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Crystalline Fundamental Groups II — Log

Convergent Cohomology and Rigid Cohomology

By Atsushi Shiho

Abstract. In this paper, we investigate the log convergent coho-
mology in detail. In particular, we prove the log convergent Poincaré
lemma and the comparison theorem between log convergent cohomology
and rigid cohomology in the case that the coefficient is an F a-isocrystal.
We also give applications to finiteness of rigid cohomology with coeffi-
cient, Berthelot-Ogus theorem for crystalline fundamental groups and
independence of compactification for crystalline fundamental groups.
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2.4. Log convergent cohomology and rigid cohomology 111

Chapter 3. Applications 135

3.1. Notes on finiteness of rigid cohomology 136

3.2. A remark on Berthelot-Ogus theorem for fundamental

2000 Mathematics Subject Classification. Primary 14F30; Secondary 14F35.

The title of the previous version of this paper was Crystalline Fundamental Groups II —
Overconvergent Isocrystals.

1



2 Atsushi Shiho

groups 147

3.3. Independence of compactification for crystalline fundamental

groups 150

References 161

Introduction

This paper is the continuation of the previous paper [Shi]. In the previ-

ous paper, we gave a definition of crystalline fundamental groups for certain

fine log schemes over a perfect field of positive characteristic and proved

some fundamental properties of them.

Let us briefly recall what we have done in the previous paper. First,

let K be a field and let f : (X,M) −→ (SpecK,N) be a morphism

of fine log schemes such that the 0-th log de Rham cohomology

H0
dR((X,M)/(SpecK,N)) is equal to K and let x be a K-valued point of

Xf -triv := {x ∈ X | (f∗N)x̄
∼−→Mx̄}. Then we defined the de Rham funda-

mental group πdR
1 ((X,M)/(SpecK,N), x) of (X,M) over (SpecK,N) with

base point x as the Tannaka dual of the category NC((X,M)/(SpecK,N))

of nilpotent integrable log connections on (X,M) over (SpecK,N). It is a

pro-unipotent algebraic group over K. (For precise definition, see Section

3.1 in [Shi].) Second, let k be a perfect field of characteristic p > 0, let W

be the Witt ring of k and let us assume given the diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (SpfW,N),

where f is a morphism of fine log schemes of finite type, N is a fine log

structure on SpfW and ι is the canonical exact closed immersion. Assume

moreover that the 0-th log crystalline cohomology H0((X/W )logcrys,OX/W )

is equal to W . Let x be a k-valued point of Xf -triv. Then we defined

the crystalline fundamental group πcrys
1 ((X,M)/(SpfW,N), x) of (X,M)

over (SpfW,N) with base point x as the Tannaka dual of the category

N Icrys((X,M)/(SpfW,N)) of nilpotent isocrystals on the log crystalline

site ((X,M)/(SpfW,N))crys. It is a pro-unipotent algebraic group over

K0 := Q ⊗Z W . (For precise definition, see Section 4.1 in [Shi].) The

abelianization of it is isomorphic to the dual of the first log crystalline co-

homology (Hurewicz isomorphism), and we have the action of Frobenius on



Crystalline Fundamental Groups II 3

it which is isomorphic when f is log smooth integral and of Cartier type. In

the case that N is trivial, X is proper smooth over k andM is the log struc-

ture associated to a normal crossing divisor D on X, the crystalline funda-

mental group πcrys
1 ((X,M)/SpfW,x) should be regarded as the crystalline

realization of the (conjectual) motivic fundamental group of U := X −D.

(Note that it is not good to consider the crystalline fundamental group of

U , for the crystalline cohomology of U is not finitely generated in general.)

So it is natural to ask whether πcrys
1 ((X,M)/SpfW,x) depends only on U

and x and is independent of the choice of the compactification (X,M) of U

as above. We asked it in Problem 4.2.1 of [Shi] and we gave the affirmative

answer in the case dimX ≤ 2, by using resolution of singularities due to

Abhyankar [A] and the structure theorem of a proper birational morphism

between surfaces due to Shafarevich ([Sha]).

Thirdly, we proved the comparison theorem between de Rham fun-

damental groups and crystalline fundamental groups (which we call the

Berthelot-Ogus theorem for fundamental groups), whose statement is as

follows: Let k be a perfect field of characterictic p > 0, W the Witt ring

of k and V a totally ramified finite extension of W . Denote the fraction

fields of W,V by K0,K, respectively. Assume we are given the following

commutative diagram of fine log schemes

(Xk,M) ↪→ (X,M) ←↩ (XK ,M)

↓ f ↓ ↓
(Spec k,N) ↪→ (SpecV,N) ←↩ (SpecK,N)

↘ ↓
(SpecW,N),

where the two squares are Cartesian, f is proper log smooth integral and

Xk is reduced. Assume moreover that H0
dR((X,M)/(Spf V,N)) = V holds,

and that we are given a V -valued point x of Xf -triv. Denote the special fiber

(resp. generic fiber) of x by xk (resp. xK). Then there exists a canonical

isomorphism of pro-algebraic groups

πcrys
1 ((Xk,M)/(SpfW,N), xk)×K0 K

∼
= πdR

1 ((XK ,M)/(SpecK,N), xK).

To prove this theorem, we introduced, in Section 5.1 in [Shi], the notion of

log convergent site and the isocrystals on it. Then we defined the convergent
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fundamental groups as follows. Let k, V,K be as above and let us assume

given the diagram

(Y,MY )
g−→ (Spec k,N)

ι
↪→ (Spf V,N),

where g is a morphism of fine log schemes of finite type, N is a fine log

structure on Spf V and ι is the canonical exact closed immersion. Assume

moreover that the 0-th log convergent cohomology H0((Y/V )logconv,KY/V )

is equal to K. Let x be a k-valued point of Yg-triv. Then we defined

the convergent fundamental group πconv
1 ((Y,MY )/(Spf V,N), x) of (Y,MY )

over (Spf V,N) with base point x as the Tannaka dual of the category

N Iconv((Y,MY )/(Spf V,N)) of nilpotent isocrystals on the log convergent

site ((Y,MY )/(Spf V,N))conv. Then the Berthelot-Ogus theorem is the con-

sequence of the following three isomorphisms

πconv
1 ((Xk,M)/(SpfW,N), xk)×K0 K(0.0.1)

∼
= πconv

1 ((Xk,M)/(Spf V,N), xk),

πconv
1 ((Xk,M)/(Spf V,N), xk)(0.0.2)

∼
= πdR

1 ((XK ,M)/(SpecK,N), xK),

πconv
1 ((Xk,M)/(SpfW,N), xk)(0.0.3)

∼
= πcrys

1 ((Xk,M)/(SpfW,N), xk),

which were proved in Chapter 5 of [Shi].

In this paper, we investigate the log convergent cohomology (the coho-

mology on log convergent site) of isocrystals in detail. Let k, V,K be as

above and let us assume given the diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is a morphism of fine log schemes of finite type, N is a fine log

structure on Spf V and ι is the canonical exact closed immersion. First,

for a locally free isocrystal E on log convergent site ((X,M)/(Spf V,N))conv,

we introduce the analytic cohomology (in rigid analytic sense)

H i
an((X,M)/(Spf V,N), E) as the cohomology of log de Rham complex

associated to E on ‘tubular neighborhood’ of (X,M) (it is a rigid
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analytic space). Then we prove that the log convergent cohomology

H i(((X,M)/(Spf V,N))conv, E) is isomorphic to the analytic cohomology.

This theorem says that the log convergent cohomology can be calculated

by certain de Rham complex. This type of theorem is sometimes called

Poincaré lemma. So we call this theorem log convergent Poincaré lemma.

This is a log version of convergent Poincaré lemma proved by Ogus ([Og2]).

Second, let us consider the case where N is trivial, X is proper smooth and

M is the log structure associated to a simple normal crossing divisor D on

X. Put U := X−D and denote the open immersion U ↪→ X by j. Then we

define the restriction j†E of E to an overconvergent isocrystal (see [Be3] or

Section 1.4 in this paper for the definition of an overconvergent isocrystal

on U) and we construct a canonical homomorphism

(0.0.4) H i
an((X,M)/Spf V, E) −→ H i

rig(U/K, j
†E).

Roughly speaking, both sides are cohomologies of certain de Rham com-

plexes. So we define this homomorphism by constructing a homomorphism

between these de Rham complexes. Then we prove that the homomorphism

(0.0.4) is an isomorphism if E is trivial or an F a-isocrystal (for definition,

see Definition 2.4.2). Combining with log convergent Poincaré lemma, we

obtain the comparison

(0.0.5) H i(((X,M)/Spf V )conv, E) ∼= H i
rig(U/K, j

†E)

between log convergent cohomology and rigid cohomology. This isomor-

phism is quite natural from the motivic point of view, because both should

be the p-adic realization of the motivic cohomology groups (with certain

‘motivic coefficients’).

The isomorphism (0.0.5) has the following importance: First, one can

relate the left hand side to the log crystalline cohomology of (X,M). (In-

deed, if V = W holds, it is isomorphic to the log crystalline cohomology

of (X,M) with certain coefficients.) Since X is proper smooth, this allows

us to prove the finiteness of the left hand side: Hence we obtain the finite-

ness of the right hand side. That is, we can prove the finiteness of rigid

cohomology with certain coefficients. The finiteness of rigid cohomology

is proved by Berthelot ([Be4]) and Tsuzuki ([Ts2]) in the case that the

coefficient is trivial or a unit-root overconvergent F a-isocrystal. (There is
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also a result of Crew [Cr2] in the case of curves.) If we admit a version of

quasi-unipotent conjecture for overconvergent F a-isocrystals, our finiteness

implies the finiteness of rigid cohomology when the coefficient is an over-

convergent F a-isocrystal. Second, it is known ([Be2]) that the right hand

side of the isomorphism (0.0.5) depends only on U , although one uses a

compactification of U to define it. So the left hand side also depends only

on U . By using this fact in the case of trivial coefficient, we can prove that

πcrys
1 ((X,M)/SpfW,x) depends only on U and x and it is independent of

the choice of the compactification (X,M) of U as above. That is, we can

give the affirmative answer to Problem 4.2.1 in [Shi] in general case. (We

need to work a little more since the irreducible components of D need not

be smooth in Problem 4.2.1 in [Shi].)

Moreover, we note that the log convergent Poincaré lemma allows us to

give an alternative proof of the isomorphisms (0.0.2) and (0.0.3), hence gives

an alternative proof of Berthelot-Ogus theorem for fundamental groups. We

can slightly weaken the hypothesis of the theorem in this new proof: the

conditions ‘f is integral’ and ‘Xk is reduced’ are not necessary in the new

proof.

Now let us explain the content of each chapter briefly. In Chapter 1, we

give some preliminary results which we need in later chapters. In Section

1.1, we give a result concerning log schemes which we did not proved in

the previous paper. We introduce the notion ‘of Zariki type’ (for definition,

see Definition 1.1.1), which plays an important role in later chapters. In

Section 1.2, we axiomize the relation between stratifications and integrable

log connections which was proved in the case of certain (formal) log schemes

in [Shi, §3.2]. It is a variant of [Be1, Chap. II]. We use the result in this

section to define the log de Rham complex associated to an isocrystal on log

convergent site on certain rigid analytic space. In Section 1.3, we review the

results on rigid geometry which is due mainly to Berthelot ([Be2], [Be3]).

In Chapter 2, we investigate the log convergent cohomology of isocrystals

in detail. In Section 2.1, we give basic definitions concerning log convergent

site. We slightly change the definition of enlargement and log convergent

site from those in the previous paper, but we prove that these changes cause

no problem. We prove basic descent properties of log convegent site. We

also introduce some new notions such as (pre-)widenings, which is a log

version of widenings in [Og2]. In section 2.2, we introduce the notion of the
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tubular neighborhood for certain closed immersion of a fine log scheme into a

fine log formal scheme, and define the analytic cohomology (in rigid analytic

sense) of log schemes. In Section 2.3, we prove log convergent Poincaré

lemma. That is, we prove that the log convergent cohomology is isomorphic

to the analytic cohomology which is defined above. In Section 2.4, we prove

the comparison theorem between the log convergent cohomology and the

rigid cohomology.

In Chapter 3, we give some applications of the results in the previous

chapter. In Section 3.1, we prove the application of the results in the pre-

vious chapter to the finiteness of rigid cohomology with certain coefficients:

We prove the finiteness of the rigid cohomology in the case that the co-

efficient is an F a-isocryatsl on a log compactification. Moreover, under a

version of a quasi-unipotent conjecture (for overconvergent F a-isocrystals),

we prove the finiteness of the rigid cohomology in the case that the co-

efficient is an overconvergent F a-isocrystal. In Section 3.2, we give an

alternative proof of the Berthelot-Ogus theorem for fundamental groups,

which is proved in the previous paper, under a slightly weaker assumption.

In Section 3.3, we give the affirmative answer to Problem 4.2.1 in [Shi] in

general case. That is, we prove that, when X is a scheme which is proper

smooth over k and M is the log structure associated to a normal crossing

divisor D on X, πcrys
1 ((X,M)/SpfW,x) depends only on U := X −D and

x and it is independent of the choice of the compactification (X,M) of U .

After writing the first version of this paper, the author learned that

Chiarellotto, Le Stum and Trihan ([Ch], [Ch-LS], [Ch-LS2], [LS-T]) also

studied on closely related subjects independently. In particular, the defini-

tion of rigid fundamental group which we introduce in Section 3.3 is due to

Chiarellotto and Le Stum. There is also a related work of Mokrane ([Mo]).

This series of papers is a revised version of the author’s thesis in Tokyo

University. The author would like to express his profound gratitude to his

thesis advisor Professor Takeshi Saito for valuable advices and encourage-

ments. He also would like to express his thanks to Professors Yukiyoshi

Nakkajima, Nobuo Tsuzuki and Doctor Kenichi Bannai for useful advices

and conversations. He would like to express his thanks to Doctor Kiran

Kedlaya for pointing out some mistakes in the earlier version of this paper.

The author would like to thank to the referee for reading the first version

of this series of papers carefully and patiently, and for giving him many ad-
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vices. Without his advices, it would be impossible for the author to make

this paper understandable. The author would like to express his thanks to

those who encouraged him during the revision of this paper. Without their

encouragement, he could not finish the revision of this paper. The author

revised this paper during his stay at Université de Paris-Sud. The author

would like to thank to the members there for the hospitality. Finally, the

author would like to apologize to the editors and staffs of Journal of Math-

ematical Sciences, University of Tokyo, especially to Mrs. Ikuko Takagi, for

the long delay of the revision of this paper, and express his thanks for their

patience.

The author was supported by JSPS Research Fellowships for Young

Scientists in 1996-97, while the main part of this work was done. As for

the author’s stay in Univerisité de Paris-Sud, he was supported by JSPS

Postdoctoral Fellowships for Research Abroad.

Conventions

(1) Let V be a complete discrete valuation ring of mixed characteristic

(0, p). A formal scheme T is called a formal V -scheme if T is a p-adic

Noetherian formal scheme over Spf V and Γ(U,OT ) is topologically

of finite type over V for any open affine U ⊂ T .

(2) For a scheme or a formal scheme T , we denote the category of co-

herent sheaves of OT -modules by Coh(OT ) and for a formal scheme

T over Spf V (where V is as in (1)), we denote by Coh(K⊗OT ) the

category of sheaves of K ⊗ OT -modules on T which is isomorphic

to K ⊗ F for some F ∈ Coh(OT ), where K denotes the fraction

field of V . For elementary properties of Coh(K ⊗OT ) for a formal

V -scheme T , see [Og1, §1]. We call an object of Coh(K ⊗ OT ) an

isocoherent sheaf on T .

(3) In this paper, we use freely the terminologies concerning the log

structure on schemes or formal schemes in the sense of Fontaine,

Illusie and Kato. Basic facts about log structures are written in

[Kk]. See also [Shi, Chap. 2].

(4) Let X −→ Y be a morphism of formal schemes and let N be a log

structure on Y . Then the log structure on X defined by the pull-

back of the log structure N is also denoted by N , if there will be no

confusions.
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(5) Contrary to the convention of the previous paper [Shi], we denote

the completed tensor product (resp. completed fiber product) of

topological modules (resp. formal log schemes) by ⊗̂ (resp. ×̂).

(6) For a site S, we will denote the topos associated to S by S∼.

Chapter 1. Preliminaries

In this chapter, we give some preliminary results which we need in later

chapters. In Section 1.1, we give a result concerning log schemes which we

did not proved in the previous paper. We introduce the notion ‘of Zariki

type’ (for definition, see Definition 1.1.1), which plays an important role

in later chapters. In Section 1.2, we axiomize the relation between strat-

ifications and integrable log connections, which was proved in the case of

certain (formal) log schemes in [Shi, §3.2]. It is a variant of [Be1, Chap. II].

We use the result in this section to define the log de Rham complex as-

sociated to an isocrystal on log convergent site on certain rigid analytic

space. In Section 1.3, we review the results on rigid geometry which is due

mainly to Berthelot ([Be2], [Be3]). In particular, we recall the definition of

overconvergent (F a-)isocrystals and the rigid cohomology with coefficient.

1.1. A remark on log schemes

In this section, we prove a property on log schemes which we did not

stated in the prevous paper [Shi].

Recall that a log structure on a (formal) scheme X is a pair (M,α),

where M is a sheaf of monoid on etale site of X and α is a homomor-

phism M −→ OX of sheaves of monoids which induces the isomorphism

α−1(O×X)
∼
= O×X . (In the previous paper, we defined the notion of log struc-

tures only for schemes and p-adic formal schemes, but we can define it for

any formal schemes.) We call the triple (X,M,α) a log (formal) scheme.

In the following, we often denote (X,M,α) simply as (X,M), by abuse of

notation. As for the definition of ‘fineness’ of a log (formal) scheme, see

[Kk] or [Shi, §2.1].

We introduce a new terminology which plays an important role in later

chapters:

Definition 1.1.1. A fine log scheme (resp. a fine log formal scheme)

(X,M) is said to be of Zariski type if there exists an open covering X =
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⋃
iXi with respect to Zariski topology such that (Xi,M |Xi) admits a chart

for any i.

The main result of this section is the following:

Proposition 1.1.2. Let (X,M) be a fine log scheme (resp. a fine log

formal scheme) of Zariski type and let f : (X,M) −→ (Y,N) be a morphism

of fine log schemes (resp. fine log formal schemes). Assume that (Y,N)

admits a chart ϕ : Q −→ N . Then, Zariski locally on X, there exists a chart

(PX →M,QY → N,Q→ P ) extending ϕ. If f∗N −→M is surjective, we

may assume that the homomorphism Qgp → P gp is surjective.

Corollary 1.1.3. Any morphism between fine log schemes (resp. fine

log formal schemes) of Zariski type admits a chart Zariski locally.

In the following, we give a proof of the above proposition in the case of

log schemes. (The case of log formal schemes can be proved in the same

way.) To prove the proposition, we need to introduce the notion of log

scheme with respect to Zariski topology:

Definition 1.1.4.

(1) Let X be a scheme. A pre-log structure with respect to Zariski

topology on X is a pair (M,α), where M is a sheaf of monoids on

XZar and α :M −→ OX is a homomorphism of sheaves of monoids.

(2) A pre-log structure with respect to Zariski topology (M,α) is called

a log structure with respect to Zariski topology if α induces the

isomorphism α−1(O×X)
∼−→ O×X .

(3) A log scheme with respect to Zariski topology is a triple (X,M,α),

where X is a scheme and (M,α) is a log structure with respect to

Zariski topology on X. In the following, we denote the log scheme

with respect to Zariski topology (X,M,α) by (X,M), by abuse of

notation.

Definition 1.1.5. Let X be a scheme and let (M,α) be a pre-log

structure with respect to Zariski topology on X. Then we define the log

structure with respect to Zariski topology (Ma, αa) associated to (M,α) as

follows: Ma is defined to be the push-out of the diagram

O×X
α←− α−1(O×X) −→M
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in the category of sheaves of monoids on XZar and αa is defined to be the

morphism

Ma −→ OX ; (a, b) �→ α(a)b (a ∈M, b ∈ OX).

Definition 1.1.6. Let (X,M) be a log scheme with respect to Zariski

topology. Then X is said to be fine (resp. fs) if Zariski locally on X,

there exists a fine (resp. fs) monoid P and a homomorphism PX −→ OX

on XZar whose associated log structure with respect to Zariski topology is

isomorphic to M .

Definition 1.1.7.

(1) For a fine log scheme with respect to Zariski topology (X,M), a

chart of (X,M) is a homomorphism PX −→M for a fine monoid P

which induces the isomorphism (PX)a
∼
=M .

