)"8)
which is defined by

(T, Mr, 2) = ((Th, M1|1y), (Th)0: M1|(14), )
((Ta)o, MT’(Tﬂ)O) - (TﬂvMT|Tﬂ)7
((Tﬂ)O?MT|(Tﬁ)O) - (T07MT|T0) e (X7 M))

Note that the functors ®,®’" are neither full nor faithful. (In particular,
they are not quasi-inverses of each other.) Indeed, one can check easily that
the composite &' o ® sends ((T', Mr),(Z, Mz), i, z) to (T, Mr), (To, Mr|z,),
(T[),MT‘TO) — (T, MT), (T07MT|T0) — (Z, Mz) — (X, M)), and that
the composite ® o ® sends (T, Mr,z) to (Ta, Mr|1y, (Ta, M7|1,) —
(T()v MT|T0) - (Xa M))

Next we define the notion of log convergent site and isocrystals on it:
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DEFINITION 2.1.3. Let 7 be one of the words {Zar(= Zariski), et(=
etale)}. Then we define the log convergent site ((X, M)/(SpfV,N))conv,r
of (X, M) over (Spf V, N) with respect to 7-topology as follows: The objects
of this category are the enlargements 7" of (X, M) over (Spf V, N) and the
morphisms are the morphism of enlargements. A family of morphisms

{gx = (91,0, 92,0) : (Tx, M1,),(Z), Mz, ),ix,20) — (T, M1),(Z, Mz),i,2) } xen

is a covering if the following conditions are satisfied:
(1) g7 \Mr = M, holds for any X € A.
(2) The family of morphisms {g; » : T\ — T’} is a covering with respect
to 7-topology on T'.
(3) (2, Mz,) is isomorphic to (Tx, M1,) Xy, \ (1,M7),i (£, Mz) via the
morphism induced by ¢y and g .

We often denote the site ((X, M)/(SpfV, N))conv,r simply by (X/V)y 7,
when there will be no confusion on log structures. When the log structures
are trivial, we omit the superscript 1°8.

REMARK 2.1.4. The definition of the log convergent site here is differ-
ent from that in the previous paper [Shi], since the definition of enlargement
is different. Also, note that we considered only the log convergent site with
respect to etale topology in the previous paper.

DEFINITION 2.1.5. Let the notations be as above. An isocrystal on
the log convergent site (X/V)};%gan is a sheaf £ on the site (X/V)lc%gnv,T
satisfying the following conditions:

(1) For any enlargement 7', the sheaf £ on T’ induced by £ is an isoco-

herent sheaf.

(2) For any morphism f : T — T of enlargements, the homomorphism

[*Ep — Epv of sheaves on T induced by & is an isomorphism.

We denote the category of isocrystals on the log convergent site ((X, M)/
(SptV, N))conv,r by Leonv,r((X,M)/(Spf V, N)). When there are no confu-
sions on log structures, we will denote it simply by Teony.r ((X/V)1°8). When
the log structures are trivial, we omit the superscript '°2. We denote the
isocrystal on (X/V)L%%VJ defined by T'— K @y I'(T, Or) by Kx v

DEFINITION 2.1.6. Let the notations be as above. Then an isocrystal
£ is said to be locally free if, for any enlargement T, the sheaf £ on T
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induced by & is a locally free K ®y Or-module. We denote the category of
locally free isocrystals on the log convergent site ((X, M)/(Spf V, N))conv,r
by If _((X,M)/(SpfV,N)). When there are no confusions on log struc-

conv,T
tures, we will denote it simply by Iif | _((X/V)"8).

The definition of the category of isocrystals above is a priori different
from that in the previous paper, because the definition of the log convergent
site is different. But we can prove the following proposition:

PROPOSITION 2.1.7. Let the notations be as above. Let us denote the
log convergent site of (X, M) over (Spf V, N) defined in [Shi] by (X/V)lc%gnV
and the category of isocrystals on it by Iony ((X/V)1°8). Then we have the
canonical equivalence of categories

Iconv((X/V)log) = ConV,et((X/V)log)'

PrOOF. First we define the functor ¥ : Ion ((X/V)98) —
Teony et ((X/V)198). Let € be an object in Ioony ((X/V)°8) and let T be
an object in Enl((X/V)!8). Then we define the value ¥(€) of £ at T by
U(ENT) = E(P(T)), where @ : Enl((X/V)8) — Enl'((X/V)'8) is as in
Remark 2.1.2. (It is easy to check that ¥(&) is an isocrystal.) Next we
define the functor ¥ : Ieony.et((X/V)18) — ILeony((X/V)8). Let £ be
an object in Ieonyet((X/V)°8) and let T be an object in Enl'((X/V)"8).
Then we define the value ¥/(&) of £ at T by V' (&)(T) := E(P'(T)), where
@ : Enl((X/V)"8) — Enl’'((X/V)'°#) is as in Remark 2.1.2. One can check
that W/(&) is an isocrystal by using the fact that the canonical functor

Coh(K ® Og) — Coh(K @ Og,)

is an equivalence of categories for any formal V-scheme S. One can also
check that ¥ and ¥’ are quasi-inverses of each other, by using the above
equivalence. Hence the assertion is proved. [J

Next, we define the notion of pre-widening and widening, which are
generalized notion of enlargement. They are log versions of widening defined
in [Og2].
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DEFINITION 2.1.8. Let the situation be as in the beginning of this sec-
tion. Define the category Q((X, M)/(SpfV,N)) (or Q((X/V)l8), if there
are no confusions on log structures) of 4-tuples on (X, M) over (Spf V, N) as
follows: The objects are the 4-tuples ((T', Mr),(Z, Mz),1, z), where (T, M)
is a Noetherian fine log formal scheme over (Spf V, N) (which is not neces-
sarily p-adic), (Z, Myz) is a fine log scheme of finite type over (Spec k, N),
i is a closed immersion (Z, Mz) — (T, Mr) over (SpfV,N) and z is a
morphism (Z, Mz) — (X, M) over (Spec k, N). We define a morphism of
4-tuples

(T, My, Z, My, i,z) = (T', My, Z' ., My i, 2)

as a pair of V-morphisms (T, My) 25 (T', My), (Z, Mz) 25 (Z2',My)
which satisfy g1 04 =1 0 g9 and z = 2’ o gs.

DEFINITION 2.1.9.

(1) A 4-tuple ((T,Mr),(Z,Mz),i,z) is called a pre-widening if T is
a formal V-scheme. We often denote a pre-widening ((7°, M),
(Z,Mz),1,z) simply by ((T, Mr),(Z,Mz)) or T.

(2) A 4-tuple (T, Mry),(Z,Mz),i,z) is called a widening if Z is a
scheme of definition of T via i : Z — T. We often denote a widening
((T7 MT)a (Za MZ)v i, Z) simply by ((Tv MT)7 (Z7 MZ)) or T.

(3) Let T':= ((T, Mr),(Z,Mz),i, z) be a pre-widening. Then we define
the associated widening by the 4-tuple ((T, Mr|4),(Z, Mz),i, z),
where T is the completion of T along Z. We often denote this
widening simply by T. We have the canonical morphism of 4-tuples
T —T.

(4) A pre-widening or a widening ((T, Mr),(Z, Mz),1,z) is said to be
exact if 7 is exact.

We denote the full subcategory of Q((X/V)!°8) consisting of the pre-
widenings of (X, M) over (SpfV,N) by PWide((X,M)/(SpfV,N)) or
PWide((X/V)"#), and the full subcategory of Q((X/V)!°®) consists of
widenings of (X, M) over (SpfV,N) by Wide((X,M)/(SpfV,N)) or
Wide((X/V)"°8). For a (pre-)widening 7', denote the sheaf on (X/ V){%%W,T
(where 7 = Zar or et) defined by 7" +— Homg(x /vy (1", T) by hr.

Let T be a pre-widening and let T be the associated widening. Then
one can check easily that the canonical morphism of sheaves hj; — hr is
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an isomorphism.

REMARK 2.1.10. In the paper [Og2], the notion of pre-widenings was
not defined, but it seems to the author that pre-widenings have essentially
appeared in his paper as widenings by abuse of terminology.

REMARK 2.1.11. A widening T := (T, Mr),(Z,Mz),i,%) is an en-
largement in the sense of Definition 2.1.1 if Z O Spec (O /pOr)req holds
and exact.

REMARK 2.1.12. In the category PWide((X/V)l#) or
Wide((X/V)°8), there exist products. For pre-widenings T := ((T, M7),
(Z,Mz)) and T" := ((T', Mp+),(Z', Mz)), the product T x T" is defined by

TxT = ((T, MT)>A<(Spr7N)(T/,MT/)7 (Z, Mz) X(X,M) (Z,,MZ/))

and for widenings T := (T, M), (Z,Mz)) and T" := ((T', My+),(Z', M 1)),
the product T x T" is defined by

T x T = (T, Mr) % spt v.ny (T, M) /(2,0 ) % () (20 M g1
(Za MZ) ><()(,M) (Zlv MZ’))7

where ((T', Mr) X (Spt V,N) (T, MT’))/(ZvMZ)X(X,]M)(Z,aMZ/) denotes the com-
pletion of (T, MT)>A<(Spf V,N) (T', My/) along the underlying scheme of
(Z,Mz) x(x,m) (Z',Mz). Hence one can check easily that the associa-
tion from a pre-widening to a widening commutes with the formation of
the product.

Beware of the following facts: The notion of the product as widenings
and that as pre-widenings are different for objects in PWide((X/V)"8) N
Wide((X/V)°8). The category Enl((X/V)°8) is not closed under the prod-
uct in the category PWide((X/V)°8) or Wide((X/V)!°8). The product
T x T" is not necessarily exact even if T'and T" are exact (pre-)widenings.

We define the notion of affinity of (pre-)widenings as follows:

DEFINITION 2.1.13. Let (X, M) 7, (Speck, N) — (SpfV, N) be as
in the beginning of this section and assume that we are given a chart
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Co = (Px — M,Qy — N,Q — P) of the morphism ¢ o f. (In par-
ticular, we assume the existence of such a chart.) Then a (pre-)widening
T:= (T, My),(Z,Mz),i, z) is called affine with respect to Cy if T is affine,
z is an affine morphism and the diagram

(Z,Mz) —— (T, Mr)

(2.1.2) zl l

(X, M) =L (SpfV, N)

admits a chart C satisfying the following conditions:

(1) The chart C extends the given chart Cy of ¢ o f.
(2) If we denote the restriction of the chart C to i by (R — Mr, Sz —
Mz, RS S), then a®P is surjective.
We call a pair (7',C) of a (pre-)widening and a chart of the diagram (2.1.2)
as above a charted affine (pre-)widening.

We define the exactification of a charted affine (pre-)widening as follows.

DEFINITION 2.1.14. Let the situation be as in the above definition.

(1) Let T := (((T, Mr),(Z,Mz),i,2),C) be a charted affine pre-widen-
ing of (X, M) over (SpfV, N) with respect to Cy. Let T" = Spf A,
Z = Spec B and let (Rp — Mp,Sz — Mz, R 2 S) be the restric-
tion of C to i. Then we put R’ := (a®?)"}(R), A" := A ®z(r) ZIR],
T = li_r)nn Spec (A'/(p™)) and let Mrex be the log structure asso-
ciated to the homomorphism R’ — A" — ylnn A'/(p™). Then

the morphism 4 factors through the exact closed immersion i’ :
(Z,Mz) — (T, Mpex) and the 4-tuple

((Texv MT*”‘)) (Z7 MZ)a 7:/7 Z)

is an exact affine pre-widening. We call this pre-widening the exac-
tification of T" and we often denote it simply by T*.

(2) Let T := ((T,Mr),(Z,Mz),i,z) be a charted affine widening of
(X, M) over (SpfV,N) with respect to Cyp. Let T'= Spf A, Z =
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Spec B and let (Rp — Mp,Sz — Mz, R = S) be the restric-
tion of C to i. Then we put R := (a®)7!(R), A" := A Qyp
ZR|, I := Ker(A' — B), T = li_r)nnSpec (A’/I") and let
Mrex be the log structure associated to the homomorphism P —
A —s lﬂln A'/I"™. Then the morphism ¢ factors through the ex-
act closed immersion i’ : (Z, Mz) — (T, Mpex) and the 4-tuple
(T, Myex), (Z,Mz),d, z) is an exact affine widening. We call this
widening the exactification of 1" and we often denote it simply by
T.

In each case, we have the canonical morphism 7% — T.

REMARK 2.1.15.

(1) The exactification T°* depends on the chart C.

(2) For a charted affine pre-widening, the associated widening has a
chart naturally. Then one can check easily that the association from
a charted affine pre-widening to a charted affine widening commutes
with the formation of the exactification.

Then one can check easily the following proposition. We omit the proof,
since this is the immediate consequence of [Kk, (5.8)].

PROPOSITION 2.1.16. Let the notations be as in Definitions 2.1.13 and
2.1.14. For a charted affine widening T, the canonical morphism T — T

induces the isomorphism hpex — hp of sheaves on (X/V)lc%gnv,T.

Now we define the restricted log convergent site.

DEFINITION 2.1.17. Let (X, M) N (Speck, N) < (SpfV,N) be as
in the beginning of this section and let 7 be one of the words {Zar(=
Zariski), et(= etale)}. For a (pre-)widening T, we define the restricted log
convergent site ((X, M)/(Spf V., N))conv,r|7 (or (X/V)lc%%v,T|T for short) as
follows: The objects are the enlargements 7" endowed with a morphism

T" — T of (pre-)widenings. The morphisms are the morphisms of enlarge-
ments over 1. A family of morphisms over T’

{g/\ = (gl,)\,QQ,A) : ((T£7MT§\)7 (ZS\7MZS\)7Z/)\7 Z/k) I ((T/7 MT’)? (ZlfMZ’)zilVZ/)}AEA

is a covering if the following conditions are satisfied:
(1) g \Mp = My holds for any A € A.
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(2) The family of morphisms {gi ) : 75, — T’} is a covering with
respect to 7-topology on T".

(3) (23, Myy) is isomorphic to (I, Mr;) Xg, (17 My (2, Mz) via
the morphism induced by 7} and g3 .

REMARK 2.1.18. One can check easily that the topos (X/V )&,
sociated to the site (X/ V)lc%%\,;h is equivalent to the category of sheaves F

T aS-

on (X/ V)};%gnv,T endowed with a morphism of sheaves E — hp. In partic-
ular, for a pre-widening T, the site (X/ V)L%%VJ\T is canonically equivalent

to (X/ V)L%%V,T where T is the associated widening of T'.

T

We can define the notion of isocrystals on restricted log convergent site
in the same way as in the case of usual log convergent site:

DErFINITION 2.1.19. Let the notations be as above. Then, an isocrystal

on the restricted log convergent site (X/ V)é%%V,T\T is a sheaf £ on the site

(X/V)98, .| satisfying the following conditions:

(1) For any enlargement 7" over T, the sheaf £ on T/ induced by & is
an isocoherent sheaf.

(2) For any morphism f : T” — T’ of enlargements over T', the ho-
momorphism f*Ep — Epn of sheaves on T induced by & is an
isomorphism.

We denote the category of isocrystals on the restricted log convergent
site (X, M)/(SpfV,N))conv,r|7 by Lconv,-((X,M)/(Spf V,N)|r). When
there are no confusions on log structures, we will denote it simply by
Iconv,‘r((X/V)log|T)'

Now we remark two basic properties on the cohomology of sheaves on
log convergent site which we need later.

The first one is the cohomological descent. Let ¢ : (Speck,N) —
(Spf V, N) be the canonical exact closed immersion in the beginning of this
section and let (X(®), M(®) be a simplicial fine log scheme over (Speck, N)
such that X is of finite type over k for each n. Then, by Saint-Donat
[SD], we can define the log convergent topos of the simplicial log scheme
(X M©®) over (SpfV,N) as the category of sections of the bifibered
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topos
[T, M) /(Spt V, N)) oo, — AP,
neN

where A°P denotes the opposite category of the category of simplices. We
denote it by (X(®)/ V)é%%vw r. Then we have the following proposition:

PRrOPOSITION 2.1.20. Let (X,M) — (Speck,N) — (SpfV,N) be
as in the beginning of this section and let T be one of the words {Zar(=
Zariski), et(= etale)}. Let g : X®) — X be a hypercovering of X with
respect to T-topology and put M(®) := M. Let

0= (6.,07") : (X V), — (X/V)&es
be the morphism of topoi defined by 6,(E(®)) = Ker(gﬁO)E(O) = gil)E(l)),
0~ (E)D) .= ¢O—YE) (i = 0,1) (where g is the homomorphism X —
X), 0=Y(E)D := 0, (i >1). Then, for any abelian sheaf E on (X/V )5y,
the canonical homomorphism

E — RO0T'E

is an isomorphism in the derived category of the category of abelian sheaves
log
on (X/V)conv,r-

PROOF. Let us take an enlargement T := (T, Mr),(Z,Mz),i,z) of
(X, M) over (SpfV,N) and for n € N, define an enlargement 7 :=
(T, My, (Z), Myay), i, 200) of (XM M™) over (SpfV,N) as
follows: Z(™ is the scheme Z x x X (™), M 5y is the pull-back of Mz to ACH
2(" is the projection (Z™), My,wy) — (X, ™), T is the unique for-
mal V-scheme which is formally etale over T satisfying T xp Z = 2™,
My is the pull-back of My to T and (™ is the pull-back of i by the
morphism (7™, Mpwmy) — (T, Mr). Then, as formal schemes, we have a
hypercovering h : T(®) — T with respect to T-topology.

Now let ¢ := (ps, 1) : T~ T> be the morphism of topoi
induced by A and let

US:) : (X(o)/v)log,w _ Tﬁ.)’N,

conv,T

Uyt (X/V)08~ T

conv,T
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be ‘the functors of the evaluation’, which are exact by definition. Then one
can check the equalities

(2.1.3) Vs O W' = u, 00,
(2.1.4) W op ! = o o u,.

Note that uS:) sends injectives to injectives: Indeed, ufk') is the compos-
ite of the functors j=! : (X&) V)&, — (X&) /V)&X | and v, :
(X(°)/V)lc%gﬁ‘:T|T<.> — TT(°)’N, where j7! is the canonical restriction and v,
is again the functor of evaluation. Then one can see, as in the case with-
out log structures ([Og2]), that both j~! and v, admit exact left adjoint
functors. Hence they send injectives to injectives. So the same is true also
for the functor u.. Hence, by Leray spectral sequence, the equality (2.1.3)
implies the equality

(2.1.5) Ry, o ul® = u, o RY,.

By the equalities (2.1.4) and (2.1.5), we have the following equality for an
abelian sheaf E on (X/V a8, .

u (RO0'E) = Rp, (u” 0 071E)
= Rp.o ' (u.E)
= us F,

where the last equality follows from the cohomological descent for the hy-
percovering with respect to 7-topology. Since the above equality holds for
any enlargement 7', we have the isomorphism RO,07'FE = E, as desired. [

The second one is the comparison of the cohomology of isocrystals on
(X/V)e2, o and (X/V)E (cf. [Be-Br-Me, (1.1.19))).

PROPOSITION 2.1.21. Let (X, M) —L (Speck, N) — (Spt V, N) be as
above and let T := ((T, Mr),(Z,Mz),i,z) be a (pre-)widening of (X, M)
over (Spf V, N). Let us denote the canonical morphism of topoi

(X/V eomres — (X/ V)

conv,et conv,Zar

(resp. (X/V)aameretlt — (X/V)eome zaulr )

conv,et conv,Zar
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by €. Then:

(1) for any E € Leony.et((X/V)18) (resp. E € Ionyet((X/V)98|7)), we
have Re F = e, F.
(2) The functor E — €. E induces the equivalence of categories

ICOHV,et((X/V)lOg) - COHV,Zar((X/V)log)
(Tesp. Iconvyet((X/V)lho) = conv,Zar((X/V)log|T) )

PROOF. RY%,FE is the sheaf associated to the presheaf T
HY(X/V ) tl7 B) (vesp. (T — T) = HU(X/V) Gy eilr, E)). So

conv,et conv,et
it suffices to prove the equations

E(T") g=0
It ’ )
OOVl ) = { | e
for an enlargement 7" := ((T',My/),(Z',Mz/),d',2") such that T’ is

affine. The case ¢ = 0 is obvious. By [SGA4, V 4.3, III 4.1] (see also
[Mi, I11.2.12]), it suffices to prove the vanishing of the Cech cohomology
HI(X/V)8 |1, E) = 0(¢q > 0) for any enlargement T” as above. Let

conv,et
U = {S; — T'}ier be a covering in (X/V)L%gmwt such that each S;
is an affine formal V-scheme and |I| is finite. Since any covering of T”
has a refinement by a covering of this type, it suffices to prove the van-
ishing HY(U,E) = 0(q > 0). Put 7" := SpfA, [lic; S := SpfB and
E(T") := M = K ®y N, where N is a finitely generated A-module. Since
E is an isocrystal, H9(U, E) is the ¢g-th cohomology of the complex

C*:=[0—M— MsB— MABAB — ---].

(Here ® means the p-adically completed tensor product.) Put N, :=
N/p"N, A, := A/p"A, B := B/p"B and let C; be the complex

0_>Nn_>Nn®Aan_>Nn®Aan®AanH"'

Then we have H(Cy) = K ®y H(lim Cy). Since {Cy}72, satisfies the

n=1
Mittag-Leffler condition, we have the exact sequence

0 — lim! HY(C?) — H!(lim C?) — lim H?(C?) — 0.
“—n — —n
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Moreover, we have HY(C%) = N,,, HY(C2) = 0(q > 0), since B, is faith-

fully flat over A,. Hence HY ann Cr) = 0 holds for ¢ > 0. So we have

HY(U,E)=0(q > 0) and the proof of the assertion (1) is finished.
Next we prove the assertion (2). Let E be an object in (X/V)1%8

conv,Zar
(resp. (X/ V)lc(z)iv7Zar|T). Then, by rigid analytic faithfully flat descent of
Gabber ([Ogl, (1.9)]), the presheaf on (X/V)lc‘z)gm,’et (resp. (X/V)lc‘z)gnvyet\qﬂ)

defined by 77 +— E(T") (resp. (T" — T) +— E(T" — T)) is an isocrystal on
(X/V')lff;‘iv’et (resp. (X/V)Looivﬁt‘T). Let us denote it by §(E). Then it is
obvious that the functor ¢ is the quasi-inverse of €,. [

Next, we recall the notion of the system of universal enlargements of
exact (pre-)widenings, which is a slight modification of that defined in [Shi,
(5.2.3)].

DEFINITION 2.1.22. Let (X, M) 1, (Speck, N) - (Spf V, N) be as
in the beginning of this section and let ((T', Mr),(Z, Myz),i,z) be an exact
(pre-)widening. Put Z’ := Ty xpZ and let Z be the ideal Ker(Op, — Oz).
For n € N, let Bz, (T) be the p-adically completed formal blow-up of Ty
with respect to the ideal 7Or, +I" and let T’z ,,(T") be the open set

{':L‘ € BZ;n(T) ’ (TFOTH +In) : OBZYH(T),.’IJ = TrOBZ,n(T)VT}

of Bz,(T). Let Ay, : Tz, (I') — T be the canonical morphism and let
Zy = X\;1(Z). Then the 4-tuple

TZ,n(T) = ((TZ,H(T)7MT)7 (vaMZ)vz’ﬂ — TZ,TL(T)7 (ZTMMZ) ﬁ) (Z7 MZ) = (X7 M))

is an enlargement for each n and the family {7z ,,(T’) },,en forms an inductive
system of enlargements. The morphisms \,,’s define the morphisms of (pre-
)widenings Tz ,(7') — T (n € N) which is compatible with transition
morphisms of the inductive system {77, (T)}nen. We call this inductive
system the system of universal enlargements of 7.

Then we have the following (cf. [Shi, (5.2.4)]):

LEMMA 2.1.23. Let the notations be as above and let T' := ((T', M),
(Z',Mz),i',2") be an enlargement. Then a morphism g : T" — T in
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Q((X/V)°8) factors through Tz, (T) for some n. Moreover, such a fac-
torization T" — Tz ,(Z) is unique as a morphism to the inductive system

{TZ,n (T) }nEN .

Proor. Put Ty := ((Ta,Mr),(Z',Myz),i xp Ta,(Z',My) —
(Z,Mz) = (X, M)). Then, since T" is flat over SpfV, g factors through
g : T — Ty. Put J := Ker(Opr — Og). Then J" C wOp holds
for some n. Hence we have (¢')*(7Or, +Z") = 7Op/. So, by the univer-
sality of blow-up, ¢’ : 7" — Ty factors through 7" — T ,(T') for some
n, and one can easily check that this defines a morphism of enlargements.
The uniqueness of the factorization also follows from the universality of
blow-up.

The above lemma implies that the canonical morphism of sheaves
hi>n hr, . (ry — hr is an isomorphism. Moreover, the following stronger
n Tz,

result is known ([Og2, (0.2.2)]).

LEMMA 2.1.24. With the notation above, the morphism of sheaves
hr, .y — hr is injective.

PROOF. Since the proof is the same as that in [Og2, (0.2.2)], we omit
it. (Note that we have assumed that the formal V-scheme T” which appears
in an enlargement 7" := ((T", My),(Z', My/),4',2") is assumed to be flat
over Spf V' in this paper. We need this assumption in the proof of [Og2,
(0.2.2)]. This is the reason why we imposed this condition.) O

We recall the explicit description of T ,(T") in affine case, following
[Ogl, (2.3), (2.6.2)]. (The proof is easy and left to the reader.) Let T :=
(T, Mr),(Z,Mz),i,z) be an exact (pre-)widening and assume that T :=
Spf A is affine. Put I :=T'(T,Z) and take a generator gi,--- ,g, of I. For
m = (mlv"' 7m7") € NT? put |’I’)’L‘ = (mlv"' 7m7“) and gm = g;nl g:’nr
Then we have

Tz,n(T) = Spf (Altm (m € N7, |m| = n)]/(ntm — g™ (m € N7, |m| = n)) + (p-torsion))”,
where " denotes the p-adic completion. Note that one has
K ®vy F(TZ,n(T):OTZJL(T)) S K@ (Alt1, - ,tr]/(mty — g7, ,wty — gl*) + (p-torsion))”.