(2) For a morphism f : (X,M) −→ (Y,N) of fine log schemes with

respect to Zariski topology, a chart of f is a triple (PX →M,QY →
N,Q → P ), where PX → M and QY → N are charts of M and N

respectively and Q→ P is a homomorphism such that the diagram

QX −−−→ PX� �
f−1N −−−→ M

is commutative.

Then one can prove the following proposition in the similar way to the

case of usual log schemes ([Kk, §2], [Shi, (2.1.10)]). (We omit the proof.)

Proposition 1.1.8. Let f : (X,M) −→ (Y,N) be a morphism of fine

log schemes with respect to Zariski topology. Assume (Y,N) admits a chart

ϕ : QY −→ N . Then, Zariski locally on X, there exists a chart (PX →
M,QY

ϕ→ N,Q → P ) of f extending ϕ. If the homomorphism f∗N −→
M is surjective, we may assume that the homomorphism Qgp → P gp is

surjective.
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For a scheme X, let ε be the canonical morphism of sites Xet −→ XZar.

For a log structure (M,α) on X, we define the log structure with respect

to Zariski topology (ε∗M, ε∗α) on X by

ε∗α : ε∗M −→ ε∗OXet = OXZar
.

Conversely, for a log structure with respect to Zariski topology (M,α), we

define the log structure (ε∗M, ε∗α) as the associated log structure to the

pre-log structure

ε−1M
ε−1α−→ ε−1OXZar

−→ OXet .

Then we have the following proposition, which is the key to the proof of

Proposition 1.1.2.

Proposition 1.1.9.

(1) Let (X,M) be a fine log scheme with respect to Zariski topology and

let ϕ : PX −→M be a chart. Then the homomorphism

ε∗ϕ : PX
ε−1ϕ−→ ε−1M −→ ε∗M

induces the isomorphism P a
X
∼
= ε∗M .

(2) Let (X,M) be a fine log scheme and let ϕ : PX −→ M be a chart.

Then the homomorphism

ε∗ϕ : PX −→ ε∗M

induces the isomorphism P a
X
∼
= ε∗M .

Before the proof of the proposition, we prepare a lemma. For a monoid

Q, log structures (resp. log structures with respect to Zariski topology)

(Mi, αi) (i = 1, 2) and homomorphisms of sheaves of monoids ϕi : QX −→
Mi, we denote the set

{f :M1 −→M2 |ϕ2 = f ◦ ϕ1, α1 = α2 ◦ f}

by Homet
Q,ϕ1,ϕ2

(M1,M2) (resp. HomZar
Q,ϕ1,ϕ2

(M1,M2).) Then one has the

following elementary lemma:
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Lemma 1.1.10. Let (M,αM ) be a log structure with respect to Zariski

topology on a scheme X and let (N,αN ) be a log structure on X. Let P

be a monoid and let ϕ : PXZar
−→ M , ψ : PXet −→ N be homomorphisms

of sheaves of monoids. Let ε∗ϕ : PXet −→ ε∗M , ε∗ψ : PXZar
−→ ε∗N be

the morphisms naturally induced by ϕ,ψ, respectively. Then we have the

canonical bijection of sets

(1.1.1) HomZar
P,ϕ,ε∗ψ(M, ε∗N) = Homet

P,ε∗ϕ,ψ(ε∗M,N).

Proof. Let f be an element of HomZar
P,ϕ,ε∗ψ(M, ε∗N). Let g be the

element of Hom(ε−1M,N) corresponding to f by the canonical bijection

Hom(M, ε∗N)
∼
= Hom(ε−1M,N). Then, by the functoriality of the bijection

Hom(−, ε∗−)
∼
= Hom(ε−1−,−),

we have ε−1αM = αN ◦ g and g ◦ ε−1ϕ = ψ. Since N is a log structure, the

homomorphism g factors uniquely as

ε−1M −→ ε∗M
h−→ N,

and we have the commutativities ε∗αM = αN ◦h, h◦ ε∗ϕ = ψ. Hence h is an

element in Homet
P,ε∗ϕ,ψ(ε∗M,N). One can check easily that the correspon-

dence f ↔ h gives the desired bijection. �

Proof of Proposition 1.1.9. To prove the assertion (1), we have

only to prove the following: For any log structure N endowed with a

homomorphism ψ : PXet −→ N , there exists uniquely a homomorphism

g : ε∗M −→ N of log structures such that g ◦ ε∗ϕ = ψ holds.

Since ϕ : PXZar
−→M is a chart, there exists uniquely a homomorphism

f :M −→ ε∗N of log structures with respect to Zariski topology such that

ε∗ψ = f ◦ ϕ holds. So f is the unique element in HomZar
P,ϕ,ε∗ψ(M, ε∗N).

Then the unique element g in Homet
P,ε∗ϕ,ψ(ε∗M,N) corresponding to f by

the above lemma satisfies the desired condition. So the assertion (1) is

proved.

Let us prove the assertion (2). Denote the structure morphism M −→
OXet by αM and denote the composite PX

ϕ−→ M
αM−→ OXet by αP . To
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prove the assertion (2), it suffices to prove that the homomorphism ε∗ϕ :

PX −→ ε∗M induces the isomorphism

PX ⊕(ε∗αP )−1(O×
XZar

) 1
∼−→ ε∗M/O×XZar

= ε∗M/ε∗O×Xet
.

First let us note the following:

Claim. We have the isomorphism ε∗M/ε∗O×Xet

∼
= ε∗(M/O×Xet

).

Proof of Claim. Let us apply the functor ε∗ to the diagram

1 −−−→ O×Xet
−−−→ M −−−→ M/O×Xet

−−−→ 1∥∥∥ � �
1 −−−→ O×Xet

−−−→ Mgp −−−→ Mgp/O×Xet
−−−→ 1.

By Hilbert 90, we have R1ε∗O×Xet
= 0. So we get the following:

1 −−−→ O×XZar
−−−→ ε∗M

π−−−→ ε∗(M/O×Xet
)∥∥∥ � �

1 −−−→ O×XZar
−−−→ ε∗Mgp πgp

−−−→ ε∗(Mgp/O×Xet
) −−−→ 1.

It suffices to prove the surjectivity of π. Let U ⊂ X be an open set and

let a ∈ Γ(U, ε∗(M/O×Xet
)) = Γ(U,M/O×Xet

). Then there exists an open cov-

ering U ′ −→ U and an element b ∈ Γ(U ′, ε∗Mgp) = Γ(U ′,Mgp) satisfying

πgp(b) = a|U ′ . To prove the claim, it suffices to prove that b ∈ Γ(U ′, ε∗M)

holds. Since a ∈ Γ(U,M/O×Xet
), there exists an etale covering V −→ U and

an element c ∈ Γ(V,M) satisfying π(c) = a|V . We may assume that the

morphism V −→ U factors as the composite of surjective etale morphisms

V −→ U ′ −→ U . Then we have π(c) = πgp(b|V ). So there exists an element

u ∈ Γ(V,O×V ) such that b|V = cu holds. Hence we have b|V ∈ Γ(V,M). So

b is in Γ(U ′,M) = Γ(U ′, ε∗M). So we have shown the surjectivity of π and

the proof of the claim is finished. �

By the above claim, it suffices to show the isomorphism

PX ⊕(ε∗αP )−1(O×
XZar

) 1
∼−→ ε∗(M/O×Xet

).
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For etale morphism U −→ X, let αU be the composite

P
Γ(X,αP )−→ Γ(X,OX) −→ Γ(U,OU ).

Then, the sheaf PX⊕(ε∗αP )−1(O×
XZar

) 1 is the sheaf associated to the presheaf

on XZar

(U ⊂ X) �→ P ⊕α−1
U (Γ(U,O×

U )) 1.

Let N0 be the presheaf on XZar defined by

(U ⊂ X) �→ P ⊕α−1
U (Γ(U,O×

U )) 1/ ∼Zar,

where ∼Zar is the equivalence relation defined as follows: a ∼Zar b holds if

there exists a Zariski covering U := {Ui −→ U}i such that Im(a) = Im(b)

holds in P ⊕α−1
Ui

(Γ(Ui,O×
Ui

)) 1 for any i. Let N1 be the presheaf defined by

N1(U) := lim−→U Ȟ
0(U , N0),

where U runs through Zariski open coverings of U . Then, by definition, N1

is a sheaf and we have PX ⊕(ε∗αP )−1(O×
XZar

) 1 = N1.

On the other hand, since αP : PX −→ M is a chart of M , the sheaf

M/O×Xet
is the sheaf on Xet associated to the presheaf

(U −→ X) �→ P ⊕α−1
U (Γ(U,O×

U )) 1.

Let N ′0 be the presheaf on Xet defined by

(U −→ X) �→ P ⊕α−1
U (Γ(U,O×

U )) 1/ ∼et,

where ∼et is the equivalence relation defined as follows: a ∼et b holds if

there exists an etale covering U := {Ui −→ U}i such that Im(a) = Im(b)

holds in P ⊕α−1
Ui

(Γ(Ui,O×
Ui

)) 1 for any i. Let N ′1 be the presheaf on Xet defined

by

N ′1(U) := lim−→U Ȟ
0(U , N ′0),

where U runs through etale coverings of U . Then, by definition, N ′1 is a

sheaf and we have M/O×Xet
= N ′1. Hence it suffices to prove the following

claim.
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Claim. For any open U ⊂ X, we have N1(U) = N ′1(U).

To prove the claim, first we prove the following assertion: For any

open U ⊂ X and any etale surjective morphism V −→ U , we have the

isomorphism N0(U)
∼
= N ′0(V ). Since V −→ U is surjective, we have

α−1
U (Γ(U,O×U )) = α−1

V (Γ(V,O×V )). Hence we have the isomorphism

P ⊕α−1
U (Γ(U,O×

U )) 1
∼
= P ⊕α−1

V (Γ(V,O×
V )) 1.

Therefore, to prove the eqality N0(U)
∼
= N ′0(V ), it suffices to prove the

equivalence of the relations ∼Zar (for N0(U)) and ∼et (for N ′0(V )) via the

above isomorphism. If a ∼Zar b, then it is easy to see that a ∼et b holds.

Let us prove the converse. Assume a ∼et b holds and let {Vi −→ V }i be an

etale covering such that Im(a) = Im(b) holds in P ⊕α−1
Vi

(Γ(Vi,O×
Vi

)) 1 for any

i. Let Ui be the image of the morphism Vi −→ V −→ U . Then {Ui ↪→ U}i
is a Zariski covering and we have the isomorphism

P ⊕α−1
Vi

(Γ(Vi,O×
Vi

)) 1
∼
= P ⊕α−1

Ui
(Γ(Ui,O×

Ui
)) 1.

So Im(a) = Im(b) holds in P ⊕α−1
Ui

(Γ(Ui,O×
Ui

)) 1, that is, we have a ∼Zar b, as

desired. Hence we have N0(U) = N ′0(V ).

Now we prove the claim. For an etale covering U := {Ui −→ U} of U , let

us denote the Zariski covering {Im(Ui) ⊂ U} by UZar. Then the assertion

in the previous paragraph implies the isomorphism

Ȟ0(UZar, N0)
∼
= Ȟ0(U , N ′0).

Note that, if U runs through etale coverings of U , UZar runs through Zariski

coverings of U . Hence we have

N1(U) = lim−→U Ȟ
0(UZar, N0)

∼
= lim−→U Ȟ

0(U , N ′0) = N ′1(U).

Hence the claim is finished and the proof of proposition is now completed. �

As an immediate corollary of Proposition 1.1.9, we have the following:
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Corollary 1.1.11. There exists a canonical equivalence of categories(
fine log schemes

of Zariski type

)
∼−→
(

fine log schemes with

respect to Zariski topology

)
given by (X,M) �→ (X, ε∗M). The quasi-inverse is given by (X,M) �→
(X, ε∗M).

Now we give a proof of Proposition 1.1.2.

Proof of Proposition 1.1.2. Let f : (X,M) −→ (Y,N) be as in

the statement of the proposition and let ε∗f : (X, ε∗M) −→ (Y, ε∗N) be

the associated morphism between fine log schemes with respect to Zariski

topology. Then ε∗ϕ : QY −→ ε∗N is a chart of (Y, ε∗N). Then, by Propo-

sition 1.1.8, there exists a chart (PX → ε∗M,QY
ε∗ϕ→ ε∗N,Q → P ) of ε∗f

extending ε∗ϕ. Then, by pulling back the chart by ε∗, we get a chart

(PX → M,QY
ϕ→ N,Q → P ) of f extending ϕ, by Proposition 1.1.9 and

Corollary 1.1.11. �

1.2. Stratifications and integrable connections on formal

groupoids

Let f : (X,M) −→ (S,N) be a log smooth morphism of fine log schemes

over Q (resp. a formally log smooth morphism of fine log formal V -schemes,

where V is a complete discrete valuation ring of mixed characteristic). In

the previous paper ([Shi, §3.2]), we proved the equivalence of categories

between the following two categories:

(1) The category C((X,M)/(S,N)) of coherent sheaves with integrable

log connections (resp. The category Ĉ((X,M)/(S,N)) of isocoher-

ent sheaves with integrable formal log connections).

(2) The category Str((X,M)/(S,N)) of coherent sheaves with log strat-

ifications (resp. The category Ŝtr((X,M)/(S,N)) of isocoherent

sheaves with formal log stratifications).

In this section, we remark that we can axiomize this result by using the

notion of a formal groupoid in a topos ([Be1, Chap. II]). So the result in

this section is a variant of a result in [Be1, Chap. II]. We will use this result

to construct the log de Rham complex associated to an isocrystal on log

convergent site on certain rigid analytic space in the next chapter.
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First we recall the notion of formal groupoid, which is defined in [Be1,

Chap. II.1.1.3].

Definition 1.2.1 (Berthelot). Let T be a topos. A formal groupoid

in T is the data

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N),

where O is a ring in T , {Pn}n is a projective system of rings in T whose tran-

sition morphisms are surjective, pi,n, πn, δn,m, τn are the homomorphisms of

rings over O

pi,n : O −→ Pn,

πn : Pn −→ O,

δm,n : Pm+n −→ Pm ⊗O P
n,

τn : Pn −→ Pn,

which commute with transition maps of the projective system {Pn} and

which are subject to the following conditions:

(1) πn ◦ p1,n = πn ◦ p2,n = id.

(2) We have

δm,n ◦ p1,m+n = q1,m,n ◦ p1,m+n, δm,n ◦ p2,m+n = q2,m,n ◦ p2,m+n,

where q1,m,n, q2,m,n are homomorphisms Pm+n −→ Pm ⊗O P
n ob-

tained by composing Pm+n −→ Pm, Pm+n −→ Pn with the canon-

ical homomorphisms Pm −→ Pm ⊗O P
n, Pn −→ Pm ⊗O P

n.

(3) (πm ⊗ id) ◦ δm,n and (id⊗ πn) ◦ δm,n coincide with transition maps.

(4) (δm,n ⊗ id) ◦ δm+n,p = (id⊗ δn,p) ◦ δm,n+p.

(5) τn ◦ p1,n = p2,n, τn ◦ p2,n = p1,n.

(6) πn ◦ τn = πn.

(7) The following diagrams are commutative:

Pn ⊗O P
n id⊗τn−−−→ Pn

δn,n

� p1,n

�
P 2n π2n−−−→ O,

Pn ⊗O P
n τn⊗id−−−→ Pn

δn,n

� p2,n

�
P 2n π2n−−−→ O.
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(In the above definition, we regard Pn as a bi-(O,O)-module via the left

(resp. right) O-module struture defined by p1,n (resp. p2,n)). We say that

the formal groupoid X is of characteristic zero if O and Pn’s are character-

istic zero as rings in T .

We introduce the notion of ‘differential log smoothness’ as follows:

Definition 1.2.2. Let T be a topos. A formal groupoid in T

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

is said to be differentially log smooth if there exists locally an integer m

and the elements {ξj,n}mj=1 of Pn for n ∈ N which satisfy the following

conditions:

(1) For n′ > n, the transition map Pn′ −→ Pn sends ξj,n′ to ξj,n.

(2) There exists the canonical isomorphism of left O-algebras

Pn ∼= O[ξj,n (1 ≤ j ≤ m)]/(In)n+1,

where In := (ξ1,n, · · · , ξm,n) ⊂ O[ξj,n (1 ≤ j ≤ m)].

(3) δm,n(ξj,m+n + 1) = (ξj,m + 1)⊗ (ξj,n + 1).

Remark 1.2.3. A differentially log smooth formal groupoid in a topos

T is adic of finite type in the sense of [Be1, II.4.2.1].

Remark 1.2.4. A formal groupoid of characteristic zero in T

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

is differentially log smooth if and only if there exists locally an integer m

and the elements {tj,n}mj=1 of Pn for n ∈ N which satisfy the following

conditions:

(1) For n′ > n, the transition map Pn′ −→ Pn sends tj,n′ to tj,n.

(2) There exists the canonical isomorphism of left O-algebras

Pn ∼= O[tj,n (1 ≤ j ≤ m)]/(I ′n)n+1,

where I ′n := (t1,n, · · · , tm,n) ⊂ O[tj,n (1 ≤ j ≤ m)].

(3) δm,n(tj,m+n) = tj,m ⊗ 1 + 1⊗ tj,n.
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Indeed, assume we are given the elements {tj,n}j,n. Then if we put ξj,n :=∑n
k=1

1
k! t

k
j,n, the elements {ξj,n} satisfy the conditions in Definition 1.2.2.

Conversely, assume we are given the elements {ξj,n}j,n as in Definition 1.2.2.

Then if we put tj,n :=
∑n

k=1
(−1)k−1

k ξkj,n, the elements {tj,n} satisfy the

conditions in this remark.

In particular, if X is an adic differentially smooth formal groupoid of

finite type (in the sense of [Be1, II.4.2.3]) of characteristic zero, it is differ-

entially log smooth.

Let T be a topos and let

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

be a differentially log smooth formal groupoid. We put ω1 := Ker(π1 :

P 1 −→ O). Then the left action and the right action of O to ω1 coincide.

So we regard ω1 as O-module by this action, and let ωq (q ∈ N) be the q-th

exterior power of ω1 over O.

We define the differentials d0 : O −→ ω1 and d1 : ω1 −→ ω2 as follows:

First, d0 is defined by d0(a) = p2,1(a) − p1,1(a). Next let us consider the

morphism

∂ : P 2 −→ P 1 ⊗ P 1

defined by ∂ = q1,1,1+q2,1,1−δ1,1, where qi,m,n is as in Definition 1.2.1. Then,

by [Be1, p.117], one can see that the morphism ∂ induces the morphism

Ker(π2 : P 2 −→ O) −→ ω1 ⊗ ω1,

which we denote also by ∂.

Now we check that the composite

(1.2.1) Ker(π2 : P 2 −→ O)
∂−→ ω1 ⊗ ω1 −→ ω2

kills Ker(P 2 −→ P 1). Indeed, one can check it locally, so it suffices to

prove the image of p1,2(a)ξj,2ξj′,2 by the above map is zero. One can see, by

definition, that ∂(p1,2(a)ξj,2ξj′,2) = −(p1,1(a) ⊗ 1)(ξj,1 ⊗ ξj′,1 + ξj′,1 ⊗ ξj,1)
holds. So it is zero in ω2. Hence the composite (1.2.1) induces the morphism

ω1 −→ ω2. We denote this morphism by d1.



Crystalline Fundamental Groups II 21

One can check that the composite d1 ◦ d0 is equal to zero. Locally, the

morphism d1 is characterized by the equation

d1(
m∑
j=1

ajξj,1) =
m∑
j=1

d0(aj) ∧ ξj,1.

We recall the notion of integrable connections and stratifications.

Definition 1.2.5. Let T be a topos and let

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

be a differentially log smooth formal groupoid in T . Define ωq (q = 1, 2), d0 :

O −→ ω1 and d1 : ω1 −→ ω2 as above.

(1) For an O-module E, a connection on E with respect to X is a

homomorphism

∇ : E −→ E ⊗O ω
1

satisfying ∇(ae) = a∇(e) + e⊗ d0(a).

(2) A connection ∇ on an O-module E is said to be integrable if we

have ∇ ◦∇ = 0, where we extend ∇ to the morphism

E ⊗ ω1 −→ E ⊗ ω2

by ∇(e⊗ η) = ∇(e) ∧ η + e⊗ d1(η).

For a subcategory C of the category of O-modules, let us denote the category

of objects in C endowed with integrable connections by C(C).