As a consequence of the above description, we can prove the following,
which is also due to Ogus ([Ogl, (2.6.1)]):
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LEMMA 2.1.25. Let (X,M) — (Speck, N) — (SpfV, N) be as above
and let T be a pre-widening. Denote the widening associated to T by T.

~

Then we have the canonical isomorphism of enlargements Tz, (1) —

Ty n(T).

PrOOF. We may reduce to the case that T' = Spf A is affine. Let

1,9, (1 <i <r) be as above and denote the I-adic completion of A by A.
It suffices to prove that the canonical homomorphism of rings

B = (Altm (m € N" |m| =n)]/(xtm — g™ (m € N",|m| = n)) + (p-torsion))"
— B’ := (Altm (m € N",|m| = n)]/(tm — g™ (m € N7, |m| = n)) + (p-torsion))"

is an isomorphism. Since I" B is contained in the ideal 7B C B, the canon-
ical homomorphism A — B uniquely extends to the continuous homomor-
phism A — B. We can extend this homomorphism to the homomorphism
B’ — B by sending t,, to t,,. It is obvious that this homomorphism gives
the inverse of the above homomorphism. [J

We recall some basic properties of system of enlargements which we need
later. The first one is essentially proved in [Og2, (0.2.4)].

LEMMA 2.1.26. Let
g: ((T/7MT’)7 (ZlvMZ’)7i/7z/) - ((T7 MT)a (Z, Mz),i,z)

be a morphism of (pre-)widenings and assume g~*(Z) = Z' holds. Then g
induces the natural isomorphism of enlargements

Tzr(T) — Tzn(T) 1y Ty
If T" — T is flat, we have the isomorphism

TZ’,n’ (T) AN TZ,n(T) XT T

ProoOF. This is obvious from the universality of blow-ups and the fact
that Tq x7 1" = T} holds when T" — T is flat. O
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The next proposition, which is also due to Ogus ([Og2, (0.2.5), (0.2.6)]),
establishes the influence of the choice of Z to the construction of the system
of universal enlargement.

PROPOSITION 2.1.27. Let (X, M) — (Speck,N) — (Spf V,N) be as
in the beginning of this section. Let ((T, Mr),(Z,Mz),i,2) and ((T, Mr),
(Z',My),i,2") be exact (pre-)widenings of (X, M) over (SpfV,N) such
that Z C Z' and z = 2|z hold. Assume that there exists an ideal J of Orp
and m € N such that J™ ' C 7#Op and I; C Iy + J holds, where 1,1,
are the defining ideals of Z, Z' in T, respectively. Denote the canonical
morphism of enlargements

((T, MT), (Z, Mz),’i, Z) — ((T, MT), (Z,, MZ/), i/, Z/)

induced by idy and the closed immersion Z — Z' by g and denote the

morphism of enlargements Tz ,(T") — Tz ,,(T') induced by g by gn. Then:

(1) There exists a homomorphism of formal schemes hy, : Ty ,(T) —
T2 m4n(T') such that the composites

hn m—+n
Ty (T) = Tgmin(T) ™5 Tyt i (T),
n hn
Tyn(T) 2 Ty o (T) = Tz (T),

coincide with the canonical transition morphisms. (Note that hy,
s just a morphism of formal schemes and it is not a morphism of
enlargements.)
(2) For an isocrystal E on (X/V)}:%gnv,r, we have the natural isomor-
phism
¢nhyEr, 1) — Er,, (1)

such that the composites

hy E(gm4n)
—

* * * Pn
hn o gm+nETZ/,m+n(T) hnETZ,m+n(T) - ETZ’,n(T)’

7k InPn E(gn)
gn o hnETZ’m+n(T) I g’I’LETZ/m((T) - ETZ,?‘L(T)7
coincide with the isomorphisms induced by the canonical morphism
of enlargements Tz n(T) — Tz min(T) and Tz,(T) —
Tz m+n(T), respectively.
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PRrROOF. First we prove the assertion (1). Since we have inclusions of
ideals

71O7 + I C 7O0p + (I + J)™" C 7O + I + J™ M € nOp + 1%,
Z Z

we obtain the morphism h,, by the universality of blow-up. One can check
easily the properties in the statement.

Next we prove the assertion (2). Let Z, be the inverse image of Z in
Tz n(T) and let M5 be the pull-back of the log structure Mr to Z,. Then
we have the diagram of enlargements

TZ,m+n(T) = ((TZ,m—&-n(T)» Mszli(T))’ (Zmtn, MZm+n))
= Tgmin(T) = (T2 0(T), Mz, (1))s (Zny M)

o Ty o(T) = (T n(T), Mz, (1)), (Zns M),

where h,, is the morphism of enlargements induced by h,, in the assertion

1) and j is the morphism of enlargements induced by idt , (7 and the
Z’,n( )

closed immersion Z,, < Z'. Then, for an isocrystal F on (X/ V)L%%VJ, we

have the isomorphisms

Mo Ety () — By = J By, (1) = By (1)

So we obtain the isomorphism hy, Er, . (1) = Er,, (1) We define ¢,, as
this isomorphism. It is easy to check that the isomorphism ¢,, satisfies the
desired properties. [

Finally we recall the definition and an acyclicity property of direct limit
site T for an exact widening 7', which is due to Ogus [Og2, §3].

DEFINITION 2.1.28. Let T be an exact widening and {7, :=
T7n(T)}nen be the system of universal enlargements of 7. Then we define
the direct limit site 7' as follows: Objects are the open sets of some T),.
For open sets U C T, and V' C T, Homg(U, V) is empty unless n < m
and in the case n < m, Homz(U, V') is defined to be the set of morphisms
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f: U — V which commutes with the transition morphism 7,, — T},. (In
particular, Hom (U, V') consists of at most one element.) The coverings are
defined by Zarisi topology for each object.

We define the structure sheaf Oz by Ox(U) :=I'(U, Op).

REMARK 2.1.29. In the above definition, we have changed the notation
slightly from that in [Og2]. In the paper [0g2], the notation 7" is used to
denote the topos associated to the direct limit site. In this papar, we will
use the notation T' to express the site and the associated topos will be
denoted by .

Note that giving a sheaf E on the site T is equivalent to giving a com-
patible family {E, },, where E, is a sheaf on T, 7a;.

DEFINITION 2.1.30. A sheaf of K ® Oz-modules E is called crystalline
if the following condition is satisfied: For any transition map ¢ : T, — T}y,
the transition map of sheaves ¢ ~'E,, — E,, induces an isomorphism

OTn ®w_IOTm QpilEm ;) En,
where E,, I, are the sheaves on T}, zar, Tm zar induced by E.

We define the morphism of topoi
v T —s 17+

as follows: ~* is the functor defined by the pull-back and ~, is the functor
of taking the inverse limit of the direct image. Then one has the following
acyclicity, which is due to Ogus ([Og2, (0.3.7)]).

PROPOSITION 2.1.31. Let E be a crystalline sheaf of K®y Oz-modules.
Then Ri~,.E =0 holds for g > 0.

PrROOF. We omit the proof, since it is the same as that in [Og2,
(0.3.7)]. O
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2.2. Analytic cohomology of log schemes

In this section, we extend the notion of tubular neighborhood to the case
of closed immersions of fine log schemes into a fine log formal schemes sat-
isfying certain condition. Then, for an isocrystal on log convergent site, we
define the associated log de Rham complex on some tubular neighborhood.
Finally, we give a definition of analytic cohomology (in rigid analytic sense)
of a fine log scheme which has a locally free isocrystal on log convergent
site as coefficient.

We extend the notion of tubular neighborhood to the case of closed im-
mersions of fine log schemes into a fine log formal schemes satisfying certain
condition. First, let us consider the following situation: Let (X, M) be a
fine log scheme over k and let i : (X, M) — (P, L) be a closed immersion of
(X, M) into a Noetherian fine log formal scheme (P, L) over Spf V' whose
scheme of definition is of finite type over Spf V. (Note that (P, L) is not
necessarily p-adic.) Let us consider the following condition on i:

(%) There exists (at least one) factorization of i of the form
(xX.0M0) = (P, L) L (P 1),

where 4’ is an exact closed immersion and f’ is a formally log etale mor-
phism.

REMARK 2.2.1. If i admits a chart (Rp — L,Sx — M,R = S) such
that o8P is surjective, the condition (x) is satisfied. Indeed, if we put R’ :=
(a8P)~1(S) and define (P’, L') by

P':= PXgpiz,(rySPf{R'},
L' := the pull back of the canonical log structure on Spf Z,{R'},

then there exists a factorization as in (x).
Let us note the following lemma:

LEMMA 2.2.2. Leti: (X,M) — (P,L) be as above and assume that i
satisfies the condition (x). Let P’ be the completion of P' along X. Then
the rigid analytic space Py is independent of the choice of the factorization
as in (*).
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Proor. Let

x. M) 5 ey LS (P

be another factorization as in (x). Put (P L") := ((P,L)Xpy)
(P", ")), Then we have the factorization

(X, M) L5 (P°, 1% s (P, L)

defined by j =4’ x ", h = f' opry = f” o pry. Then h is formally log etale
and j is a locally closed immersion. By shrinking P°, we may assume that
j is a closed immersion.

Now we check that j is an exact closed immersion. We only have to
check that j*LY is isomorphic to M. By definition, j*L° is the push-out of
the following diagram in the category of fine log structures on X:

(i/)*LI — Z*L SN ('ill)*L,/.

But the diagram is completed into the following commutative diagram:

a

(i/)*L/ M

I K

’L*L (i//)*L,/,

where a and b are isomorphisms. So one can see that j*L° is isomorphic to
M.
Let us consider the following commutative diagram

(X, M) —— (P° LY

‘ lprl

,L‘/

(X,M) —— (P, L.

Then pr, is formally log etale. Now note that

P iy i={x € P?|(priL’)z — L3}

prq-triv
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is open in P ([Shi, (2.3.1)]) and contains X. So, by shrinking P°, we may
assume that the morphism pr; is formally etale (in the classical sense).

Let P°, P’ be the completion of P°, P’ along X. We prove that the
morphism pr; : PY — P’ induced by pry is an isomorphism. It suffices
to prove that it is formally etale. Let P° be the completion of P° along
X'":= X xp P°. Then P° — P’ is formally etale. On the other hand, the
morphism X’ — X is etale and has a section. Hence X’ contains X as
a summand. Hence P° contains P° as a summand, and so pry is formally
etale.

As a consequence, we have the isomorphism Po = PI’( By the same
argument, we have the isomorphism Po = Pl’é So the assertion is proved. [

Let i : (X,M) — (P,L) be a closed immersion of a fine log scheme
over k into a Noetherian fine log formal scheme over Spf V' whose scheme
of definition is of finite type over Spf V' which satisfies the condition (x).
Then we define the tubular neighborhood (X, M)[(p 1) of (X, M) in (P, L)
by |(X, M)[(p,r):= P}, where P’ is as in (¥). We have the specialization
map

(X, M) () — Pl= X)
(where P is the completion of P along X) defined as the composite
P

REMARK 2.2.3. The above definition of tubular neighborhood is func-
torial in the following case: Let us assume given a diagram

(X1, My) —2— (P, Ly)

QXl gPl
(X9, M) —2— (Py, Ly)

(where 141,49 are the closed immersion as i above) and let us assume that
there exists (at least one) diagram

-/ f/
(X1, M1) —2— (P{,L}) —— (P1,Ly)

gxl gp/l QPJ(
-/ f/
(Xo, My) —2— (Py,Lh) —2— (Py,Lo),
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where the horizontal lines are factorizations of i1, 75 as in the factorization
in (%). Then we have the morphism of tubular neighborhoods

(X1, M1)[(py, Ly —1(X2, M2)[(p,,L,)-

Next we extend the definition of tubular neighborhood to more general
cases.

PROPOSITION 2.2.4. Let Z be the category of locally closed immersions
i:(X,M)— (P,L) of a fine log scheme over k into a Noetherian fine log
formal scheme over Spf V' whose scheme of definition is of finite type over
Spf V' satisfying the following condition:

() There exists an open covering P = |J,c; Pa such that the
morphisms (X, M) X(pr) (Pa; L) = (Pa, L) are closed

immersions and they satisfy the condition (x).
Then we have the unique functor

Z — (Rigid analytic space with morphism of sites);

(X, M) = (P, L)) = (J(X, M)[(p.y,sp :)(X, M)[(p.r)— P),

(where P is the completion of P along X) satisfying the following conditions:

(1) When i satisfies the condition (x), then |(X, M)[p,r) and sp coin-
cide with the definition given above. If the morphism in C

(X1, My) =5 (Pr, L)) — (X2, M) =25 (Py, Ly))

satisfies the condition in Remark 2.2.3, then the morphism
(X1, M1)[(py, ) —1(X2, M2)[(p,,1,) coincides with the one given in
Remark 2.2.3.

(2) If P' C P is an open sub formal scheme and X' = X xp P’ holds,
(X', M)[(pr 1y is canonically identical with the admissible open set
sp~L(P'), where P’ is the completion of P' along X'.

(3) If P = Ugaer Pa is an open covering and Xo = X xp P, holds,
[(X, M) [(p,0y= Uaer)(Xa, M)[(p,.1) is an admissible covering.
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PRrROOF. Take an open covering P = |J,c; Po such that the closed im-
mersion (X, M) := (X, M) X(p) (Pa, L) = (Pa, L) satisfies the condition
(%), and for a, @ € I, put P,y := Py N Py, X := Xo N Xo. Then the
closed immersion (X, M) < (Puas, L) also satisfies the condition (). By
the conditions, the rigid analytic space |(X, M)[pr) should be the reunion
of |(Xa, M)[(p,,z)’s which are glued along |(Xaa, M)[(p, , r)’s.- So it is
unique. Conversely, we can define the rigid analytic space |(X, M)[pr) by
gluing |(Xa, M)[(p,.1)’s along [(Xaar, M)[(p, ,1)’s and we can also define
the specialization map |(X, M)[p,r)— P by gluing (X M)[(py,0)—
pa’s, where P, is the completion of P, along X,. So the assertion is
proved. [

DEFINITION 2.2.5. Leti: (X, M) — (P, L) be a closed immersion of a
fine log scheme over k into a Noetherian fine log formal scheme over Spf V'
whose scheme of definition is of finite type over Spf V' which belongs to the
category Z in Proposition 2.2.4. Then we define the tubular neighborhood
(X, M)[(p,y of (X, M) in (P, L) as the rigid analytic space in Proposition
2.2.4. We call the morphism of sites (X, M)[p)— P in Proposition 2.2.4
the specialization map. We denote the tubular neighborhood (X, M)|[(p )

simply by | X [ﬂ‘;g , where there will be no confusions on log structures.

REMARK 2.2.6. Leti: (X, M) — (P, L) be alocally closed immersion
of a fine log scheme over k into a Noetherian fine log formal scheme over
Spf V' whose scheme of definition is of finite type over SpfV and assume
that (X, M) and (P, L) are of Zariski type. Then, by Proposition 1.1.2
and Remark 2.2.1, the closed immersion ¢ belongs to the category Z in
Proposition 2.2.4. So we can define the tubular neighborhood |(X, M)[(p,1)-

Next, for an isocrystal on log convergent site, we define the associated log
de Rham complex on tubular neighborhood. Let us consider the following
situation:

(X,M) —— (P,L)
(2.2.1) fl gl

(Speck, N) —— (SpfV,N),
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where N is a fine log structure on SpfV, ¢ is the canonical exact closed
immersion, (X, M) is a fine log scheme of finite type over k, (P, L) is a
fine log formal V-scheme over (Spf V, N), i is a closed immersion and ¢ is a
formally log smooth morphism. Assume moreover that (X, M) and (P, L)
are of Zariski type and that (SpfV, N) admits a chart.

For n € N, let (P(n), L(n)) be the (n + 1)-fold fiber product of (P, L)
over (SpfV,N) and let i(n) be the locally closed immersion (X, M) —
(P(n), L(n)) induced by i. Then, since (P(n), L(n)) is of Zariski type (we
use the assumption that (Spf V, N) admits a chart), i(n) is in the category
Z in Proposition 2.2.4. Hence we can define the tubular neighborhood

]X[I;;gn :=](X, M)[(P(n),L(n))- Moreover, the projections
(n)

pi s (P(1),L(1)) — (P, L) (i=1,2),
pij : (P(2),L(2)) — (P(1),L(1)) (1<i<j<3),

and the diagonal morphism
induce the morphisms of rigid analytic spaces

pi )X [R5, —IX[® (i=1,2),

P(1)
Pij :]X[?%Z)%}X[Ig%l) (I1<i<j<3),
A )X [pE—]X [

respectively. Let Str”((X, M) < (P, L)/(Spf V, N)) be the category of pairs

(E,€), where E is a coherent O, ts-module and € is an O

X[l |x[8 -linear

P(1)
isomorphism p5E —— piE satisfying A*(e) = id, pjs(€) o p3s(e) = piz(e)-
Then we have the following:

PROPOSITION 2.2.7. Let the notations be as above. Then we have the
canonical, functorial equivalence of categories

Leony et (X, M)/ (Spf V, N)) — Str"((X, M) — (P, L)/(Spf V. N)).
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PROOF. Since both sides satisfy the descent for Zariski open covering
of P, it suffices to construct the canonical functorial functor

Leonv,et((X, M)/(Spt V, N))—Str"((X, M) — (P, L)/(Spt V, N))

inducing an equivalence of categories in the case where the diagram

(X, M) <> (P,L) -2 (Spf V, N)

admits a chart C := (Qv — N, Rp — L,Sx — M,Q % R % S) such that
(5P is surjective.

For n € N, let R(n) be the (n + 1)-fold push-out of R over @ in the
category of fine monoids and let a(n) : Q — R(n), B(n) : R(n) — S be
the monoid homomorphism defined by ¢ — (a(q),1, -+ ,1),(r1, -+ ,m)
B(ry---ry), respectively. Then (3(n)®P is surjective and the diagram

(x, M) & (P(n), L(n)) — (SpEV, N)

admits the chart C(n) := (Qv — N,R(n)pyu) — L,Sx — M,Q )
R(n) ") 3. ) )

For n € N, put R(n) := (B(n)®)"1(S), Pn) = P(n)%spez, (o)
SpfZp,{R(n)} and let L(n) be the log structure on P(n) defined as the

pull-back of the canonical log structure on Spf Z,{R(n)}. Then the closed
immersion i(n) factors as

.00 & (P(n). L(n)) "% (P(n), L(n)).

where i(n) is an exact closed immersion and f'(n) is formally log etale.
Let us note that P(n) := ((P(n),L(n)),(X,M),i(n),id) is an exact

widening. Let {Tx,(P(n))} be the system of universal enlargements of
P(n). Then the projections p; (i = 1,2), p;; (1 < i < j < 3) and the
diagonal morphism A’ induce the morphisms of enlargements

Pim : Tx.m(P(1)) — Tx.m(P(0)) =1,2
. ) _

(¢
Pijm : Txm(P(2)) — Tx.m(P(1)) (1<i<j
A Txn(P(0)) — Tx m(P(1)).

IN T

3)’
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Let Str'((X, M) — (P, L)/(Spf V, N)) be the category of compatible family
of isocoherent sheaves E,,, on T (P(0)) endowed with compatible isomor-
phisms

€m : 2337mE — @imE

satisfying A (e;,) = id, Pi2,m(€m) © P33 m(€m) = Pig 1 (€m). Then we have
the following:
CrLAIM. We have the canonical equivalence of categories

(22.2) Lomet (X, M)/(Spt V, N)) <> Str'((X, M) — (P.L)/(Spt V, V)

defined by E — ({Er,  ponh Pom(Ery, b)) = Ere,.pa) <
Pim(Ery . (P0))})-

ProOOF OF CLAIM. Note that we have the canonical equivalence

Str'((X, M) — (P, L)/(Spf V, N))
~ Str'((X, M) — (P(0), L(0))/(Spf V, N)),

and the equivalence between the categories Str'((X, M) — (P(0),L(0))/
(SpftV, N)) and Iconv.et((X,M)/(SpfV,N)) (via the functor as above) is
already shown in [Shi, (5.2.6)]. So we are done. [J

Now we construct the equivalence of categories

(2.2.3) Str’((X, M) — (P,L)/(Spf V, N))
— Str”((X, M) — (P,L)/(Spf V, N)).

To construct it, we need the following claim:

CLAIM. There exists a canonical and functorial equivalence of cate-
gories

tible family of
compatibie Aty o coherent
® : | isocoherent sheaves on | = ‘

N (9] X8 -module
{Tx;m(P(n))}m

P(n)
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Proor OF CLAIM. Since both sides admit the descent property
for Zariski covering of P(n), we may assume that P(n) is affine. Then

Tx m(P(n)) is also affine. Put Tx,,(P(n)) := Spf Ay,. Then, by the ex-
plicit description of the ring A,, which we gave in the previous section, we
have the isomorphism

(2.2.4) Spm (K @v Am) Z1X [ prji/m:
and the morphism of rigid analytic spaces

Spm (K ®y A,,) — Spm (K @y A1)
corresponds to the natural inclusion

]X[f’(n),\wll/m ‘H]X[ﬁ(n),wl/(mm
via the isomorphism (2.2.4). So we have the equivalences of categories

compatible family of compatible family o

isocoherent sheaves on | ~ | finitely generated

{Tx.m(P(n)}m K ®y Ap-modules
(compatible family of

coherent O) x| —modules>

P(n),|x|t/m
coherent
= O]X[P(m-module )
By definition of tubular neighborhood, we have | X [l;%n):]X [p(n)- So the
proof of the claim is finished. (I

We construct the functor (2.2.3) by ({Ew},{em}) — (P{En}),
®({€})). Then, by the claim, this functor is an equivalence of categories.
Combining the functors (2.2.2) and (2.2.3), we obtain the functor

Leonv.et((X, M)/(Spf V. N)) — Str"((X, M) — (P, L)/(Spf V. N))
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giving the equivalence of categories. Omne can check that this functor is
functorial with respect to the diagram

(X,M) — (P,L) — (Spf V, N).
So the proof of the proposition is finished. [

Let (X,M) — (P,L) — (SpfV,N) be as above. For n € N, let
(P™, L™) be the n-th log infinitesimal neighborhood of (P, L) in (P(1), L(1)).
Since (X, M) and (P(1), L(1)) are of Zariski type, one can see that (P", L™)
is also of Zariski type. So the closed immersion (X, M) — (P", L") is in
the category Z and hence we can define the tubular neighborhood | X [IP?%.

Let

ot (P", L") — (P", L") (neN),
6m,n : (PmaLm) X(P,L) (PnaLn) - (Pm—&-n’Lm—i-n) (m7n € N)

be the morphisms defined in [Shi, §3.2]. Let us define the data
X = (O, {Pn}n€N7 {pl,n}nEN’ {pZ,n}nGNa {ﬂ'n}nGNv {(%Lﬁn}n,mEN) {Trll}nGN)

as follows: Let O := O, 10z and P" := O

1X[p 1X[0%
morphic to | X[, we can regard P" as a sheaf on | X[8.) Let pi, (i =
1,2,n € N) be the homomorphism O — P" corresponding to the mor-
phism | X% —] X[ induced by the i-th projection (P", L") — (P, L),
let m, be the homomorphism P" — O corresponding to the morphism
| X [I;;g%]X [118% induced by the closed immersion (P,L) — (P™, L"), let
7). be the homomorphism P" — P™ corresponding to the morphism
| X [1185 —]X [11‘3% induced by 7, above and let 4, ,, : P"" — P @0 P"

be the morphism corresponding to the morphism ]X [I;;,gnxp pn—X [1;%1 n

(Since ]X[%8 is homeo-

induced by 6y, above. Then we have the following:

LEMMA 2.2.8. The data X is a differentially log smooth formal

groupoid of characteristic zero on the topos associated to ]X[l,?g.

PROOF. It is easy to check that the data X is a formal groupoid of
characteristic zero. We prove that it is differentially log smooth.



66 Atsushi SHIHO

One can see easily that it suffices to prove the following claim: Zariski
locally on P, there exists an integer m and elements {§j7n};-”:1 of Opr which
satisfy the following conditions:

(1) For n’ > n, the transition map Op, — Opn sends ;s to &jp.

(2) There exists the canonical isomorphism of left Op-algebras

Opn = Opléjn (1 < j <m)]/(In)"*,

where ITL = (él,m e 7£m,n) C OP[gj,n (1 < .7 < m)]

(3) 5?n,n(§j,m+n + 1) = (gj,m + 1) ® (éj,n + 1) holds.

Since (P, L) is of Zariski type, we may assume that (P, L) admits a chart
¢ : Rp — L to prove the claim. Let w]lj n be the formal log differential
module of (P, L) over (Spf V,N).

Let us note that we can reduce to the following claim: Zarisi locally on P,
there exists elements r1,- -+ , 7, € R8P such that dlogry,--- ,dlogr,, form a
basis of wi, v+ Indeed, we have defined, in [Shi, §3.2], the compatible family
of elements (=1, ), € O3, (n € N) for x € L satisfying (z71,2); — 1 =
dlogz and 6%, (271, 2)min) = (271, 2)m @ (271, 2),. For s = s1s," €
REP (51,89 € R), define (s, 5), := (577, 51)n(s5 ", 52);, " (it is well-defined)

and put &, == (r71, 7j)n—1. Then the elements {ijn}gnzl satisfy the desired

conditions: The cjonditions (1) and (3) are easy to see and the condition (2)
can be verified in the same way as the proof of [Shi, (3.2.7) (1)].

Now we prove the claim in the previous paragraph. Since wllg v is locally
free, we may replace (P,L) — (SpfV,N) by (P xgpfv Speck,L) —
(Speck, N) to prove the claim. Put P; := P xgp¢y Speck. By [Kk, (1.7)],
the homomorphism

Op, ®z (L®°/N®) — w]lpl/k; a ® b adlogb
is surjective on P ¢;. On the other hand, the homomorphism
@gp . R%l’ SN Lgp/ng
is also surjective on Pj ¢;. So the composite

id® &P
Op, @7 RE 5" Op, @7 (L [N®) — wh 4,
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which we will denote by h, is surjective on Pj ¢¢. Since the sheaves Op, ®z
RE and wp, ,, are coherent, h is surjective as homomorphism of sheaves on
Pi 74r. Let x be a point in P;. Then

id® h:k(z) @z R — K(z) ®0p, w]lgl/k

is surjective. Let r1,--- ,7, € R®P be elements such that the images of
1@ r;’s by id ® h form a basis of k(z) ®op, w}ljl/k. Then, by Nakayama’s
lemma, there exists a Zariski neighborhood U of x such that the images of
1 ®r;’s by h|y form a basis of wllgl/k]U. So the claim is proved. [J

Note that the canonical morphism (P", L") — (P(1),L(1)) induces
the morphism of rigid analytic spaces | X [1]25 —]X [112%1), which we denote
by A,. Denote the homomorphism

Ailo log — O

n VIX[RE, IX[2%

by 0,.
Now let € be an object in Ieony.et((X/V)'°8) and let (E, €) be the corre-
sponding object in Str”((X, M) — (P,L)/(Spf V, N)). Then we define the
P"-linear isomorphism €, : P" ® E — E ® P" as the composite
ideAL e
AGlpsE % P 9,450

1XT

PreE="P" D00,870 1o An'piE

P(1)

log
P(1)

=F QP

Then {€, }nen is a stratification on E with respect to the formal groupoid
X. Hence, by Proposition 1.2.7, {¢,},, defines an integrable connection

wl

V:E—>E®o}x x[loe?

log
(p

1 g = Ker(P! — ). (Note that w! ., is the restriction of
1x s 1X[p
the coherent sheaf w}DK on Py which corresponds to the isocoherent sheaf

where w

K ®v wllj n via the equivalence of categories

isocoherent sheaves coherent sheaves
on P - '

on PK
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Then we define the log de Rham complex on | X [i;,’g

tal £ by the complex

associated to the isocrys-

DR(IX[22,€)

o \Y% 1 v ...V q V...
=0—-E>E ®O]X[1°g Uxpee T T E ®O]X “Ixtes T )

P

log
(p

where w]qX s is the g-th exterior power of w]IX s over O] x[los and we extend
V to
q q+1
E ®O1xﬂ{ig “Ixies T E ®O}Xﬂ;§g “ix s
by setting

x®@n— V(x) An+z®dn.

REMARK 2.2.9. Let (X, M) <> (P,L) -2 (SpfV, N) be as above and
assume that this diagram admits a chart (Qy — N,Rp — L,Sx —
M,Q — R — S) such that R8P — S®P is surjective. Let £ be an isocrys-

tal on (X/ V)L%%met. In this remark, we give a description of the complex

sp*DR(}X[llgg, €) which we need later.

Let (P,L) be (P(0),L(0)) in the proof of Proposition 2.2.7, and
let (P',L') be the first log infinitesimal neighborhood of (P,L) in
(p,i)ﬁ(spr,N)(P, L). Let ¢ : (P',L') — (P,L) (i = 1,2) be the i-th
projection and put X; := ¢q; 1(X). Then we have the following commuta-
tive diagram of exact pre-widenings for ¢ = 1, 2:

(P, LY, (X, M) S (P LY, (X, BY))

(fh»id)l (%qi)l
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Note that, as formal V-schemes, the objects in the above diagram are all
homeomorphic to X. So, from now on in this remark, we regard the sheaves
on them as sheaves on Xz,,.

By Lemma 2.1.26, we have the isomorphism

TX’m(P) X Pa,(ai)a Pﬂ = TXi’m(Pﬂ)'

So we have

Ere o =

Ny m (P1) ng,m(ﬁ) ®op Op1,

(2.2.5) N

TXQ,m

On the other hand, by Proposition 2.1.27, we have morphisms of formal
schemes

~ hm ~ d m ~
TX17m—1(P1) - TX,m(Pl) o TXz,m(Pl)ﬂ

such that {hy,}m and {da n }m are isomorphisms as homomorphisms of in-
ductive system of formal schemes, and we have a system of homomorphisms

— &

Pm  Epy (P Ty m1(PL)

induced by the composite ds ,, © hy, such that lin ©m is an isomorphism.
m
Via the isomorphisms (2.2.5), ¢, induce the homomorphism

Om : 0151 ®013 gT

em(P) T €1y (P) ®O5 Opr-

Note that (da,m o hm) ®o,, Op coincides with the canonical transition

morphism TX7m,1(P) — T Xm(f’) So 6, reduces to the canonical transi-

tion ETX,m(P) — ng,m_1(15) when we consider modulo K ®y w115/v. Let us
define

1 1
Vi € (p) T Eng e 1(P) 05 Wy = Ery Ly (P) BOP WY

by Viu(e) :=0p(1®e)—e®1. Put E' := liinm ng,m(ﬁ’)' Then V,,’s define

a homomorphism

V= @m Vm: E'— F' @0, wllg/v.
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We extend it to the diagram
DR := [OHE/_)E/(X’OP wP/V E'®0, w P/Vz"']

by extending V to

E' ®o, w;‘g/v — E' ®0, wg‘l,

by setting z @ n — V(z) An+ x & dn. Then we have the following:

CramM  The diagram DR forms a complex and it is identical with
sp, DR(X [, €).

ProOF OF CrLAIM. Here we only sketch the outline of proof. The
details are left to the reader as an exercise.

Let (E,€) be the object in Str’((X,M) — (P,L)/(SpfV,N)) corre-
sponding to € and let €; : p5E — PiE (where p; :]X[?%%]X[lﬁg is the
i-th projection) be the pull-back of € to | X [1;% Then it suffices to prove
that hm 0, is canonically identical with sp,e1. By definition, sp,e; is de-
ﬁned as the projective limit (with respect to m) of the compatible family

of diagrams

Tx,m(PY) ETX,m(fD) ®op Opr,y
and this diagram fits into the upper horizontal line of the following diagram:
Op1 ®op €y 1y = Epyp) €y P ©05 O
| | |
() T En ) T o)
where « is the homomorphism induced by h,, (by Proposition 2.1.27). By

taking the inverse limit of this diagram with respect to m, one can see that
an 0, is canonically identical with sp,e;. O
m
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Now we give the definition of analytic cohomology of log schemes which
has a locally free isocrystal on log convergent site as coefficient. Assume we
are given the following diagram

(X, M) -1 (Speck, N) <& (SptV, V),

where f is a morphism of fine log schemes of finite type, NV is a fine log
structure on Spf V' and ¢ is the canonical exact closed immersion. Assume
moreover that (Spf V, N) admits a chart ¢ : Qy — N. First we introduce
the notion of a good embedding system:

DEFINITION 2.2.10. Let the notations be as above. A good embedding
system of (X, M) over (SpfV, N) is a diagram

(X, M) <2 (X, M®) L (pe) L),

where (X(®), M(®) is a simplicial fine log scheme over (X, M) such that
each (X, M™) is of finite type over k and of Zariski type, (P(®), L(®)
is a simplicial fine log formal V-scheme over (SpfV,N) such that each
(P L) is formally log smooth over (Spf V, N) and of Zariski type, g :=
{g™}, : X(® — X is an etale hypercovering such that ¢g(™*M — M ™)
is isomorphic for any n € N and i := {i(},, is a morphism of simplicial
fine log formal V-schemes such that each (™ is a locally closed immersion.

As for the existence of a good embedding system, we have the following:

PROPOSITION 2.2.11. Let (X, M) —> (Speck, N) <> (SpfV, N) be as
above. (Note that we have assumed that (Spf V, N) admits a chart ¢ : Qy —
N.) Then there exists at least one good embedding system of (X, M) over

(SpfV,N).

ProoOF. First, let g(o) : X0 .= [lic; Xi — X be an etale covering
with |I| < oo such that each X; is affine of finite type over k and that
vofog®@l|x, : (X;, M) — (SpfV, N) has a chart C; := (Qy > N, R; x, —

M, Q ¥, R;) extending ¢. Let us take surjections

;i : k[N"] — T'(X;, Ox,),
/B’i : Nmz — Ria
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and denote the composite

Q" rv, Ny — TV, 00) =V,

R " Bx, 01) — T8 O

by 7, §; respectively.
Let P; be Spf V{N" @& N™i} and let L; be the log structure on P; which
is associated to the pre-log structure

€:Q®&N™ — V{an @ Nmi}y (Qa JJ) = ’Y(Q)IE

Then (P;, L;) is a fine log formal V-scheme which is formally log smooth
over (SpfV, N). Let us consider the following commutative diagram:

I'X;, Ox,) «—— V{N" @ N™}
511\ 5iT
where the upper horizontal arrow is defined by
v (0,y) = (vmod ) - al@) - 80 6i(y) (v €V (z,y) € N & N™),

and the lower horizontal arrow is defined by
(¢,2) = ¢(@)Bi(x) (¢ €@z eN™)
This diagram induces the closed immersion
Ji o (Xi, M) — (P, L)

over (SpfV,N). Now put (X M©) = ([[,c; Xi, M|y, x,), (P,
LOY = [1,; (P, L;) and let i) :=[],; ji. For n € N, let (X™, M™) be
the (n + 1)-fold fiber product of (X, M(©)) over (X, M), let (P, L)
be the (n + 1)-fold fiber product of (P, L©) over (SpfV,N) and let
i (XM M®) — (PM) L) be the closed immersion defined by the
(n + 1)-fold fiber product of i(’). Then, for each n, (X, M®™) and
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(P, L) admit charts. (Attention: we do not say that i(™ admits a
chart.) So they are of Zariski type. Hence the diagram

i(®)
(X, M) — (X M®) < (P L)
is a good embedding system. [

Now we define the analytic cohomology of a log scheme which has a
locally free isocrystal on log convergent site as coeflicient, as follows:

DEFINITION 2.2.12. Assume we are given the following diagram
(X, M) L (Speck, N) <5 (Spf V, N),

where f is a morphism of fine log formal schemes of finite type, N is a
fine log structure on SpfV and ¢ is the canonical exact closed immersion.
Assume moreover that (Spf V, N) admits a chart. Let £ be a locally free
isocrystal on (X/V).8 Take a good embedding system

conv,et*
(X, M) <L (X® M®) L (PO L)

of (X, M) over (SpfV,N) and let £(*) be the restriction of £ to the site
(X(®)/V)los Denote the specialization map

conv,et*

]X(')[I;(g.) . x®

by sp(®). Then we define the analytic cohomology of (X, M) over (Spf V, N)
with coefficient £ by

Hi,((X, M)/(SpfV,N), &) := H'(X, Rg. Rsp\" DR(IX [, £®))).

When there will be no confusions on log structures, we denote the analytic
cohomology HE, ((X,M)/(SpfV,N),E) simply by Hi ((X/V)8 £).

REMARK 2.2.13. By Theorem B of Kiehl, we have

Rsp\” DR(IX [, £®) = sp®DR(X O[5, £).
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We should prove that the above definition is well-defined, that is, we
should prove the following proposition:

PROPOSITION 2.2.14. Let the notations be as in Definition 2.2.12.
Then the above definition of the analytic cohomology H!. ((X,M)/
(Spf V,N), &) is independent of the choice of the good embedding system
chosen above.

First we prepare a lemma:

LEMMA 2.2.15. Let (X, M) > (Speck, N) < (Spf V, N) be as in Def-
inition 2.2.12 and assume that (X, M) is of Zariski type. Assume moreover
that we are given the commutative diagram

(X, M) —— (P,Ly)

| d

(X, M) —2— (P, L),

where ij (j = 1,2) is a closed immersion over (SpfV,N) into a fine log
formal V-scheme (Pj, Lj) of Zariski type and ¢ is a formally log smooth
morphism. Let us denote the morphism of rigid analytic spaces

log
conv,et’

induced by ¢ by ¢x. Then, for a locally free isocrystal € on (X/V)
we have the isomorphism

Ry JDR(X[E,€) = DR(X [, £).

PrROOF. Let x be a point of X. Then we have open neighborhoods x €
Uy C X, 2 €V, CPj(j=1,2) which satisfies the following conditions:
i;(Uy) C Vjg and p(Vi ;) C Vo, hold and the diagram

(Ups M) —2— (Vig, Ly)

H d

(Up, M) —2— (Voo Lo)
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admits a chart (R;v,, — L;j,Sju, — M (j = 1,2),D), where D is the
diagram of monoids
S L Ry

[

a
SQ — R27

such that the homomorphisms R}” — S5 (j = 1,2) are surjective. By
shrinking Vj ., we may assume that V;, Xp; X = U, holds. We fix a triple
(Ug,Vig,Vag) as above for each x € X. Then there exist xy, - ,z, €

X such that X = ngl U,, holds. Then we can check that |1 X [1]2;;:

Ui_11Ua, [lvo]gz (j = 1,2) is an admissible covering and that ¢} (JUy, [l‘(/)zg”) =

'L

U, [l‘(/)lgz holds for 1 < ¢ < r. So we have

Rec DROX[EE, )y, o = R(oxcly, s JDROUL[E, ).

By this isomorphism, we can see that we may replace X, P, P> by Uy,
Vi.a:, Vau; Tespectively, that is, we may assume the existence of the chart
(Rjv,, — Lj,Sju., — M (j = 1,2),D) (where D is as above) such that
R?p — S]gp (j = 1,2) are surjective. So we assume it.

Put RQ = (Oé%p)fl(SQ), pg = Pgispfzp{Rz}Sprp{Rg} and let EQ be
the pull-back of the canonical log structure on SpfZ,{Rs} to P». Next,
put Ry := (R1 ©g, Rg)int and let 8 : Ri — S; be the homomorphism
induced by (a1 @ ag)P. Put Py := Py %SprP{Rl}Spf Zp{R1} and let Ly be
the pull-back of the canonical log structure on Spf Z,{R1} to P;. Finally,
put Ry := (6%)~1(Sy), P, :== ?1>A<Spfzp{§1}8pf2p{}~%1} and let L; be the
pull-back of the canonical log structure on Spf Zp{Rl} to P. Then we have
the following commutative diagram:

" /

(X, M)~y (P, L))~ (P Th) s (P, L)
| I
(X, M) —2— (Py,Lo) =——— (P5,Ly) —— (P, L),

satisfying the following conditions:

(1) The morphisms h, h’, h” are formally log etale.
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2) 4,1, are exact closed immersions.
1542
(3) The right square is Cartesian.

By the conditions (1) and (3), @ is formally log smooth. Note that P B-triv
is an open sub formal scheme of P; which contains X. By replacing P;
by PlM_tm, we may assume further that @ is formally smooth in classical
sense. Then, we have | X [E‘;’]S:]X [ 3 (7 = 1,2) by definition of tubular neigh-

~

borhood. By weak fibration theorem, we have | X[z =] X[z, x D7} (for some

m) locally on P,. So we have the isomorphism
(2.2.6) X [P = 1X[58 x DY

locally. Morever, by construction of the above isomorphism (see [Be3]), one
can see the following fact:

(¥)  The sheaf w! on | X [;,f; corresponds to the sheaf priw! . @

IX[p X[

prQQ})m on ]X[llgfxDﬁ via the isomorphism (2.2.6).
Now we prove that the canonical homomorphism
1 1
DR(IX[p;, &) — RekDR(X[pF, €)

is a quasi-isomorphism. By the isomorphism (2.2.6) and Theorem B of
Kiehl, we have

Ry .DR(X[PE,€) = oxc . DR(X [, €).
Then, to prove the quasi-isomorphism
1 ~ 1
DR(JX[p},€) — ¢ DR(X[p}, ),
it suffices to prove the quasi-isomorphism

(2.2.7) H°(Spm (K ® A), DR(IX [}, €))
s HO() (Spm (K ® A)), DR(IX[52,€))
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as complexes of modules for any admissible open Spm (K ® A) C|X [112%,

where A is a p-adic topological ring which is topologically of finite type over
V. We may assume moreover that the coherent sheaf £ on Spm (K ® A)
induced by £ and the differential module Qgpm( Kga) are free and that
¢ (Spm (K ® A)) is isomorphic to D'} via the isomorphism (2.2.6).

Now we prove the quasi-isomorphism (2.2.7). Put Ax := K ® A and for
n € N, denote the ring T'(D, Opy) by A(n)r. Put QY = I'(Spm Ay,
Qgpm AK)’ put

e = D(DR, Q) /A @

= é; A(n)Kdti
=1

(where ti,--- ,t, are the coordinates of D7) and let Qi(n)K be the ¢-th
exterior power of Qh(n)K over A(n)g. Then the left hand side of (2.2.7) has
the form
0—>EX>E®AKQ}4KX’E®AK931KE’"‘,

where F is a free Ax-module of finite type. On the other hand, one can see,
by the fact (x), that the right hand side of (2.2.7) is isomorphic to the simple
complex associated to the double complex {(E ®a, Q) ) ® Q?ﬁ&(m)K}Pm
where the differential

+1
(B ®ax QIZXK) ® Q?‘l(m)K — (E®ax Q?“K) ® Q?“(m)K
is defined by e ® w ® n — e ® w ® dn and the differential

(BE®ax Q) @0, — (BE®a AR 7y

m)g

is defined by e@ w®@n — V(e®w)®n. So, to prove the quasi-isomorphism
(2.2.7), it suffices to prove the complex

C*:=[0— (E®a, QZZ\K) @ A(m)x — (E®ay QQK) ® Qh(m)K
— (E ®AK QZ}K) ® Q124(
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satisfies the equations

E®AK QIAKa q:07

(2.2.8) HY(C*) = { . 50,

Since E @ QY is a free Ag-module, we may replace F ® Q) by A to
prove the equation (2.2.8). In this case, the equation (2.2.8) is well-known.
For reader’s convenience, we prove it in the lemma below. (We use this
lemma again in the proof of log convergent Poincaré lemma in the next
section.) OJ

LEMMA 2.2.16. Let A be a Noetherian p-adic topological ring which is
topologically of finite type over V. Put Ax := K® A and for n € N, denote
the ring I'(D'}, Opry) by A(n)k. Put

Q}4(n)K = F(DZ7 QEZ)/A(TL)K ®Ak Q}4K
= @A(H)Kdtz
=1

(where ty,--- ,t, are the coordinates of D) and let Qi{l(n)K be the q-th

exterior power of Qi‘(n)K over A(n)k. Let C(A,n) be the relative de Rham
complex
0— A(n)K = Ly = Lhiye =

Then we have the equation

AK7 q:07

(2.2.9) HY(C(A, n)) = { . o0

PROOF. Let us define a filtration (of Katz-Oda type)
FPC(A,n):=1[0— FPA(n)x — FpQ,lLl(n)K — Fpﬂi(n)K — -] CC(A,n)
by

FPY e = Tm((A) K @ai-1)c Yan1y,0) Oam)e Lamye — Lhmy)-
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Put Qil(n)K/A(n—l)K = Qil(n)K/FIQ,lal(n)K = A(n)gdt, and let C(A,n) be
the complex [A(n)k < Q}L\(n)K/A(n—l)K]' Then the filtration FPC(A,n) (p €
N) induces the spectral sequence

EY? = HY(C(A,n)) @am-1)x U = H"™(C(A,n)).

(n—1)k
So, if we prove the equation

(2.2.10) HY(C(A,n)) = { Aln =D, =0

0, q=1,
we can deduce the equation (2.2.9) by induction on n and the above spectral
sequence. So the proof is reduced to the above equations. Since Ker(d) =
Ker(d : A(n — 1)k[[tn]] — A(n — 1)k[[tn]]dtn) N A(n)k holds, one can
easily see that H°(C(A,n)) = A(n—1)g holds. On the other hand, for n :=
(3202, fith)dt, € Qi&(n)K/A(n—l)K (where f; € A(n — 1)k ), one can see that
the element g := Y 7, %tﬁb in A(r —1)g[[t;] is in fact contained in A(r)gk.
Since we have d(g) = 7, d is surjective, that is, we have H!(C(A,n)) = 0.
So the proof of the lemma is finished. [J

Now we give a proof of Proposition 2.2.14.

PROOF OF PROPOSITION 2.2.14. Let

Z(.)
(X, M) L (x® M) L (P L) (5=1,2)

be good embedding systems and denote the restriction of & to
(XJ(.°)/V)log by Sy) (7 = 1,2). Denote the specialization map

conv,et

X708, — X7 (1=1,2)
J

by spg-') .

For m,n € N, put X(mn) = X (m) » o x() prlmn) .— M| (mn and let

(Pmm) Lmm be (PI™, L™ % sprvny (P, LSY). Then (X (**), M(*:*))
forms a bisimplicial fine log scheme over (X, M) and (P(**), L(**) forms
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a bisimplicial fine log formal V-scheme over (Spf V, N). Note that (X (™)
M) and (P L") are of Zariski type. Denote the structure mor-
phism (X (**), M(**)) — (X, M) by g and denote the locally closed immer-
sion (X(®*), M) — (P(**) L(**) induced by z'g-')’s by i(**). Denote
the restriction of £ to (X(**)/V)°8 by £(**) and denote the specializa-

conv,et
tion map

:IX(.7.) [l]ggg.,.> - X(.7.)

by sp(®*). To prove the proposition, it suffices to show the isomorphisms

(.)DR(]X(-.) [log £(°))

jo,*Rspj,* i Llp(® <
J

= Rg,Rsp" DR X[ | £() (j=1,2).

It suffices to treat the case j = 1. For each n € N, (X(""), M("’°)) forms a
simplicial scheme over (X 1(n), fn)) Let us denote the structure morphism
(X (o) pe)y — (Xl(n),an)) by gn. To prove the above isomorphism

(for j = 1), it suffices to prove the isomorphism

(2.2.11) Rgn«Rspl"" DR(X")[2%  £2))
= Rsp{DROX]VEE, €17

In the following, we give a proof of the isomorphism (2.2.11). First, by
shrinking Pl(n) and X fn), we may assume that Pl(n) is affine and the closed

immersion (X fn), Ml(”)) — (Pl(n), Lgn)) has a factorization
(x{, a"y = P I — (P, L)

such that the first arrow is an exact closed immersion and the second arrow

is formally log etale and an) is also affine. Then, by replacing (Pl(n), Lgn))

by (P, (") and (PO, L) by (PO, L)% Loy o (P,
1 1

fﬁ”)))int, we may assume that (X fn), M l(n)) — (Pl(n), L(ln)) is an exact closed
immersion and Pl(n) is affine.
Let pl(n) be the formal completion of Pl(n) along X {n). Then, since there

exists the canonical equivalence of sites X }T;)t ~ ]51(2)“ there exists uniquely
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an etale hypercovering h,, : pl(n") — ]51(") such that P™*) X p(n) X1(n) ~
1

X () holds. Put L := L{"”| ;). On the other hand, let P"™ be the
1 A~
formal completion of P™) along X (™™ and put L™ .= L("’m)|p<n,m).

Let P(™™) be the formal completion of Pf"m) X Spt v Pmm) glong X (™) and
let L(™™) be the pull-back of the log structure on the fine log formal scheme

((Pln’m),Lg"’m))ﬁ(spfv’m(]b(”’m),ﬁ(”’m)))im to P"™) . Then we have the
following diagram:

(XM MMy I (x(ne) pp(ne)y (X (n:9) | pf(n:9)) (X (n:9) | pf(n.0))

l | ! l

hn

(o) } } RO R R
(P, L{™) (P, L)) T (PO) L0 2 (plne) [ (ne)),
where the vertical arrows are the canonical closed immersions. Let us note

the following claim:

CLAIM. Zariski locally on X (%) there exists an exact closed immer-
sion
(X, pm)) o (P, L)
of (X (™) M) into a fine log formal V-scheme (Pl(n’m), Lgn’m)) formally
etale (in the classical sense) over (Pl(n),L(ln)) such that (Al(n’m),ign’m)) is
the completion of (Pl(n’m),Lgn’m)) along (X () ppnm)y,

PROOF OF CLAIM. Since the morphism X (™) — an)

is etale, there
exists an affine open sub formal scheme U = Spf A C Pl(n) and an affine
open subscheme Vy C X which satisfies the following condition: If

we put Uy := SpecAg = U ><P1<n) an), then Vj = Spec Ag[t1,- - ,t.]/

(f1,+-, fr) holds, where f; (1 <i < r) are elements in Ay[ty,--- ,t,] such
that det (g—{;) s invertible on Vp. Let f; (1 < i < r) be any lift of
7/7]

fi to A[t1,--- ,t;] and let V be Spf (A[ty,--- . t]/(f1, -, f))", where "
denotes the p-adic completion. Then, since we have V xy Uy = Vj, the
natural morphism V — U is formally etale on a neighborhood of V4. Let
V' C V be the etale locus. Then (V’,Lg”)h//) — (Pl("),Lgn)) is formally
etale, (Vo, M™™)|y) — (V' Lgn)lvl) is an exact closed immersion and the
completion of V' along V} is isomorphic to some open subscheme of ]51(7””)
So the assertion is proved. [J
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Now we define the log de Rham complexes associated to £ on three

tubular neighborhoods of X(™) .  First, since we have | X (™) [l;%n,m):

] X (mm) [ﬁ%mmV & induces the log de Rham complex DR/(] X (%) [l;(gnym) ,€) on

] X () [11(5)%7L,m>- We denote it simply by DR
we have the isomorphism | X (=[98 1 x (n:m) [l;g locally. So € induces

Pl(n,m) - 1(n,'m)

the log de Rham complex DR(]X (™) [l;f?n’m),é’) locally on ] X (™) [I;E%'",m).

One can check that this de Rham compléx is independent of the choilce of
Pl(n,m)

(n,m) .
. Second, by the above claim,

in the claim and so it defines the log de Rham complex globally on
(n,m)

Jx(rml%8 | We denote it simply by DR, Finally, let (P plrmy

1
be (P L™ (gp vy (PO, LIwm)))int (it s defined locally). Then

Pm) ig the completion of ﬁ(n’m) along X (™™ So, we have the isomor-
phism | X ™™ 5, ., =] X ™) [5tn.m) locally. So € induces the log de Rham

complex DR(] X (») [;(gn,m) ,€) locally on | X () [ﬁ(gn’m). One can check that

this de Rham complex is independent of the choice of Pl("’m) in the claim
and so it defines the log de Rham complex globally on ] X (™) [l]g(gn,m)' We
(n,m)

denote it simply by DR
analytic spaces

. Let us denote the morphism of simplicial rigid

o)l o)l
]X(n7 )[Ig(gn,c) —>]X(n’ )[;1(gn,o)7

n,e)rlog n,e)log
]X( )[ﬁ)(n,.)—>]X( )[p(n,.)7

by prg';(, pré’}( respectively and denote the specialization map

PeeefsE L, — X
1

by sp'®. Then the proof of the isomorphism (2.2.11) is reduced to the
following claim:

CLAIM. Let the notations be as above. Then:

(1) We have the isomorphism
(n,®)

9 == = (ne)
Rpr"). DR """ = DR,
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(2) We have the isomorphism

Rprg}wﬁﬁ(n’.) = ﬁﬁ(n’.).