Definition 1.2.6. Let T be a topos and let

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

be a formal groupoid in T . For an O-module E, a stratification on E with

respect to X is a family of isomorphisms

εn : Pn ⊗O E −→ E ⊗O P
n
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satisfying the following conditions:

(1) Each εn is Pn-linear and ε0 = id holds.

(2) For any n′ > n, εn′ modulo Ker(Pn′ −→ Pn) coincides with εn.

(3) (Cocycle condition) For any n and n′,

(id⊗ δn,n′) ◦ εn+n′ = (εn ⊗ id) ◦ (id⊗ εn′) ◦ (δn,n′ ⊗ id) : Pn+n′ ⊗ E
−→ E ⊗ Pn ⊗ Pn′

holds.

For a subcategory C of the category of O-modules, let us denote the category

of objects in C endowed with stratifications by Str(C).

Then the main result in this section is as follows:

Proposition 1.2.7. Let T be a topos and let

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

be a differentially log smooth formal groupoid of characteristic zero. Then

we have the canonical equivalence of categories

C(C) ∼= Str(C).

Proof. One can prove the assertion exactly in the same way as Sec-

tion 3.2 of [Shi] (see Definition 3.2.6, Lemma 3.2.7 (2), Definition 3.2.8,

Proposition 3.2.9, Definition 3.2.10 and Proposition 3.2.11). �

Corollary 1.2.8. Let the notations be as above and let (E, {εn}) be

an object in Str(C). Denote the composite

E = O ⊗O E
p2,1⊗id−→ P 1 ⊗O E

ε1−→ E ⊗O P
1

by θ. Then the object in C(C) corresponging to (E, {εn}) via the equivalence

in the above proposition is given by (E,∇), where ∇ : E −→ E ⊗O ω
1 is

defined by ∇(e) = θ(e)− e⊗ 1.
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Proof. It is immediate from the construction of the equivalence of

categories. See Section 3.2 in [Shi], especially the proof of [Shi, (3.2.9)]. �

Example 1.2.9. Let f : (X,M) −→ (S,N) be a log smooth morphism

of fine log schemes over Q. Let T be a topos associated to Xet. Then, one

can define a differentially log smooth formal groupoid of characteristic zero

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

as follows: Put O := OX and put Pn := OXn , where (Xn,Mn) is the n-th

log infinitesimal neighborhood of (X,M) in (X,M) ×(S,N) (X,M) ([Shi,

§3.2]). Let pi,n be the morphism OX −→ OXn induced by the morphism

(Xn,Mn) −→ (X,M)×(S,N) (X,M)
i-th proj.−→ (X,M)

and let πn : OXn −→ OX be the morphism induced by the exact closed

immersion (X,M) ↪→ (Xn,Mn). Finally, let δm,n, τn be the morphisms

δ∗m,n, τ
∗
n in [Shi, §3.2].

If we apply Proposition 1.2.7 to C = Coh(OX), we obtain the equivalence

of categories

C((X,M)/(S,N)) � Str((X,M)/(S,N))

of Propositions 3.2.9 and 3.2.11 (in the case of fine log schemes) in [Shi].

Example 1.2.10. Let f : (X,M) −→ (S,N) be a formally log smooth

morphism of fine log formal V -schemes, where V is a complete discrete

valuation ring of mixed characteristic. Let K be the fraction field of V and

let T be a topos associated to Xet. Then, one can define a differentially log

smooth formal groupoid of characteristic zero

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δn,m}n,m∈N, {τn}n∈N)

as follows: Put O := K⊗V OX and put Pn := K⊗V OXn , where (Xn,Mn)

is the n-th log infinitesimal neighborhood of (X,M) in (X,M)×̂(S,N)(X,M)

([Shi, §3.2]). Let pi,n, πn be as in the previous example and let δm,n, τn be

the morphisms id⊗ δ∗m,n, id⊗ τ∗n, where δ∗m,n, τ
∗
n is as in [Shi, §3.2].
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If we apply Proposition 1.2.7 to C = Coh(K ⊗ OX), we obtain the

equivalence of categories

Ĉ((X,M)/(S,N)) � Ŝtr((X,M)/(S,N))

of Propositions 3.2.9 and 3.2.11 (in the case of fine log formal schemes) in

[Shi].

Remark 1.2.11. We can give a proof of Proposition 1.2.7 by using the

system of elements {tj,n} in Remark 1.2.4 and applying the argument in

[Be-Og, §2]. In particular, this proof gives another proof of Propositions

3.2.9, 3.2.11 in [Shi] which uses only the usual differential calculus and

which does not use ‘log differential calculus’ in [Shi, §3.2]. Details are left

to the reader.

1.3. Review of rigid analytic geometry

In this section, we review some basic definitions and known results con-

cerning rigid analytic geometry. The basic references are [Be2] and [Be3].

See also [Ta], [Be4] and so on.

First we fix some notations. Let k be a perfect field of characteristic

p > 0 and let V be a complete discrete valuation ring of mixed characteristic

with residue field k. Let π be a uniformizer of V . Denote the fraction field

of V by K and the algebraic closure of K by K. Let | · | : K −→ R≥0

be the valuation satisfying |p| = p−1 and put Γ0 := {|x| |x ∈ K×} ⊂ R>0,

Γ := Q⊗Z Γ0 ⊂ R>0.

For n ∈ N, let K{t1, · · · , tn} be the ring

{
∑
k∈Nn

akt
k | ak ∈ K, |ak| → 0 (|k| → ∞)}.

(That is, K{t1, · · · , tn} is the ring of power series which are convergent on

the closed disc of radius 1.) A topological K-algegra A is called a Tate alge-

bra if there exists an integer n ∈ N and an ideal I ⊂ K{t1, · · · , tn} (which

is necessarily closed ([Ta])) such that A is isomorphic to K{t1, · · · , tn}/I
as topological K-algebras.

Let A be a Tate algebra and put X := SpmA(:= the set of maximal

ideals of A). Then it is known that one can naturally endow a Grothendieck
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topology in the sense of [Be3, (0.1.1)] (which we denote by θX) and a

structure sheaf of rings OX with respect to the topology θX ([Be3, (0.1.2)]).

We call the triple (X, θX ,OX) the affinoid rigid analytic space associated

to A. We denote the triple (X, θX ,OX) simply by X or SpmA, by abuse

of notation.

In the following, for a setX endowed with a Grothedieck topology θX , we

call an open set (resp. an open covering) with respect to the Grothendieck

topology θX an admissible open set (resp. an admissible open covering). A

triple X := (X, θX ,OX), where X is a set endowed with a Grothendieck

topology θX and OX is a sheaf of rings on (X, θX), is called a rigid analytic

space if there exists an admissible open covering X :=
⋃

iXi of X such that

the triple (Xi, θX |Xi ,OX |Xi) is an affinoid rigid analytic space for each i.

Let P be a formal V -scheme and let PK be the set of closed sub formal

schemes Z ⊂ P which are integral and finite flat over Spf V . Then, for any

open affine formal scheme P ⊃ U := Spf A, we have the isomorphism of sets

UK
∼
= Spm (K ⊗ A). So, one can introduce a structure of an affinoid rigid

analytic space on UK for any affine open U ⊂ P . Then, by [Be3, (0.2.3)],

one can glue these structures and so one can define the structure of a rigid

analytic space on PK . We call this rigid analytic space the rigid analytic

space associated to P . We define the specialization map sp : PK −→ P by

Z �→ (support of Z). Then sp is a morphism of sites ([Be3, (0.2.3)]).

Let i : X ↪→ P be a locally closed immersion of a k-scheme X into a

formal V -scheme P . Then we define the tubular neighborhood ]X[P of X

in P by ]X[P := sp−1(X). Let us assume that P is affine and i is a closed

immersion. Suppose that the defining ideal of X in P is generated by π

and f1, f2, · · · , fn ∈ Γ(P,OP ). Then one can check the equality

]X[P= {x ∈ PK | |fi(x)| < 1 (1 ≤ i ≤ n) },
where fi(x) := fi modx ∈ κ(x)(:= the residue field of x ∈ PK).

Let i : X ↪→ P be a closed immersion of a k-scheme X into an affine

formal scheme P . Let f1, · · · , fn be as above. For |π| < λ ≤ 1, we define

the (open) tubular neighborhood ]X[P,λ of X in P of radius λ by

]X[P,λ= {x ∈ PK | |fi(x)| < λ (1 ≤ i ≤ n) }
and for |π| < λ ≤ 1, λ ∈ Γ, we define the closed tubular neighborhood

[X]P,λ of X in P of radius λ by

[X]P,λ = {x ∈ PK | |fi(x)| ≤ λ (1 ≤ i ≤ n) }.
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This definition is independent of the choice of fi’s by the assumption |π| < λ
([Be3, (1.1.8)]). Hence we can define ]X[P,λ and [X]P,λ even when P is not

necessarily affine. It is known that the tubular neighborhoods ]X[P,λ, [X]P,λ
are admissible open sets of PK .

Let i : X ↪→ P := Spf A be a closed immersion of a k-scheme X into

an affine formal scheme P and let f1, · · · , fn be as above. Let λ := |π|a/b,
where a, b ∈ N, a < b. Then [X]P,λ is naturally isomorphic to the affinoid

rigid analytic space SpmB, where

B := (K ⊗V A){t1, · · · , tn}/(πat1 − f b1 , · · · , πatn − f bn).

Let A be a topological V -algebra which is topologically of finite type

over V , and let X ↪→ P be the canonical closed immersion SpecA/(π) ↪→
Spf A{t1, · · · , tn}. Then we call the rigid analytic space

]X[P := {x ∈ PK | |ti(x)| < 1 (1 ≤ i ≤ n)}

the n-dimensional unit open disc over A and denote it by Dn
A. For |π| <

λ < 1, λ ∈ Γ, we call the rigid analytic space

]X[P−[X]P,λ := {x ∈ PK |λ < |ti(x)| < 1 (1 ≤ i ≤ n)}

the n-dimensional open annulus of radius between λ and 1 over A and

denote it by Cn
A,λ. We call the functions t1, · · · , tn the coordinates of Dn

A,λ,

Cn
A,λ.

A rigid analytic spaceX is called quasi-Stein if there exists an admissible

covering X =
⋃∞

n=1Xi by increasing family of affinoid rigid analytic spaces

{Xi}i∈N such that the image of the map Γ(Xi+1,OXi+1) −→ Γ(Xi,OXi) is

dense for each i ∈ N. For example, Dn
A, C

n
A,λ are quasi-Stein. The following

theorem of Kiehl is important:

Theorem 1.3.1 (Theorem B of Kiehl). For a quasi-Stein rigid

analytic space X and a coherent OX-module E, we have the vanishing

H i(X,E) = 0 (i > 0).

Corollary 1.3.2. Let f : X −→ Y be a morphism of sites from a

rigid analytic space X to a rigid analytic space Y (resp. a scheme Y ) such
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that f−1(U) is quasi-Stein for any sufficiently small admissible open affinoid

rigid analytic space (resp. any sufficiently small affine open) U ⊂ Y . Then,

for any coherent OX-module E, we have the vanishing Rif∗E = 0 (i > 0).

We recall here an important theorem on the structure of tubular neigh-

borhoods ([Be3, (1.3.2)]):

Theorem 1.3.3 (Weak fibration theorem). Suppose we are given the

following diagram
X −−−→ P ′∥∥∥ u

�
X −−−→ P,

where X is a k-scheme, P, P ′ are formal V -schemes, u is a formally smooth

V -morphism of relative dimension n and horizontal arrows are closed im-

mersions. Denote the morphism P ′K −→ PK of rigid analytic spaces as-

sociated to u by uK . Then there exists an open covering P :=
⋃

α Pα and

isomorphisms fα :]X[P ′∩u−1
K (Pα,K)

∼−→ (]X[P∩Pα,K) × Dn
V such that the

following diagram is commutative:

]X[P ′∩u−1
K (Pα,K)

fα−−−→ (]X[P∩Pα,K)×Dn
V

uK

� 1-st proj.

�
]X[P∩Pα,K ]X[P∩Pα,K .

Now we recall some notions concerning strict neighborhood. We recall

also a part of strong fibration theorem, which we need later.

Let j : X ↪→ Y be an open immersion between k-schemes and let Y ↪→ P

be a closed immersion of Y into a formal V -scheme P . Put Z := Y −X.

Then, an admissible open set U ⊂ ]Y [P containing ]X[P is called a strict

neighborhood of ]X[P in ]Y [P if (U, ]Z[P ) is an admissible covering of ]Y [P .

It is known that the intersection of two strict neighborhoods is again a

strict neighborhood. Hence the set of strict neighborhoods forms a filtered

category.
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For strict neighborhoods U ′ ⊂ U of ]X[P in ]Y [P , denote the inclusion

map by αUU ′ and denote the map α]Y [PU simply by αU . Then, for a strict

neighborhood U and an OU -module E, we define the sheaf j†E on ]Y [P by

j†E := lim−→U ′ αU ′∗α
∗
UU ′E,

where U ′ runs through strict neighborhoods of ]X[P in ]Y [P which are

contained in U .

We give an example of strict neighborhoods which we use later. Let

X ⊂ Y ↪→ P be as above. Then, for |π| < λ < 1, λ ∈ Γ, Uλ :=]Y [P−[X]P,λ
is a strict neighborhood of ]X[P in ]Y [P . Denote the open immersion Uλ ↪→
]Y [P by jλ. Then, [Be3, (2.1.1.5)] implies that we have the isomorphism

j†E
∼
= lim−→λ→1

jλ,∗j
∗
λE

for an O]Y [P -module E.

We recall basic functorialities for strict neighborhoods and the functor

j† ([Be3, (1.2.7),(2.1.4)]):

Proposition 1.3.4. Let us consider the following diagram

X ′
j′−−−→ Y ′

i′−−−→ P ′� v

� u

�
X

j−−−→ Y
i−−−→ P,

where X,X ′, Y, Y ′ are k-schemes, P and P ′ are formal V -schemes, j and

j′ are open immersions and i and i′ are closed immersions. Denote the

morphism of rigid analytic spaces ]Y ′[P ′−→]Y [P induced by u by uK . Then:

(1) For a strict neighborhood U of ]X[P in ]Y [P , (uK)−1(U) is a strict

neighborhood of ]X ′[P ′ in ]Y ′[P ′.

(2) For any O]Y [P -module E, there exists a canonical homomorphism

u∗Kj
†E −→ (j′)†u∗KE

and it is an isomorphism if v−1(X) = X ′ holds.
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We also recall the following proposition of Berthelot ([Be3, (1.3.5)]),

which is a part of strong fibration theorem.

Theorem 1.3.5. Assume we are given the diagram

X
j′−−−→ Y ′

i′−−−→ P ′∥∥∥ v

� u

�
X

j−−−→ Y
i−−−→ P,

where X,Y, Y ′ are k-schemes, P and P ′ are formal V -schemes, j and j′ are
open immersions and i and i′ are closed immersions. Denote the closure

of X in P ′ ×P Y by X. Assume moreover that u is formally etale on

a neighborhood of X and that the restriction of v to X is proper. Then

the morphism uK : P ′K −→ PK induces an isomorphism between a strict

neighborhood of ]X[P ′ in ]Y ′[P ′ and a strict neighborhood of ]X[P in ]Y [P .

Next we recall the definition of (over)convergent (F a-)isocrystals, the de

Rham complex associated to (over)convergent isocrystals and rigid coho-

mology (and analytic cohomology) with coefficient.

Let X ⊂ Y be an open immersion of k-schemes of finite type and let

Y ↪→ P be a closed immersion into a formal V -scheme which is formally

smooth over Spf V on a neighborhood of X. For n ∈ N, let P (n) be the

(n+ 1)-fold fiber product of P over Spf V . Then the projections

p′i : P (1) −→ P (i = 1, 2), p′ij : P (2) −→ P (1) (1 ≤ i < j ≤ 3)

and the diagonal morphism ∆′ : P ↪→ P (1) induce the morphisms

pi :]Y [P (1)−→]Y [P (i = 1, 2), pij :]Y [P (2)−→]Y [P (1) (1 ≤ i < j ≤ 3)

and the diagonal morphism ∆ :]Y [P ↪→]Y [P (1), respectively. By Proposition

1.3.4 (2), one can see that the above morphisms induce the functors

p∗i : (j†O]Y [P -modules) −→ (j†O]Y [P (1)
-modules),

p∗ij : (j†O]Y [P (1)
-modules) −→ (j†O]Y [P (2)

-modules),

∆∗ : (j†O]Y [P (1)
-modules) −→ (j†O]Y [P -modules),
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respectively. Now we define an overconvergent isocrystal on the triple

(X,Y, P ) as follows:

Definition 1.3.6. Let the notations be as above. Then an overconver-

gent isocrystal on the triple (X,Y, P ) is a pair (E, ε), where E is a locally

free j†O]Y [P -module of finite type and ε is a j†O]Y [P (1)
-linear isomorphism

p∗2E
∼−→ p∗1E satisfying ∆∗(ε) = id and p∗12(ε) ◦ p∗23(ε) = p∗13(ε). We de-

note the category of overconvergent isocrystals on the triple (X,Y, P ) by

I†(X,Y, P ).

Then the following proposition is known ([Be3, (2.3.1)]):

Proposition 1.3.7. The category I†(X,Y, P ) is independent of the

choice of Y ↪→ P up to canonical equivalence. That is, if we have an-

other closed immersion Y ↪→ Q which satisfies the same condition as

Y ↪→ P and a morphism f : Q −→ P compatible with the closed im-

mersions Y ↪→ P, Y ↪→ Q which is formally smooth on a neighborhood of

X, then the functor

I†(X,Y, P ) −→ I†(X,Y,Q)

induced by the morphism of rigid analytic spaces

]Y [Q(n)−→]Y [P (n) (n = 0, 1, 2)

is an equivalence of categories.

Next, let X ↪→ Y be an open immersion of k-schemes. Take a diagram

(1.3.1) Y
f←− Y (•) i

↪→ P (•),

where Y (•) is a simplicial k-scheme, P (•) is a simplicial formal V -scheme

such that P (n) is formally smooth over Spf V on a neighborhood of the image

of X(n) := X ×Y Y
(n), f is a Zariski hypercovering and i is a morphism of

simplicial formal schemes which induces the closed immersions Y (n) ↪→ P (n)
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for each n. (Note that there exists such a diagram.) Let us denote the

functor

I†(X(0), Y (0), P (0)) −→ I†(X(1), Y (1), P (1))

(resp. I†(X(0), Y (0), P (0)) −→ I†(X(1), Y (1), P (1)) )

induced by the projection of triples

qi : (X(1), Y (1), P (1)) −→ (X(0), Y (0), P (0)) (i = 1, 2)

(resp. qij : (X(2), Y (2), P (2)) −→ (X(1), Y (1), P (1)) (1 ≤ i < j ≤ 3) )

by q∗i (resp. q∗ij), and denote the functor

I†(X(1), Y (1), P (1)) −→ I†(X(0), Y (0), P (0))

induced by the diagonal

∆ : (X(0), Y (0), P (0)) −→ (X(1), Y (1), P (1))

by ∆∗. Then we define the category of overconvergent isocrystals on (X,Y )

as the category of pairs (E , ϕ), where E is an object in I†(X(0), Y (0), P (0))

and ϕ is an isomorphism q∗2E
∼−→ q∗1E in I†(X(1), Y (1), P (1)) satisfying

∆∗(ϕ) = id and q∗12(ϕ) ◦ q∗23(ϕ) = q∗13(ϕ). One can see, by using Propo-

sition 1.3.7, that this definition is independent of the choice of the diagram

(1.3.1). We denote the category of overconvergent isocrystals on (X,Y ) by

I†(X,Y ).

In the case where X = Y holds, we call an object in I†(X,X) a conver-

gent isocrystal on X. It is known ([Be3, (2.3.4)]) that the category I†(X,X)

is equivalent to the category of convergent isocrystals on X over Spf V in

the sense of Ogus [Og1], which we denoted by Iconv(X/V ) in the previous

paper [Shi].

For a separated k-scheme of finite type, the following proposition is

known ([Be3, (2.3.5)]):

Proposition 1.3.8. Let X be a separated k-scheme of finite type, and

let X ⊂ X be a k-compactification. Then the category I†(X,X) is inde-

pendent of the choice of the k-compactification X ⊂ X, up to canonical

equivalence.
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Under the situation of Proposition 1.3.8, we call an object in the category

I†(X,X) an overconvergent isocrystal on X and we denote the category

I†(X,X) simply by I†(X).