(3) We have the isomorphism

(n,0) (n)

RgnRPDR, " = Rsp\")DR(X ™[, E).

Pl(n) )

We prove the above claim. First, let us prove the assertions (1) and
(2). We may replace @ by m € N and we may consider locally. So, the
morphisms

~

prgm) . (P(n,m)’ z/(n,m)) N (Al(nﬂn)7 L(n,m))7
prgm) : (p(n,m), i(n,m)) N (ﬁ)(n,m)7 ﬁ(n,m))

are the completions of the morphisms

(2.2_12) (ﬁ(n,m)’z(mm)) _ (Pl(n,m)’Lgn,m))7
(2.2.13) (P My (plsm) | )y

respectively. Since the morphisms (2.2.12) and (2.2.13) are formally log
smooth, the assertions (1) and (2) follows from Lemma 2.2.15.

The assertion (3) follows from the lemma below. Hence the above claim
is proved and the proof of the proposition is now finished (modulo the
lemma below). [J

LEMMA 2.2.17. Let X be a scheme of finite type over k and let X — P
be a closed immersion of X into a Noetherian formal scheme P over Spf V'
such that X is a scheme of definition of P. Let ¢ : X®) — X be an etale
hypercovering of X and let ¢ : P(®) — P be the unique etale hypercovering
of P satisfying P® xp X = X . Let us denote the morphism of rigid
analytic spaces PI(;) — Px associated to ¢ by o = {Lp(lz)}. Denote the
spacialization maps

P — p©),
PK—>Pa
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by sp(®), sp, respectively. Let E be a coherent sheaf on Px and put E(® =
¢ E. Then we have the isomorphism

RgoK*RspS:)E(') = Rsp, F.

PrROOF. Note that the 4-tuples P  :=  ((P,triv.logstr.),
(X, triv.logstr.),X << Pjid) and P™ = ((P"™ triv.logstr.),
(XM triv.logstr.), X(™ < P id) form exact widenings of X over Spf V.
So one can define the system of universal enlargements 15, := T'x ,,(P),
7 = TX(n>7m(P(")). By comparing the explicit description of the system
of universal enlargements given in Section 2.2 and the definition of the rigid
analytic spaces P, Pf((n ) given in Section 2.1, one can see the following:

(1) We have the admissible covering Px = J,, T,k -

(2) T = (#¢) " (Ton ) holds.

Let ]3, P®) be the direct limit topos associated to P, P(®) respectively and
let

be the morphism of topoi defined in the end of Section 2.2. Then we have

RSO*RSPS:)E(.) = Rgo*spgk.)E(°) (Theorem B of kiehl)
= Bo (500 Jo(E o )b

K
= RSD*R%E.){(SP(°)|T(-> )+(E® o) )}m
m, K m,K
(Proposition 2.1.31)
= B BB g0 )o(E o) Yo

K

when we denoted the morphism of topoi

P~ _, p~
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induced by ¢ by &.
On the other hand, we have

Rsp,E =sp,E (Theorem B of kiehl)

= 7*{(Sp|Tm,K)*(E|Tm,K)}m
= Ry.{(spIT,, )+ (BT, 1) }m  (Propsotion 2.1.31).

So we have to show the isomorphism in the derived category of the category
of sheaves on P

RSB*{(SP(')’Tg}()*(E(.)’Tg}()}m = {(sPl7,, 1)+ (BT, 1) b

Note that it suffices to show the restriction of both sides to the derived
category of the category of sheaves on T, zar is isomorphic. Noting the
equality

(50| )+(E o) ) = () (5Dl 1)+ (Bl 1)

m,K

(where gogg) is the morphism 7w T,.), one can see that it suffices to

prove the following claim:

CLAIM. For an isocoherent sheaf E on T,,, one has the isomorphism
Rpwh o\ E = E.

We give a proof of the claim. If we can prove that the morphism T#: )
T, is an etale hypercovering, the claim follows from the fpqc descent for
formal schemes. So it suffices to prove it. Moreover, to prove it, it suffices
to prove that the morphism T,Sf ) m is formally etale. To prove this
claim, we may assume that P := Spf A and P := Spf A" are affine. Put
X :=Spec A/I and fix a system of generators fq,--- , f, of I. Let us define

the rings A, AS,’J) by

Ay = Alt; (i €N, [i| = m)]/(nt; — f' (i € N, |i] =m)),
A = At (i e N7, |i| = m)]/(nt; — f* (i € N, |i] =m))



86 Atsushi SHIHO

(where we used the multi-index notation). Then we have
Trn = Spf (A /(p-torsion))”, T = Spf (A™ /(p-torsion))”,

()

where ” denotes the p-adic completion. Since A,, and A,,’ are Noetherian,

we have

(A, /(p-torsion))" = A /(p-torsion),
(A™ /(p-torsion)) = (AT /(p-torsion).

If we can prove that the homomorphism o : A% — (A" is formally
etale, then the homomorphism

AN /(p-torsion) — (AU /(p-torsion)
coincides with the push-out of a by the projection
AN — A /(p-torsion).

In particular, it is formally etale and we are done. So it suffices to prove the
formal etaleness of the homomorphism a. That is, we have only to prove
the etaleness of the homomorphism

Ap )7 Ay — AW J7k A

for any k£ € N. Since we have I"™A,, C ©A,, and ImAgf) C WA%I), this
assertion is reduced to the etaleness of the homomorphism

A/ IN Ay — AW /TN A0
for any N € N. Since we have

A /TN Ay = AJTV [ (i € N7, Ji] = m)]/(t; — f™ (i € N, |i| = m)),

ATV A
= A/ INAM g (i e N7, |i| = m)]/(xt; — f™ (i € N7, |i| = m)),
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the assertion is reduced to the etaleness of the homomorphism
AJIN — AP N AM)

and it follows from the formal etaleness of the morphism P — P. Hence
the claim is proved and so the proof of the lemma is now finished. [

REMARK 2.2.18. Note that the above definition is independent of the
choice of a chart of (Spf V, N') whose existence is assumed above. Moreover,
we can define the analytic cohomology even when (Spf V, N) does not admit
a chart in the following way.

Let us assume given the diagram

(2.2.14) (X, M) -1 (Speck, N) <> (Spf V, N),

where N is a fine log structure on V, ¢ is the canonical exact closed im-
mersion and f is a morphism of fine log schemes of finite type. (We do not
assume the existence of a chart of (SpfV,N).) Then there exists a finite
Galois extension V' C Vi such that (Spf Vi, N) admits a chart. Let G1 be
the Galois group of V; over V' and let

(2.2.15) (X1, M) -1 (Spec ki, N) <% (Spf V4, N)

be the base change of the diagram (2.2.14) by the morphism (Spf V1, N) —
(Spf V,N). Let & be a locally free isocrystal on (X/ V)¢ and denote

conv,et

the pull-back of € to (X1/V1)°8. .. by &. Then we define the analytic

conv,et

cohomology of (X, M) over (Spf V, N) with coefficient £ by
H, (X, M)/(SpfV,N), €) := Hi, (X1, M)/(Spf Vi, N), €)1
Let us prove the well-definedness of the above definition. Let V5 be an-
other finite Galois extension of V' with Galois group G2 such that (Spf Vo, V)

also admits a chart. To prove the well-definedness, we may assume that
V1 C V5 holds. Let G be the Galois group of Vs over V;. Let

(Xa, M) L (Spec ks, N) <& (Spt Va, N)
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be the base change of the diagram (2.2.14) by the morphism (Spf V2, N) —
(Spf V, N) and denote the pull-back of £ to (XQ/VQ)IC(Z)gm,@t by &. Take a
good embedding system

(2.2.16) (X1, M) — (X1, M{*) — (P L{*))
of (X1, M) over (Spf Vi, N) and let
(2.2.17) (Xo, M) — (Xo, My*)) — (P* L")

be the base change of the diagram (2.2.16) by the morphism (Spf V2, N) —
(Spf Vi, N). Then the diagram (2.2.17) is also a good embedding system.
Denote the natural morphism of simplicial rigid analytic spaces

X5 o —1X 1 e

by ©(®). Then it is easy to see the following:

P IDR(XS [0, €2)¢ = DROX(" [0, E1),

Pz(.) ) Pl(') ’

R DR(X, [0, €2) = !V DROXS [0, £2).

[PZ(.
Applying the specialization map sp(*) :]X{°)[P(.)—> Xp, we obtain the
1

following;:

sps” @V DR( XS [ 0, £2)¢ = splDR( X[ Lo+ €1);

P2(°) 9
Rpl® RAIDR(X( 00, £2) = 561l DR(XL 01, )

Noting that spgf)gpSf)DR(]Xé') [P(.),Sg) is a sheaf of Q-vector spaces, the
2

above two isomorphisms imply the isomorphism
H;n((X% M)/(Spf Va, N)? SQ)G - H;n((Xlﬂ M)/(Spf Vi, N)? 81>
By taking the Gi-invariant part, we obtain the isomorphism

H, (X2, M) /(Spf Vo, N), &)°? = HL (X1, M)/(Spf Vi, N), &)
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Hence we obtain the well-definedness.

REMARK 2.2.19. In this section, we have defined the analytic coho-
mology for log schemes. It would be natural to ask whether we can define
rigid cohomology of a fine log scheme. Let (Speck, N) < (Spf V, N) be the
canonical exact closed immersion such that (Spf V, N) admits a chart. Let
us assume given an open immersion (X, M) C (X', M’) of fine log schemes
of finite type over (Speck, N). Then, by taking a good embedding system
of (X', M"), it is possible to define the candidate of the rigid cohomology
Hriig((X,M) C(X',M")/(SptV,N), &) of the pair (X, M) C (X', M') over
(Spf V, N) (where & is a locally free isocrystal on (X//V)lc?)gnv,et) as in the

case of rigid cohomology. Then, one should prove the following conjecture
to assure the well-definedness:

CONJECTURE 2.2.20. The above definition of the rigid cohomology
Hriig((X, M) c (X',M")/(SpfV,N),E) is independent of the choice of the
good embedding system of (X', M') chosen above.

Next, we would like to define the rigid cohomology for a fine log scheme
(X, M) which is separated and of finite type over (Spec k, N). For simplicity,
let us consider the case of trivial coefficient. To define it, we need the
following conjecture:

CONJECTURE 2.2.21 (Log version of Nagata’s theorem). Let (X, M)
be a fine log scheme over (Spec k,N). Then there exists an open immer-
sion (X, M) — (X', M') of (X, M) into a fine log scheme (X', M') over
(Spec k, N) such that X' is proper over Spec k. (We call such an open
immersion (X, M) — (X', M’) as a log compactification of (X, M)).

Under this conjecture, we can define the candidate of the rigid cohomol-
ogy His, (X, M)/(Spf V. ) by Hi, (X, M)/(Spt V. N)) := Hi, (X, M) C
(X', M")/(Spt V,N)), where (X, M) C (X',M’) is a log compactification.
Then, one should prove the following conjecture to assure the well-defined-
ness:

CONJECTURE 2.2.22. Let (X, M) be as above and assume given two
log compactifications (X, M) — (X', M"), (X, M) — (X", M"). Then the
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rigid cohomology of the pair (X, M) — (X', M") is isomorphic to that of
the pair (X, M) — (X", M").

To define the rigid cohomology of a single fine log scheme with coeffi-
cient, we need to develop a nice theory of overconvergent isocrystals on log
schemes.

2.3. Log convergent Poincaré lemma
Assume given the diagram (X, M) L, (Speck, N) <> (Spf V, N), where
f is a morphism of finite type between fine log schemes, N is a fine log

structure on Spf V' and ¢ is the canonical exact closed immersion. Let &£ be
log
conv,et*

cohomology Hi((X/V)}:%%w,em ) of € in the log convergent site (X/V)i%%w’et
(which we call the log convergent cohomology of £) is canonically isomor-
phic to the analytic cohomology H’ ((X/V )8, &) of (X, M) over (Spf V, N)
with coefficient £, which is defined in the previous section. Recall that the
analytic cohomology H! ((X/V)'# &) is, roughly speaking, defined as the
cohomology of the log de Rham complex associated to £ on certain rigid
analytic space. The theorems which calculate cohomology groups by certain

a locally free isocrystal on (X/V) In this section, we prove that the

de Rham complexes are sometimes called Poincaré lemma. So we call this
result as log convergent Poincaré lemma. It is a log version of convergent
Poincaré lemma proved by Ogus ([Og2]).

First we prepare several morphisms of ringed topoi which we need in
this section. Let (X, M) 4, (Speck, N) < (Spf V, N) be as above. Let
e (X/V)8™  — (X/V)&™  be the morphism of topoi defined as fol-

conv,et conv,Zar

lows: For a sheaf E on (X/V)}:%gnvvet, €. F is defined by . E(T) := E(T) (T €
Enl((X/V)"8)) and for a sheaf E on (X/V)lccggrmZar, ¢*E is defined as the
sheafification of the presheaf T' — FE(T) on (X/V)L%ivvet. For a (pre-
Jwidening T, the similar morphism (X/V)lccggn’;eth — (X/V)L%%;Zarkp will

be also denoted by e.
Next, define a morphism of topoi

u: (X/V)logN - Xgar

conv,Zar

as follows: For a sheaf E on (X/V)\8 define u.E by

conv,Zar’

wE(U) :=T((U/V)e2, 7o 3" E),

conv,Zar’
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where U C X is an open set and j* : (X/V)\%8~ —— (U/V)o5~

conv,Zar conv,Zar
is the natural restriction. For a sheaf F on Xz, define u*E by
(w*E)(T) := I(T, z*E) for each enlargement ((T', Mr),(Z,Mz),i,z). Let
w: (X/V)lcf)gr{\:et — X7 be the composite u o €.
Next, for a (pre-)widening T, define a morphism of topoi

gr o (X/V)e | (X/V)98~ (7 = Zar or et)

conv,T conv, T

as follows: For an object g : E — hp in (X/V)w& |7, define Jrs(g: B —
hr) to be the sheaf of sections of g, and for an object E in (X/V)w& | define
JrE to be the projection £ x hy — hp. We put ur := wo jp, ur = @ojr.

Next, for an exact widening 7', define a morphism of ringed topoi

or (X/V)L%%{\:HT — T (7 = Zar or et)

as follows: Let E be a sheaf on (X/V)w& |7 and let U — T be an
object in Tr. Then U has the canonical structure of exact widening defined
as the pull-back of that of T' to U. Let {U,} be the system of universal
enlargements of U. Then we define ¢ . E by ¢7E(U) := lim EU, —T),
where U,, — T is the composite U, — U — T. For a shréaf E on T,
define ¢4 E by ¢%E(g) := g*E(T) for an enlargement 7" and a morphism
of widenings g : T/ — T.

Finally, for an exact widening T, define the functor

b7, (X/V)e il — T~

by ¢5 E(U) := E(U — T,, — T'), where E is an object on left hand side
and U is an open set in T},. (Note that ¢, is not a part of a morphism of
topoi.) ’

One can check that there exists the following diagram of topoi for an
exact widening T":

D

log,~ T v ~
(X/V)c(;%lv,Zar‘T T - Zar
] |
log,~ ~ ~
(X/V)c(())gnV,Zar u XZar ZZar’
* *
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where v, is the functor of taking the inverse limit of the direct image defined
in Section 2.1.
Then we have the following lemma:

LEmMMA 2.3.1.  The functor ¢z, sends an injective sheaf to a flasque
sheaf.

PrOOF. We omit the proof, since it is the same as that in [Og2, (0.4.1)].
(Note that we need Lemma 2.1.24(=[0g2, (0.2.2)]) to prove this lemma.) O]

Next we prove the following propositions:

PROPOSITION 2.3.2. Let (X, M) A, (Speck, N) <> (SpfV,N) be as
above and assume that v o f admits a chart Cy. Let T be an affine exact
widening of (X, M) over (Spf V, N) with respect to Cy. Then the following
assertion holds.

(1) ¢7, is exact.

(2) Let & be an isocrystal on (X/V)\°8 |7. Then we have

conv,Zar

HI(X/V) % punlr: €) = HUT, ¢ )

conv,Zar

for all ¢ > 0 and these groups vanish for q > 0.

PRrROOF. The proof is similar to that in [Og2, (0.4.2)].

One can check the assertion (1) directly, so we omit the proof. Now we
will prove the assertion (2). By Lemma 2.3.1, there exists a Leray spectral
sequence for qﬁf’* and it degenerates by (1). So we get the former statement.
Moreover, by definition, (bf,*E is a crystalline K ®y Op-module. So the
above cohomology groups vanish for ¢ > 0 by Proposition 2.1.31. (I

PRrOPOSITION 2.3.3. Let (X,M) — (Speck,N) — (SpfV,N),Co
be as in the previous proposition. Let T be an affine exact widening of
(X, M) over (SpfV,N) with respect to Co and let £ be an isocrystal in
(X/V)lc((’)gn’;eth. Then we have Rt & = 0 and Rij7 & =0 for ¢ > 0.

PROOF. The proof is similar to that in [Og2, (0.4.3)]. First, we may
assume X is affine.
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Since R7¢,£ = 0 holds for ¢ > 0 by Proposition 2.1.21, R%ur & is the
sheaf associated to the presheaf

U HI(U/V)E T, €E)

conv,Zar

and it vanishes for ¢ > 0 by Proposition 2.3.2. So we have Riur £ = 0 for
q > 0.

Next we prove the vanishing R%jr.E = 0(¢ > 0). To show this, it
suffices to show that the sheaf (R%jr.E)r on Ty, induced by Rjr.E
vanishes for any charted affine enlargement 77 and ¢ > 0. Let T x T" be
the direct product as a charted affine widening, and form the exactification
(T x T")**. Now let us consider the following commutative diagram:
¢(T/ XT)eX

s~ i 7 ~ log,~
(T’ X T)%);r — (T’ X T)ex, (X/v)ccggnv,ZarI(T’XT)ex

prl jT‘T/l

~ ~ 1 ~
T,Zar —_— T,Zar P (X/V)cc;gr;v,ZarIT’
T/
€ log,~ JrrlT log,~
A (*X/v)coogr;v,etI(T’><T)eX (X/V)c%%v,etlT
jT‘T/l jTl
€ log,~ log,~
A (X/V)c%%v,etlT’ K (X/V)c%gr;v,et'

It

Since there exists an exact left adjoint functor jzv, of the functor j7, (which

can be shown as in the case without log structure [Og2]), the functor jj.

sends injectives to injectives. Similarly, (j77|7)* sends injectives to injec-

tives. Moreover, the functors (jr|7)*, ¢1 4, ¢(T’><_‘T)ex*’ Ji» and e, are
exact. So we get the following equations.

(quT,*g)T’ = ¢T’,*f*j;“’quT,*g
= ¢ & RI(jr |7 )+ (G |7)"E
= Rq(pr © 7)*¢(T/ X_‘T)ex,*e* (jT/ |T)*g
= qur*'y*¢(T, Yo 4 Ex (jr|lr)*E  (Proposition 2.1.31),

and the last term is equal to zero for ¢ > 0 because v*qZ)(T, e €% G |7)*E

is quasi-coherent and the morphism (7" x T")** — T" is affine. So we have
the vanishing R%j7.£ = 0 for ¢ > 0. [
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COROLLARY 2.3.4. Let T be an affine exact widening and E be an

isocrystal on (X/V)L%%VN,MT' Then jr«&€ is Uy-acyclic.

PrROOF. In fact,

R, (jr+&) = Ru Rjr +e.€ (Proposition 2.3.3)
= Rz, Ry Roy €.€
= Rz*fy*qﬁi*e*é’ (Lemma 2.3.1, Proposition 2.1.31)
= 27 E (affinity of z)
= U jr €. U

Now we begin the proof of the log convergent Poincaré lemma. We will
work on the commutative diagram

(X,M) —— (P,L)
(2.3.1) fl gl
(Speck,N) —“— (SpfV,N),

where f is a morphism of finite type between fine log schemes, IV is a fine
log structure on SpfV, ¢ is the canonical exact closed immersion, ¢ is a
closed immersion into a fine log formal V-scheme (P, L) and g is a formally
log smooth morphism. Assume moreover that (SpfV, N) admits a chart
¢:Qy — N and (X, M), (P, L) are of Zariski type.

For the moment, let us assume moreover the following conditions:

(a) P is affine.

(b) The diagram (X, M) <> (P,L) - (SpfV, N) admits a chart C =
(Qv > N,Rp — L,Sx — M,Q — R S) extending ¢ such that
a®P is surjective.

Denote the chart (Qy - N,Sx — M,Q — S) of goi = o f induced

by C by C{. Then the diagram

(X,M) —— (P,L)

H /|

(X, M) ==L (SptV,N)
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admits a chart Cp := (Qy % N,Rp — L,Sx — M,Sx — M,Dp), where
Dp is the diagram

S % R

I

S — Q.
So P:=((P,L),(X,M),1,id),Cp) is a charted affine pre-widening of (X, M)
over (Spf V, N) with respect to the chart C{,. Let P := ((P, L), (X, M), ,id)
be the exactification of P and let P := (P, L), (X, M), 1,id) be the widening
associated to P. Put R := (a®”)~1(S). Then the diagram

i

(X7M) - (BaL)

| /|
(X, M) —“L (SpfV, N)
admits a chart Cp := (Qv > N,Rp — L,Ry — M,Rx — M,Dp), where
Dp is the diagram
R«% R

I

E — Q7
(Q — R is the composite Q — R — R). Let Cy be the restriction of the
chart Cp to the morphism ¢ o f. Then (P,Cp) is an exact charted affine
pre-widening of (X, M) over (SpfV, N) with respect to the chart Cy. Let
Cp be the pull-back of the chart Cp to the diagram

(X, M) —— (P,1)

| d

(X, M) L (SptV,N).

Then (P,Clg) is an exact charted affine widening of (X, M) over (Spf V, N)
with respect to the chart Cy. Now, for a locally free isocrystal £ on
(X/V)ls put

conv,et»

%

Wp(E) = p . (T5E ®ox,y SpWhpvlp))-
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Then we have the following theorem, which is a log version of [Og2, (0.5.4)]:

THEOREM 2.3.5. Let the notations be as above. Then,

(1) For a charted affine enlargement T = ((T, Mr),(Z,Mz),1,2),Cr)
of (X, M) over (Spf V, N) with respect to the chart Cy, we have

WH(E)T) =lim E(T7,((T x P)*™)) ®0, whyy-

(2) There exists a canonical structure of complex on w%,(E).
(3) (Log convergent Poincaré lemma) The adjoint homomorphism
0

& —>j]5’*j}§5 = w4

P(S) induces the quasi-isomorphism

E— wh(€).

PROOF. First we prove the assertion (1). Let ¢ : F — hp be the
object in (X/V )k, ol p defined by ¢=1(S — P) = £(S) ®0,, wy,- Then
we have

Wi (E)(T) = Hom(hr, jp ,(F5€ @0y, ¢p(Wpvp)))
= Hom(j5hr, j5€ Q0 O (Wh )y |p)
— g F S hp)

= Hom(thﬁ

. P
— @n Hom(hTz,n((Txﬁ)eX) — hp, F— hp)
=lim E(Tz((T' x P)™)) @0p wpyy

as desired.

Next we prove the assertions (2) and (3). Since X is affine, any en-
largement is affine (with respect to the chart Cy) etale locally. So it suf-
fices to construct a canonical, functorial structure of complex on W;s(g)T
(:= the sheaf on Tza induced by w}(£)) for charted affine enlargements
T = (((T,Mr),(Z,My),i,z),Cr) with respect to Cy. Put Cr = (Qy -
N,Ry — M,Ur — Mr,U;, — Z,Dr), where Dr is the diagram

U «—— U

[

R —— @
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such that U8 — (U’)8P is surjective. Let (P™,L™) be the m-th log in-
finitesimal neighborhood of (P,L) in (P, L) X (Spf V,N) (P,L). Let pim :
(P™,L™) — (P,L) be the i-th projection (i = 1,2) and put X]* :=
pi_ﬂ}l(X ). Let s : R@®g R — R be the homomorphism induced by the

summation and put R(1) := (Sgp)—l(ﬂ). Let 3; be the composite R i-th incl.

R &g R — R(1). Then the diagram
(Xi", L") —— (2™, L")

l l

(X.M) T (SpEVLN)
admits a chart C; := (Qy — N,Rx — M,R(1)p» — L™ R(1)x» —
L™ D;), where D; is the diagram
R(1) 9 R(1)

i
R

A Q7

and the diagram
(X, M) —— (2™, L™)

H l

(x, M) Lo (SptV, )
admits two charts which are defined as the pull-backs of the charts C; (i =
1,2), which we denote also by C; by abuse of notation. Then, for m € N
and ¢ = 1,2, we have exact charted affine pre-widenings
£m7i = (((Bmv Lm)7 (X7 M))7 Cl)a
B:n = (((BmaLm)7 (qun7Lm))>C7,)7

P = (((&,L), (X, M)),Cy),

and the following commutative diagram of exact charted affine pre-widen-
ings: .
pmt —— P

L

E:B,



98 Atsushi SHIHO

where the chart of the morphism ¢/ is induced by ;. Now we take the
products with T := (((T, Mr),(Z,Myz),i,z),Cr) (in the category of affine
pre-widenings with respect to Cp). Then we obtain the following diagram
of charted affine pre-widenings (but not exact in general):

P™ xT —— P"xT

Now we calculate the exactifications of the charted affine pre-widenings
which appear in the above diagram. In the following, for a (pre-)widening
S = ((S, Msg), (Y, My)), we denote the ring of global sections of Og simply
by I'(S). Note that the restriction of the chart of P x T' to the closed
immersion

(Z,Mz) — (P, L) X (Spf V,N) (T, Mr)

is given by the monoid homomorphism 6 : (R ®¢g U)™ — U’, and the
restriction of the chart of PJ* x T' (resp. Pj" x T') to the closed immersion

(Z,Mz) — (P™,L™) x(sptv,n) (T, Mr)
(vesp. (Z",Mz) — (P™,L™) X(sptv,n) (T, Mr),

where Z™ := (¢!)71(Z)) is given by the monoid homomorphism
&+ (R(1) &7, U)™ — (R(1) &5, U™,

where 7; is the composite Q — R A, R(1). Let v : R(1) — R@®
(REP/Q%P) (i = 1,2) be the monoid homomorphism given by v ((z,y)) :=
(zy,y),v2((x,y)) := (xy,x). Then one can see easily that ~;’s are isomor-
phisms and that the composite

—1

R R (R%®/Q®) "> R(1)

coincides with the homomorphism 3;. So we have the following isomor-
phisms:

(R(1) @p,r U™ = (R® (BP/Q®)) @ U')™  (via %)
= (BF/QP) e U,
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(R(1) @r,. U)™ = (R(1) @4, (R B U)™)™
= (R® (RP/Q%P)) ©r (R U)™)™  (via ;)
= (R /Q%) @ (R &g U)™.

One can see that, via the above isomorphisms, the homomorphism ¢; is
compatible with

id®§: (RP/Q%P) @ (R Do U)™ — (R/Q*P) @ U
Put W = (62°)"1(U") and Wi == ()" (R(1) @55 U)™) (i = 1,2).

Then we have the isomorphism W; = (RSP /Q#P) @ W. Hence we obtain the
following isomorphism:

(2.3.2) L((P™" x T)ex)

(™ xT) QZ[(R(1)@,, qU)n] Zwi)"

(T(P™) @ppy T(P x T) @zi(ropouym) ZIW])"
T

(2™) ®rp) D((2 x T)%).

e 112

I

By the same argument, we obtain the isomorphism
(2.3.3) D((PT % T)™) 2 T(P™) @pp (P x T)).
Now let us consider the following diagram of exact pre-widenings for i = 1, 2:

(P x T)™ —"s (P x T)

(2.3.4) J qli
(ExT)™ —= (BxT)™

By the isomorphisms (2.3.2) and (2.3.3), the underlying morphism of formal
schemes of ¢; (i = 1,2) are flat and the underlying morphism of formal
schemes of r; (i = 1,2) are identities.

For n € N, put E, := gTZ,n((EXT)ex)

1?2

ETZ,n((pXT)ex), EZZ’;T/ =

5Tz,n((£;”xT)CX) and E™ .= ETZ,n((Em,iXT)CX). On the other hand, let E
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be the coherent sheaf on the rigid analytic space |Z [IIS%LM associated to £.

Then, by Lemma 2.1.26 and the isomorphism (2.3.3), we have

(2.3.5) { L e =L

Eg}n = Oﬂm ®(9£ E,.

Next, by Proposition 2.1.27, we have the isomorphism of inductive systems
of formal V-schemes

{Tzn((B™ % T)™)}n = {Tzn((B]" x T)™)}n
and it induces the isomorphism of the projective systems of sheaves on Z
(2.3.6) {En ) = {E7"
Thirdly, let us note that we have the equivalences of categories

compatible family of

coherent sheaf on
®; : | isocoherent sheaves on | = ,

log
{TZ’n((Bm,i % T)ex)}n ]Z[PmXT

and that we have
(2.3.7) q)l({Ef}L}n) =F (1=12),

by definition of E. (See the proof of Proposition 2.2.7.) By the equations
(2.3.5), (2.3.6) and (2.3.7), we have the isomorphism

®2({O£m ®O£ En}n) = (I)l({En ®O£ Oﬂm}n)'

Denote the specialization map |Z [llé’%w—> Z by sp. Then, by applying sp,
to the above isomorphism, we get the isomorphism

= wl(E)r ®op Opm,
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which we denote by #,,. Then we define the homomorphism
.0 1 _ 0 1
d: wjj(g)T —_— U.)fj(g)T = WP(g)T ®O£ UJP/V

by d(e) :=01(1 ® ) — e ® 1, and extend it to the diagram

o d d d d
wﬁ(g)T = [w%((‘:) — W]ls(g)T B Y w%(f;)T = ]
by extending d to
q+1 q+1

d: w;ls(g)T = w%(é’)T ®op w}lv/v - WOP(S)T ®op Wpy = Wp (€)r

by setting x ® n — d(x) An+ x ® dn. The construction of the diagram
W;s(g )7 is functorial with respect to the charted affine enlargement 7', and
one can check that the diagram w]'s (E)r is independent of the choice of the

chart Cr of T'. So, by varying 7', we obtain the diagram

wh(€) = [w%
We prove that the diagram w;g(é’ ) forms a complex and that the adjoint
map & — jp J5E = w% (&) induces the quasi-isomorphism & — wh(€).

P
To prove it, it suffices to check it on charted affine enlargements T :=

(((T,Mr),(Z,Mz),1,z),Cr) with respect to Cy such that &7 is a free K @y
Or-module. We have

w%(S)T = gnn(K (20 OTZ,TL((BXT)EX)) QK0 €T

Note that the diagram (2.3.4) is defined over T'. By this fact, one can see
that &r is annihilated by d. So the homomorphism

d: w%(S)T — W}D(g)T = W%(g)T ®op W}D/V

is expressed as d(a®e) = d(a)®e (a € lim (K &y O, (pxT)ex)), € € €1),

where

d:lim (K @y Or, ,(pxr)=) — lim (K ®v Or, (px1)=) ®0p Whyy
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is obtained by applying the functor sp, to the relative differential

. 1
d: Opgos = Wigpos nzi

where w is defined by w! = w}lz[llggx. ; /g}}w]lZ[T (9x :

1
12[E5 /121 12[E5r /121
]Z[lg?iic_j]Z[T is the morphism induced by the projection g : PxT — T)).
Since d o d = 0 holds, we have dod = 0. So the diagram w%(€) forms a
complex.

To prove that &€ — w}D(S) is a quasi-isomorphism, it suffices to show
that the relative de Rham complex on |Z [lﬁng

KA 9, 2 KN
)
1Z[p5%r }Z[lﬁng 1Z[r }Z[EiT 1Z[r

DR :=[O

satisfies the quasi-isomorphism Rgk DR = O)z[,.. Note that we have the
diagram
(Z,Mz) —— (B xT)%, M(pxr)e)

| |
(Z,Mz) —— (T, Mr),

where horizontal lines are exact closed immersions and ¢®*(:= the mor-
phism induced by g) is formally log smooth. (Here we denoted the log
structure defined on (P x T')** defined by the exactification of the charted
affine pre-widening P x T' by M pyryex.) Since g** is formally smooth on a
neighborhood of Z, we have the isomorphism (by weak fibration theorem)

1 ~
(2.3.8) ]Z[EiT:]Z[(EXT)ex: Dy, x| Zr= D
Zariski locally on T', where r is the relative dimension of g. So, by Theorem
B of Kiehl, we have Rgx DR = gk .DR. So it suffices to prove that the

homomorphism O)z, — gk DR is a quasi-isomorphism. Note that it
suffices to prove the quasi-isomorphism

D(T1 k, Oz,) — T(Ty i, gx «DR)
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for any admissible open affinoid T x C Tk =]Z[r satisfying g;{l (T1,K) =
T1,x X Dy,. By replacing T' by T, the assertion is reduced to the proof of
the quasi-isomorphism

(2.3.9) L(1Zlr, O1zr) —> T(Z[r, gx«DR) = L1 2[5 1. DR)

under the existence of the isomorphism (2.3.8).
Put T := Spm A. For s € N, put A(s)x := I'(DY, Opr,), 9114(3);{ =
5 1 A(s)kdt; and QqA(S)K =A? Qh(s)K, where ¢1,--- ,ts are the coordinate
of D% . Then, one can see, by the construction of the isomorphism (2.3.8)
due to Berthelot, that I'(]Z [lp?ng, DR) is identified with the relative de Rham
complex

C(A,r) =0 — A(r)x — Q) = Phy, — ]

via the isomorphism (2.3.8). So, to prove the quasi-isomorphism (2.3.9), it
suffices to prove the equations

K®VA7 q:O7

HH(CA,n) = { 0 q>0.

This is nothing but Lemma 2.2.16. So the proof of the theorem is com-
pleted. O

We have the following corollary:

COROLLARY 2.3.6. Assume we are given the diagram

(X,M) —— (P,L)

/| d

(Speck, N) —~— (SpfV,N)

as in (2.3.1) (but we do not assume the conditions (a) and (b)), and let
E be a locally free isocrystal on (X/ V)log Then there exists uniquely

conv,et *

a complexr whH(E) in (X/V)i%gn’\:et and a quasi-isomorphism & —— wh(E)
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satisfying the following condition: Let P’ C P be an open immersion and

put (X', M') := (X, M) x(pr) (P',L). Then, if the diagram

(X', M) —— (P,L)

/| /|

(Speck, N) —~— (SpfV,N)

satisfies the conditions (a) and (b), the complex w}(5)|(X,/V)1og and the

conv,et

quasi-isomorphism 5|(X,/V)1og — wh(€ )’(X,/V)lognv ., are identical with

conv,et

(5\ (X7 Vs ) and 5’(X’/V)1C‘;gm, (c‘f] (X7 /V)es ) defined in The-
orem 2.5.5 respectwely, and this identzﬁcatwn 1 functomal

PRrROOF. Since P is of Zariski type, the above diagram satisfies the con-
ditions (a) and (b) Zariski locally on P. So, if we prove that the definition of
w}j(é‘ ) is independent of the chart C which was chosen before the theorem,
we can glue the complex w})(é’), and if we denote the resulting complex

on (X/ V)L%%met by wh(£), this complex satisfies the required conditions.
Hence it suffices to prove that the definition of w;g(é’ ) is independent of the
chart C.

Let us take another chart C' of the diagram (X,M) — (P,L) —
(Spf V, N). To show the required independence, we may assume that there
exists a morphism of charts C — C’. Let P’ be the exact widening defined
as P by using the chart C’ instead of C and let w;g, (€) be the complex de-
fined as w}g(é’ ) by using the chart C’ instead of C. Then the morphism of
charts C — C’ induces the homomorphism of complexes

£).

W (E) — wh(

It suffices to prove that the above homomorphism induces an isomorphism
on each degree. By the assertion (1) of Theorem 2.3.5, we have

w;(S)T = hm Er, w(PxTyex @Op wP/V,

ij (E)r = hm Er, w(PrxT)ex Q0p wP/V
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Now note that we have the diagram of functors

compatible family of
coherent sheaf on

. )
isocoherent sheaves on | ———

) ]Z[log
{Tzn((P X T)%)}n

| H

compatible family of

coherent sheaf on
isocoherent sheaveson | ———
|Z[2
A, ex PxT
{Tzn((P" X T))}n

where ® and @’ are equivalences of categories and « is the pull-back by the
morphism of inductive systems of formal schemes {T'z,,((P' x T)*)}, —
{T7.,((P x T)*)},. So we have the isomorphism

({Er, (P ®0p Wpvtn) = ® 0 al{Er, (pxrye) ®Op Wy tn)

= Y ({Er, , (prxrye) BOr Wy tn).

log

By applying the functor sp, (where sp is the specialization map |Z[p5

Z) to the above isomorphism, we get the isomorphism

—
. ) ~ . 7
hmn gszn(PxT)eX ®op wWpy — hmn ETZ,,L(P’xT)eX ®op Wpy,

that is, the isomorphism

w%(é‘)T L> w%, (E)T

So the proof is finished. [

REMARK 2.3.7. The similar argument shows that the complex wj (&)
is independent of the choice of the chart ¢ : Qy — N of (Spf V, N) chosen
above. Details are left to the reader.
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COROLLARY 2.3.8. Assume we are given the diagram

(X,M) —— (P,L)
1| d
(Speck, N) —~— (SpfV, N)

as in Corollary 2.3.6 and let £ be a locally free isocrystal on (X/V)log

conv,et *
Then we have the canonical quasi-isomorphism

Ri.€ = sp,DR(IX [, &).

Proor. By Theorem 2.3.5 and Corollary 2.3.6, we have the diagram
Ru,.E — Ruwp(E) — Uwp(E),

and the first arrow is a quasi-isomorphism. We prove first that the second
arrow is also a quasi-isomorphism. To prove this, we may work Zariski
locally. So we may assume the conditions (a) and (b). Then we have

R (€) = Rituip, (6@l p) © 136)
= ﬂ*jp’*@*ﬁ(w}/v\p) ® j}g) (Corollary 2.3.4)
— W (E).

So we obtain the assertion.
Now it suffices to prove the isomorphism (not only the quasi-isomor-
phism)
@.wp(€) = sp,DR(X[F*, €).

To prove it, it suffices to construct the functorial isomorphism Zariski lo-
cally. So we may assume the conditions (a) and (b). Let ¢ : ¥ — hp be as
in the proof of Theorem 2.3.5 and let e be the initial object of (X V)8

conv,et"
Then we have

L(X, 0wp(€)) = T(X, wujp (65 @y | p) @ T5E))
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= Hom(e, jp , (¢ (wp/v|p) @ JHE)
— Hom(hp -5 hp, F -2 hp)

=lim &(Txn(P)) ®op Wiy

Hence we have the isomorphism of the global sections of each degree I'( X,
wwh(€)) = (X, Sp*DR(]X[IP?g,S)i). Since this isomorphism is functorial
with respect to (X, M) < (P, L), we obtain the isomorphism of sheaves
iLwh(E) = sp,DR(IX [, €)'

Now we prove that the above isomorphism induces the isomorphism of
complexes. Note that, for any charted affine enlargement T with respect
to Cp, the diagram (2.3.4) in the proof of Theorem 2.3.5 is defined over the
following diagram of affine enlargements:

p" —— Py
Lo
P —— P,

where P™ is the underlying enlargement of P™. (Note that it is indepen-
dent of i.) Then, by the construction of the complex w$(€)(T") and that
of the complex sp,DR(]X [}?g,g) given in Remark 2.2.9, one obtains the
following: for any charted affine enlargement 7', the differential

I(X,sp,DR(X[E* €)*7") — T(X,sp,DR(X[E*. €)7)
is compatible with the differential
WHE)(T) — W(E)(T)
via the homomorphisms

~

['(X,sp,DR(X[2,€)") = T(X, wwp(E)) — wp(ENT) (r=q—1,q).

Note that this compatibility is true for any charted affine enlargement T'.
So the above compatibility implies that the differential

I'(X,sp, DR(X [958, €)™ — T(X, sp,DR(IX[2E, €)7)
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is compatible with the differential
T(X, @w?h H(E)) — D(X, wwh(E))

via the isomorphism I'(X, sp*DR(]X[llgg,S)T) = (X, uwh(€) (r = q —
1,q). Hence the complex sp,DR(]X [lﬁg,é') is isomorphic to the complex
Uwwp (&) as complexes on Xz,,. So the proof of the corollary is finished. O

COROLLARY 2.3.9 (Log Convergent Poincaré Lemma). Let us assume
given the diagram

(%, M) L (Speck, N) < (Spf V, ),
where f is of finite type, ¢ is the canonical exact closed immersion and

assume that (Spf V, N) admits a chart. Then, for a locally free isocrystal €

on (X/V)lc(i)gnv’et, we have the isomorphism

H'(X/V ) gy et €) = Hin (X/V)5, E).

conv,et’

Proor. Take a good embedding system
(X, M) < (X('),M(')) N (P('),L('))
and let sp® be the specialization map
1x(® [1;!(%'.)_> x(®)

Then we have

I

H(X/V) 0 )

conv,et’

Hi((X(')/V)i%%N,et, g*E) (Proposition 2.1.20)
(X Riis(9°€))

(X DI DROX L, 976))

(Corollary 2.3.8)

I

Hi
H’i

I
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= H'(X, Rg.Rsp.DR(IX [, °€))
(Theorem B of Kiehl)
= H.,(X/V)°5,€).

So we are done. [J

REMARK 2.3.10. One can see easily that the above isomorphism is in-
dependent of the choice of the good embedding system.

REMARK 2.3.11. Let us assume given the diagram
(X, M) - (Speck, N) < (Spf V, ),

where f is of finite type, N is a fine log structure on SpfV and ¢ is the
canonical exact closed immersion. In this remark, we prove that the iso-
morphism

H((X/V)eky o0 E) = Hin(X/ V)5, €)

conv,et’

holds even if (Spf V, N) does not admit a chart.

Let V' be a finite Galois extension of V' with Galois group G such that
(Spf V', N) admits a chart. Put X’ := X xy V' and let g : X' — X be
the canonical projection. Then we have the isomorphism

Hi(X/V)5,€) = Hy(X'/V')5, €)°,

by definition given in Remark 2.2.18. On the other hand, by Corollary
2.3.9, we have the isomorphism
. ) o~
Hl((X//V/>c0(§1V,et’g*g) = H;n((X//VI)logﬂ 9*5)7
and one can see that this isomorphism is G-equivariant. So it suffices to
prove the isomorphism

HI((X/V)I%, 0r &) = HI((X' V)%, g7€)C.

conv,et’ conv,et?

First, since V' is etale over V, we have the canonical equivalence of site
(X' )V)oe o~ (X7 )V)8 Denote the morphism of topoi

conv,et — conv,et*

(X Vi — XV

conv,et conv,et
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induced by g by g := (g«,g"), by abuse of notation.
Let I be an injective sheaf on (X/ V)log We prove that ¢g*I is flabby.

conv,et*

To prove this, it suffices to prove the vanishing H(U, g*I) = 0 (¢ > 0) for
any enlargement T in (X’/V)lc(f)gnv,et and any covering U := {T\ — T}, of
T (see [Mi, I11.2.12]). Since the objects Ty, T naturally define the objects in
(X/ V)lc(f)gnv,et and the covering U naturally defines a covering in (X/ V)lccz)gnwet,

we have HY (U, g*T) = HIU,T) = 0(q > 0), as desired. Hence g*I is flabby.
Now let us consider the following diagram of topoi:

XVt 2 XV

conv,et conv,et

ul u/l
Xet DE— X!

ety

where v/ is the functor u for X’. Note that we have the isomorphism
f*ou, = ul og*. Let us take an injective resolution & — I®. Then
g*€ — g*I*® is a flabby resolution of ¢g*£. So we have

(2.3.10) F(Rus&) = frud® = ulg"I* = Rulg*€.
Now let us note that we have the Hochschild-Serre spectral sequence
HP (G, HY(X.,, f*Ru.E)) = HP'Y( Xy, Ru,E).

Applying (2.3.10), we get the Hochschild-Serre spectral sequence for log
convergent cohomology

HP (G H(X )V ) gt 9°E)) = HPPU((X/V ) o0 E).

conv,et?’ conv,et?

Since HI((X'/V)\%8 . g*E)’s are Q-vector spaces, the above spectral se-

conv,et?
quence always degenerates. Hence we get the desired isomorphism

H'((X/V )t €) = H(X' V) gyt 9°E) = H' (X )V ) gy ")

conv,et? conv,et?
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2.4. Log convergent cohomology and rigid cohomology
Let us assume given the diagram

(X, M) 7, (Spec k, triv. log str.) < (Spf V, triv. log str.),

where (X, M) is an fs log scheme of Zariski type and f is a proper log
smooth morphism of finite type. Put U := Xiy and denote the open
immersion U — X by j. Let a € N,a > 0 and assume that there exists a
lifting o : Spf V' — Spf V' of the a-times iteration of the absolute Frobenius
F : Speck — Speck. Let £ be an F-isocrystal (whose definition will be
given in Definition 2.4.2) on (X, M) over Spf V. Then, as we will see in
Proposition 2.4.1, ‘the restriction of £ to U’ has naturally the structure of
an overconvergent isocrystal on U over Spf V', which we denote by jT€. The
purpose of this section is to prove the isomorphism

(24.1) H}y(U/K,j1€) = Hy(X/ V)%, €).
Since we have shown the isomorphism

Hi(X/V)'%5,€) = H(X/V)ethy o1 €)
in the previous section (we will see that £ is indeed locally free in Proposi-
tion 2.4.3), the isomorphism (2.4.1) implies the isomorphism
. . o .
Hiy(U/K,§1€) 2 HI((X/V)%, 0. )

between rigid cohomology and log convergent cohomology. The impor-
tant part of the proof of the isomorphism (2.4.1) is due to Baldassarri and
Chiarellotto([Ba-Ch], [Ba-Ch2]): We reduce the proof of the isomorphism
to certain local assertion and prove it by using the theory of p-adic differen-
tial equations with log poles on unit disk over smooth affinoid rigid analytic
space, which is developped by them.

First, we define the restriction functor from the category of locally free
isocrystals on log convergent site to the category of overconvergent isocrys-
tals. Assume we are given the diagram

(X, M) L (Speck, N) < (SpfV, N),



112 Atsushi SHIHO

where f is a morphism between fine log formal V-schemes of finite type,
N is a fine log structure on Spf V' such that (SpfV, N) admits a chart and
¢ is the canonical exact closed immersion. Put U := Xy, and denote
the open immersion U — X by j. Then, we have the canonical restriction
functor

§ t Leon et (X/V)'*%) — Leonv,et(U/V)*%) = Lonv,et(U/ V).
On the other hand, we can construct the functor
r: 1N (U, X) — Leonv,et(U/V)
in the following way: Take a diagram
(2.4.2) X L x4 pe),

where ¢ is a Zariski hypercovering and ¢ is a closed immersion into a sim-
plicial formal V-scheme such that each P is formally smooth on a neigh-
borhood of U® := X@ xx U. Then, an object £ € I'(U, X) defines a
pair (£, ), where £©) is an object in IT(U©, X PO) and ¢ is an
isomorphism
p2E® =5 p €

in I/(UM, XMW PO (where p; (i = 1,2) is the functor IT(U® X
POy — 1™, XMW PM) induced by the i-th projection) which reduces
to the identity in IT(U©®, X(© P©)) and satisfies the cocycle condition in
I'U®, Xx® P®). Denote the open immersion U — X by ;@ First
let us define the functor

r@ . ]T(U(i)7X(i)’p(i)) . Iconv,et(U(i)/V)

as follows: For n € N, denote the (n 4 1)-fold fiber product of P®) over
Spf V by P (n). For a strict neighborhood O of JU® [pii) (n) In ] x @) [peir
let us denote the inclusion |U () [ PO () O by ap. Then pull-back by ap’s
induce the functor

" coherent coherent
at(n) : (j(i),TO]Xm[ —modules) — (O]U@)[ _moduleS>

p(1) (n) p(®) (n)

n)’
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for i,n € N. Since the functors a(¥) (n) are compatible with projections with
respect to n, it induces the functor

1w, x® p@y — st (U0 — PO /Spf V).
By composing it with the equivalence
Str” (U — PWD /Spf V) ~ Tony.et(UD/V),

we obtain the functor (). Then, since the functors 7 (i € N) are com-
patible with projections with respect to i, r(’s for i = 0,1,2 define the
functor

T IT(U,X) — Leonv,et (U/V).

One can check that this definition is independent of the choice of the dia-
gram (2.4.2).
Now we construct a functor

jT:Ilf

conv,et

(X/V)#) — I'(U, X)
which is compatible with j* and r:

PROPOSITION 2.4.1. Let (X, M) — (Speck,N) — (SpfV,N),U, j, j*
and r be as above and assume that (X, M) is of Zariski type. Then there
exists a functor

gro It

conviet (X/V)'8) — I'(U, X)
such that r o jT = j* holds.

Proor. Take a diagram
(X, M) <2 (X, M®) L (pe) L),

where g := {¢g(™},, is a Zariski hypercovering satisfying (¢(™)*M = M)
and ¢ is a locally closed immersion into a simplicial fine log formal V-
scheme such that each (P™, L(™) is formally log smooth over (SpfV,N)
of Zariski type and formally smooth (in the classical sense) over (SpfV, N)
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on a neighborhood of U™ := X x x U. (The existence of such a diagram
can be shown in a similar way as Proposition 2.2.11. The detail is left to
the reader.) Denote the open immersion U®) — X by (). Since the
categories Il ((X/V)'°¢) and I'(U, X) satisfy the descent property for
Zariski open covering of X, it suffices to construct the functors

-(n),T . Ilf

J et (XM V)8) — TT(U™, xM) = (U, X, p)
which are compatible with the transition morphisms of simplicial objects
such that 7" o j™:1 = j()* holds, where r(™ is the functor r for U™ —
X,

First, let us note the following claim:

Cramv. Let ((X, M) < (P,L)) be an object in the category Z intro-
duced in Proposition 2.2.4, and let U be an open set of X such that i\(U7M)
is exact. Then there exists a canonical map

p ) X[PE—X[p

and there exists a strict neighborhood V' of |U[p in |X[p such that the
morphism ¢~ (V) — V induced by ¢ is an isomorphism.

Proor or CraiM. If there exists a factorization

x, M) S Py L (P
such that ¢’ is an exact closed imersion and f’ is formally log etale, then we
have | X [llgg:]X [pr by definition. So we define ¢ as the morphism | X [pr—
] X[p induced by f’. In general case, we can define ¢ Zariski locally on
P, since there exists a factorization as above Zariski locally. Moreover,
we can define the morphism ¢ :] X [lﬁg—ﬂX [p globally by gluing this local
definition.

Let us prove the latter statement. To prove it, we may work Zariski
locally and so we may assume the existence of the above factorization.
Then, f’ is formally etale on a neighborhood of U. Then, we can apply
Theorem 1.3.5 and so there exists a strict neighborhood V' of |U[p in | X[p
such that ¢=!1(V) — V is an isomorphism. [J
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Let us denote the essential image of the category Igmv’et((X (n) /7 )log)

via the equivalence of categories
Leonv.et (XM /V)08) ~ Str” (XM M) — (P ™M) /(Spf V, N))

by St/((X0), M) o (PO, L) /(SpEV, M), Then I, (X
V)log) is equivalent to Str”((X™, M ™)) < (P™ L) /(SpfV, N))¥. One
can see that, for any object (F,¢) in Str”((X™, M™) — (P LM)/
(Spf V, N)¥, E is a locally free O, . 1os-module.

1X[p
Now we construct a functor

FMT St (XM, M)y s (PM) L™ /(Spt v, N))¥
— If(u™, x™ pr)y,

For m € N, let (P™(m), L™ (m)) be the (m + 1)-fold fiber product of
(P, L) over (SpfV, N). By the claim, we have the morphism

which we denote by ™ (m). Let us take strict neighborhoods V(™ (m) of
ju™ [p(m) (my In ] X ) p(m () Satisfying the following conditions:
(1) The morphisms (™ (m))~' (V™ (m)) — V) (m) are isomor-
phisms.
(2) For any projections a* : P (m) — P (m/) corresponding to an
injective map « : [0,m'] < [0,m], the induced map of rigid anan-
Iytic spaces af :] X [P(m(m)—ﬂX(”) [ptn) (1) satisties V) (m)
() (V) (m)).
Let

pi 1X " [pay 1y —1X P [pem  (i=1,2),
Dij x ) [P(7L>(2)_>]X(n) [Py (1<i<j<3)

be the projections and let

Ax ™ [P —]x ™ [P 1)
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be the diagonal map. Put V(n)(O) = A~ (V(™(1)). Then, by the above
conditions on V(" (m)’s, any object (E,e) in the category Str”((X),
M™) — (P™ L) /(Spf V,N)) defines the following data:

(1) A locally free sheaf E on V(™)(0).