We define the notion of an overconvergent F a-isocrystal as follows:

Definition 1.3.9. Let X be a separated scheme of finite type over k

and let FX : X −→ X, Fk : Spec k −→ Spec k be the absolute Frobenius

endomorphisms. Let a ∈ N, a > 0 and assume there exists a morphism

σ : Spf V −→ Spf V which coincides with F a
k modulo the maximal ideal of

V . Then we have the following commutative diagram:

X
Fa
X−−−→ X� �

Spec k
Fa
k−−−→ Spec k� �

Spf V
σ−−−→ Spf V.

For an overconvergent isocrystal E on X, denote the pull-back of E by

(F a
X , F

a
k , σ) in the above diagram by F a,∗E . An overconvergent F a-isocrys-

tal on X with respect to σ is a pair (E ,Φ), where E is an overconvergent

isocrystal on X and Φ is an isomorphism F a,∗E
∼−→ E.

Now we recall the definition of the de Rham complex associated to an

overconvergent isocrystal.

First, for a rigid analytic space X, we put IX := Ker(OX⊗̂OX −→ OX)

and let Ω1
X := IX/I2

X . For q ∈ N, we define Ωq
X as the q-th exterior power

of Ω1
X over OX . We call the sheaf Ωq

X as the sheaf of q-th differential forms

on X, as in the usual case.

Now let j : X ↪→ Y be an open immersion of k-schemes and let Y ↪→ P

be a closed immersion into a formal V -scheme which is formally smooth on

a neighborhood of X. Let P (n) (n ∈ N) be the (n+1)-fold fiber product of

P over Spf V . For n ∈ N, let Pn be the n-th infinitesimal neighborhood of

P in P (1). Let

τn : Pn −→ Pn (n ∈ N),

δm,n : Pm ×P P
n −→ Pm+n (m,n ∈ N),
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be the morphisms induced by the morphisms

P (1) −→ P (1); (x, y) �→ (y, x),

P (1)×̂PP (1) −→ P (1); ((x, y), (y, z)) �→ (x, z),

respectively. Let us define the data

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δ′n,m}n,m∈N, {τ ′n}n∈N)

as follows: Let O := j†O]Y [P and Pn := j†O]Y [Pn . (Since ]Y [Pn is home-

omorphic to ]Y [P , we can regard Pn as a sheaf on ]Y [P .) Let pi,n (i =

1, 2, n ∈ N) be the homomorphism O −→ Pn corresponding to the mor-

phism ]Y [Pn−→]Y [P induced by the i-th projection, let πn be the homo-

morphism Pn −→ O corresponding to the morphism ]Y [P−→]Y [Pn induced

by the closed immersion P ↪→ Pn, let τ ′n be the homomorphism Pn −→ Pn

corresponding to the morphism ]Y [Pn−→]Y [Pn induced by the morphism

τn and let δ′m,n be the homomorphism Pm+n −→ Pm ⊗O Pn correspond-

ing to the morphism ]Y [Pm×PPn−→]Y [Pm+n induced by δm,n. Then it is

known ([Be3, (2.2.2)]) that the data X is an adic differentially smooth for-

mal groupoid of finite type of characteristic zero in the topos associated to

]Y [P .

Note that the canonical closed immersion Pn ↪→ P (1) induces the mor-

phism of rigid analytic spaces ]Y [Pn−→]Y [P (1), which we denote by ∆n.

Denote the homomorphism

∆−1
n j
†O]Y [P (1)

= j†∆−1
n O]Y [P (1)

−→ j†O]Y [Pn

by θn.

Now let (E, ε) be an object in I†(X,Y ) = I†(X,Y, P ). Then we define

the Pn-linear isomorphism εn : Pn ⊗ E ∼−→ E ⊗ Pn as the composite

Pn ⊗ E = Pn ⊗θn,∆
−1
n j†O]Y [P (1)

∆−1
n p
∗
2E

id⊗∆−1
n ε−→ Pn ⊗θn,∆

−1
n j†O]Y [P (1)

∆−1
n p
∗
1E = E ⊗ Pn.
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Then {εn}n∈N is a stratification on E with respect to the formal groupoid

X . Hence, by Proposition 1.2.7, {εn}n defines an integrable connection

∇ : E −→ E ⊗j†O]Y [P
j†Ω1

]Y [P
= E ⊗O]Y [P

Ω1
]Y [P

.

Then we define the de Rham complex on ]Y [P associated to the overcon-

vergent isocrystal E := (E, ε) by the complex

DR(]Y [P , E) := [0→ E
∇→ E ⊗O]Y [P

Ω1
]Y [P

∇→ · · · ∇→ E ⊗O]Y [P
Ωq

]Y [P

∇→ · · · ],

where we extend ∇ to

E ⊗O]Y [P
Ωq

]Y [P
−→ E ⊗O]Y [P

Ωq+1
]Y [P

by setting

x⊗ η �→ ∇(x) ∧ η + x⊗ dη.
Now we give the definition of rigid cohomology with coefficient. First,

let X ⊂ Y be an open immersion of k-schemes of finite type and let E be

an overconvergent isocrystal on (X,Y ). Take a diagram as (1.3.1) and let

E(n) be the pull-back of E to I†(X(n), Y (n)) = I†(X(n), Y (n), P (n)). Then we

define the rigid cohomology of the pair (X,Y ) with coefficient E by

H i
rig(X ⊂ Y/K, E) := H i(Y,Rf∗Rsp

(•)
∗ DR(]Y (•)[P (•) , E)),

where sp(•) denotes the specialization map ]Y (•)[P (•)−→ Y (•).
It is known that the following proposition holds ([Be2]):

Proposition 1.3.10 (Berthelot). Let us assume given the following

commutative diagram

X
j−−−→ Y

i′−−−→ P ′∥∥∥ ∥∥∥ u

�
X

j−−−→ Y
i−−−→ P,

where j : X ↪→ Y is an open immersion of k-schemes of finite type and i, i′

are closed immersions into formal V -schemes which are formally smooth
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on a neighborhood of X. Assume moreover that u is formally smooth on

a neighborhood of X. Let uK :]Y [P ′−→]Y [P be the morphism induced by

u. Then, for an object E in I†(X,Y )(= I†(X,Y, P ) = I†(X,Y, P ′)), the

canonical homomorphism

DR(]Y [P , E) −→ RuK,∗DR(]Y [P ′ , E)

is a quasi-isomorphism.

As a consequence, one can check that the above definition of rigid co-

homology H i
rig(X ⊂ Y/K, E) is independent of the choice of the diagram

(1.3.1). (Details are left to the reader.)

In the case where X = Y holds, we denote the rigid cohomology

H i
rig(X ⊂ X/K, E) of the pair X ⊂ X with coefficient E ∈ I†(X,X) by

H i
an(X/K, E) and call it the analytic cohomology (in rigid analytic sense)

of X with coefficient E . Note that the definition in this case is much sim-

pler than the general case, since j† = id holds in this case. (In particular,

we do not need the notion of strict neighborhoods in this case.) Conver-

gent Poincaré lemma of Ogus ([Og2, (0.5.4), (0.6.6)]) implies that the ana-

lytic cohomology H i
an(X/K, E) is isomorphic to the convergent cohomology

H i((X/V )conv, E).
For a separated k-scheme X, the following proposition is known ([Be2]):

Proposition 1.3.11 (Berthelot). Let X be a separated k-scheme of fi-

nite type, and let X ⊂ X be a k-compactification of X. Let E be an object in

I†(X) = I†(X,X). Then the rigid cohomology H i
rig(X ⊂ X/K, E) of (X,X)

with coefficient E is independent of the choice of the k-compactification

X ⊂ X.

Under the situation of Proposition 1.3.11, we denote the groupH i
rig(X ⊂

X/K, E) simply by H i
rig(X/K, E) and call it the rigid cohomology of X with

coefficient E .

Remark 1.3.12. Let X be a smooth scheme over k. Then we have the

rigid cohomologyH i
rig(X/K,−) and the analytic cohomologyH i

an(X/K,−).

In the case where X is proper over k, the two cohomologies are the same,

but they are not isomorphic in general.
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The analytic cohomology is not a good p-adic cohomology theory, for it

is not finite-dimensional in general even in the case that the coefficient is

trivial. On the other hand, the rigid cohomology is expected to be a good

p-adic cohomology theory in the case where the coefficient is an overconver-

gent F a-isocrystal. In fact, in the case where the coefficient is trivial or a

unit-root overconvergent F a-isocrystal, it is finite-dimensional and satisfies

several nice properties ([Be4], [Be5], [Ts2]).

Finally, we recall the definition of the rigid analytic space associated to

certain formal schemes over Spf V which are not necessarily p-adic ([Be3,

(0.2.6), (0.2.7)]), which we need in later chapters.

Let P be a Noetherian formal scheme over Spf V and let I be an ideal

of definition. Let P0 ⊂ P be the scheme defined by I, and suppose that it

is locally of finite type over Spf V . We define the rigid analytic space PK

associated to P . (In the case that P is a formal V -scheme, the rigid analytic

space PK coincides with the previous one.) Suppose first that P := Spf A

is affine, and let f1, · · · , fr be a generator of the ideal I := Γ(P, I) of A.

For n ∈ N, n > 1, let Bn be the ring

(A[t1, · · · , tr]/(fn1 − πt1, · · · , fnr − πtr))∧,

where ∧ denotes the p-adic completion. For n < n′ ∈ N, let Bn′ −→ Bn be

the continuous ring homomorphism over A which sends ti to fn
′−nti. Then,

via the morphism of rigid analytic spaces

Spm (K ⊗V Bn) −→ Spm (K ⊗V Bn′)

associated to the above ring homomorphism, Spm (K ⊗V Bn) is identified

with the admissible open set {x | |fi(x)| ≤ |π|1/n (1 ≤ i ≤ r)} of Spm (K⊗V

Bn′). We define the rigid analytic space PK as the union of Spm (K ⊗V

Bn)’s. It is known that this definition is independent of the choice of the

system of generators (f1, · · · , fr) of I. In the case that P is not necessarily

affine, we take an affine open covering P =
⋃
Pi of P and define PK as

the union of Pi,K ’s. It is known that this definition is well-defined. We

can define the specialization map sp : PK −→ P as the union of the maps

Spm (K ⊗V Bn)
sp−→ Spf Bn −→ P.

As for the relation of the above construction and the tubular neighbor-

hood, the following proposition is known ([Be3, (0.2.7)]):
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Proposition 1.3.13. Let P, P0 be as above and let X ⊂ P0 be a closed

subscheme. Denote the completion of P along X by P̂ . Then the canonical

morphism P̂K −→ PK induces the isomorphism of rigid analytic spaces

P̂K
∼−→]X[P .

Chapter 2. Log Convergent Site Revisited

The purpose of this chapter is to develop the theory of cohomologies of

isocrystals on log convergent site in detail. First, In Section 2.1, we recall

the definition of log convergent site (which are introduced in Chapter 5 in

[Shi]), and prove basic properties of them. We also introduce some new

notions, such as pre-widenings and widenings, which we use later. They

are the log version of widenings introduced by Ogus ([Og2]). Note that we

will slightly change the definition of log convergent site, but this change

causes no problem. (See Proposition 2.1.7.)

In Section 2.2, we extend the notion of tubular neighborhood to the case

of closed immersion of certain log formal schemes, and we define the analytic

cohomology (in rigid analytic sense) of log schemes with coefficients. In

Section 2.3, we prove that the cohomology of a locally free isocrystal on log

convergent site is isomorphic to the analytic cohomology defined in Section

2.2. The theorem of this type is often called as Poincaré lemma. So we call

this theorem the log convergent Poincaré lemma. This is a generalization

of convergent Poincaré lemma of Ogus ([Og2]). Finally, in Section 2.4, we

prove that the analytic cohomology of certain log schemes X := (X,M) is

isomorphic to the rigid cohomology of Xtriv in the case where the coefficient

is an F a-isocrystal on ((X,M)/V )conv. We use the results of Baldassarri

and Chiarellotto developed in [Ba-Ch] and [Ba-Ch2] in local situation.

Throughout this chapter, k denotes a perfect field of characteristic p > 0

and V denotes a complete discrete valuation ring of mixed characteristic

with residue field k. Let π be a uniformizer of V and denote the fraction

field of V by K. Let | · | be the normalized valuation of K(:= the algebraic

closure of K), and let Γ0,Γ ⊂ R>0 be |K×|, Q ⊗Z Γ0, respectively. For a

formal V -scheme T , denote the closed sub formal scheme defined by the

ideal {x ∈ OT | pnx = 0 for some n } by Tfl. Tfl is the largest closed sub

formal scheme of T which is flat over Spf V .

2.1. Log convergent site

In this section, first we give the definition of enlargement and log con-
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vergent site. We slightly change the definitions of them from those in [Shi].

But we remark that the category of isocrystals on log convergent site is

unchanged. After that, we define the notion of pre-widening and widening,

which are generalizations of the notion of enlargement. They are the log

version of the corresponding notions introduced in [Og2]. Finally, we prove

some basic properties of log convergent site and the category of isocrystals

on it which we need later. We also recall the definition of direct limit site

and an acyclicity property of it, which are due to Ogus ([Og2]).

Throughout this section, let (X,M) be a fine log scheme of finite type

over k and let us fix a diagram

(2.1.1) (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N)

of fine log formal V -schemes, where f is of finite type and ι is the canonical

exact closed immersion.

First, we define the notion of enlargement. Note that we change the

definition from that in [Shi]. The definition here is a log version of that in

[Og2], while the definition in [Shi] is a log version of that in [Og1].

Definition 2.1.1.

(1) An enlargement of (X,M) over (Spf V,N) is a 4-tuple ((T,MT ),

(Z,MZ), i, z), where (T,MT ) is a fine log formal V -scheme over

(Spf V,N) such that T is flat over Spf V , (Z,MZ) is a fine log

scheme over (Spec k,N), i is an exact closed immersion (Z,MZ) −→
(T,MT ) over (Spf V,N) such that Z contains Spec (OT /pOT )red and

z is a morphism (Z,MZ) −→ (X,M) over (Spec k,N). We often

denote an enlargement ((T,MT ), (Z,MZ), i, z) simply by T .

(2) Let T := ((T,MT ), (Z,MZ), i, z) and T ′ := ((T ′,MT ′), (Z ′,MZ′),

i′, z′) be enlargements. Then we define a morphism g : T −→ T ′ of

enlargements as a pair of morphisms

g1 : (T,MT ) −→ (T ′,MT ′),

g2 : (Z,MZ) −→ (Z ′,MZ′),

such that g1 ◦ i = i′ ◦ g2 and z = z′ ◦ g2 hold.
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We denote the category of enlargements of (X,M) over (Spf V,N) by

Enl((X,M)/(Spf V,N)), or simply by Enl((X/V )log).

Remark 2.1.2. In this remark, for a formal V -scheme S, denote the

closed subscheme Spec (OS/pOS)red by S0. In the previous paper [Shi], we

defined an enlargement of (X,M) over (Spf V,N) as the triple (T,MT , z),

where (T,MT ) is a fine log formal V -scheme over (Spf V,N) (where T is not

necessarily flat over Spf V ) and z is a morphism (T0,MT ) −→ (X,M) over

(Spec k,N). Let us denote the category of enlargements of (X,M) over

(Spf V,N) in this sense by Enl′((X,M)/(Spf V,N)) (or Enl′((X/V )log), for

short). Then we have the canonical functor

Φ : Enl((X/V )log) −→ Enl′((X/V )log)

which is defined by

((T,MT ), (Z,MZ), i, z) �→ (T,MT , (T0,MT |T0) ↪→ (Z,MZ)
z−→ (X,M)),

and the canonical functor

Φ′ : Enl′((X/V )log) −→ Enl((X/V )log)

which is defined by

(T,MT , z) �→ ((Tfl,MT |Tfl
), ((Tfl)0,MT |(Tfl)0),

((Tfl)0,MT |(Tfl)0) ↪→ (Tfl,MT |Tfl
),

((Tfl)0,MT |(Tfl)0) ↪→ (T0,MT |T0)
z−→ (X,M)).

Note that the functors Φ,Φ′ are neither full nor faithful. (In particular,

they are not quasi-inverses of each other.) Indeed, one can check easily that

the composite Φ′ ◦Φ sends ((T,MT ), (Z,MZ), i, z) to ((T,MT ), (T0,MT |T0),

(T0,MT |T0) ↪→ (T,MT ), (T0,MT |T0) ↪→ (Z,MZ) → (X,M)), and that

the composite Φ′ ◦ Φ sends (T,MT , z) to (Tfl,MT |Tfl
, (Tfl,MT |Tfl

) ↪→
(T0,MT |T0)→ (X,M)).

Next we define the notion of log convergent site and isocrystals on it:
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Definition 2.1.3. Let τ be one of the words {Zar(= Zariski), et(=
etale)}. Then we define the log convergent site ((X,M)/(Spf V,N))conv,τ

of (X,M) over (Spf V,N) with respect to τ -topology as follows: The objects
of this category are the enlargements T of (X,M) over (Spf V,N) and the
morphisms are the morphism of enlargements. A family of morphisms

{gλ := (g1,λ, g2,λ) : ((Tλ,MTλ), (Zλ,MZλ
), iλ, zλ) −→ ((T,MT ), (Z,MZ), i, z)}λ∈Λ

is a covering if the following conditions are satisfied:

(1) g∗1,λMT
∼
=MTλ

holds for any λ ∈ Λ.

(2) The family of morphisms {g1,λ : Tλ −→ T} is a covering with respect

to τ -topology on T .

(3) (Zλ,MZλ
) is isomorphic to (Tλ,MTλ

) ×g1,λ,(T,MT ),i (Z,MZ) via the

morphism induced by iλ and g2,λ.

We often denote the site ((X,M)/(Spf V,N))conv,τ simply by (X/V )logconv,τ ,

when there will be no confusion on log structures. When the log structures

are trivial, we omit the superscript log.

Remark 2.1.4. The definition of the log convergent site here is differ-

ent from that in the previous paper [Shi], since the definition of enlargement

is different. Also, note that we considered only the log convergent site with

respect to etale topology in the previous paper.

Definition 2.1.5. Let the notations be as above. An isocrystal on

the log convergent site (X/V )logconv,τ is a sheaf E on the site (X/V )logconv,τ

satisfying the following conditions:

(1) For any enlargement T , the sheaf E on Tτ induced by E is an isoco-

herent sheaf.

(2) For any morphism f : T ′ −→ T of enlargements, the homomorphism

f∗ET −→ ET ′ of sheaves on T ′τ induced by E is an isomorphism.

We denote the category of isocrystals on the log convergent site ((X,M)/

(Spf V,N))conv,τ by Iconv,τ ((X,M)/(Spf V,N)). When there are no confu-

sions on log structures, we will denote it simply by Iconv,τ ((X/V )log). When

the log structures are trivial, we omit the superscript log. We denote the

isocrystal on (X/V )logconv,τ defined by T �→ K ⊗V Γ(T,OT ) by KX/V .

Definition 2.1.6. Let the notations be as above. Then an isocrystal

E is said to be locally free if, for any enlargement T , the sheaf E on Tτ
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induced by E is a locally free K ⊗V OT -module. We denote the category of

locally free isocrystals on the log convergent site ((X,M)/(Spf V,N))conv,τ

by I lfconv,τ ((X,M)/(Spf V,N)). When there are no confusions on log struc-

tures, we will denote it simply by I lfconv,τ ((X/V )log).

The definition of the category of isocrystals above is a priori different

from that in the previous paper, because the definition of the log convergent

site is different. But we can prove the following proposition:

Proposition 2.1.7. Let the notations be as above. Let us denote the

log convergent site of (X,M) over (Spf V,N) defined in [Shi] by (X/V )logconv

and the category of isocrystals on it by Iconv((X/V )log). Then we have the

canonical equivalence of categories

Iconv((X/V )log) � Iconv,et((X/V )log).

Proof. First we define the functor Ψ : Iconv((X/V )log) −→
Iconv,et((X/V )log). Let E be an object in Iconv((X/V )log) and let T be

an object in Enl((X/V )log). Then we define the value Ψ(E) of E at T by

Ψ(E)(T ) := E(Φ(T )), where Φ : Enl((X/V )log) −→ Enl′((X/V )log) is as in

Remark 2.1.2. (It is easy to check that Ψ(E) is an isocrystal.) Next we

define the functor Ψ′ : Iconv,et((X/V )log) −→ Iconv((X/V )log). Let E be

an object in Iconv,et((X/V )log) and let T be an object in Enl′((X/V )log).