(2) An isomorphism ¢ : p5E — piE on V(™(1) satisfying piy(e) o

pi3(€) = pis(e) on V™ (2) and A*(e) = id on v (0).

By pushing these data to | X (n) [pn), we obtain an object in the category
T, XM PM). So we have constructed the functor

Str”((X("),M(”)) AN (p(n),L(n))/(Spr’N))lf . IT(U("),X(”),P(”)),

which is the definition of the functor J (n),,
Let us define the functor

(n),t . Ilf

conv,et

j (XM eyt x™)y = rfg™, x™ p)

by the composite

Ilf

conv,et

(X /V)8) 2 St (X ™), M™) < (P, L) /(Spt v, N))*

00 ), x o) pl),

Then one can check easily that this functor has the required properties.
Hence the assertion is proved. [J

Now we prove the comparison theorem between the analytic cohomology
and the rigid cohomology. In the following in this section, we consider the
following situation: We are given a diagram

(X, M) N (Spec k, triv. log str.) — (Spf V, triv. log str.),

where (X, M) is an fs log scheme and f is a proper log smooth mor-
phism of finite type. In the following, we write (Speck, triv.logstr.) and
(Spf V, triv. logstr.) simply by Speck, Spf V', respectively. Put U := Xy
and denote the open immersion U — X by j.

First we define the notion of F%isocrystals on (X/ V)}:?)gnv,et =
((Xa M)/V)conv,et-
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DEFINITION 2.4.2. Let the notations be as above and let Fx
(X, M) — (X,M), Fy : Spec k — Spec k be the absolute Frobenius
endomorphisms. Let a € N,a > 0 and assume there exists a morphism
o : Spt V. — Spf V' which coincides with F}' modulo the maximal ideal of
V. Then we have the following commutative diagram:

a

(X, M) -2 (X, M)

! l

i
Spec k —— Spec k

l l

SpfV —7— SpfV.

For an isocrystal £ on log convergent site ((X, M)/V )conv,et, denote the pull-
back of E by (F¢, Fy,0) in the above diagram by F»*E. An F“-isocrystal
on log convergent site ((X, M)/V)conv,et With respect to o is a pair (€, ®),
where £ is an isocrystal on ((X,M)/V)convet and ® is an isomorphism
F*E — FE.

Next proposition assures that an F“-isocrystal is in fact a locally free
isocrystal:

PROPOSITION 2.4.3. Let the notations be as in the above definition and
let (€, @) be an F-isocrystal on (X, M)/V )conv,et- Then £ is a locally free
isocrystal.

Proor. It suffices to prove the following: For any x € X, there exists
a formally log smooth lifting ¢ : (X, M) — (P, L) over SpfV defined on
an etale neighborhood of Z(:= a geometric point with image x) such that
the value of £ on the enlargement P := ((P,L), (X, M),1,id) is a locally
free K ®y Op-module around . So we may assume that (X, M) admits a
chart Ry — M such that R; = M; / O)XM holds and that X is smooth over
Spec k[R] ([Kf, (3.1.1)]). By shrinking X if necessary, there exists an integer
r such that X is etale over Spec k[R & N"| and «x is defined by the locus
{a=0|a € R®&N"}. So there exists a formal scheme P which is etale over
Spf V{R @ N"} such that P modulo 7 coincides with X. Then, if we define
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L to be the log structure on P associated to the monoid homomorphism
R — V{R®& N} — I'(P,Op), we obtain a lifting (P, L) of (X, M) which
is formally log smooth over SpfV. By shrinking P, we may assume P
is affine. Let 7 : (P,L) — (P, L) be the unique morphism which lifts
Fx :(X,M) — (X, M) and compatible with ¢ : Spf V' — Spf V' and the
homomorphism R @& N — R & N” defined by ‘multiplication by p®’.

Put P = Spf A and let m be the maximal ideal of K ® A defined by
R®N'. Denote the value of £ at P (regarded as a K ® A-module) by E. It
suffices to show that the localization Ey, of E at mis a flat (K ® A)y-module.
To show this, it suffices to show that E/m"F is a flat (K ® A)/m™module
for any n > 1.

It is well-known that K’ := (K ® A)/m is a finite extension field of K.
Choose an isomorphism (K’)! = E/mE and let f : (K ® A)/m")! —
E/m"E be a lifting of this isomorphism. Let I be the kernel of f. Then I
is contained in (m/m")! and we have the isomorphism

(2.4.3) (K ®A)/m™)!/I = E/m"E.

Let us tensor the both sides with ® g4 (K ® A)/m". Since there exists
a natural surjection

(K ®A)/m™)/] — (K ®A)/m)",
we have the surjection

(K @A) /m")! [ I@kgam (K ® A)/m"
— (K ® A)/m @kgar (K ® A)/m")".

For any x € m, we have 7"(z) € m?"" C m™. Hence the right hand side is
isomorphic to ((K ® A)/m™)" and so the left hand side is also isomorphic to
((K®A)/m™)t. Therefore, if we tensor the left hand side of the isomorphism
(2.4.3) with @gga (K ® A)/m", it becomes a free (K ® A)/m"-module.

On the other hand, E comes from an F%-isocrystal. So, if we tensor
the right hand side of the isomorphism (2.4.3) with @gga (K ® A)/m",
it is again isomorphic to E/m"E. Hence E/m"E is a free (hence flat)
(K ® A)/m™module, as desired. [J
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Now we state the main theorem in this section:

THEOREM 2.4.4. Let
(X, M) L Speck <& Spt v

be as above and assume that (X, M) is of Zariski type. Put U := Xy and
denote the open immersion U — X by j. Let £ be one of the following:
(1) €= Kx/v holds.
(2) There exists a lifting o : Spf V. — Spf V' of the a-times iteration of
the absolute Frobenius on Speck (a > 0) and & is an F®-isocrystal
on (X/V)L?)gnmt with respect to o.

Then we have the isomorphism

Hy;,(U/K,j1€) = Hy (X/V)'%,€).

First, let us recall the following result, which is an immediate conse-
quence of results due to Kempf-Knudsen—-Mumford—Saint-Donat ([KKMS])
and Kato ([Kk2)):

PROPOSITION 2.4.5. Let (X,M) be an fs log scheme of Zariski
type which is log smooth over Speck. Then there exists a morphism
f: (X, M) — (X,M) of fs log schemes of Zariski type given by ‘sub-
division of fan’ which satisfies the following conditions:

(1) f is proper, birational, log etale, X is reqular, and X iy is isomor-

phic to Xiriy.
(2) For any point x € X, there exists a natural number r(x) such that
M;/O0% = N'® holds.

(3) LetU be an open set of X and suppose we have a formally log smooth
lifting © : (U, M) — (P, L) over Spf V' such that (P, L) is of Zariski
type. Then we can construct the following diagram:

(f~'(U), M) —— (P,L)
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Here i is a formally log smooth lifting over Spf V', g is formally log
etale, (P, L) is of Zariski type and Rg.O5 = Op holds.

PrOOF. We only sketch the outline of the proof. The details are left
to the reader.

First, via the equivalence of categories in Corollary 1.1.11, we may work
in the category of fs log schemes with respect to Zariski topology. (Note
that all the argument in [Kk2] is done in the category of fs log schemes with
respect to Zariski topology.)

Let (F, Mr) be the fan ([Kk2, (9.3)]) associated to (X, M). (Note that
(X, M) is log regular by [Kk2, (8.3)].) Then there exists a proper sub-
division ¢ : (F,Mz) — (F, M) such that, for any z € F, there ex-
ists a natural number r(z) satisfying Mz, = N'@®) ([KKMS, I,Theorem
11], [Kk2, (9.8)]). Then, we can define ‘the fiber product’ (X, M) :=
(X, M) X (p ey (F, My) (Kk2, (9.10)]). Then it is known that ‘the projec-
tion” f : (X, M) — (X, M) satisfies the conditions (1) and (2).

Let us prove the assertion (3). Note that we have the morphism of
monoidal spaces

So we can define ‘the completed fiber product’
(P,L) := (P, L)X (g1, (F, M),
and the projection g : (P,L) — (P, L) fits into the diagram in the state-
ment (3) of the proposition. The assertion Rg.Op = Op follows from the
equation Rf.O-1(yy = Oy, which is proved in [Kk2, (11.3)]. O
Now we begin the proof of Theorem 2.4.4:

PROOF OF THEOREM 2.4.4. Since the proof is long, we divide it into
three steps.

Step 1. First, we construct the homomorphism

H;n((X/V)log7g) - Hzig(U/vaTg)'
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Let us take an open covering X = (J,c; X; of X by finite number of open
subschemes and a formally log smooth lifting (X;, M) — (P;, L;) over Spf V'
such that (P;, L;) is of Zariski type and the value of £ at the enlarge-
ment Pz = ((Pz> LZ), (XZ, M), (XZ, M) — (P“ LZ), (XZ, M) — (X, M)) is a
free K ®y Op,-module. Then we put (X, M©) = (I],.; Xi, My, x.)
(PO L) .= [lic; (P, Li) and denote the exact closed immersion (X,
M©) — (PO L) induced by the morphisms (X;, M) < (P;, L;) (i € I)
by i®. For n € N, let (X M™) (resp. (P™,LM™)) be the (n + 1)-fold
fiber product of (X, M©) (resp. (P©, L)) over (X, M) (resp. Spf V).
Then one can form the good embedding system

(X, M) & (X®), M®) S (p), L)

naturally. (Here i(*) is the morphism induced by the fiber products of i(o).)
Let o™ ;)X ™ [?%n) —]X ™[5 be the morphism defined in the claim in
the proof of Proposition 2.4.1.

Suppose for the moment that the morphism (™ : (X™ M™) <
(P, L) has a factorization

(2.4.4) (X0, M)y — (PM LMy — (P™), L),

where the first arrow is an exact closed immersion and the second arrow is

formally log etale. Then we have | X () [ll‘j%n) =] X[ 50,y. Now note that P

is formally smooth over SpfV on a neighborhood of U™ := X x x U.
So jT& defines the de Rham complex DR(JX (™[5, j7€) on ]JX™[5,,. By
definition of jT&, we have the isomorphism

DR(X " [pm), 5T€) = lim | 0,:apDRIX ™M 50, €),

where O runs through the strict neighborhoods of U™ [, in ] X ™[50
and we denoted the inclusion O —]X ™[5, by ap. So we have the canon-
ical homomorphism

DR(X ™[5, E) — DR(X ™[5, 51E).

Now let us consider the case that the morphism (™ does not necessar-
ily have the factorization (2.4.4). Since (X, M) and (P™, L") are
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of Zariski type, the morphism (™ has has the factorization (2.4.4) Zariski
locally. Then one can define the de Rham complex DR(]X ™[5, jT€) lo-
cally, and one can see that this complex can be glued and gives the de Rham
complex on | X (™ [I;Egm, which we denote by DR(]X (™) [llg(gm ,j1€). Moreover,
one can glue the homomorphism

DR(X ™[50, €) — DROIX ™[50, 57€)
and hence it gives the homomorphism

1 | .
DR(JX"[,,€) — DR(X™M [ . ji€).
Since this construction is compatible with respect to n, we can define the
homomorphism

(2.4.5) DR(IX®[%, &) — DROX®[%, , jte).

Now we prove the quasi-isomorphism

(246)  ReIDROXCEE j1€) = DRIX O [pe, iTE).

First we may replace e by n. Then, since we can work Zariski locally on
P(™ | we may assume the existence of the factorization (2.4.4). Then, since
the morphism P — P is formally etale on a neighborhood of U™,
the assertion follows from Proposition 1.3.10. Hence, by applying RQOS:) to
the homomorphism (2.4.5), we obtain the homomorphism

(2.4.7) ReDR(IX [, €) — DR(X®[pe), 5TE).

By applying the functor H*(X, Rg*RspE:)—) (where sp(® is the specializa-
tion map | X (®)[p@ — X(*)) to the homomorphism (2.4.7), we obtain the
homomorphism

Hy, (X/V)'%8,€) — H},(U/ K, j'E).

rig

Step 2. In this step, we reduce the theorem to the case that X is
regular and M is the log structure associated to a simple normal crossing
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divisor. Let (F, MFp) be the fan associated to (X, M) and take a proper
subdivision (F, M%) — (F, M) of (F, M) such that, for any z € F, there
exists a natural number r(z) such that Mz , = N7(®) holds. Let (X, M) be
(X, M) X (g (F, My) and let b be ‘the projection’ (X, M) — (X, M).
(Then X is regular and M is the log structure associated to a simple normal
crossing divisor.) Let us denote the open immersion U = X3y — X by 7,
and denote the restriction of £ to (X/ V)lct())g]m,’et by €.
Take a diagram

(X, M) & (X®), M®) = (p), L)

as in Step 1. Put (7(.),M(')) = (X, M) X (X, M) (X M®), and let

PO T be (PO, LO) x prr, (F, Mp). For n e N, let (P, ™) be

the (n + 1)-fold fiber product of (ﬁ(o),f( ) over Spf V. Then we have the
following commutative diagram:

| el o]

(X, M) —2— (X®, m®) L, (po) L),

Now let us note that the log scheme (?(n),f(n)) is of Zariski type by Propo-
sition 2.4.5. Moreover, g is a Zariski hypercovering and X,y = U holds.
Hence, by the argument of Step 1, the above diagram induces the following
commutative diagram of cohomologies:

Hi ((X/V)8,&) —— H! (U/K,]'E)

al [

Hzl:m«X/V)loga g) Hﬁlg(U/K7]T5)
One can easily see that ET? is identical with jT€. Hence the right vertical
arrow is an isomorphism. If the homomorphism A* is an isomorphism, we
may replace (X, M) by (X, M) to prove the theorem, that is, the proof of
Step 2 is done. So, in the following, we prove that A* is an isomorphism.
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Let sp(”) be the specialization map | X (n) [1;%”)—> X™) and let w(”) be

the morphism | X ) [1;‘(5") —]X™ [p(n) induced by h(™. To prove h* is iso-

morphic, it suffices to prove that the morphism

(24.8)  Rspl"DR(X™[E . €) — Rspl” ReDRIX ™SS, . €)

is a quasi-isomorphism. Let us consider the following diagram

(X, M) AR (P, L)

| |

(x™, pmy 22, (pO) [0)y,

(2.4.9)

where 7 is the first projection and (™ is the composite

(n) )y ISPl 5-(0) 3 r(0)y 1 (p0) 70
(X ™), Ay (XO, Ay < (pO L0,

Y )

Then v is a locally closed immersion and 7 is formally log smooth. Let

sp(()n) be the specialization map

1x (™) [3;’;50) ., x)

and let mx be the morphism

n)rlo; n)rlo
]X( )[P(gn)—)]X( )[P(go)

induced by 7. Then we have

Rsp{"DR(X W[ | €) = Rspy") Rmxc .DR(IX W[ )

= Rspy)DR(IX [ &),

since 7 is formally log smooth. On the other hand, let us consider the
following diagram:

—(n) =—=(n R —=(n) =(n
X 37 P T

| |

(2.4.10)
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where 7 is the first projection and 7(" is the composite

70

(7(”)7M(")) 1-st proj. (Y(O),M(O)) AN (?(0)’3(0)).

Then the diagrams (2.4.9) and (2.4.10) are compatible with the projections
h(®) h(*) (e = 0,n). Let Tx be the morphism

]Y(n) [l%gn) —>]Y(n) [I;%m

induced by 7. Then one has the natural morphism of rigid analytic spaces

n) 13 (")flo n)rlo

v X s, —Ix M,

induced by h(®). Then we have mx o P = 1/1(()") oTg. So we obtain the
quasi-isomorphisms

Rsp™ Ry DR(X ™%, €) = Rspll) Rl Ry DR(X ™[, €)

= Rsp{) Ru DR(X "%, . ©).
Hence the assertion of Step 2 is reduced to the following claim: The homo-
morphism

(2.4.11) DR(X™ [, ) — RyyIDRIX™|

*

50),E)

is a quasi-isomorphism. By shrinking P(?), we may assume that (P(©), L(0)
is a formally log smooth lifting of (X, M) over SpfV and that the
diagram

(Y(”) M(n)) (™) (?(0) Z(O))

l o]

()

(X(n)7M(n)) AN (p(0)7L(0))

is Cartesian. Then, since £ is locally free, the above claim follows from

)
2.4.5. Hence the proof of Step 2 is now finished.

the quasi-isomorphism Rﬁio OF(O) = Op(0), which is proved in Proposition
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Step 3. In this step, we reduce the assertion to a certain local assertion.
Let X be a smooth scheme over k, M be the log structure on X associated
to a simple normal crossing divisor on X, and take a diagram

(X, M) & (X®), M®) = (p), L)

as in Step 1. Let us denote the specialization map ]X(’) [llg(g,)—> X(®) by

sp(®). Then the homomorphism

H;n((X/V)log78> - Hﬁlg(U/vaTg)

is obtained by applying H*(X, Rg*Rspfk')—) = H'(]X® [lg(g,), —) to the ho-

momorphism

DR(IX®[%, &) — DROX®[%, , jte).

Note that we have the spectral sequence

EPY = Hq(]X(p) F;(gp),_) — Hp+q(]X(°) [l;%,),—).

Hence it suffices to prove that the homomorphism

is an isomorphism for any ¢,n € N. Since the assertion is Zariski local on
p®) (which follows from the spectral sequence induced by Zariski hypercov-
ering of P(")), we may assume that the closed immersion (X, M) —
(P, L) admits a factorization

(XM, MMy — (P L)) — (pt) L),

where the first arrow is an exact closed immersion and the second
arrow is formally log etale. (Then we have DR(J X[ jte) =

pn)»
DR()X™[5(n),51€).) Let us consider the following diagram

i(n)

(X(n)’M(N)) AN (p(n),L(n))

| |

n)

(X, prmy 2 (pO) L),

(2.4.12)
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where the notations are as those in Step 2. Let mx be as in Step 2. Then,
since 7 is formally log smooth, we have

~

H( X[ DRIXM[E | €)) = HI(]X™[p0), DRIX M [p0), E)).

On the other hand, since the composite

pn) ., pn) __ p(0)
is formally smooth on a neighborhood of U™ := X x x U, we have

HI(X [, DROX L, 51€)) = H (X D50, DROX M [0, 51€))
= H'(JX ™[ po), DR(X ™[ po), j1€)).

Hence it suffices to prove that the homomorphism
H ()X [po, DROX " [p0), €)) — H'(]X™[p0), DRIX ™ [p00), 57E))

is an isomorphism. By shrinking P(®), we may assume that P9 is a formally
smooth lifting of X (™ and that the log structure L) is defined by relative
simple normal crossing divisor over Spf V. Hence the proof of the theorem
is reduced to the proposition below. So the proof of the theorem is finished
modulo the following proposition. [

PROPOSITION 2.4.6. Let X be an affine scheme which is smooth of
finite type over k, and let P be a formally smooth lifting over Spf V. Let
(t1,--- ,tn) be a lifting of a regular parameter of X to P. Let r < n be a
natural number and put D; := {t; = 0} C P,D :=J,_, D;, Z; = {t; =
0} C X,Z:=,_, Zi. Let L be the log structure on P associated to the pair
(P,D) and let M be the log structure on X associated to the pair (X,Z).
Put U := X — Z and denote the open immersion U — X by j. Let £ be
one of the following:

(1) €=Kxv.

(2) There exists a lifting o : Spf V. — Spf V' of the a-times iteration of

absolute Frobenius of Speck (a > 0) and & is an F®-isocrystal on
(X, M)V )conv,et with respect to o such that the value of £ on the
enlargement (X, M),(P,L),(X,M) — (P,L),id) is a free K ®y
Op-module.
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For X e T',|n| < XA <1, let Uy be Pk —[Z]px and denote the open immersion
Uy — Pg by jx. Then the canonical homomorphism

H'(Px,DR(Pg,€)) — H'(Pg,DR(Px, i €))
= H'(Plim  jr«53DR(Px . €))

s an isomorphism.

In the following, we give a proof of the above proposition. The argument
is essentially due to Baldassarri and Chiarellotto ([Ba-Ch], [Ba-Ch2]). It
suffices to prove the homomorphism

H'(Pg,DR(Pg,E)) — H'(Pk, jr+jiDR(Pk, E))

is an isomorphism for A € I, |7| < A < 1. First, we consider a certain nice
admissible covering of Pg ([Ba-Ch, (4.2)]):

PROPOSITION 2.4.7 (Baldassarri-Chiarellotto). Letn € ')A <n < 1.
For a subset S of [1,r], put

Ps,:={x € Pk ||ti(z)| <1 forieS,|ti(x)| >n forie[l,r] —S},
Vs :={x € Pg||ti(x)| =0 forieS,|ti(x)| > n forie[l,r]—S}.

Then, Vs, is a smooth rigid analytic space (for definition, see [Be3]) and
there exists a retraction qs : Ps, — Vs, of the inclusion Vs, — Ps,
such that Ps, is a trivial bundle whose fiber is an open disk of radius
1 of dimension s := |S|. (That is, qs induces the isomorphism Ps, =
Vs x Dij.) Via the identification Ps, = Vs X Di., we have Ps, NUy =
Vsy x Ck \» where Cy  is the open annulus {x € Dj | A < |t;(x)] < 1} of
dimension s. Moreover, we have an admissible covering

U Psn=Px.
SC[1,r]

When £ is in the case (2) in Proposition 2.4.6, let ox : Spm K —
Spm K be the morphism induced by ¢ and let op, : Px — Pg be the
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morphism compatible with o and satisfying op,_(t;) = i " . Then we have
0Pk (Psme) C Psyyopg (Vs o) C Vsy. On the other hand, let opg be
the morphism Dj, — D7, compatible with ok and satisfying O‘B;{ (t;) =
tfa. Then the argument of [Ba-Ch, (4.2)] shows that, via the identification
Ps, = Vs, x D3, the morphism op, on the left hand side is identified
with the morphism op, X5, ops on the right hand side.

Now we reduce Proposition 2.4.6 to a certain assertion on the open
disk over smooth affinoid rigid analytic space. To do this, we make some
observations.

First, let (E,V) be the integrable log connection on Ps, = Vs, X
D3, associated to £. Then, since j1€ is overconvergent, the integrable
connection is overconvergent in the sense of Baldassarri-Chiarellotto ([Ba-
Ch], [Ba-Ch2]), by [Ba-Ch, §6, pp. 41-42]. Moreover, in the case (2) in
Proposition 2.4.6, the log connection (F,V) has an F?-structure, that is,
we have an isomorphism op (E, V) = (E,V) on Pg pi/pe.

Next, for m € N, let I,,, be the set

{(So, -+, Sm) [ S5 C [1, 7]}

For S := (So, -+ ,S8m) € Iy, denote the set ﬂ;nzo S; by S and let Ps, be
the rigid analytic space ﬂ;-nzo Ps; »- Then we have the spectral sequence

EP? = (B HY(Ps,y, —) = HP'(Py, ).
Sel,
So it suffices to prove that the homomorphism
H'(Ps,;, DR(Pk, &) — H'(Psy, jr«iiDR(Pr, E)) (S € Iy, m > 0)
are isomorphisms for some 7 satisfying A < n < 1,7 € I'. Note that we have
m
Py = {z € Px|[ti(x)| < 1forie | S, |ti(x)| =nforic[l,r] - S}
§=0
Let us define Vs, by
Vs i={x € Pr ||ti(x)| =0 for i € S, |t;(x)| > n for i € [1,r] =8,

m
ti(z)| < 1forie | JS;—s}.
j=0
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Then, one can see that P, C s, and Vg, C Vs, are admissible open sets.
Moreover, the retraction gs : Ps, — Vs, of Proposition 2.4.7 induces the
retraction P, — Vs, and it induces the isomorphism P, = Vs x D,
where s = [S|. Note moreover that VSml/pb = Vs N VSynl/pb is quasi-Stein
for any b € N.

From the above observations, we can reduce the proof of Proposition
2.4.6 to the following:

PROPOSITION 2.4.8. Let A be a Tate algebra such that S := Spm A is
smooth (in the sense of [Be3|) and let s € N. Denote the open immersion
S x Cf(’)\ — Sx D3 =:T by j and the projectionT — S by . Let S C S
be an admissible open set which is quasi-Stein and put T := S x Dj, C T
Let w' be the log differential module

s
W*Q}g D @ (’)leog t;

=1

and put w9 := Nw'. Then w*® forms the log de Rham complex. Then:

(1) The canonical homomorphism
HY(T,w*) — H'(T, joj"w*)

s an isomorphism.
(2) Assume there exists a sequence of affinoid admissible open sets

SOS8 D8 D---

and a finite flat morphism og : S1 — S over ox satisfying the
following conditions:

(a) 0s(Sp) C Sp—1 holds.

(b) S, =8NS, is quasi-Stein for any n.
PutTy := S, x Dy,, T, := S, x Dy, and let o7 := 05 X4 oD; - Let
E be an Op-module of the form m*F, where F is a locally free A-
module and let V : E — E @ w' be an integrable log connection on
T which is overconvergent in the sense of Baldassarri-Chiarellotto.
Assume moreover that there exists an isomorphism

O (B, V) 2 (B, V).
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Denote the de Rham complex associated to (E,V) by DR(E, V).
Then, for sufficiently large integer n, the canonical homomorphism

HYT,,DR(E,V)) — HYT,,, j»j*DR(E,V))

s an isomorphism.

REMARK 2.4.9. To deduce Proposition 2.4.6 from Proposition 2.4.8, it
suffices to apply the proposition in the case where S = Vg, S, = Vg i /pan
and S = Vg, hold and (F,V) is the integrable log connection on Ps,
associated to £.

To prove Proposition 2.4.8, we recall the theory of p-adic differential
equations with log pole on unit open disk over a smooth affinoid rigid ana-
lytic space, which is due to Baldassarri-Chiarellotto ([Ba-Ch2]).

Let A, S,T, 7 be as in Proposition 2.4.8 and let (F, V) be an O module
of the form 7*F (F is a locally free A-module) with an overconvergent
integrable log connection. Let o : S — T be the zero section and put
w%/s = wl/ﬂ*Q}g. Then, by taking the residue along ti(%_ to the composite

E-LE®w — E®uhg,

we obtain the A-linear endomorphism o*E — o*F, which we denote by
¢i. Then we have the following([Ba-Ch2, (1.5.3)]):

LEMMA 2.4.10 (Baldassarri-Chiarellotto). There ezists a polynomial
Q; with coefficient K such that Q;(p;) = 0 holds.

For 1 < i < s, let P; be the minimal monic polymonial such that P;(y;) =
0 holds. Define A(E,V) C K° (where K is the algebraic closure of K) by
AE,V) = {(&, &) | Pi(&) = 0}.

In the following, we assume A(E,V) C K*® holds. (By replacing K by
a finite extension, we may assume it.) For £ := (&, -+ ,&) € K*, we call
(E = 7*F, V) a &-simple object if V(f) =>"7_ ;& fdlogt; holds for f € F.
Then we have the following ([Ba-Ch2, (6.5.2)]):
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PropPOSITION 2.4.11 (Baldassarri-Chiarellotto). Let us fix a subgroup
¥ C K which contains Z and which does not contain a p-adic Liouville
number. Then, if A(E,V) is contained in X5, (E,V) can be written as a
successive extension of £-simple objects for & € A(E, V).

Moreover, we have the following ([Ba-Ch, §6]):

PROPOSITION 2.4.12 (Baldassarri-Chiarellotto). Let (E,V) be a &-
simple object, where & :== (&1, ,&s) and each & is a p-adic non-Liouville
number which is not contained in Z~y. Then the canonical homomorphism

H'(T,DR(E,V)) — H'(T, j,j"DR(E, V))
18 an isomorphism.

OUTLINE OF PROOF. By taking an admissible covering of S, we can
reduce to the case where F' is a free A-module of finite rank. Since T" and
the inclusion 7" := S x C4 | < T are quasi-Stein, we have

HY(T,DR(E,V)) = H(T'(T,DR(E, V))),
HY(T,j,j*DR(E,V)) = H(I(T', 7*DR(E, V))).

Let us prepare some notations: Put Ap :=T'(T,Orp), Ay :=T(T', Op).
Let F:=T(S,F) and E :=T(T,E) = F ®4 Ar. Let @' := ®&;_; Ardlogt;
and let @Y be the ¢g-th exterior power of @' over A7. Let DR be the relative
log de Rham complex

0~ FLEem T,
where V is defined by V(f) := >;_, & fdlogt; (f € F). Put DR = DR®a,,
Ars. Finally, put Q% :=T'(Spm A, QgpmA)'

Then, by introducing the filtration of Katz-Oda type on I'(T, DR(E, V))

and I'(T”, j*DR(E, V)), we obtain the following commutative diagram:

l !

EPY = H9(DR) ® O, = HP*9(I(T", *DR(E, V))).
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So it suffices to prove that the canonical homomorphism DR — DR is a
quasi-isomorphism. One can prove it by constructing a homotopy explicitly
([Ba-Ch, (6.6)]). O

Now we give a proof of Proposition 2.4.8.

PROOF OF PROPOSITION 2.4.8. First we prove the assertion (1). Let
S = Ujoil S; be an admissible covering of S by increasing admissible open
affinoid rigid analytic spaces. Put T'; := S; x Dy,. Then, we have

H(T,w*) = H(T(T,w*))
= Hi(ygj (T, w*)),

H'(T, j.j*w®) = H'(I(S x Cr5,w*))
= H'(lim I'(S; x C§,.0%)).

—J

One can see, by using the quasi-Steinness of I'; and T, that the projective
system {I'(T;,w?)}; satisfies @1{F(Ij,wq)}j = 0. By the same reason, we
have 11311{F(§j x Oy y,w?)}; = 0. So we get the following diagram, where
the horizontal lines are exact:

0 — lm'HUNDN(Tw0) —  HI(w') —  ImH(D(T,0%)  — 0

I l !

0 — lim" H*~H(I(8; x O \,w®)) — H' (L, juj*w®) — lim HY(I(S; x C}, 5, w*)) — 0.
Hence it suffices to prove that the canonical homomorphism
H'(D(Z;,0%) — H'(T(S; x Cy\,w®))

is isomorphism for any ¢ and j. By the quasi-Steinness of T'; and S, this
homomorphism is nothing but the homomorphism

Hi(zj’w.) - Hl(zj,j*]*w.)

Since S; is a smooth admissible rigid analytic space and the trivial log
connection ((’)I].,d) isa (0,---,0)-simple object, the above homomorphism
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is isomorphic by Proposition 2.4.12. So the proof of the assertion (1) is
finished.

Next let us prove the assertion (2). First, let us prove the following
claim:

CramM. we have A((E,V)|r,) = {(0,---,0)} for sufficiently large n.

PROOF OF CLAIM. Let ¢;, be the endomorphism ¢; for (E,, V,,) and
let P;, be the minimal monic polynomial with coefficient K such that
P; »(¢in) = 0 holds. Since y; ,, is the restriction of ¢; to End(i*Elg, ), we
have P; ,/(¢in) = 0 if n > n’ holds. Hence P, ,, is divisible by P;,. So
P; ,’s are the same for sufficiently large n. We denote it by P; .

We prove that P; o has no non-zero root. Let us assume the contrary
and let a be the non-zero root such that |a| is minimal. Let 7: K — K
be the endomorphism induced by o : Spf V' — Spf V. Since o7.(E,, V) =
(Epnt1, Vng1) holds, we have 7(P; o) (ppin+1) = 0, where 7 acts on K[z] by
the action on coefficients. Put Q(z) := 7(P; ) (pz). Then Q(z) is divisible
by Pj «. Since the degrees are the same, we have Q)(a) = 0. Then we have

Pioo(pr™ (a)) = 771 (1(P;00) (pa)) = 7(Q(a)) = 0.

Since 0 < |pr—Y(a)| = p~!|a| < |a| holds, the above equation contradicts to
the definition of a. Hence the assertion is proved. [J

Now take an integer n satisfying the conclusion of the claim and let
S, = U;X;l S, ; be an admissible covering of S, by increasing admissible
open affinoid rigid analytic spaces. Put T', ; := S, ; X Dy,. Then, by the
argument for the proof of the assertion (1), it suffices to prove that the
homomorphism

HI(T, ;,DR(E,V)) — H'(T, ;. j.j"DR(E, V)
is an isomorphism for any j. Since S, ; is a smooth admissible rigid analytic
space and we have A((E, V)|r, ;) C A((E, V)|r,) ={(0,---,0)}, the above
homomorphism is isomorphic by Propositions 2.4.11 and 2.4.12. So the
proof of the assertion (2) is finished and the proof of proposition is now
completed. [
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Since the proof of Proposition 2.4.8 is finished, the proof of Proposition
2.4.6 is also finished and the proof of Theorem 2.4.4 is now completed.

COROLLARY 2.4.13. Under the assumption of Theorem 2.4.4, we have
the isomorphism

H ((X/V )iy o0 €) = Hig(U/ K, 5TE).

conv,et’

ProOF. It is immediate from Theorem 2.4.4 and Corollary 2.3.9. [J

REMARK 2.4.14. Theorem 2.4.4 is true for more general £’s: In fact, in
the notations of Propositions 2.4.8 and the paragraphs following it, the con-
ditions A(E,V) C X% and & ¢ Z~o (1 < i < s) for any & := (&, ,&) €
A(E, V) are the only conditions which we need to apply the results of Bal-
dassarri and Chiarellotto.

Chapter 3. Applications

Throughout this chapter, let k& be a perfect field of characteristic p > 0,
let W be the Witt ring of k£ and let V' be a totally ramified finite extension
of W. Denote the fraction field of W by Ky and the fraction field of V'
by K. For n € N, put W,, :== W ® Z/p"7Z. In this chapter, we give some
applications of the results in the previous chapter to rigid cohomologies and
crystalline fundamental groups.

In Section 3.1, we prove results on finiteness of rigid cohomologies with
coefficients. In Section 3.2, we give an alternative proof of Berthelot-Ogus
theorem for fundamental groups, which was proved in the previous paper
[Shi]. We remark that the condition is slightly weakened. In Section 3.3,
we give the affirmative answer to the following problem, which we asked in
[Shi]: Let X be a proper smooth scheme over k, D a normal crossing divisor
and M the log structure associated to the pair (X, D). Put U := X — D
and let z be a k-valued point in U. Then, does the crystalline fundamental
group 7, ¥ ((X, M)/Spf W, z) depend only on U and x? We use the com-
parison between rigid cohomology and log convergent cohomology to solve
this problem.
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3.1. Notes on finiteness of rigid cohomology

In this section, we prove some results on finiteness of rigid cohomologies
with coefficients. In the case of trivial coefficient, the finiteness of rigid
cohomologies is proved by Berthelot ([Be4]). In the case of curves, the
finiteness of rigid cohomologies with coefficients (under certain condition)
is proved by Crew ([Cr2]). In the case that the coefficient is a unit-root
overconvergent F'®-isocrystal, the finiteness is proved by Tsuzuki ([Ts2]).
Here we prove the finiteness in the case that the coefficient is an overcon-
vergent F'%isocrystal which can be extended to an F“-isocrystal on log
compactification. This result, together with a version of quasi-unipotent
conjecture, allows us to prove (the conjectual) finiteness result in the case
that the coefficient is an overconvergent F“-isocrystal.

Before proving the finiteness result of rigid cohomologies, we prove the
comparison theorem between log convergent cohomology and log crystalline
cohomology, which is the key to the proof of the finiteness results. Let us
consider the following situation

(3.1.1) (X, M) -1 (Speck, N) < (Spf V, N),

where f is a log smooth morphism of finite type between fine log schemes, N
is a fine log structure on Spf V' and ¢ is the canonical exact closed immersion.
In the previous paper ([Shi, §5.3]), we defined a functor

D Iconv,et((X/W)log) — Icrys((X/W)log)'

(In the previous paper, we assumed that f is integral, but to define the
functor @, this condition is not necessary.) For an object £ = K ® F in
Tays((X/W)°%) (F € Coay((X/W)%)), we put

HY((X/W) 3 €) = Q oz H'(X/W) %, F)-

Then we have the following theorem. (It is a log version of a result of
Berthelot [Og2, (0.7.7)].)

THEOREM 3.1.1. Let the notations be as above. Then, for € €

IE o ((X/W)°8)  we have the isomorphism

conv,et

HY (X)W ) gty et €) = H'(X/ W), B(E))-

conv,et’ crys?
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REMARK 3.1.2. Here we remark that we may assume that (Spf W, N)
has a chart to prove the above theorem. Indeed, let W’ be a finite Galois
extension of W with Galois group G such that (Spf W', N) has a chart, and
let

(X', M) — (Speck’, N) — (Spf W', N)

be the base change of the diagram (3.1.1) by (Spf W/, N) — (Spf W, N).
Let & be the restriction of & to I} ((X'/W')18). Then, by Remark

conv,et
2.3.11, we have the isomorphism

H (KW )0 €) = H (X /W) 0,

conv,et? conv,et?’

and one can prove in the same way the isomorphism

7 lo; ~ 7 lo G
H'((X/W) a5 ®(E)) = H (X' /W), ©(£1))°.
One can see (by construction which we will give below) that the homomor-
phism
Hi((X//W/)IOg 8/) _ Hi((X//W/)log q)(gl))

conv,et?’ crys?

is G-equivariant. So, if it is isomorphic, we obtain the desired isomorphism

i lo ~ orri
H' (X)W ) ey eto €) = H'((X/ W), @(E))
by taking the G-fixed part. So we may replace W by W', that is, we may
assume that (Spf W, N) admits a chart. So, in the following, we assume
this condition.

Before giving a proof of the theorem, we recall some properties of ® and
we make some observations in local situation.

First, let us consider the following situation: Let (X, M) be as above and
assume that it is of Zariski type, and assume we are given a closed immersion
i:(X,M)— (P, L) into a fine log formal V-scheme (P, L) of Zariski type
which is formally log smooth over (Spf W, N). Assume moreover that the
diagram

(X, M) <> (P,L) —> (Spf W, N)
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admits a chart
(3.1.2) (Qv = N,Rp — L,Sx - M,Q - R S),

such that o8P is surjective. Let (P(n), L(n)) be the (n+ 1)-fold fiber prod-
uct of (P, L) over (Spf W, N) and denote the closed immersion (X, M) —
(P(n),L(n)) induced by i by i(n). Let R(n) be the (n + 1)-fold push out
(in the category of fine monoids) of R over @) and let a(n) : R(n) — S
be the homomorphism defined by (r1, -+ ,rny1) — a(ri---rpy1). (Then
(P(n), L(n)) has a chart R(n)pgp) — L(n).) Put R(n) == (a(n)®*)~1(S),
P(n) := P(n) X spf 7, {R(n)}SPf Z,{R(n)} and let L(n) be the pull-back of
the canonical log structure on Spf Z,{R(n)} to P(n). Then the morphism
i(n) has the factorization

(X, M) < (P(n),L(n)) — (P(n), L(n)),

where the first arrow is an exact closed immersion and the second arrow

is formally log etale. Let {(Txm(P(n)),Lxm(P(n)))}m be the system
of universal enlargements of the exact pre-widening ((X, M), (P(n), L(n)),
i(n),id), and let (D(n), Mpy)) be the p-adically completed log PD-envelope
of (X,M) in (P(n),L(n)). Then, in the previous paper, we have shown
that there exists a morphism (D(n), Mp(,)) — (Tx.n(P(n)), Lx.n(P(n)))
for sufficiently large N induced by the universality of blow-ups. One can
see that the induced morphism 3(n) : (D(n), Mpa)) — {(Tx m(P(n)),
Lx.m(P(n)))}m to the inductive system is independent of the choice of N.
The morphism £(n) (n = 0,1,2) is compatible with projections and diago-
nals, and so they induce the functor

U Teony ot ((X/W)198) ~ Str/((X, M) — (P, L))
— HPDI((X, M) < (P, L)).

(For the definition of HPDI((X, M) — (P, L)), see [Shi, (4.3.1)].) On the
other hand, we defined the fully-faithful functor

A Tpys((X/W)°8) — HPDI((X, M) — (P, L))
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in [Shi, §4.3]. Then the functor
P ¢ Teonv.et((X/W)'%8) — Lays((X/W)"¥)

is characterized by the equality ¥ = A o ®.
Let us define the functor

coherent sheaf on isocoherent sheaf
Y(n) : ]X[I;%n) 7 <on D(n) )

by the composite

compatible family of

~ | isocoherent sheaves on

<coherent sheaf on)

]X[logn — B
e {Txm (P(n))}m
3(n)* ( isocoherent sheaf
(o)

Then the functor
ICOHV’et((X/W)IOg) ~ Str”((X,M) — (P,L)) — HPDI((X,M) — (P, L))

induced by 7v(n) (n = 0, 1,2) is identical with the functor .

Now let us consider the following situation: Let (X, M) be as above
and assume that it is of Zariski type, and assume we are given a closed
immersion i : (X, M) — (P, L) into a fine log formal V-scheme (P, L) of
Zariksi type which is formally log smooth over (Spf V, N). (But we do not
assume the existence of the chart as in the previous paragraph.) Since the
diagram (X, M) — (P, L) — (Spf W, N) admits a chart as in the previous
paragraph Zariski locally, we can define the functor v(n) (n € N) Zariski
locally. Moreover, one can check that the definition of v(n) is independent
of the chart. So we can glue the functor v(n), and so the functor y(n) is
defined globally. Hence we have the functor

U - Teonv.et (X/W)1°8) ~ Str”((X, M) — (P, L))
— HPDI((X, M) — (P, L))
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also in this case, and we have the equality ® o A = V.

Keep the notations of the previous paragraph and let £ be an object in
the category Ieony.et((X/W)°8). Let (E,€) be the corresponding object in
Str”((X, M) — (P,L)). Then (F,¢) defines the integrable log connection

V:E—>E®w]1X[1£g

on ]X[llgg and the associated log de Rham complex DR(]X[IISg,E). On the
other hand, let (E’,¢') be an object in HPDI((X, M) — (P,L)). Let
D! be the first infinitesimal neighborhood of D in D(1). Then we have
Ker(Opr — Op) = wh = w}D/W\D, by [Kk, (6.5)]. Let us denote the
pull-back of the isomorphism € to D! by €| : Opn @ B/ — E' ® Opx.
Then, one can define the log connection

V':E'—>E,®wb

by V'(e) := €| (1 ® e) — e ® 1. Assume that (E’,€’) comes from an object £
in Iepys((X/W)°8). Then the log connection (E’, V') is integrable: Indeed,
put £ := Ko ® F (F € Corys((X/W)°8) and let F,, be the restriction of
F 10 Corys((X/Wy,)'8). Then, by [Kk, (6.2)], we have the log connections
V! i Fup — Fn.p®@wh and they are integrable. Since we have (E', V') :=
Ko @w @n(fn7Dv V..p), (E', V') is also integrable. In this case, we denote
the log de Rham complex associated to (E’, V') by DR(D, €).

Now let £ be an object in Ieonyet((X/W)1°8) and let (E,€) be the asso-
ciated object in Str”((X, M) < (P, L)). On the other hand, put (E’,¢) :=
V() = A(P(E)). Then we have the integrable log connection (E,V) on
1 X [fgg associated to (E,¢) and the integrable log connection (E',V’) on
D associated to (F’,€). Now let us note that, for any coherent sheaf F
on | X [lp??n)’ we have the functorial homomorphism sp,F' — ~(n)(F) on
Dy = Xygar. In particular, we have the homomorphism

Sp*(E®wa[lIgg) — El ®w}1)

for ¢ € N. Let us prove the following lemma:
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LEmMA 3.1.3.  With the above notations, the following diagram is com-
mutative:

sp,.V
Sp*E — Sp*(E®w}1X[1]gg)

(3.1.3) l l

F Y Eeuw,

PrOOF. We may work Zariski locally. So we may assume the exis-
tence of the chart (3.1.2). So we can define the fine log formal schemes
(P(n), L(n)) as above. Let P! be the first infinitesimal neighborhood of
P(0) in P(1). One can define the functor

. <coherent sheaf 0n> <isocoherent sheaf )
v —

]X[IIE;% on D!

in the same way as the functor y(n). Let p; :] X[z —>]X[15(0):]X[1f3’g (1 =
1,2) be the projections and denote the pull-back of € to | X[z by € :

psE — piE. By the definitions of V and V', it suffices to show the
equality v!(e1) = €. Let us consider the following commutative diagram:

D(1) —— {Txm(P(1)}m

I I

D' —— {Txm(P")}m
One can see that v!(e;) is obtained by pulling back € by the composite
D' — {Txm(P")}m — {Txm(P(1))}m,
and that €} is obtained by pulling back € by the composite
D' — D(1) — {Tx,m(P(1))}m-

So the assertion follows from the commutativity of the above diagram. [J
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By the diagram (3.1.3), we obtain the morphism of complexes
(3.1.4) sp,DR(]X[28, &) — DR(D, ®(€)).
Now let us note the following lemma:

LEMMA 3.1.4. Let the notations be as above and let £ := Ko ® F be an
object in Iys((X/W)°8). Denote the projection (X/W)}%,’SN — X5 —
X7, by u. Then we have

Q ®z Rii,F = DR(D, £).

PRrOOF. Denote the canonical morphism of topoi X — X7, by €.

Then we have Re.e*DR(D, ) = DR(D, ), since each term of DR(D,£) is

isocoherent. Let u be the projection (X/ W)IC?«%,SN — X. Then it suffices

to prove the quasi-isomorphism
Q ® Ru,F = ¢’ DR(D, €).

Let F, be the restriction of F to Cerys((X/W,)°8). Then, by [Kk, (6.4)]
and the limit argument of [Be-Og, (7.23)], we have

Ru,F = @n e DR(D,F,) =€ gnn DR(D, F,).
By tensoring with QQ over Z, we obtain the assertion. [

Now we give a proof of Theorem 3.1.1:

Proor orF THEOREM 3.1.1. Take a good embedding system

(X, M) & (X©, me) & (pe)

(Note that there exists a good embedding system, since we have assumed
that (Spf W, N) admits a chart in Remark 3.1.2.) Let us denote the special-
ization map |X(® [llg(g,>_> X©® by sp®.  Let (D™ Mpw) be the
p-adically completed log PD-envelope of (X, M®™) in (P™ LM),
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Denote the restriction of £ (resp. ®(£)) to Teony.et((X(®)/W)°8) (resp.
Terys (X @) /W)18)) by £(*) (resp. ®(E)(®)). Then, since one has ®(E®)) =
®(£)®), we have the homomorphism

(3.1.5) spl” DR(IX®)[%8, £(*)) — DR(D®), a(£)*)

induced by the homomorphism (3.1.4). By applying H*(X, Rg.—), we ob-
tain the homomorphism

(3.1.6) Hy, (X/W)P8,€) — H'((X/W) 35, ®(E))

(The expression of the right hand side follows from Lemma 3.1.4 and the
cohomological descent.) By Corollary 2.3.9, it suffices to prove that the

homomorphism (3.1.6) is an isomorphism. To prove this, it suffices to show
the homomorphism

(3.1.7) sp"/ DR(JX (W[ | £™) — DR(D™, &(£)™)

induced by (3.1.5) is a quasi-isomorphism. To prove this, we may assume
that P and X (") are affine. Let us take a formally log smooth lifting
(XM MMy — (P™ LMY of (X M®™) over (Spf W, N). Then, both
sides of (3.1.7) is unchanged if we replace (P™,L(M) by
(B(”),L(”))x(s N (P (), L) and then by (P™,L™). So we may as-
sume that (P™, L) is a formally log smooth lifting of (X ™, M) over
(Spf W, N). Then, it is easy to see that sp” DR(]X ™ [logn) ,€(M) is identical
with DR(D™, ®(£)("™) in this case. So the assertion is proved and hence
the proof of the theorem is now finished. [

We have the following corollary (cf. [Og2, (0.7.9)]):

COROLLARY 3.1.5. Let N be a fine log structure on Spf W and denote
the pull-back of it to Spf V' by the same letter. Assume given the following
diagram

(X, M) (Speck, N) < (Spf V, N),

where f is a proper log smooth morphism between fine log formal
schemes and v is the canonical exact closed immersion. Then, for £ €



144 Atsushi SHIHO

Leonv.et (X/V)18), the log convergent cohomology Hi(X/V)%,.8) is a
finite-dimensional K-vector space.

PROOF. Let V' be the Galois closure of W C V with Galois group
G. Then, by the base-change property of log convergent cohomology with
respect to Spf V! — Spf V', we may assume that V' = V' holds. For g € G,
let o4 : Iconv’et((X/V)log) — Conv,et((X/V)lo“??) be the functor induced
by g : SpfV — SpfV and put & := @geGag(E). Then &£ is a direct
summand of £ and there exists an object & in Isony,et((X /W)l8) such
that £’ is the pull-back of & to Iconv,et((X/V)log). Again by base-change
property, we are reduced to show the finite dimensionality of the Ky-vector
space Hi((X/W)2E,, &). By Theorem 3.1.1, we have the isomorphism

H'((X/W) s €0) = H((X/W) 35, 2(€0)),
and the finite dimensionality of H'((X/ W)}f;%s, ®(&)) follows from the ar-
gument in [Be-Og, §7] (which is valid also in the case of log crystalline
cohomology). O

REMARK 3.1.6. The assumption ‘N is defined on Spf W’ can be weak-
ened to the assumption ‘IV is defined on Spf V;, where V; is a sub complete
discrete valuation ring of V' with absolute ramification index < p—1’, since
the theory of log crystalline cohomology works well over such a base. We
expect that the above corollary is valid without these assumptions. If one
has the reasonable theory of log crystalline site with level m (m € N), one
will be able to remove these assumptions.

COROLLARY 3.1.7. Let (X, M) be an fs log scheme of Zariski type

which is proper and log smooth over k. Let € be one of the following:

(1) €=Kxv.

(2) There exists a lifting o : Spf V. — Spf V' of the a-times iteration
of the absolute Frobenius of Speck (a > 0) and &£ is a locally free
F®-isocrystal on (X, M) over SpfV with respect to o.

Put U := Xyiv and denote the open immersion U — X by j. Then the rigid
cohomology group Hriig(U/K,jTS) is a finite-dimensional K-vector space.

ProoF. Immediate from Theorem 2.4.4 and Corollary 3.1.5. [J
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Now we state a version of quasi-unipotent conjecture on overconver-
gent F“-isocrystals and prove that this conjecture implies the finiteness
of rigid cohomology in the case that the coefficient is an overconvergent
F®-isocrystal.

CONJECTURE 3.1.8 (A version of quasi-unipotent conjecture). Let us
assume that there exists a lifting o : Spf V. — Spf V' of the a-times iteration
of the absolute Frobenius of Speck. Let X be a smooth scheme of finite type
over k and let £ be an overconvergent F*-isocrystal on X over Spf'V with
respect to o. Then, there exist:

(1) A proper surjective generically etale morphism f: X1 — X,

(2) An open immersion j : X1 — X1 into a projective smooth variety
such that D := X1 — X1 is a simple normal crossing divisor,

(3) An F®-isocrystal F on (X1, M) (where M is the log structure asso-
ciated to the pair (X1, D)) over SpfV,

such that jTF = f*€ holds in IT(X1).

This conjecture is true in the case that £ is trivial by the alteration
theorem of de Jong ([dJ]). Moreover, this conjecture is true if £ is a unit-
root overconvergent F%-isocrystal ([Tsl]). This conjecture can be regarded
as a p-adic analogue of the quasi-unipotentness of I-adic sheaves. Then we
have the following theorem:

THEOREM 3.1.9. Let us assume that Conjecture 3.1.8 is true. Let us
assume that there exists a lifting o : Spf V. — Spf V' of the a-times iteration
of the absolute Frobenius of Speck. Let X be a smooth scheme of finite type
over k and let £ be an overconvergent F*-isocrystal on X with respect to o.
Then the rigid cohomology Hﬁig(X/K,E) is a finite dimensional K -vector
space.

PROOF. The method of proof is the same as that of [Be4, Théoréme
3.1] and [T's2, Theorem 6.1.1]. So we only sketch the outline.
By induction, we prove the following two assertions:

(a)n Hﬁig (X/K, &) is finite dimensional for any X which is smooth over k

with dim X < n and for any overconvergent F'“-isocrystal £ on X.