Then we define the value Ψ′(E) of E at T by Ψ′(E)(T ) := E(Φ′(T )), where

Φ′ : Enl((X/V )log) −→ Enl′((X/V )log) is as in Remark 2.1.2. One can check

that Ψ′(E) is an isocrystal by using the fact that the canonical functor

Coh(K ⊗OS) −→ Coh(K ⊗OSfl
)

is an equivalence of categories for any formal V -scheme S. One can also

check that Ψ and Ψ′ are quasi-inverses of each other, by using the above

equivalence. Hence the assertion is proved. �

Next, we define the notion of pre-widening and widening, which are

generalized notion of enlargement. They are log versions of widening defined

in [Og2].
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Definition 2.1.8. Let the situation be as in the beginning of this sec-

tion. Define the category Q((X,M)/(Spf V,N)) (or Q((X/V )log), if there

are no confusions on log structures) of 4-tuples on (X,M) over (Spf V,N) as

follows: The objects are the 4-tuples ((T,MT ), (Z,MZ), i, z), where (T,MT )

is a Noetherian fine log formal scheme over (Spf V,N) (which is not neces-

sarily p-adic), (Z,MZ) is a fine log scheme of finite type over (Spec k,N),

i is a closed immersion (Z,MZ) −→ (T,MT ) over (Spf V,N) and z is a

morphism (Z,MZ) −→ (X,M) over (Spec k,N). We define a morphism of

4-tuples

(T,MT , Z,MZ , i, z)
g−→ (T ′,MT ′ , Z ′,MZ′ , i′, z′)

as a pair of V -morphisms (T,MT )
g1−→ (T ′,MT ′), (Z,MZ)

g2−→ (Z ′,MZ′)

which satisfy g1 ◦ i = i′ ◦ g2 and z = z′ ◦ g2.

Definition 2.1.9.

(1) A 4-tuple ((T,MT ), (Z,MZ), i, z) is called a pre-widening if T is

a formal V -scheme. We often denote a pre-widening ((T,MT ),

(Z,MZ), i, z) simply by ((T,MT ), (Z,MZ)) or T .

(2) A 4-tuple ((T,MT ), (Z,MZ), i, z) is called a widening if Z is a

scheme of definition of T via i : Z ↪→ T . We often denote a widening

((T,MT ), (Z,MZ), i, z) simply by ((T,MT ), (Z,MZ)) or T .

(3) Let T := ((T,MT ), (Z,MZ), i, z) be a pre-widening. Then we define

the associated widening by the 4-tuple ((T̂ ,MT |T̂ ), (Z,MZ), i, z),

where T̂ is the completion of T along Z. We often denote this

widening simply by T̂ . We have the canonical morphism of 4-tuples

T̂ −→ T .

(4) A pre-widening or a widening ((T,MT ), (Z,MZ), i, z) is said to be

exact if i is exact.

We denote the full subcategory of Q((X/V )log) consisting of the pre-

widenings of (X,M) over (Spf V,N) by PWide((X,M)/(Spf V,N)) or

PWide((X/V )log), and the full subcategory of Q((X/V )log) consists of

widenings of (X,M) over (Spf V,N) by Wide((X,M)/(Spf V,N)) or

Wide((X/V )log). For a (pre-)widening T , denote the sheaf on (X/V )logconv,τ

(where τ = Zar or et) defined by T ′ �→ HomQ((X/V )log)(T
′, T ) by hT .

Let T be a pre-widening and let T̂ be the associated widening. Then

one can check easily that the canonical morphism of sheaves hT̂ −→ hT is
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an isomorphism.

Remark 2.1.10. In the paper [Og2], the notion of pre-widenings was

not defined, but it seems to the author that pre-widenings have essentially

appeared in his paper as widenings by abuse of terminology.

Remark 2.1.11. A widening T := ((T,MT ), (Z,MZ), i, z) is an en-

largement in the sense of Definition 2.1.1 if Z ⊃ Spec (OT /pOT )red holds

and exact.

Remark 2.1.12. In the category PWide((X/V )log) or

Wide((X/V )log), there exist products. For pre-widenings T := ((T,MT ),

(Z,MZ)) and T ′ := ((T ′,MT ′), (Z ′,MZ′)), the product T ×T ′ is defined by

T × T ′ := ((T,MT )×̂(Spf V,N)(T
′,MT ′), (Z,MZ)×(X,M) (Z ′,MZ′))

and for widenings T := ((T,MT ), (Z,MZ)) and T ′ := ((T ′,MT ′), (Z ′,MZ′)),

the product T × T ′ is defined by

T × T ′ := (((T,MT )×̂(Spf V,N)(T
′,MT ′))/(Z,MZ)×(X,M)(Z

′,MZ′ ),

(Z,MZ)×(X,M) (Z ′,MZ′)),

where ((T,MT )×̂(Spf V,N)(T
′,MT ′))/(Z,MZ)×(X,M)(Z

′,MZ′ ) denotes the com-

pletion of (T,MT )×̂(Spf V,N)(T
′,MT ′) along the underlying scheme of

(Z,MZ) ×(X,M) (Z ′,MZ′). Hence one can check easily that the associa-

tion from a pre-widening to a widening commutes with the formation of

the product.

Beware of the following facts: The notion of the product as widenings

and that as pre-widenings are different for objects in PWide((X/V )log) ∩
Wide((X/V )log). The category Enl((X/V )log) is not closed under the prod-

uct in the category PWide((X/V )log) or Wide((X/V )log). The product

T × T ′ is not necessarily exact even if T and T ′ are exact (pre-)widenings.

We define the notion of affinity of (pre-)widenings as follows:

Definition 2.1.13. Let (X,M)
f−→ (Spec k,N)

ι−→ (Spf V,N) be as

in the beginning of this section and assume that we are given a chart
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C0 := (PX → M,QV → N,Q → P ) of the morphism ι ◦ f . (In par-

ticular, we assume the existence of such a chart.) Then a (pre-)widening

T := ((T,MT ), (Z,MZ), i, z) is called affine with respect to C0 if T is affine,

z is an affine morphism and the diagram

(2.1.2)

(Z,MZ)
i−−−→ (T,MT )

z

� �
(X,M)

ι◦f−−−→ (Spf V,N)

admits a chart C satisfying the following conditions:

(1) The chart C extends the given chart C0 of ι ◦ f .
(2) If we denote the restriction of the chart C to i by (RT →MT , SZ →

MZ , R
α→ S), then αgp is surjective.

We call a pair (T, C) of a (pre-)widening and a chart of the diagram (2.1.2)

as above a charted affine (pre-)widening.

We define the exactification of a charted affine (pre-)widening as follows.

Definition 2.1.14. Let the situation be as in the above definition.

(1) Let T := (((T,MT ), (Z,MZ), i, z), C) be a charted affine pre-widen-

ing of (X,M) over (Spf V,N) with respect to C0. Let T = Spf A,

Z = SpecB and let (RT → MT , SZ → MZ , R
α→ S) be the restric-

tion of C to i. Then we put R′ := (αgp)−1(R), A′ := A⊗Z[R] Z[R′],
T ex := lim−→n

Spec (A′/(pn)) and let MT ex be the log structure asso-

ciated to the homomorphism R′ −→ A′ −→ lim←−n
A′/(pn). Then

the morphism i factors through the exact closed immersion i′ :

(Z,MZ) ↪→ (T ex,MT ex) and the 4-tuple

((T ex,MT ex), (Z,MZ), i′, z)

is an exact affine pre-widening. We call this pre-widening the exac-

tification of T and we often denote it simply by T ex.

(2) Let T := ((T,MT ), (Z,MZ), i, z) be a charted affine widening of

(X,M) over (Spf V,N) with respect to C0. Let T = Spf A, Z =
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SpecB and let (RT → MT , SZ → MZ , R
α→ S) be the restric-

tion of C to i. Then we put R′ := (αgp)−1(R), A′ := A ⊗Z[R]

Z[R′], I := Ker(A′ −→ B), T ex := lim−→n
Spec (A′/In) and let

MT ex be the log structure associated to the homomorphism P ′ −→
A′ −→ lim←−n

A′/In. Then the morphism i factors through the ex-

act closed immersion i′ : (Z,MZ) ↪→ (T ex,MT ex) and the 4-tuple

((T ex,MT ex), (Z,MZ), i′, z) is an exact affine widening. We call this

widening the exactification of T and we often denote it simply by

T ex.

In each case, we have the canonical morphism T ex −→ T .

Remark 2.1.15.

(1) The exactification T ex depends on the chart C.
(2) For a charted affine pre-widening, the associated widening has a

chart naturally. Then one can check easily that the association from

a charted affine pre-widening to a charted affine widening commutes

with the formation of the exactification.

Then one can check easily the following proposition. We omit the proof,

since this is the immediate consequence of [Kk, (5.8)].

Proposition 2.1.16. Let the notations be as in Definitions 2.1.13 and

2.1.14. For a charted affine widening T , the canonical morphism T ex −→ T

induces the isomorphism hT ex
∼−→ hT of sheaves on (X/V )logconv,τ .

Now we define the restricted log convergent site.

Definition 2.1.17. Let (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N) be as

in the beginning of this section and let τ be one of the words {Zar(=
Zariski), et(= etale)}. For a (pre-)widening T , we define the restricted log

convergent site ((X,M)/(Spf V,N))conv,τ |T (or (X/V )logconv,τ |T for short) as
follows: The objects are the enlargements T ′ endowed with a morphism
T ′ −→ T of (pre-)widenings. The morphisms are the morphisms of enlarge-
ments over T . A family of morphisms over T

{gλ := (g1,λ, g2,λ) : ((T ′
λ,MT ′

λ
), (Z′

λ,MZ′
λ
), i′λ, z

′
λ) −→ ((T ′,MT ′), (Z

′,MZ′), i
′, z′)}λ∈Λ

is a covering if the following conditions are satisfied:

(1) g∗1,λMT ′
∼
=MT ′

λ
holds for any λ ∈ Λ.



46 Atsushi Shiho

(2) The family of morphisms {g1,λ : T ′λ −→ T ′} is a covering with

respect to τ -topology on T ′.
(3) (Z ′λ,MZ′

λ
) is isomorphic to (T ′λ,MT ′

λ
) ×g1,λ,(T ′,MT ′ ),i′ (Z ′,MZ′) via

the morphism induced by i′λ and g2,λ.

Remark 2.1.18. One can check easily that the topos (X/V )log,∼conv,τ |T as-

sociated to the site (X/V )logconv,τ |T is equivalent to the category of sheaves E

on (X/V )logconv,τ endowed with a morphism of sheaves E −→ hT . In partic-

ular, for a pre-widening T , the site (X/V )logconv,τ |T is canonically equivalent

to (X/V )log
conv,τ |T̂ , where T̂ is the associated widening of T .

We can define the notion of isocrystals on restricted log convergent site

in the same way as in the case of usual log convergent site:

Definition 2.1.19. Let the notations be as above. Then, an isocrystal

on the restricted log convergent site (X/V )logconv,τ |T is a sheaf E on the site

(X/V )log
conv,τ |T satisfying the following conditions:

(1) For any enlargement T ′ over T , the sheaf E on T ′τ induced by E is

an isocoherent sheaf.

(2) For any morphism f : T ′′ −→ T ′ of enlargements over T , the ho-

momorphism f∗ET ′ −→ ET ′′ of sheaves on T ′′τ induced by E is an

isomorphism.

We denote the category of isocrystals on the restricted log convergent

site ((X,M)/(Spf V,N))conv,τ |T by Iconv,τ ((X,M)/(Spf V,N)|T ). When

there are no confusions on log structures, we will denote it simply by

Iconv,τ ((X/V )log|T ).

Now we remark two basic properties on the cohomology of sheaves on

log convergent site which we need later.

The first one is the cohomological descent. Let ι : (Spec k,N) ↪→
(Spf V,N) be the canonical exact closed immersion in the beginning of this

section and let (X(•),M (•)) be a simplicial fine log scheme over (Spec k,N)

such that X(n) is of finite type over k for each n. Then, by Saint-Donat

[SD], we can define the log convergent topos of the simplicial log scheme

(X(•),M (•)) over (Spf V,N) as the category of sections of the bifibered
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topos ∐
n∈N

((X(n),M (n))/(Spf V,N))∼conv,τ −→ ∆op,

where ∆op denotes the opposite category of the category of simplices. We

denote it by (X(•)/V )log,∼conv,τ . Then we have the following proposition:

Proposition 2.1.20. Let (X,M) −→ (Spec k,N) ↪→ (Spf V,N) be

as in the beginning of this section and let τ be one of the words {Zar(=

Zariski), et(= etale)}. Let g : X(•) −→ X be a hypercovering of X with

respect to τ -topology and put M (•) :=M |X(•). Let

θ := (θ∗, θ
−1) : (X(•)/V )log,∼conv,τ −→ (X/V )log,∼conv,τ

be the morphism of topoi defined by θ∗(E(•)) := Ker(g
(0)
∗ E(0) →→ g

(1)
∗ E(1)),

θ−1(E)(i) := g(i),−1(E) (i = 0, 1) (where g(i) is the homomorphism X(i) −→
X), θ−1(E)(i) := 0, (i > 1). Then, for any abelian sheaf E on (X/V )logconv,τ ,

the canonical homomorphism

E −→ Rθ∗θ
−1E

is an isomorphism in the derived category of the category of abelian sheaves

on (X/V )log
conv,τ .

Proof. Let us take an enlargement T := ((T,MT ), (Z,MZ), i, z) of

(X,M) over (Spf V,N) and for n ∈ N, define an enlargement T (n) :=

((T (n),MT (n)), (Z(n),MZ(n)), i(n), z(n)) of (X(n),M (n)) over (Spf V,N) as

follows: Z(n) is the scheme Z×XX
(n),MZ(n) is the pull-back ofMZ to Z(n),

z(n) is the projection (Z(n),MZ(n)) −→ (X(n),M (n)), T (n) is the unique for-

mal V -scheme which is formally etale over T satisfying T (n) ×T Z
∼
= Z(n),

MT (n) is the pull-back of MT to T (n) and i(n) is the pull-back of i by the

morphism (T (n),MT (n)) −→ (T,MT ). Then, as formal schemes, we have a

hypercovering h : T (•) −→ T with respect to τ -topology.

Now let ϕ := (ϕ∗, ϕ−1) : T
(•),∼
τ −→ T∼τ be the morphism of topoi

induced by h and let

u
(•)
∗ : (X(•)/V )log,∼conv,τ −→ T (•),∼

τ ,

u∗ : (X/V )log,∼conv,τ −→ T∼τ
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be ‘the functors of the evaluation’, which are exact by definition. Then one

can check the equalities

ϕ∗ ◦ u(•)
∗ = u∗ ◦ θ∗,(2.1.3)

u
(•)
∗ ◦ θ−1 = ϕ−1 ◦ u∗.(2.1.4)

Note that u
(•)
∗ sends injectives to injectives: Indeed, u

(•)
∗ is the compos-

ite of the functors j−1 : (X(•)/V )log,∼conv,τ −→ (X(•)/V )log,∼conv,τ |T (•) and v∗ :

(X(•)/V )log,∼
conv,τ |T (•) −→ T

(•),∼
τ , where j−1 is the canonical restriction and v∗

is again the functor of evaluation. Then one can see, as in the case with-

out log structures ([Og2]), that both j−1 and v∗ admit exact left adjoint

functors. Hence they send injectives to injectives. So the same is true also

for the functor u∗. Hence, by Leray spectral sequence, the equality (2.1.3)

implies the equality

(2.1.5) Rϕ∗ ◦ u(•)
∗ = u∗ ◦Rθ∗.

By the equalities (2.1.4) and (2.1.5), we have the following equality for an

abelian sheaf E on (X/V )logconv,τ :

u∗(Rθ∗θ
−1E) = Rϕ∗(u

(•)
∗ ◦ θ−1E)

= Rϕ∗ϕ
−1(u∗E)

= u∗E,

where the last equality follows from the cohomological descent for the hy-

percovering with respect to τ -topology. Since the above equality holds for

any enlargement T , we have the isomorphism Rθ∗θ−1E
∼
= E, as desired. �

The second one is the comparison of the cohomology of isocrystals on

(X/V )log
conv,et and (X/V )logconv,Zar (cf. [Be-Br-Me, (1.1.19)]).

Proposition 2.1.21. Let (X,M)
f−→ (Spec k,N)

ι−→ (Spf V,N) be as

above and let T := ((T,MT ), (Z,MZ), i, z) be a (pre-)widening of (X,M)

over (Spf V,N). Let us denote the canonical morphism of topoi

(X/V )log,∼conv,et −→ (X/V )log,∼conv,Zar

(resp. (X/V )log,∼conv,et|T −→ (X/V )log,∼conv,Zar|T )



Crystalline Fundamental Groups II 49

by ε. Then:

(1) for any E ∈ Iconv,et((X/V )log) (resp. E ∈ Iconv,et((X/V )log|T )), we

have Rε∗E = ε∗E.

(2) The functor E �→ ε∗E induces the equivalence of categories

Iconv,et((X/V )log)
∼−→ Iconv,Zar((X/V )log)

(resp. Iconv,et((X/V )log|T )
∼−→ Iconv,Zar((X/V )log|T ) ).

Proof. Rqε∗E is the sheaf associated to the presheaf T ′ �→
Hq((X/V )log

conv,et|T ′ , E) (resp. (T ′ −→ T ) �→ Hq((X/V )logconv,et|T ′ , E)). So

it suffices to prove the equations

Hq((X/V )logconv,et|T ′ , E) =

{
E(T ′), q = 0,

0, q > 0,

for an enlargement T ′ := ((T ′,MT ′), (Z ′,MZ′), i′, z′) such that T ′ is

affine. The case q = 0 is obvious. By [SGA4, V 4.3, III 4.1] (see also

[Mi, III.2.12]), it suffices to prove the vanishing of the Čech cohomology

Ȟq((X/V )log
conv,et|T ′ , E) = 0 (q > 0) for any enlargement T ′ as above. Let

U := {Si −→ T ′}i∈I be a covering in (X/V )logconv,et such that each Si
is an affine formal V -scheme and |I| is finite. Since any covering of T ′

has a refinement by a covering of this type, it suffices to prove the van-

ishing Ȟq(U , E) = 0 (q > 0). Put T ′ := Spf A,
∐

i∈I S := Spf B and

E(T ′) := M = K ⊗V N , where N is a finitely generated A-module. Since

E is an isocrystal, Ȟq(U , E) is the q-th cohomology of the complex

C• := [0→M →M⊗̂AB →M⊗̂AB⊗̂AB → · · · ].

(Here ⊗̂ means the p-adically completed tensor product.) Put Nn :=

N/pnN,An := A/pnA,B := B/pnB and let C•n be the complex

0→ Nn → Nn ⊗An Bn → Nn ⊗An Bn ⊗An Bn → · · · .

Then we have Hq(C•n) = K ⊗V H
q(lim←−n

C•n). Since {Cq
n}∞n=1 satisfies the

Mittag-Leffler condition, we have the exact sequence

0→ lim←−
1

n
Hq−1(C•n)→ Hq(lim←−C

•
n)→ lim←−n

Hq(C•n)→ 0.
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Moreover, we have H0(C•n) = Nn, H
q(C•n) = 0 (q > 0), since Bn is faith-

fully flat over An. Hence Hq(lim←−n
C•n) = 0 holds for q > 0. So we have

Hq(U , E) = 0 (q > 0) and the proof of the assertion (1) is finished.

Next we prove the assertion (2). Let E be an object in (X/V )logconv,Zar

(resp. (X/V )logconv,Zar|T ). Then, by rigid analytic faithfully flat descent of

Gabber ([Og1, (1.9)]), the presheaf on (X/V )logconv,et (resp. (X/V )logconv,et|T )

defined by T ′ �→ E(T ′) (resp. (T ′ → T ) �→ E(T ′ → T )) is an isocrystal on

(X/V )log
conv,et (resp. (X/V )logconv,et|T ). Let us denote it by δ(E). Then it is

obvious that the functor δ is the quasi-inverse of ε∗. �

Next, we recall the notion of the system of universal enlargements of

exact (pre-)widenings, which is a slight modification of that defined in [Shi,

(5.2.3)].

Definition 2.1.22. Let (X,M)
f−→ (Spec k,N)

ι−→ (Spf V,N) be as

in the beginning of this section and let ((T,MT ), (Z,MZ), i, z) be an exact

(pre-)widening. Put Z ′ := Tfl×TZ and let I be the ideal Ker(OTfl
−→ OZ′).

For n ∈ N, let BZ,n(T ) be the p-adically completed formal blow-up of Tfl

with respect to the ideal πOTfl
+ In and let TZ,n(T ) be the open set

{x ∈ BZ,n(T ) | (πOTfl
+ In) · OBZ,n(T ),x = πOBZ,n(T ),x}

of BZ,n(T ). Let λn : TZ,n(T ) −→ T be the canonical morphism and let
Zn := λ−1

n (Z). Then the 4-tuple

TZ,n(T ) := ((TZ,n(T ),MT ), (Zn,MZ), Zn ↪→ TZ,n(T ), (Zn,MZ)
λn−→ (Z,MZ)

z−→ (X,M))

is an enlargement for each n and the family {TZ,n(T )}n∈N forms an inductive

system of enlargements. The morphisms λn’s define the morphisms of (pre-

)widenings TZ,n(T ) −→ T (n ∈ N) which is compatible with transition

morphisms of the inductive system {TZ,n(T )}n∈N. We call this inductive

system the system of universal enlargements of T .

Then we have the following (cf. [Shi, (5.2.4)]):

Lemma 2.1.23. Let the notations be as above and let T ′ := ((T ′,MT ′),

(Z ′,MZ′), i′, z′) be an enlargement. Then a morphism g : T ′ −→ T in
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Q((X/V )log) factors through TZ,n(T ) for some n. Moreover, such a fac-

torization T ′ −→ TZ,n(Z) is unique as a morphism to the inductive system

{TZ,n(T )}n∈N.

Proof. Put Tfl := ((Tfl,MT ), (Z ′,MZ), i ×T Tfl, (Z
′,MZ) ↪→

(Z,MZ)
z→ (X,M)). Then, since T ′ is flat over Spf V , g factors through

g′ : T ′ −→ Tfl. Put J := Ker(OT ′ −→ OZ′). Then J n ⊂ πOT ′ holds

for some n. Hence we have (g′)∗(πOTfl
+ In) = πOT ′ . So, by the univer-

sality of blow-up, g′ : T ′ −→ Tfl factors through T ′ −→ TZ,n(T ) for some

n, and one can easily check that this defines a morphism of enlargements.

The uniqueness of the factorization also follows from the universality of

blow-up. �

The above lemma implies that the canonical morphism of sheaves

lim−→n
hTZ,n(T ) −→ hT is an isomorphism. Moreover, the following stronger

result is known ([Og2, (0.2.2)]).

Lemma 2.1.24. With the notation above, the morphism of sheaves

hTZ,n(T ) −→ hT is injective.

Proof. Since the proof is the same as that in [Og2, (0.2.2)], we omit

it. (Note that we have assumed that the formal V -scheme T ′ which appears

in an enlargement T ′ := ((T ′,MT ′), (Z ′,MZ′), i′, z′) is assumed to be flat

over Spf V in this paper. We need this assumption in the proof of [Og2,

(0.2.2)]. This is the reason why we imposed this condition.) �

We recall the explicit description of TZ,n(T ) in affine case, following
[Og1, (2.3), (2.6.2)]. (The proof is easy and left to the reader.) Let T :=
((T,MT ), (Z,MZ), i, z) be an exact (pre-)widening and assume that T :=
Spf A is affine. Put I := Γ(T, I) and take a generator g1, · · · , gr of I. For
m := (m1, · · · ,mr) ∈ Nr, put |m| := (m1, · · · ,mr) and gm := gm1

1 · · · gmr
r .

Then we have

TZ,n(T ) = Spf (A[tm (m ∈Nr, |m| = n)]/(πtm − gm (m ∈Nr, |m| = n)) + (p-torsion))∧,

where ∧ denotes the p-adic completion. Note that one has

K ⊗V Γ(TZ,n(T ),OTZ,n(T ))
∼
= K ⊗ (A[t1, · · · , tr]/(πt1 − gn1 , · · · , πtr − gnr ) + (p-torsion))∧.

As a consequence of the above description, we can prove the following,

which is also due to Ogus ([Og1, (2.6.1)]):
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Lemma 2.1.25. Let (X,M) −→ (Spec k,N) ↪→ (Spf V,N) be as above

and let T be a pre-widening. Denote the widening associated to T by T̂ .

Then we have the canonical isomorphism of enlargements TZ,n(T̂ )
∼−→

TZ,n(T ).

Proof. We may reduce to the case that T = Spf A is affine. Let
I, gi (1 ≤ i ≤ r) be as above and denote the I-adic completion of A by Â.
It suffices to prove that the canonical homomorphism of rings

B := (A[tm (m ∈Nr, |m| = n)]/(πtm − gm (m ∈Nr, |m| = n)) + (p-torsion))∧

−→ B′ := (Â[tm (m ∈Nr, |m| = n)]/(πtm − gm (m ∈Nr, |m| = n)) + (p-torsion))∧

is an isomorphism. Since InB is contained in the ideal πB ⊂ B, the canon-

ical homomorphism A −→ B uniquely extends to the continuous homomor-

phism Â −→ B. We can extend this homomorphism to the homomorphism

B′ −→ B by sending tm to tm. It is obvious that this homomorphism gives

the inverse of the above homomorphism. �

We recall some basic properties of system of enlargements which we need

later. The first one is essentially proved in [Og2, (0.2.4)].

Lemma 2.1.26. Let

g : ((T ′,MT ′), (Z ′,MZ′), i′, z′) −→ ((T,MT ), (Z,MZ), i, z)

be a morphism of (pre-)widenings and assume g−1(Z) = Z ′ holds. Then g

induces the natural isomorphism of enlargements

TZ′,n′(T )
∼−→ TZ,n(T )×Tfl

T ′fl.

If T ′ −→ T is flat, we have the isomorphism

TZ′,n′(T )
∼−→ TZ,n(T )×T T

′.

Proof. This is obvious from the universality of blow-ups and the fact

that Tfl ×T T
′ ∼= T ′fl holds when T ′ −→ T is flat. �
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The next proposition, which is also due to Ogus ([Og2, (0.2.5), (0.2.6)]),

establishes the influence of the choice of Z to the construction of the system

of universal enlargement.

Proposition 2.1.27. Let (X,M) −→ (Spec k,N) ↪→ (Spf V,N) be as

in the beginning of this section. Let ((T,MT ), (Z,MZ), i, z) and ((T,MT ),

(Z ′,MZ′), i′, z′) be exact (pre-)widenings of (X,M) over (Spf V,N) such

that Z ⊂ Z ′ and z = z′|Z hold. Assume that there exists an ideal J of OT

and m ∈ N such that Jm+1 ⊂ πOT and IZ ⊂ IZ′ + J holds, where IZ , IZ′

are the defining ideals of Z, Z ′ in T , respectively. Denote the canonical

morphism of enlargements

((T,MT ), (Z,MZ), i, z) −→ ((T,MT ), (Z ′,MZ′), i′, z′)

induced by idT and the closed immersion Z ↪→ Z ′ by g and denote the

morphism of enlargements TZ,n(T ) −→ TZ′,n(T ) induced by g by gn. Then:

(1) There exists a homomorphism of formal schemes hn : TZ′,n(T ) −→
TZ,m+n(T ) such that the composites

TZ′,n(T )
hn−→ TZ,m+n(T )

gm+n−→ TZ′,m+n(T ),

TZ,n(T )
gn−→ TZ′,n(T )

hn−→ TZ,m+n(T ),

coincide with the canonical transition morphisms. (Note that hn
is just a morphism of formal schemes and it is not a morphism of

enlargements.)

(2) For an isocrystal E on (X/V )logconv,τ , we have the natural isomor-

phism

ϕn : h∗nETZ,m+n(T )
∼−→ ETZ′,n(T )

such that the composites

h∗n ◦ g∗m+nETZ′,m+n(T )
h∗
nE(gm+n)−→ h∗nETZ,m+n(T )

ϕn−→ ETZ′,n(T ),

g∗n ◦ h∗nETZ,m+n(T )
g∗nϕn−→ g∗nETZ′,n(T )

E(gn)−→ ETZ,n(T ),

coincide with the isomorphisms induced by the canonical morphism

of enlargements TZ′,n(T ) −→ TZ′,m+n(T ) and TZ,n(T ) −→
TZ,m+n(T ), respectively.
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Proof. First we prove the assertion (1). Since we have inclusions of

ideals

πOT + Im+n
Z ⊂ πOT + (IZ′ + J)m+n ⊂ πOT + InZ′ + Jm+1 ⊂ πOT + InZ′ ,

we obtain the morphism hn by the universality of blow-up. One can check

easily the properties in the statement.

Next we prove the assertion (2). Let Z̃n be the inverse image of Z in

TZ′,n(T ) and let MZ̃n
be the pull-back of the log structure MT to Z̃n. Then

we have the diagram of enlargements

TZ,m+n(T ) := ((TZ,m+n(T ),MTZ,m+n(T )), (Zm+n,MZm+n))

hn←− ˜TZ,m+n(T ) := ((TZ′,n(T ),MTZ′,n(T )), (Z̃n,MZ̃n
))

j−→ TZ′,n(T ) := ((TZ′,n(T ),MTZ′,n(T )), (Z
′
n,MZ′

n
)),

where hn is the morphism of enlargements induced by hn in the assertion

(1) and j is the morphism of enlargements induced by idTZ′,n(T ) and the

closed immersion Z̃n ↪→ Z ′n. Then, for an isocrystal E on (X/V )logconv,τ , we

have the isomorphisms

h∗nETZ,m+n(T )
∼−→ E ˜TZ,m+n(T )

∼←− j∗ETZ′,n(T ) = ETZ′,n(T ).

So we obtain the isomorphism h∗nETZ,m+n(T )
∼−→ ETZ′,n(T ). We define ϕn as

this isomorphism. It is easy to check that the isomorphism ϕn satisfies the

desired properties. �

Finally we recall the definition and an acyclicity property of direct limit

site FT for an exact widening T , which is due to Ogus [Og2, §3].

Definition 2.1.28. Let T be an exact widening and {Tn :=

TZ,n(T )}n∈N be the system of universal enlargements of T . Then we define

the direct limit site FT as follows: Objects are the open sets of some Tn.

For open sets U ⊂ Tn and V ⊂ Tm, Hom8T (U, V ) is empty unless n ≤ m
and in the case n ≤ m, Hom8T (U, V ) is defined to be the set of morphisms
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f : U −→ V which commutes with the transition morphism Tn −→ Tm. (In

particular, Hom8T (U, V ) consists of at most one element.) The coverings are

defined by Zarisi topology for each object.

We define the structure sheaf O8T by O8T (U) := Γ(U,OU ).

Remark 2.1.29. In the above definition, we have changed the notation

slightly from that in [Og2]. In the paper [Og2], the notation FT is used to

denote the topos associated to the direct limit site. In this papar, we will

use the notation FT to express the site and the associated topos will be

denoted by FT∼.

Note that giving a sheaf E on the site FT is equivalent to giving a com-

patible family {En}n, where En is a sheaf on Tn,Zar.

Definition 2.1.30. A sheaf of K⊗O8T -modules E is called crystalline

if the following condition is satisfied: For any transition map ψ : Tn −→ Tm,

the transition map of sheaves ψ−1Em −→ En induces an isomorphism

OTn ⊗ψ−1OTm
ψ−1Em

∼−→ En,

where En, Em are the sheaves on Tn,Zar, Tm,Zar induced by E.

We define the morphism of topoi

γ : FT∼ −→ T∼Zar

as follows: γ∗ is the functor defined by the pull-back and γ∗ is the functor

of taking the inverse limit of the direct image. Then one has the following

acyclicity, which is due to Ogus ([Og2, (0.3.7)]).

Proposition 2.1.31. Let E be a crystalline sheaf of K⊗V O8T -modules.

Then Rqγ∗E = 0 holds for q > 0.

Proof. We omit the proof, since it is the same as that in [Og2,

(0.3.7)]. �
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2.2. Analytic cohomology of log schemes

In this section, we extend the notion of tubular neighborhood to the case

of closed immersions of fine log schemes into a fine log formal schemes sat-

isfying certain condition. Then, for an isocrystal on log convergent site, we

define the associated log de Rham complex on some tubular neighborhood.

Finally, we give a definition of analytic cohomology (in rigid analytic sense)

of a fine log scheme which has a locally free isocrystal on log convergent

site as coefficient.

We extend the notion of tubular neighborhood to the case of closed im-

mersions of fine log schemes into a fine log formal schemes satisfying certain

condition. First, let us consider the following situation: Let (X,M) be a

fine log scheme over k and let i : (X,M) ↪→ (P,L) be a closed immersion of

(X,M) into a Noetherian fine log formal scheme (P,L) over Spf V whose

scheme of definition is of finite type over Spf V . (Note that (P,L) is not

necessarily p-adic.) Let us consider the following condition on i:

There exists (at least one) factorization of i of the form(∗)

(X,M)
i′−→ (P ′, L′)

f ′
−→ (P,L),

where i′ is an exact closed immersion and f ′ is a formally log etale mor-

phism.

Remark 2.2.1. If i admits a chart (RP → L, SX → M,R
α→ S) such

that αgp is surjective, the condition (∗) is satisfied. Indeed, if we put R′ :=
(αgp)−1(S) and define (P ′, L′) by

P ′ := P ×̂Spf Zp{R}Spf {R′},
L′ := the pull back of the canonical log structure on Spf Zp{R′},

then there exists a factorization as in (∗).

Let us note the following lemma:

Lemma 2.2.2. Let i : (X,M) ↪→ (P,L) be as above and assume that i

satisfies the condition (∗). Let P̂ ′ be the completion of P ′ along X. Then

the rigid analytic space P̂ ′K is independent of the choice of the factorization

as in (∗).
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Proof. Let

(X,M)
i′′−→ (P ′′, L′′)

f ′′
−→ (P,L)

be another factorization as in (∗). Put (P 0, L0) := ((P ′, L′)×̂(P,L)

(P ′′, L′′))int. Then we have the factorization

(X,M)
j−→ (P 0, L0)

h−→ (P,L)

defined by j = i′ × i′′, h = f ′ ◦ pr1 = f ′′ ◦ pr2. Then h is formally log etale

and j is a locally closed immersion. By shrinking P 0, we may assume that

j is a closed immersion.

Now we check that j is an exact closed immersion. We only have to

check that j∗L0 is isomorphic to M . By definition, j∗L0 is the push-out of

the following diagram in the category of fine log structures on X:

(i′)∗L′ ←− i∗L −→ (i′′)∗L′′.

But the diagram is completed into the following commutative diagram:

(i′)∗L′
a−−−→ M� �b

i∗L −−−→ (i′′)∗L′′,

where a and b are isomorphisms. So one can see that j∗L0 is isomorphic to

M .

Let us consider the following commutative diagram

(X,M)
j−−−→ (P 0, L0)∥∥∥ �pr1

(X,M)
i′−−−→ (P ′, L′).

Then pr1 is formally log etale. Now note that

P 0
pr1-triv := {x ∈ P 0 | (pr∗1L

′)x̄
∼−→ L0

x̄}
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is open in P 0 ([Shi, (2.3.1)]) and contains X. So, by shrinking P 0, we may

assume that the morphism pr1 is formally etale (in the classical sense).

Let P̂ 0, P̂ ′ be the completion of P 0, P ′ along X. We prove that the

morphism p̂r1 : P̂ 0 −→ P̂ ′ induced by pr1 is an isomorphism. It suffices

to prove that it is formally etale. Let P̃ 0 be the completion of P 0 along

X ′ := X ×P ′ P 0. Then P̃ 0 −→ P̂ ′ is formally etale. On the other hand, the

morphism X ′ −→ X is etale and has a section. Hence X ′ contains X as

a summand. Hence P̃ 0 contains P̂ 0 as a summand, and so p̂r1 is formally

etale.

As a consequence, we have the isomorphism P̂ 0
K
∼
= P̂ ′K . By the same

argument, we have the isomorphism P̂ 0
K
∼
= P̂ ′′K . So the assertion is proved. �

Let i : (X,M) ↪→ (P,L) be a closed immersion of a fine log scheme

over k into a Noetherian fine log formal scheme over Spf V whose scheme

of definition is of finite type over Spf V which satisfies the condition (∗).
Then we define the tubular neighborhood ](X,M)[(P,L) of (X,M) in (P,L)

by ](X,M)[(P,L):= P̂ ′K , where P ′ is as in (∗). We have the specialization

map

sp : ](X,M)[(P,L)−→ P̂ (� X)

(where P̂ is the completion of P along X) defined as the composite

P̂ ′K
sp−→ P̂ ′ −→ P̂ .

Remark 2.2.3. The above definition of tubular neighborhood is func-

torial in the following case: Let us assume given a diagram

(X1,M1)
i1−−−→ (P1, L1)

gX

� gP

�
(X2,M2)

i2−−−→ (P2, L2)

(where i1, i2 are the closed immersion as i above) and let us assume that

there exists (at least one) diagram

(X1,M1)
i′1−−−→ (P ′1, L

′
1)

f ′
1−−−→ (P1, L1)

gX

� gP ′
� gP

�
(X2,M2)

i′2−−−→ (P ′2, L
′
2)

f ′
2−−−→ (P2, L2),
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where the horizontal lines are factorizations of i1, i2 as in the factorization

in (∗). Then we have the morphism of tubular neighborhoods

](X1,M1)[(P1,L1)−→](X2,M2)[(P2,L2).

Next we extend the definition of tubular neighborhood to more general

cases.

Proposition 2.2.4. Let Z be the category of locally closed immersions

i : (X,M) ↪→ (P,L) of a fine log scheme over k into a Noetherian fine log

formal scheme over Spf V whose scheme of definition is of finite type over

Spf V satisfying the following condition:

There exists an open covering P =
⋃

α∈I Pα such that the(∗∗)
morphisms (X,M)×(P,L) (Pα, L) ↪→ (Pα, L) are closed

immersions and they satisfy the condition (∗).

Then we have the unique functor

Z −→ (Rigid analytic space with morphism of sites);

((X,M)
i
↪→ (P,L)) �→ (](X,M)[(P,L), sp :](X,M)[(P,L)→ P̂ ),

(where P̂ is the completion of P along X) satisfying the following conditions:

(1) When i satisfies the condition (∗), then ](X,M)[(P,L) and sp coin-

cide with the definition given above. If the morphism in C

((X1,M1)
i1−→ (P1, L1)) −→ ((X2,M2)

i2−→ (P2, L2))

satisfies the condition in Remark 2.2.3, then the morphism

](X1,M1)[(P1,L1)−→](X2,M2)[(P2,L2) coincides with the one given in

Remark 2.2.3.

(2) If P ′ ⊂ P is an open sub formal scheme and X ′ = X ×P P
′ holds,

](X ′,M)[(P ′,L) is canonically identical with the admissible open set

sp−1(P̂ ′), where P̂ ′ is the completion of P ′ along X ′.
(3) If P =

⋃
α∈I Pα is an open covering and Xα = X ×P Pα holds,

](X,M)[(P,L)=
⋃

α∈I ](Xα,M)[(Pα,L) is an admissible covering.
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Proof. Take an open covering P =
⋃

α∈I Pα such that the closed im-

mersion (Xα,M) := (X,M)×(P,L) (Pα, L) ↪→ (Pα, L) satisfies the condition

(∗), and for α, α′ ∈ I, put Pαα′ := Pα ∩ Pα′ , Xαα′ := Xα ∩Xα′ . Then the

closed immersion (Xαα′ ,M) ↪→ (Pαα′ , L) also satisfies the condition (∗). By

the conditions, the rigid analytic space ](X,M)[(P,L) should be the reunion

of ](Xα,M)[(Pα,L)’s which are glued along ](Xαα′ ,M)[(Pαα′ ,L)’s. So it is

unique. Conversely, we can define the rigid analytic space ](X,M)[(P,L) by

gluing ](Xα,M)[(Pα,L)’s along ](Xαα′ ,M)[(Pαα′ ,L)’s and we can also define

the specialization map ](X,M)[(P,L)−→ P̂ by gluing ](Xα,M)[(Pα,L)−→
P̂α’s, where P̂α is the completion of Pα along Xα. So the assertion is

proved. �

Definition 2.2.5. Let i : (X,M) ↪→ (P,L) be a closed immersion of a

fine log scheme over k into a Noetherian fine log formal scheme over Spf V

whose scheme of definition is of finite type over Spf V which belongs to the

category Z in Proposition 2.2.4. Then we define the tubular neighborhood

](X,M)[(P,L) of (X,M) in (P,L) as the rigid analytic space in Proposition

2.2.4. We call the morphism of sites ](X,M)[(P,L)−→ P̂ in Proposition 2.2.4

the specialization map. We denote the tubular neighborhood ](X,M)[(P,L)

simply by ]X[logP , where there will be no confusions on log structures.

Remark 2.2.6. Let i : (X,M) ↪→ (P,L) be a locally closed immersion

of a fine log scheme over k into a Noetherian fine log formal scheme over

Spf V whose scheme of definition is of finite type over Spf V and assume

that (X,M) and (P,L) are of Zariski type. Then, by Proposition 1.1.2

and Remark 2.2.1, the closed immersion i belongs to the category Z in

Proposition 2.2.4. So we can define the tubular neighborhood ](X,M)[(P,L).