146 Atsushi SHiHO
(b), H rig(X/ K, €) is finite dimensional for any closed immersion Z — X

of a scheme Z of finite type over £ with dim Z < n into a smooth scheme
X over k and for any overconvergent F'%-isocrystal £ on X.

First we prove the implication (b)n,—1 + (a)p, = (b)n. To prove (b),, we
may assume that Z is reduced. By long exact sequence of excision and
the hypothesis (b),—1, we may assume that the closed immersion Z — X
is a smooth pair, and that there exists a lifting Z — X of Z — X over
SpecV such that Z, X are smooth over V and that there exists an etale
morphism X — Spec V[N?] for some d. Then, by [Ts2, Theorem 4.1.1],
we have the isomorphism H%rig(X/K,S) = H' ?(Z/K,&|z), where ¢ :=

rig
dim X — dim Z. So the hypothesis (a), implies the finite-dimensionality of
HZZ,rig(X/K7 8)

Next, we prove the implication (b), = (a)p+1. Let X, & be as in the
assertion (a)p41, and let f : X3 — X,5 : X3 — X1,M and F as in
Conjecture 3.1.8. Let U := Spec Ag C X be an affine open subscheme such
that the morphism f|;—1(y) : f~1(U) — U is etale. Then it is finite etale.
Put f~Y(U) := Spec By. First, we have the isomorphism

Hgig(‘Xl/K? f*g) = Hzig(Xl/vaJrf)
and it is finite-dimensional by Corollary 3.1.7. By long exact sequence
of excision and the hypothesis (b),, the group Hriig(Ul/K, f*E) is finite-
dimensional. Now note the following claim:

CrAiM. The homomorphism

f*H.L,(U/K,E) — H!

rig

(U1/K, f*€)

ig
is an injection into a direct summand.

PrOOF OF CrLAIM. The proof is almost the same as that in [Be4,
Proposition 3.6]. Let g : A9 — By be the ring homomorphism induced
by f. Then we have the weakly completed V-algebras Af, BT and a ring
homomorphism ¢ : AT — BT lifting ¢y. By [Be4, Proposition 3.6], ¢ is
finite flat. On the other hand, it is known that one can associate to £ the de
Rham complex E ® Q%; (where E is a finitely generated Af-module) such
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that Hfig(U/K, £) = H(E®Q%;) holds (for example, see [Ts2, (2.2)]). Via
this correspondence, the de Rham complex associated to f*E& is identical
with (£ ® Q%) ® a1 Bf. Since BT is finite flat over Af, one can define the

trace morphism
tr: (E®Q%)®4 Bl — E® Q%
such that the composite with the natural inclusion
E®Q%y — (E®Q%) @4 Bl

(note that it corresponds to f*) is equal to the multiplication by [BT :
AT]. Hence Hfig(U/K,E) = H'(E ®Q%;) is a direct summand of H*((E ®
Q%) ®at BY) = Hriig(Ul/K, f*€) via the homomorphism f*. O

By the claim, Hriig(U/K,é’) is finite-dimensional. Again by the long
exact sequence of excision and the hypothesis (b),, we obtain the finite-
dimensionality of H};,(X/K,£), as desired. OJ

3.2. A remark on Berthelot-Ogus theorem for fundamental
groups
In this section, we give an alternative proof of Berthelot-Ogus theorem
for fundamental groups, which was proved in the previous paper [Shi]. We
remark that here we prove the theorem under a slightly weaker assumption.
The main result in this section is as follows:

THEOREM 3.2.1 (Berthelot-Ogus theorem for m;). Assume we are
given the following commutative diagram of fine log schemes

(kaM) - (X’M) — (XKvM)

! fl !
(Speck,N) — (SpecV,N) <« (SpecK,N)
N\ !
(Spec W, ),

where the two squares are Cartesian, f is proper and log smooth. Assume
moreover that Hig (X, M)/(Spf V,N)) = V holds, and that we are given
a V-valued point x of Xy.uiv. Denote the special fiber (resp. generic fiber)
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of © by xy, (resp. xg). Then there exists a canonical isomorphism of pro-
algebraic groups

W(lzrys((Xk; M)/(Spva,N),ﬁfk) Xy K = W?R((XK,M)/(SPGCK, N),mK).

REMARK 3.2.2. We remark here the difference of the assumption in
the above theorem and that in the Berthelot-Ogus theorem for fundamental
groups proved in the previous paper ([Shi, (5.3.2)]). First, we do not need
the assumption ‘f is integral’ to prove the theorem, which we needed in
[Shi, (5.3.2)]. Second, we do not need the assumption ‘Xj is reduced’ to
prove the theorem, which we also needed in [Shi, (5.3.2)].

PrROOF. Let X be the p-adic completion of X. First we prove the
equivalence of categories

NC((Xg,M)/(Spec K, N)) =~ NlIcony,et ((Xi, M)/(Spt V, N)).
Let « be the composite

N Leony et (X M) /(Spf V, N)) 22 N Teony (X, M) /(Spf V, N))
5 N e (X, M) /(SpE V, N)),

where 7 is the functor defined in [Shi, §5.2]. Since we have the equivalence
of categories

(3.2.1) NI ((X,M)/(Spf V,N)) ~ NC((Xk, M)/(Spec K, N))

by [Shi, (3.2.16)], it suffices to prove that the functor «a gives an equivalence
of categories. By [Shi, (5.2.2)], we may work formally etale locally on X. So
we may assume that (X, M) is affine of Zariski type. (Then so is (Xj, M).)
To prove that « gives an equivalence of categories, it suffices to show that
there exists canonical isomorphisms

(3.2.2) H(Xp/V)E . &) = H((X/V), a(E)) (i=0,1)

conv,et? inf>
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for any € € Nleonvet ((Xi/ V)8). By log convergent Poincaré lemma and
Theorem B of Kiehl, we have the isomorphism

H((Xp/V)e . €)= H(X,sp,DR(Xk, E)).

conv,et’

(Strictly speaking, we should enlarge V' and take Galois-invariant part if
(Spf V, N) does not admit a chart. But the above isomorphism remains
true also in this case.) On the other hand, the object corresponding to
a(€) via the equivalence (3.2.1) is nothing but the formal log connection
sp*DR(XK,S)O — sp*DR(XK,S)I. By the interpretation of extension
class in the category NC((X, M)/(Spf V, N)), we have

H'((X/V)i%,€) = H'(X,sp,DR(Xk, £)° — sp,DR(X,€)")

for i = 0,1. Hence we have the canonical isomorphism (3.2.2). So we
obtained the equivalence of categories

NC((Xg, M)/(Spec K, N)) = N Teony.et (X, M)/ (Spf V, N)).

Since we have H3, (X, M)/(Spec K, N)) = K, we obtain the isomorphism

~

HO(X/V) g ot Kxpv) = K

conv,et?

and so the above two categories are neutral Tannakian. (The neutrality
follows from the existence of the base points zx and xj.) So we obtain the
isomorphism of fundamental groups

(3.2.3) 7™ (X, M)/(SptV, N), zx) = m{®((Xg, M)/(Spec K, N), zx).
Next, since we have the base-change property

HY(X/V) @8 ot Kxpv) = HO(X/ W)y o Kxpw) @0 K,

conv,et’ conv,et?

we have HO((X/W)L8 Kx/w) = Ko. So we have the base-change prop-

conv,et’
erty of fundamental groups

(3.2.4) T (X, M)/ (Spt V, N), zx,)

~

= 7 ((Xg, M)/(Spf W, N), i) Xk, K,
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by [Shi, (5.1.13)]. By the isomorphisms (3.2.3) and (3.2.4), the proof is
reduced to the proof of the isomorphism

1 (Xe, M)/ (Spf W, N), w) = 7y (X, M)/ (Spf W, N), z),
that is, to the proof of the equivalence of the functor
@ : Ncony et ((Xi, M) /(Spt W, N)) — N lerys ((Xy, M)/ (Spf W, N))
defined in [Shi, (5.3.1)]. This follows from the canonical isomorphisms

HY (X)W gt ot €) = HU((X/W) S5, B(E))  (i=0,1)

conv,et? crys?
for € € NICOHV’et((X/W)IOg), which is proved in Theorem 3.1.1. [J

3.3. Independence of compactification for crystalline
fundamental groups
In the previous paper (Shi, [§4.2]), we considered the following problem:

Problem 3.3.1. Let X be a connected proper smooth scheme over k
and let D C X be a normal crossing divisor. Denote the log structure on
X associated to D by M. Put U := X — D, and let x be a k-valued point
of U. Then, is the crystalline fundamental group 77" ((X, M)/Spf W, z)
of (X, M) over Spf W with base point x independent of the choice of the
compactification (X, D) of U as above?

In the previous paper, we gave the affirmative answer under the condition
dimU < 2. We needed this condition because we used the resolution of
singularities due to Abhyankar ([A]) and the theorem on the structure of
proper birational morphism between surfaces due to Shafarevich ([Sha]). In
this section, we give the affirmative answer to the above question in general
case. We use the category of nilpotent overconvergent isocrystals to prove
this problem.

First, we recall the rigid fundamental group for a k-scheme, which is due
to Chiarellotto and Le Stum ([Ch], [Ch-LS], [Ch-LS2]). Let X be a scheme
which is separated and of finite type over k. Then, by [Be3, 2.3.3(iii)], the
category It (X) of overconvergent isocrystals is an abelian tensor category,
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and it is easy to check that it is rigid. Let us denote the unit object of the
category I(X) by O. (In local situation, it is identical with (jTO}X[P, id).)
By [Be3, (2.2.7)] and [Ch-LS2, (1.3.1)], we have the isomorphisms

Homyi(x)(€,&") = Hgg(X/K, Hom(E, ")),
Extri(x)(€,E) = Hrlig(X/K, Hom(&,E")),

for £,& € I'(X). Let us note the following lemma:

LEMMA 3.3.2. Let X be a scheme which is separated and of finite
type over k and assume that Hgg(X/K, O) is a field. Then the category
NTIT(X)(:= the nilpotent part ([Shi, (1.1.9)]) of the abelian tensor category
I'(X)) is a Tannakian category.

PROOF. Since IT(X) is an abelican tensor category and End(0) =
Hgg(X/K, O) is a field, the category N'IT(X) is an abelian category by
[Shi, (1.2.1)]. Moreover, one can check easily that NIT(X) has a tensor
structure which makes it a rigid abelian tensor category. So it suffices to
prove the existence of the fiber functor N'TT(X) — Vecy, for a field L.

Let X C X be a compactification of X, and let U C X be an affine
open subset. Put U := U N X. (Note that it is not empty.) Take a closed
immersion U — P of U into a formal V-scheme P which is formally log
smooth over Spf V. Since the specialization map Px — P is surjective
by [Be3, (1.1.5)], the admissible open set |U[p in |U[p is non-empty. Let
Spm A C|U[p be a non-empty admissible open set of |U[p and take a
maximal ideal I of A. Put L := A/I. Then we can define the functor
£ : NTH(X) — Vecy, as the composite

NTIT(X) — (A-modules)

— Vecy,

where the first arrow is defined by the evaluation at the rigid analytic
space Spm A and the second arrow is induced by the ring homomorphism
A — A/I = L. Then one can see that this functor is an exact tensor
functor, noting the fact that the essential image of the first arrow consists
of free modules. Then, by [D2, (2.10)], £ is faithful. Hence ¢ is a fiber
functor and so we are done. [J
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So we can define the rigid fundamental group as follows. This definition
is due to Chiarellotto and Le Stum ([Ch], [Ch-LS], [Ch-LS2]).

DEFINITION 3.3.3 (Definition of W{ig). Let X be a scheme which is
separated and of finite type over k and let x be a k-valued point of X.
Then we define the rigid fundamental group of X over K with base point
x by

E(X/K,z) == GINT(X),w,),

where w, is the fiber functor
NIT(X) — NIT(z) ~ Veck

induced by the closed immersion x < X and the notation G(---) is as in
Theorem 1.1.8 in [Shi].

The main result in this section is as follows:

THEOREM 3.3.4. Let (X, M) be one of the following:

(1) (X, M) is an fs log scheme of Zariski type which is proper and log
smooth over k.

(2) X is a proper smooth scheme of finite type over k and M is the log
structure associated to a normal crossing divisor on X.

Put U := Xiiv and denote the open immersion U — X by j. Then there
exists the canonical equivalence of categories

Njconv,et((X/V)log) = NIT(U)
In particular, for a k-valued point x of U, we have the isomorphism

W (X, M) /Spf V, x) = T8 (U/K, x).

PROOF. First, let us consider the case (1). In this case, we prove that
the functor

37 Teonv.et (X/V)98) — (U, X) = I'(U)
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induces the equivalence of categories. To prove it, it suffices to prove that
the homomorphisms induced by jt

Hi((X/V)os &) — H. (U/K,j'€) (i=0,1)

conv’ rig

are isomorphisms for any € € Nlcony,et (X, M)/(Spf V, N)). By five lemma,
it suffices to prove that the homomorphisms

H((X/V)E,, Kx)v) — Hi,(U/K,0)

are isomorphisms for any ¢ € N. It is already proved in Theorems 2.4.4. So
we are done.

Next, let us consider the case (2). Note that there exists a log etale
proper birational morphism

f:(X,M)— (X,M)

which is defined by a composition of blow-ups whose centers are smooth
self-intersections of irreducible components of D such that X is smooth
and M is the log structure associated to a simple normal crossing divisor
FH(D)req on X. Then we have X iy = Xty = U and Rf.Ox = Ox. Now
let us note the following proposition:

PROPOSITION 3.3.5. Let f : (X,M) — (X,M) be as above and

let £ be an object in I({f)nwt((X/V)log). Denote the restriction of £ to
Ji

COHV’et((Y/V)IOg) by €. Then the homomorphism

HI(X/V) o &) — H (X V)i ot &)

induced by f is an isomorphism.

PRrROOF. By log convergent Poincaré lemma, it suffices to show that the
homomorphism

Hi(X/V)8,€) — Hy,(X/V)8,€)

induced by f is an isomorphism.
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Let us take the diagram

(X, M) <L (X, @) L5 () 1),

where ¢ is an etale covering such that M©) is associated to a simple nor-
mal crossing divisor on X and (P®, L)) is a log smooth lifting of
(X© M) over SpfV such that P©) is formally log smooth over SpfV
and that L is associated to a relative simple normal crossing divisor on
PO over SpfV. For n € N, let (X, M®™) (resp. (P™,LM™)) be the
(n + 1)-fold fiber product of (X M©) (resp. (P©, L)) over (X, M)
(resp. SpfV), and put (Y(H),H(n)) = (X, M) X(x,m) (X®, M™). Then
the morphism

(7(0),M(0)) . (X(O) M(O))

Y

is induced by a subdivision of fan. So this morphism fits into a Cartesian
diagram

(7(0) 7 H(O)) i (F“”, Z(O))

l )

4(0)

(X(O),M(O)) EECAEIN (p(O),L(O)%

where ¢(©) is a formally log etale morphism. Then we have RgEkO)OF(O) =
Opw. Let (P™,T™) be the (n + 1)-fold fiber product of (P, T
over Spf V. Let ¢(™ be the morphism (ﬁ(n),ﬁ(n)) — (P L) in-
duced by ¢(© and denote the associated morphism of rigid analytic spaces
X" ee )X by gl Let sp™ XML — X be the spe-
cialization map. Then, it suffices to prove the quasi-isomorphism

Rsp” Ryl DR(X V[, €) = Rspl” DR(X %, €).

To prove this, we may replace ® by n. Since (X () M™) is etale (in
classical sense) over (X M), there exists a formally etale morphism
(P, L) — (PO, LO) such that (P, L") x (po) po (X©, M©)) =
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(X M™) holds. Let (PQ(n),Lgn)) be the (n + 1)-fold fiber product of
(Pl(n), Lg")) over Spf V. Then we have the commutative diagram

(X(n),M(n)) — (X(n)7M(n)) e — (X(n)’M(n))

! | !

(P, L) < (B, LYYy T (P, L),

where the vertical arrows are closed immersions and 7; (i = 1,2) are for-
mally log smooth. Let spgn) :]X( )[l;(g — X™) e the specialization map

(i =1,2). Then we have the qua51—1somorphlsms

Rspl"DR(X[EE, €) = Rsp{UDROX [, . )

= Rsp{")DR(X™ [l;fm ).

On the other hand, let (P{", Z{") := (P{"), L{") x (pwy Lo, (P, T”)

and let (Pg ),L(n)) be the (n + 1)-fold fiber product of (?5”),3@) over
Spf V. Denote the morphism

(P, T — (51, )

induced by g™ by ggn)

spaces ]Y(n) [l;(gn) —] X ™ [ﬁ%n) by g(n) Then, since the morphisms

and denote the associated morphism of rigid analytic

(P".13") — @("’,f(”)),

induced by 71, e are formally log smooth, we have the quasi-isomorphisms
Rspl™ Rg¢) DROX "%, €) = Rspl Rg{\ DR(X ™[5 E)
2

= Rsp{")Rg{s DR(X™[%,.2).
1
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So it suffices to prove the quasi-isomorphism

Rsp{") Rg\"} DROX (2% €) = Rsp{DR(X %, .€).

Now let us note the equalities ]Y(n) [lg(gn): ?g’fl)(, ] x () [llg(gn): Pl(ﬁ% Since
1 1

the each term of DR(]X (™) [1;<gn) ;&) is alocally free O ,») -module, it suffices
1 1,K
to prove that Rggn}( +Opm) = Opm holds. This follows from the flat base
wn 1,K 1,K
change and the quasi-isomorphism Rg*Oﬁ(m = Op(o), which we already
remarked. Hence the assertion is proved and so the proof of the proposition
is finished. [J

PROOF OF THEOREM 3.3.4 (continued). By Proposition 3.3.5, the
functor

o NIconv,et((X/V)log) - NICOHV,et((Y/V)log)

induced by f* is an equivalence of categories. Let us denote the open
immersion U < X by j. We define the functor

Gt N Lony et (X/V)8) — NTF(U)

by the composite ;T o f*. Then, since f* and jT are equivalences, j} is also
an equivalence of categories.
Note that the functor j} a propri depends on the choice of f. We prove

that the functor j} is in fact independent of the choice of f. Note that we
have the following commutative diagram for any f as above:

-
Neomy et (X/V)8) —2L NTHD)

(3.3.1) j*l l
NIconv,et(U/V) _ NIconv,et(U/V)>

where the functors j* and r are the functors defined in Section 2.4. Suppose
for the moment the injectivity of the homomorphism

(3.3.2) HY ((X/V)E s Kxpv) — H(U/V)convers Kupv),

conv,et’
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which we prove in the proposition below. Note that we have the isomor-
phism
HO((X/ V)& ot Kxpv) = HY((U/V )eonviet, Kuyv)-

conv,et?

Indeed, since we may replace k by a finite extension to prove it, we may
assume the existence of a k-valued point of U, and in this case, both sides
are equal to K by the argument in the proof of [Shi, (5.1.11)]. Then, by
five lemma, one can see that the homomorphism
HO((X/V et e €) — H(U/V )eony et €)

is an isomorphism for any &€ in Nlonyet((X JV)l8). Hence j* is fully-
faithful. Then the diagram (3.3.1) implies the fact that the functor j} is
independent of the choice of f. So the proof is reduced to the injectivity
of the homomorphism (3.3.2). Hence the proof of the theorem is finished
modulo the proposition below. [

PROPOSITION 3.3.6. Let X be a smooth scheme of finite type over k
and and let M be the log structure associated to a mormal crossing divisor
D on X. PutU := X — D and denote the open immersion U — X by j.
Then the homomorphism

j* : Hl((X/V)IOg ’Cx/v) I Hl((U/V)conv,ethU/V)

conv,et’
18 injective.

Proor. By considering the interpretation by the extension class, it
suffices to show the following claim: Let

be an exact sequence in Ieony et ((X/ V)°8) and assume it splits in the cat-
egory Ieonv,et(U/V). Let s : Ky — E|u be a splitting in Leony et (U/V).
Then there exists a splitting 5 : Kx/y — &€ in Iconvyet((X/V)l"g) which
extends s.

First we prove that it suffices to prove this assertion etale locally. Let
X0 .= [I;c; Xi — X be an etale covering by schemes of finite type
over k with |I| < oo and let M©® be the pull-back of M to X(©. Let
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(XW, MWy = (x© pr0) X (X.M) (XO MO and put U® = XO x
U (i =0,1). Then claim 2 in [Shi, (5.1.11)] implies the injectivity of the
homomorphism

HO((X(I)/V)lOg ICX(l)/V) — HO((U(I)/V)conv,etv ]CU(l)/V)‘

conv,et’

So the homomorphism

j(l)’* : HO((X(I)/V)IC(())gnV,et75) — HO((U(I)/V)conv,eta £)
is injective for £ € Neony et (XM /V)198). Assume we are given an exact
sequence as in (3.3.3) and denote the pull-back of £ t0 Teony.et(X®/V) (i =
0,1) by € (), Let us consider the following diagram, where the vertical lines
are exact:

=5

HO(X/V)emwes &) ——— HY(U/V)conv.et: Elv)

conv,et’
° -(0),*
HO((X(O)/V)zognmet? 8(0)) j—) HO((U(O)/V)COHV7et7 g‘U(O))
B il
j(1),%
HO((X(I)/V)lzoognv,et? E) j—) Hgonv((U(l)/V)COHVyeU E)

Now assume we are given a splitting s : Ky — Elu in Leonv,et(U/V).
Then, if we know the proposition for each X; (i € I), there exists 5 :
Kxopy — EO in Tony et ((XO/V)08) satisfying j(0*(30) = o/(s).
Then we have

j(1),*(ﬁ(§(o))) _ /6/(]'(0),*(5(0))) _ ﬂ/(o/(s)) =0.

Since j()* is injective, we have $(3(?)) = 0 and so there exists an element
5 e HO(X/V)8 &) such that a(3) = 5© holds. For such an element

conv,et’
s, we have

d/(7%(3)) = j V0 (a(3)) = j () = o/ (s)
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and so j*(8) = s holds as desired, since ' is injective.

So we may assume that there exists a formally log smooth lifting of
(X, M) to an affine fine log formal V-scheme (P, L), a lifting {t1,--- ,t,}
of a regular parameter of X to P and an integer » < n such that L is
associated to the relative simple normal crossing divisor {¢;---¢, = 0} on
P over Spf V. Put Q := P,y and let K’ be the fraction field of the integral
domain I'(P,Op)/(t1, -+ ,tn). Then, by the argument of [Crl, §4], there
exists the following diagram:

['(Pk,0p,) —— K'[[t]]

l |

T(Qx. Ogy) —— K'((1)),

where the rings K'[[t]]” and K'((t)) are defined as follows: (Here we use
multi-index notation for ¢;’s.)

K'[[t]P := {Z ait'|a; € K', || is bounded.}.
leN"
K'((t) ={)_ at'|a; € K',|ay| is bounded, [a;] — 0 (m(l) — —o0)}.
lezn

Here, for I = (I1,12,--- ,1y) € Z™, m(l) is defined by

m(l) := min{ly,la, -+, 1.}
By the same method as in [Crl, (4.7.1)], one can show the equation
(3.3.4) Im(i) N K'[[t]]> = T'(Pg, Opy).

Now we prove the proposition in the above situation. Assume we are
given an exact sequence (3.3.3) which splits in Ieony,et(U/V). By results of
[Shi, Chap. 5], /\/’Icon\,’et((X/V)log) is equivalent to the category of isoco-
herent sheaves on (P, L) with nilpotent integrable formal log connections,
and N eony et (U/V) is equivalent to the category of isocoherent sheaves on
(@ with nilpotent integrable formal connections. Let

VE—>E®W(1P,L)/V
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be the integrable formal log connection corresponding to £. Since P is
affine, E is isomorphic to (K ® Op)®? as sheaves, and by this identification,
the connection V can be expressed by a matrix of the form

(0 3);

where n € K ® w(IR L)V and d is the usual differential on K ® Op. Since
the exact sequence (3.3.3) splits in the category Iconv.et(U/V), there exists
an element f € I'(Qx, Og, ) such that n = df holds. If we can show that f
belongs to I'(Px, Op, ), we are done. By the equation (3.3.4), it suffices to
show that i(f) € K'[[t]]® holds.

The element i(n) can be expressed as follows:

(3.3.5) i(n) =Y mit; Ndt; + > midt;.
=1

i=r+1

i
Here n; € K'[[t]]> (1 < i < n). Let e; be the multi-index (0,---,0,1
,0,---,0) of length n. For any multi-index m = (my, ma,--- ,m,) of length
n, the equation

(3.3.6) dt™ =" mt™
1<i<n
m;#0
holds. In particular, the term t"dt; with m; = —1 does not appear in the

right hand side. Since d(i(f)) = i(n) holds, one can see from the expression
(3.3.5) that i(n) is in fact in @], K'[[t]|]Pdt;. Let m be a multi-index
(my,ma,--- ,my) such that m;, < 0 holds for some 1 < iy < n, and let
am, be the coefficient of " in i(f). Note that for any multi-indices [, m of
length n, the equation

tcidt; = ™ dt;

implies ¢ = j and | = m. So, by the equation (3.3.6), the coefficient of
tm=Ciodt; in i(n) = d(i(f)) is equal to ay,m;,. Sincei(n) € @5, K'[[t]]>dt;
holds, we obtain a,,m;, = 0. So a,, = 0 holds for such m. Therefore
i(f) € K'[[t]]” holds and the proof of the proposition is now finished. O]
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Since the proof of Proposition 3.3.6 is finished, the proof of Theorem
3.3.4 is completed.
As a corollary, we can give the affirmative answer to Problem 3.3.1:

COROLLARY 3.3.7. In the situation of Problem 3.3.1, the crystalline
fundamental group =7"*((X, M)/Spf W,z) depends only on U and x, that
18, Problem 3.5.1 is true.

PrOOF. It is immediate from Theorem 3.3.4 and the isomorphism

~

(3:37) R (X WY1, ) = (X W), ),

which follows from [Shi, (5.3.1)]. (One can also deduce the isomorphism
(3.3.7) from the isomorphisms of cohomologies

HI(X/W) 8 o0 Kxyw) = HI((X/W)E, Ko ® Ox ) (i € N)

crys?

of Theorem 3.1.1.) OJ
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