Next, for an isocrystal on log convergent site, we define the associated log

de Rham complex on tubular neighborhood. Let us consider the following

situation:

(2.2.1)

(X,M)
i−−−→ (P,L)

f

� g

�
(Spec k,N)

ι−−−→ (Spf V,N),
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where N is a fine log structure on Spf V , ι is the canonical exact closed

immersion, (X,M) is a fine log scheme of finite type over k, (P,L) is a

fine log formal V -scheme over (Spf V,N), i is a closed immersion and g is a

formally log smooth morphism. Assume moreover that (X,M) and (P,L)

are of Zariski type and that (Spf V,N) admits a chart.

For n ∈ N, let (P (n), L(n)) be the (n + 1)-fold fiber product of (P,L)

over (Spf V,N) and let i(n) be the locally closed immersion (X,M) ↪→
(P (n), L(n)) induced by i. Then, since (P (n), L(n)) is of Zariski type (we

use the assumption that (Spf V,N) admits a chart), i(n) is in the category

Z in Proposition 2.2.4. Hence we can define the tubular neighborhood

]X[log
P (n):=](X,M)[(P (n),L(n)). Moreover, the projections

p′i : (P (1), L(1)) −→ (P,L) (i = 1, 2),

p′ij : (P (2), L(2)) −→ (P (1), L(1)) (1 ≤ i < j ≤ 3),

and the diagonal morphism

∆′ : (P,L) −→ (P (1), L(1))

induce the morphisms of rigid analytic spaces

pi : ]X[logP (1)−→]X[logP (i = 1, 2),

pij : ]X[logP (2)−→]X[logP (1) (1 ≤ i < j ≤ 3),

∆ : ]X[logP −→]X[logP (1),

respectively. Let Str′′((X,M) ↪→ (P,L)/(Spf V,N)) be the category of pairs

(E, ε), where E is a coherent O
]X[logP

-module and ε is an O
]X[log

P (1)
-linear

isomorphism p∗2E
∼−→ p∗1E satisfying ∆∗(ε) = id, p∗12(ε) ◦ p∗23(ε) = p∗13(ε).

Then we have the following:

Proposition 2.2.7. Let the notations be as above. Then we have the

canonical, functorial equivalence of categories

Iconv,et((X,M)/(Spf V,N))
∼−→ Str′′((X,M) ↪→ (P,L)/(Spf V,N)).
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Proof. Since both sides satisfy the descent for Zariski open covering

of P , it suffices to construct the canonical functorial functor

Iconv,et((X,M)/(Spf V,N))−→Str′′((X,M) ↪→ (P,L)/(Spf V,N))

inducing an equivalence of categories in the case where the diagram

(X,M)
i
↪→ (P,L)

g−→ (Spf V,N)

admits a chart C := (QV → N,RP → L, SX → M,Q
α→ R

β→ S) such that

βgp is surjective.

For n ∈ N, let R(n) be the (n + 1)-fold push-out of R over Q in the

category of fine monoids and let α(n) : Q −→ R(n), β(n) : R(n) −→ S be

the monoid homomorphism defined by q �→ (α(q), 1, · · · , 1), (r1, · · · , rn) �→
β(r1 · · · rn), respectively. Then β(n)gp is surjective and the diagram

(X,M)
i(n)
↪→ (P (n), L(n)) −→ (Spf V,N)

admits the chart C(n) := (QV → N,R(n)P (n) → L, SX → M,Q
α(n)→

R(n)
β(n)→ S).

For n ∈ N, put R̃(n) := (β(n)gp)−1(S), P̃ (n) := P (n)×̂Spf Zp{R(n)}
Spf Zp{R̃(n)} and let L̃(n) be the log structure on P̃ (n) defined as the

pull-back of the canonical log structure on Spf Zp{R̃(n)}. Then the closed

immersion i(n) factors as

(X,M)
ĩ(n)
↪→ (P̃ (n), L̃(n))

f ′(n)−→ (P (n), L(n)),

where ĩ(n) is an exact closed immersion and f ′(n) is formally log etale.

Let us note that P̃ (n) := ((P̃ (n), L̃(n)), (X,M), ĩ(n), id) is an exact

widening. Let {TX,m(P̃ (n))} be the system of universal enlargements of

P̃ (n). Then the projections p′i (i = 1, 2), p′ij (1 ≤ i < j ≤ 3) and the

diagonal morphism ∆′ induce the morphisms of enlargements

p̃i,m : TX,m(P̃ (1)) −→ TX,m(P̃ (0)) (i = 1, 2),

p̃ij,m : TX,m(P̃ (2)) −→ TX,m(P̃ (1)) (1 ≤ i < j ≤ 3),

∆̃m : TX,m(P̃ (0)) −→ TX,m(P̃ (1)).
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Let Str′((X,M) ↪→ (P,L)/(Spf V,N)) be the category of compatible family

of isocoherent sheaves Em on TX,m(P̃ (0)) endowed with compatible isomor-

phisms

εm : p̃∗2,mE
∼−→ p̃∗1,mE

satisfying ∆̃∗m(εm) = id, p̃∗12,m(εm) ◦ p̃∗23,m(εm) = p̃∗13,m(εm). Then we have

the following:

Claim. We have the canonical equivalence of categories

(2.2.2) Iconv,et((X,M)/(Spf V,N))
∼−→ Str′((X,M) ↪→ (P,L)/(Spf V,N))

defined by E �→ ({ETX,m(P̃ (0))}, {p̃∗2,m(ETX,m(P̃ (0)))
∼→ ETX,m(P̃ (1))

∼←
p̃∗1,m(ETX,m(P̃ (0)))}).

Proof of Claim. Note that we have the canonical equivalence

Str′((X,M) ↪→ (P,L)/(Spf V,N))

� Str′((X,M) ↪→ (P̃ (0), L̃(0))/(Spf V,N)),

and the equivalence between the categories Str′((X,M) ↪→ (P̃ (0), L̃(0))/

(Spf V,N)) and Iconv,et((X,M)/(Spf V,N)) (via the functor as above) is

already shown in [Shi, (5.2.6)]. So we are done. �

Now we construct the equivalence of categories

Str′((X,M) ↪→ (P,L)/(Spf V,N))(2.2.3)
∼−→ Str′′((X,M) ↪→ (P,L)/(Spf V,N)).

To construct it, we need the following claim:

Claim. There exists a canonical and functorial equivalence of cate-

gories

Φ :

 compatible family of

isocoherent sheaves on

{TX,m(P̃ (n))}m

 ∼−→
(

coherent

O
]X[log

P (n)
-module

)
.
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Proof of Claim. Since both sides admit the descent property

for Zariski covering of P (n), we may assume that P (n) is affine. Then

TX,m(P̃ (n)) is also affine. Put TX,m(P̃ (n)) := Spf Am. Then, by the ex-

plicit description of the ring Am which we gave in the previous section, we

have the isomorphism

(2.2.4) Spm (K ⊗V Am)
∼
= ]X[P̃ (n),|π|1/m ,

and the morphism of rigid analytic spaces

Spm (K ⊗V Am) −→ Spm (K ⊗V Am+1)

corresponds to the natural inclusion

]X[P̃ (n),|π|1/m ↪→]X[P̃ (n),|π|1/(m+1)

via the isomorphism (2.2.4). So we have the equivalences of categories compatible family of

isocoherent sheaves on

{TX,m(P̃ (n))}m

 �
 compatible family of

finitely generated

K ⊗V Am-modules


�
(

compatible family of

coherent O]X[
P̃ (n),|π|1/m

-modules

)

�
(

coherent

O]X[P̃ (n)
-module

)
.

By definition of tubular neighborhood, we have ]X[logP (n)=]X[P̃ (n). So the

proof of the claim is finished. �

We construct the functor (2.2.3) by ({Em}, {εm}) �→ (Φ({Em}),
Φ({εm})). Then, by the claim, this functor is an equivalence of categories.

Combining the functors (2.2.2) and (2.2.3), we obtain the functor

Iconv,et((X,M)/(Spf V,N))
∼−→ Str′′((X,M) ↪→ (P,L)/(Spf V,N))
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giving the equivalence of categories. One can check that this functor is

functorial with respect to the diagram

(X,M) ↪→ (P,L) −→ (Spf V,N).

So the proof of the proposition is finished. �

Let (X,M) ↪→ (P,L) −→ (Spf V,N) be as above. For n ∈ N, let

(Pn, Ln) be the n-th log infinitesimal neighborhood of (P,L) in (P (1), L(1)).

Since (X,M) and (P (1), L(1)) are of Zariski type, one can see that (Pn, Ln)

is also of Zariski type. So the closed immersion (X,M) ↪→ (Pn, Ln) is in

the category Z and hence we can define the tubular neighborhood ]X[logPn .

Let

τn : (Pn, Ln) −→ (Pn, Ln) (n ∈ N),

δm,n : (Pm, Lm)×(P,L) (Pn, Ln) −→ (Pm+n, Lm+n) (m,n ∈ N)

be the morphisms defined in [Shi, §3.2]. Let us define the data

X := (O, {Pn}n∈N, {p1,n}n∈N, {p2,n}n∈N, {πn}n∈N, {δ′n,m}n,m∈N, {τ ′n}n∈N)

as follows: Let O := O
]X[logP

and Pn := O
]X[logPn

. (Since ]X[logPn is homeo-

morphic to ]X[logP , we can regard Pn as a sheaf on ]X[logP .) Let pi,n (i =

1, 2, n ∈ N) be the homomorphism O −→ Pn corresponding to the mor-

phism ]X[logPn−→]X[logP induced by the i-th projection (Pn, Ln) −→ (P,L),

let πn be the homomorphism Pn −→ O corresponding to the morphism

]X[log
P −→]X[logPn induced by the closed immersion (P,L) ↪→ (Pn, Ln), let

τ ′n be the homomorphism Pn −→ Pn corresponding to the morphism

]X[log
Pn−→]X[logPn induced by τn above and let δ′m,n : Pm+n −→ Pm ⊗O Pn

be the morphism corresponding to the morphism ]X[logPm×PPn−→]X[log
Pm+n

induced by δm,n above. Then we have the following:

Lemma 2.2.8. The data X is a differentially log smooth formal

groupoid of characteristic zero on the topos associated to ]X[logP .

Proof. It is easy to check that the data X is a formal groupoid of

characteristic zero. We prove that it is differentially log smooth.
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One can see easily that it suffices to prove the following claim: Zariski

locally on P , there exists an integer m and elements {ξj,n}mj=1 of OPn which

satisfy the following conditions:

(1) For n′ > n, the transition map OPn′ −→ OPn sends ξj,n′ to ξj,n.

(2) There exists the canonical isomorphism of left OP -algebras

OPn
∼
= OP [ξj,n (1 ≤ j ≤ m)]/(In)n+1,

where In := (ξ1,n, · · · , ξm,n) ⊂ OP [ξj,n (1 ≤ j ≤ m)].

(3) δ∗m,n(ξj,m+n + 1) = (ξj,m + 1)⊗ (ξj,n + 1) holds.

Since (P,L) is of Zariski type, we may assume that (P,L) admits a chart

ϕ : RP −→ L to prove the claim. Let ω1
P/V be the formal log differential

module of (P,L) over (Spf V,N).

Let us note that we can reduce to the following claim: Zarisi locally on P ,

there exists elements r1, · · · , rm ∈ Rgp such that dlog r1, · · · ,dlog rm form a

basis of ω1
P/V . Indeed, we have defined, in [Shi, §3.2], the compatible family

of elements (x−1, x)n ∈ O×Pn (n ∈ N) for x ∈ L satisfying (x−1, x)1 − 1 =

dlog x and δ∗m+n((x−1, x)m+n) := (x−1, x)m ⊗ (x−1, x)n. For s = s1s
−1
2 ∈

Rgp (s1, s2 ∈ R), define (s−1, s)n := (s−1
1 , s1)n(s−1

2 , s2)
−1
n (it is well-defined)

and put ξj,n := (r−1
j , rj)n−1. Then the elements {ξj,n}mj=1 satisfy the desired

conditions: The conditions (1) and (3) are easy to see and the condition (2)

can be verified in the same way as the proof of [Shi, (3.2.7) (1)].

Now we prove the claim in the previous paragraph. Since ω1
P/V is locally

free, we may replace (P,L) −→ (Spf V,N) by (P ×Spf V Spec k, L) −→
(Spec k,N) to prove the claim. Put P1 := P ×Spf V Spec k. By [Kk, (1.7)],

the homomorphism

OP1 ⊗Z (Lgp/Ngp) −→ ω1
P1/k

; a⊗ b �→ adlog b

is surjective on P1,et. On the other hand, the homomorphism

ϕgp : Rgp
P1
−→ Lgp/Ngp

is also surjective on P1,et. So the composite

OP1 ⊗Z R
gp
P1

id⊗ϕgp

−→ OP1 ⊗Z (Lgp/Ngp) −→ ω1
P1/k

,
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which we will denote by h, is surjective on P1,et. Since the sheaves OP1 ⊗Z

Rgp
P1

and ω1
P1/k

are coherent, h is surjective as homomorphism of sheaves on

P1,Zar. Let x be a point in P1. Then

id⊗ h : κ(x)⊗Z R
gp −→ κ(x)⊗OP1

ω1
P1/k

is surjective. Let r1, · · · , rm ∈ Rgp be elements such that the images of

1 ⊗ ri’s by id ⊗ h form a basis of κ(x) ⊗OP1
ω1
P1/k

. Then, by Nakayama’s

lemma, there exists a Zariski neighborhood U of x such that the images of

1⊗ ri’s by h|U form a basis of ω1
P1/k
|U . So the claim is proved. �

Note that the canonical morphism (Pn, Ln) −→ (P (1), L(1)) induces

the morphism of rigid analytic spaces ]X[logPn−→]X[logP (1), which we denote

by ∆n. Denote the homomorphism

∆−1
n O]X[log

P (1)
−→ O

]X[logPn

by θn.

Now let E be an object in Iconv,et((X/V )log) and let (E, ε) be the corre-

sponding object in Str′′((X,M) ↪→ (P,L)/(Spf V,N)). Then we define the

Pn-linear isomorphism εn : Pn ⊗ E ∼−→ E ⊗ Pn as the composite

Pn ⊗ E = Pn ⊗θn,∆
−1
n O

]X[
log
P (1)

∆−1
n p
∗
2E

id⊗∆−1
n ε−→ Pn ⊗θn,∆

−1
n O

]X[
log
P (1)

∆−1
n p
∗
1E

= E ⊗ Pn.

Then {εn}n∈N is a stratification on E with respect to the formal groupoid

X . Hence, by Proposition 1.2.7, {εn}n defines an integrable connection

∇ : E −→ E ⊗O
]X[

log
P

ω1
]X[logP

,

where ω1
]X[logP

:= Ker(P1 −→ O). (Note that ω1
]X[logP

is the restriction of

the coherent sheaf ω1
PK

on PK which corresponds to the isocoherent sheaf

K ⊗V ω
1
P/V via the equivalence of categories(

isocoherent sheaves

on P

)
�
(

coherent sheaves

on PK

)
.)
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Then we define the log de Rham complex on ]X[logP associated to the isocrys-

tal E by the complex

DR(]X[log
P , E)

:= [0→ E
∇→ E ⊗O

]X[
log
P

ω1
]X[logP

∇→ · · · ∇→ E ⊗O
]X[

log
P

ωq

]X[logP

∇→ · · · ],

where ωq

]X[logP

is the q-th exterior power of ω1
]X[logP

over O
]X[logP

and we extend

∇ to

E ⊗O
]X[

log
P

ωq

]X[logP

−→ E ⊗O
]X[

log
P

ωq+1

]X[logP

by setting

x⊗ η �→ ∇(x) ∧ η + x⊗ dη.

Remark 2.2.9. Let (X,M)
i
↪→ (P,L)

g−→ (Spf V,N) be as above and

assume that this diagram admits a chart (QV → N,RP → L, SX →
M,Q → R → S) such that Rgp → Sgp is surjective. Let E be an isocrys-

tal on (X/V )logconv,et. In this remark, we give a description of the complex

sp∗DR(]X[logP , E) which we need later.

Let (P̃ , L̃) be (P̃ (0), L̃(0)) in the proof of Proposition 2.2.7, and

let (P̃ 1, L̃1) be the first log infinitesimal neighborhood of (P̃ , L̃) in

(P̃ , L̃)×̂(Spf V,N)(P̃ , L̃). Let qi : (P̃ 1, L̃1) −→ (P̃ , L̃) (i = 1, 2) be the i-th

projection and put Xi := q−1
i (X). Then we have the following commuta-

tive diagram of exact pre-widenings for i = 1, 2:

((P̃ 1, L̃1), (X,M))
(id,incl.)−−−−−→ ((P̃ 1, L̃1), (Xi, L̃

1))

(qi,id)

� (qi,qi)

�
((P̃ , L̃), (X,M)) ((P̃ , L̃), (X,M)).

Then, for m ∈ N, we have the associated diagram of enlargements:

TX,m(P̃ 1)
di,m−−−→ TXi,m(P̃ 1)� �

TX,m(P̃ ) TX,m(P̃ ).
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Note that, as formal V -schemes, the objects in the above diagram are all

homeomorphic to X. So, from now on in this remark, we regard the sheaves

on them as sheaves on XZar.

By Lemma 2.1.26, we have the isomorphism

TX,m(P̃ )×P̃fl,(qi)fl
P̃ 1

fl
∼
= TXi,m(P̃fl).

So we have

(2.2.5)

 ETX1,m
(P̃ 1)

∼
= ETX,m(P̃ ) ⊗OP̃

OP̃ 1 ,

ETX2,m
(P̃ 1)

∼
= OP̃ 1 ⊗OP̃

ETX,m(P̃ ).

On the other hand, by Proposition 2.1.27, we have morphisms of formal

schemes

TX1,m−1(P̃
1)

hm−→ TX,m(P̃ 1)
d2,m−→ TX2,m(P̃ 1),

such that {hm}m and {d2,m}m are isomorphisms as homomorphisms of in-

ductive system of formal schemes, and we have a system of homomorphisms

ϕm : ETX2,m
(P̃ 1) −→ ETX1,m−1(P̃ 1)

induced by the composite d2,m ◦ hm such that lim←−m
ϕm is an isomorphism.

Via the isomorphisms (2.2.5), ϕm induce the homomorphism

θm : OP̃ 1 ⊗OP̃
ETX,m(P̃ ) −→ ETX,m−1(P̃ ) ⊗OP̃

OP̃ 1 .

Note that (d2,m ◦ hm) ⊗OP̃1 OP̃ coincides with the canonical transition

morphism TX,m−1(P̃ ) −→ TX,m(P̃ ). So θm reduces to the canonical transi-

tion ETX,m(P̃ ) −→ ETX,m−1(P̃ ) when we consider modulo K ⊗V ω
1
P̃ /V

. Let us

define

∇m : ETX,m(P̃ ) −→ ETX,m−1(P̃ ) ⊗OP̃
ω1
P̃ /V

= ETX,m−1(P̃ ) ⊗OP
ω1
P/V

by ∇m(e) := θm(1⊗ e)− e⊗ 1. Put E′ := lim←−m
ETX,m(P̃ ). Then ∇m’s define

a homomorphism

∇ := lim←−m
∇m : E′ −→ E′ ⊗OP

ω1
P/V .
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We extend it to the diagram

DR := [0→ E′
∇→ E′ ⊗OP

ω1
P/V

∇→ · · ·E′ ⊗OP
ωq
P/V

∇→ · · · ]

by extending ∇ to

E′ ⊗OP
ωq
P/V −→ E′ ⊗OP

ωq+1
P/V

by setting x⊗ η �→ ∇(x) ∧ η + x⊗ dη. Then we have the following:

Claim The diagram DR forms a complex and it is identical with

sp∗DR(]X[logP , E).

Proof of Claim. Here we only sketch the outline of proof. The

details are left to the reader as an exercise.

Let (E, ε) be the object in Str′′((X,M) ↪→ (P,L)/(Spf V,N)) corre-

sponding to E and let ε1 : p∗2E
∼−→ p∗1E (where pi :]X[log

P 1−→]X[logP is the

i-th projection) be the pull-back of ε to ]X[log
P 1 . Then it suffices to prove

that lim←−m
θm is canonically identical with sp∗ε1. By definition, sp∗ε1 is de-

fined as the projective limit (with respect to m) of the compatible family

of diagrams

OP̃ 1 ⊗OP̃
ETX,m(P̃ ) −→ ETX,m(P̃ 1) ←− ETX,m(P̃ ) ⊗OP̃

OP̃ 1 ,

and this diagram fits into the upper horizontal line of the following diagram:

OP̃ 1 ⊗OP̃
ETX,m(P̃ 1) −−−→ ETX,m(P̃ ) ←−−− ETX,m(P̃ ) ⊗OP̃

OP̃ 1

∼
� α

� ∼
�

ETX2,m
(P̃ 1)

ϕm−−−→ ETX1,m−1(P̃ 1) ←−−− ETX1,m
(P̃ 1),

where α is the homomorphism induced by hm (by Proposition 2.1.27). By

taking the inverse limit of this diagram with respect to m, one can see that

lim←−m
θm is canonically identical with sp∗ε1. �
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Now we give the definition of analytic cohomology of log schemes which

has a locally free isocrystal on log convergent site as coefficient. Assume we

are given the following diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is a morphism of fine log schemes of finite type, N is a fine log

structure on Spf V and ι is the canonical exact closed immersion. Assume

moreover that (Spf V,N) admits a chart ϕ : QV → N . First we introduce

the notion of a good embedding system:

Definition 2.2.10. Let the notations be as above. A good embedding

system of (X,M) over (Spf V,N) is a diagram

(X,M)
g←− (X(•),M (•))

i
↪→ (P (•), L(•)),

where (X(•),M (•)) is a simplicial fine log scheme over (X,M) such that

each (X(n),M (n)) is of finite type over k and of Zariski type, (P (•), L(•))
is a simplicial fine log formal V -scheme over (SpfV,N) such that each

(P (n), L(n)) is formally log smooth over (Spf V,N) and of Zariski type, g :=

{g(n)}n : X(•) −→ X is an etale hypercovering such that g(n),∗M −→M (n)

is isomorphic for any n ∈ N and i := {i(n)}n is a morphism of simplicial

fine log formal V -schemes such that each i(n) is a locally closed immersion.

As for the existence of a good embedding system, we have the following:

Proposition 2.2.11. Let (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N) be as

above. (Note that we have assumed that (Spf V,N) admits a chart ϕ : QV →
N .) Then there exists at least one good embedding system of (X,M) over

(Spf V,N).

Proof. First, let g(0) : X(0) :=
∐

i∈I Xi −→ X be an etale covering

with |I| < ∞ such that each Xi is affine of finite type over k and that

ι ◦ f ◦ g(0)|Xi : (Xi,M) −→ (Spf V,N) has a chart Ci := (QV
ϕ→ N,Ri,Xi →

M,Q
ψ→ Ri) extending ϕ. Let us take surjections

αi : k[Nni ] −→ Γ(Xi,OXi),

βi : Nmi −→ Ri,
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and denote the composite

Q
Γ(V,ϕ)−→ Γ(V,N) −→ Γ(V,OV ) = V,

Ri
Γ(Xi,ψ)−→ Γ(Xi,M) −→ Γ(Xi,OXi)

by γ, δi respectively.

Let Pi be Spf V {Nni ⊕Nmi} and let Li be the log structure on Pi which

is associated to the pre-log structure

εi : Q⊕ Nmi −→ V {Nni ⊕ Nmi}, (q, x) �→ γ(q)x.

Then (Pi, Li) is a fine log formal V -scheme which is formally log smooth

over (Spf V,N). Let us consider the following commutative diagram:

Γ(Xi,OXi) ←−−− V {Nni ⊕ Nmi}

δi

� εi

�
Ri ←−−− Q⊕ Nmi ,

where the upper horizontal arrow is defined by

v · (x, y) �→ (vmodπ) · α(x) · δi ◦ βi(y) (v ∈ V, (x, y) ∈ Nni ⊕ Nmi),

and the lower horizontal arrow is defined by

(q, x) �→ ψ(q)βi(x) (q ∈ Q, x ∈ Nmi).

This diagram induces the closed immersion

ji : (Xi,M) ↪→ (Pi, Li)

over (Spf V,N). Now put (X(0),M (0)) := (
∐

i∈I Xi,M |∐
i∈I Xi

), (P (0),

L(0)) :=
∐

i∈I(Pi, Li) and let i(0) :=
∐

i∈I ji. For n ∈ N, let (X(n),M (n)) be

the (n + 1)-fold fiber product of (X(0),M (0)) over (X,M), let (P (n), L(n))

be the (n + 1)-fold fiber product of (P (0), L(0)) over (Spf V,N) and let

i(n) : (X(n),M (n)) ↪→ (P (n), L(n)) be the closed immersion defined by the

(n + 1)-fold fiber product of i(0). Then, for each n, (X(n),M (n)) and
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(P (n), L(n)) admit charts. (Attention: we do not say that i(n) admits a

chart.) So they are of Zariski type. Hence the diagram

(X,M)←− (X(•),M (•))
i(•)
↪→ (P (•), L(•))

is a good embedding system. �

Now we define the analytic cohomology of a log scheme which has a

locally free isocrystal on log convergent site as coefficient, as follows:

Definition 2.2.12. Assume we are given the following diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is a morphism of fine log formal schemes of finite type, N is a

fine log structure on Spf V and ι is the canonical exact closed immersion.

Assume moreover that (Spf V,N) admits a chart. Let E be a locally free

isocrystal on (X/V )logconv,et. Take a good embedding system

(X,M)
g←− (X(•),M (•))

i
↪→ (P (•), L(•))

of (X,M) over (Spf V,N) and let E(•) be the restriction of E to the site

(X(•)/V )log
conv,et. Denote the specialization map

]X(•)[log
P (•)−→ X(•)

by sp(•). Then we define the analytic cohomology of (X,M) over (Spf V,N)

with coefficient E by

H i
an((X,M)/(Spf V,N), E) := H i(X,Rg∗Rsp

(•)
∗ DR(]X(•)[log

P (•) , E(•))).

When there will be no confusions on log structures, we denote the analytic

cohomology H i
an((X,M)/(Spf V,N), E) simply by H i

an((X/V )log, E).

Remark 2.2.13. By Theorem B of Kiehl, we have

Rsp
(•)
∗ DR(]X(•)[log

P (•) , E(•)) = sp
(•)
∗ DR(]X(•)[log

P (•) , E(•)).
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We should prove that the above definition is well-defined, that is, we

should prove the following proposition:

Proposition 2.2.14. Let the notations be as in Definition 2.2.12.

Then the above definition of the analytic cohomology H i
an((X,M)/

(Spf V,N), E) is independent of the choice of the good embedding system

chosen above.

First we prepare a lemma:

Lemma 2.2.15. Let (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N) be as in Def-

inition 2.2.12 and assume that (X,M) is of Zariski type. Assume moreover

that we are given the commutative diagram

(X,M)
i1−−−→ (P1, L1)∥∥∥ ϕ

�
(X,M)

i2−−−→ (P2, L2),

where ij (j = 1, 2) is a closed immersion over (Spf V,N) into a fine log

formal V -scheme (Pj , Lj) of Zariski type and ϕ is a formally log smooth

morphism. Let us denote the morphism of rigid analytic spaces

]X[logP1
−→]X[logP2

induced by ϕ by ϕK . Then, for a locally free isocrystal E on (X/V )logconv,et,

we have the isomorphism

RϕK,∗DR(]X[logP1
, E) = DR(]X[logP2

, E).

Proof. Let x be a point of X. Then we have open neighborhoods x ∈
Ux ⊂ X, x ∈ Vj,x ⊂ Pj (j = 1, 2) which satisfies the following conditions:

ij(Ux) ⊂ Vj,x and ϕ(V1,x) ⊂ V2,x hold and the diagram

(Ux,M)
i1−−−→ (V1,x, L1)∥∥∥ ϕ

�
(Ux,M)

i2−−−→ (V2,x, L2)
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admits a chart (Rj,Vj,x → Lj , Sj,Ux → M (j = 1, 2),D), where D is the

diagram of monoids

S1
α1←−−− R1� �

S2
α2←−−− R2,

such that the homomorphisms Rgp
j → Sgp

j (j = 1, 2) are surjective. By

shrinking Vj,x, we may assume that Vj,x ×Pj X = Ux holds. We fix a triple

(Ux, V1,x, V2,x) as above for each x ∈ X. Then there exist x1, · · · , xr ∈
X such that X =

⋃r
i=1 Uxi holds. Then we can check that ]X[logPj

=⋃r
i=1]Uxi [

log
Vj,xi

(j = 1, 2) is an admissible covering and that ϕ−1
K (]Uxi [

log
V2,xi

) =

]Uxi [
log
V1,xi

holds for 1 ≤ i ≤ r. So we have

RϕK,∗DR(]X[logP1
, E)|

]Uxi [
log
V2,xi

= R(ϕK |]Uxi [
log
V1,xi

)∗DR(]Uxi [
log
V1,x
, E).

By this isomorphism, we can see that we may replace X,P1, P2 by Uxi ,

V1,xi , V2,xi respectively, that is, we may assume the existence of the chart

(Rj,Vj,x → Lj , Sj,Ux → M (j = 1, 2),D) (where D is as above) such that

Rgp
j → Sgp

j (j = 1, 2) are surjective. So we assume it.

Put R̃2 := (αgp
2 )−1(S2), P̃2 := P2×̂Spf Zp{R2}Spf Zp{R̃2} and let L̃2 be

the pull-back of the canonical log structure on Spf Zp{R̃2} to P̃2. Next,

put R1 := (R1 ⊕R2 R̃2)
int and let β : R1 −→ S1 be the homomorphism

induced by (α1 ⊕ α2)
gp. Put P 1 := P1×̂Spf Zp{R1}Spf Zp{R1} and let L1 be

the pull-back of the canonical log structure on Spf Zp{R1} to P 1. Finally,

put R̃1 := (βgp)−1(S1), P̃1 := P 1×̂Spf Zp{R1}Spf Zp{R̃1} and let L̃1 be the

pull-back of the canonical log structure on Spf Zp{R̃1} to P̃1. Then we have

the following commutative diagram:

(X,M)
i′1−−−→ (P̃1, L̃1)

h′′
−−−→ (P 1, L1)

h′
−−−→ (P1, L1)∥∥∥ ϕ̃

� � ϕ

�
(X,M)

i′2−−−→ (P̃2, L̃2) (P̃2, L̃2)
h−−−→ (P2, L2),

satisfying the following conditions:

(1) The morphisms h, h′, h′′ are formally log etale.
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(2) i′1, i
′
2 are exact closed immersions.

(3) The right square is Cartesian.

By the conditions (1) and (3), ϕ̃ is formally log smooth. Note that P̃1,ϕ̃-triv

is an open sub formal scheme of P̃1 which contains X. By replacing P̃1

by P̃1,ϕ̃-triv, we may assume further that ϕ̃ is formally smooth in classical

sense. Then, we have ]X[logPj
=]X[P̃j

(j = 1, 2) by definition of tubular neigh-

borhood. By weak fibration theorem, we have ]X[P̃1

∼
=]X[P̃2

×Dm
V (for some

m) locally on P̃2. So we have the isomorphism

(2.2.6) ]X[logP1

∼
= ]X[logP2

×Dm
V

locally. Morever, by construction of the above isomorphism (see [Be3]), one

can see the following fact:

The sheaf ω1
]X[logP1

on ]X[logP1
corresponds to the sheaf pr∗1ω

1
]X[logP2

⊕(∗)

pr∗2Ω
1
Dm

V
on ]X[logP2

×Dm
V via the isomorphism (2.2.6).

Now we prove that the canonical homomorphism

DR(]X[logP2
, E) −→ RϕK,∗DR(]X[logP1

, E)

is a quasi-isomorphism. By the isomorphism (2.2.6) and Theorem B of

Kiehl, we have

RϕK,∗DR(]X[logP1
, E) = ϕK,∗DR(]X[logP1

, E).

Then, to prove the quasi-isomorphism

DR(]X[logP2
, E) ∼−→ ϕK,∗DR(]X[logP1

, E),

it suffices to prove the quasi-isomorphism

H0(Spm (K ⊗A),DR(]X[logP2
, E))(2.2.7)

∼−→ H0(ϕ−1
K (Spm (K ⊗A)),DR(]X[logP1

, E))
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as complexes of modules for any admissible open Spm (K ⊗ A) ⊂ ]X[log
P 1 ,

where A is a p-adic topological ring which is topologically of finite type over

V . We may assume moreover that the coherent sheaf E on Spm (K ⊗ A)

induced by E and the differential module Ωq
Spm (K⊗A) are free and that

ϕ−1
K (Spm (K ⊗A)) is isomorphic to Dm

A via the isomorphism (2.2.6).

Now we prove the quasi-isomorphism (2.2.7). Put AK := K ⊗A and for

n ∈ N, denote the ring Γ(Dn
A,ODn

A
) by A(n)K . Put Ωq

AK
:= Γ(SpmAK ,

Ωq
SpmAK

), put

Ω1
A(n)K

:= Γ(Dn
A,Ω

1
Dn

A
)/A(n)K ⊗AK

Ω1
AK

=
n⊕

i=1

A(n)Kdti

(where t1, · · · , tn are the coordinates of Dn
A) and let Ωq

A(n)K
be the q-th

exterior power of Ω1
A(n)K

over A(n)K . Then the left hand side of (2.2.7) has

the form

0→ E
∇→ E ⊗AK

Ω1
AK

∇→ E ⊗AK
Ω2

AK

∇→ · · · ,

where E is a free AK-module of finite type. On the other hand, one can see,

by the fact (∗), that the right hand side of (2.2.7) is isomorphic to the simple

complex associated to the double complex {(E ⊗AK
Ωp

AK
) ⊗ Ωq

A(m)K
}p,q,

where the differential

(E ⊗AK
Ωp

AK
)⊗ Ωq

A(m)K
−→ (E ⊗AK

Ωp
AK

)⊗ Ωq+1
A(m)K

is defined by e⊗ ω ⊗ η �→ e⊗ ω ⊗ dη and the differential

(E ⊗AK
Ωp

AK
)⊗ Ωq

A(m)K
−→ (E ⊗AK

Ωp+1
AK

)⊗ Ωq
A(m)K

is defined by e⊗ω⊗ η �→ ∇(e⊗ω)⊗ η. So, to prove the quasi-isomorphism

(2.2.7), it suffices to prove the complex

C• := [0→ (E ⊗AK
Ωp

AK
)⊗A(m)K → (E ⊗AK

Ωp
AK

)⊗ Ω1
A(m)K

→ (E ⊗AK
Ωp

AK
)⊗ Ω2

A(m)K
→ · · · ]
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satisfies the equations

(2.2.8) Hq(C•) =

{
E ⊗AK

Ωp
AK
, q = 0,

0, q > 0.

Since E ⊗ Ωp
AK

is a free AK-module, we may replace E ⊗ Ωp
AK

by AK to

prove the equation (2.2.8). In this case, the equation (2.2.8) is well-known.

For reader’s convenience, we prove it in the lemma below. (We use this

lemma again in the proof of log convergent Poincaré lemma in the next

section.) �

Lemma 2.2.16. Let A be a Noetherian p-adic topological ring which is

topologically of finite type over V . Put AK := K⊗A and for n ∈ N, denote

the ring Γ(Dn
A,ODn

A
) by A(n)K . Put

Ω1
A(n)K

:= Γ(Dn
A,Ω

1
Dn

A
)/A(n)K ⊗AK

Ω1
AK

=
n⊕

i=1

A(n)Kdti

(where t1, · · · , tn are the coordinates of Dn
A) and let Ωq

A(n)K
be the q-th

exterior power of Ω1
A(n)K

over A(n)K . Let C(A,n) be the relative de Rham

complex

0→ A(n)K → Ω1
A(n)K

→ Ω2
A(n)K

→ · · · .

Then we have the equation

(2.2.9) Hq(C(A,n)) =

{
AK , q = 0,

0, q > 0.

Proof. Let us define a filtration (of Katz-Oda type)

F pC(A,n) := [0→ F pA(n)K → F pΩ1
A(n)K

→ F pΩ2
A(n)K

→ · · · ] ⊂ C(A,n)

by

F pΩq
A(n)K

:= Im((A(n)K ⊗A(n−1)K Ωp
A(n−1)K

)⊗A(n)K Ωq−p
A(n)K

−→ Ωq
A(n)K

).



Crystalline Fundamental Groups II 79

Put Ω1
A(n)K/A(n−1)K

:= Ω1
A(n)K

/F 1Ω1
A(n)K

∼
= A(n)Kdtn and let C(A,n) be

the complex [A(n)K
d→ Ω1

A(n)K/A(n−1)K
]. Then the filtration F pC(A,n) (p ∈

N) induces the spectral sequence

Ep,q
1 = Hq(C(A,n))⊗A(n−1)K Ωp

A(n−1)K
=⇒ Hp+q(C(A,n)).

So, if we prove the equation

(2.2.10) Hq(C(A,n)) =

{
A(n− 1)K , q = 0,

0, q = 1,

we can deduce the equation (2.2.9) by induction on n and the above spectral

sequence. So the proof is reduced to the above equations. Since Ker(d) =

Ker(d : A(n − 1)K [[tn]] −→ A(n − 1)K [[tn]]dtn) ∩ A(n)K holds, one can

easily see that H0(C(A,n)) = A(n−1)K holds. On the other hand, for η :=

(
∑∞

i=1 fit
i
n)dtn ∈ Ω1

A(n)K/A(n−1)K
(where fi ∈ A(n− 1)K), one can see that

the element g :=
∑∞

i=0
fi
i t

i
n in A(r− 1)K [[tr]] is in fact contained in A(r)K .

Since we have d(g) = η, d is surjective, that is, we have H1(C(A,n)) = 0.

So the proof of the lemma is finished. �

Now we give a proof of Proposition 2.2.14.

Proof of Proposition 2.2.14. Let

(X,M)
gj←− (X

(•)
j ,M

(•)
j )

i
(•)
j
↪→ (P

(•)
j , L

(•)
j ) (j = 1, 2)

be good embedding systems and denote the restriction of E to

(X
(•)
j /V )log

conv,et by E(•)
j (j = 1, 2). Denote the specialization map

]X
(•)
j [log

P
(•)
j

−→ X
(•)
j (j = 1, 2)

by sp
(•)
j .

For m,n ∈ N, put X(m,n) = X(m) ×X X
(n), M (m,n) := M |X(m,n) and let

(P (m,n), L(m,n)) be (P
(m)
1 , L

(m)
1 )×̂(Spf V,N)(P

(n)
2 , L

(n)
2 ). Then (X(•,•),M (•,•))

forms a bisimplicial fine log scheme over (X,M) and (P (•,•), L(•,•)) forms
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a bisimplicial fine log formal V -scheme over (Spf V,N). Note that (X(m,n),

M (m,n)) and (P (m,n), L(m,n)) are of Zariski type. Denote the structure mor-

phism (X(•,•),M (•,•)) −→ (X,M) by g and denote the locally closed immer-

sion (X(•,•),M (•,•)) −→ (P (•,•), L(•,•)) induced by i
(•)
j ’s by i(•,•). Denote

the restriction of E to (X(•,•)/V )logconv,et by E(•,•), and denote the specializa-

tion map

]X(•,•)[log
P (•,•)−→ X(•,•)

by sp(•,•). To prove the proposition, it suffices to show the isomorphisms

Rgj,∗Rsp
(•)
j,∗DR(]X

(•)
j [log

P
(•)
j

, E(•)
j )

∼
= Rg∗Rsp

(•,•)
∗ DR(]X(•,•)[log

P (•,•) , E(•,•)) (j = 1, 2).

It suffices to treat the case j = 1. For each n ∈ N, (X(n,•),M (n,•)) forms a

simplicial scheme over (X
(n)
1 ,M

(n)
1 ). Let us denote the structure morphism

(X(n,•),M (n,•)) −→ (X
(n)
1 ,M

(n)
1 ) by gn. To prove the above isomorphism

(for j = 1), it suffices to prove the isomorphism

Rgn,∗Rsp
(n,•)
∗ DR(]X(n,•)[log

P (n,•) , E(n,•))(2.2.11)

∼
= Rsp

(n)
1,∗DR(]X

(n)
1 [log

P
(n)
1

, E(n)
1 ).

In the following, we give a proof of the isomorphism (2.2.11). First, by

shrinking P
(n)
1 and X

(n)
1 , we may assume that P

(n)
1 is affine and the closed

immersion (X
(n)
1 ,M

(n)
1 ) ↪→ (P

(n)
1 , L

(n)
1 ) has a factorization

(X
(n)
1 ,M

(n)
1 ) ↪→ (P

(n)
1 , L

(n)
1 ) −→ (P

(n)
1 , L

(n)
1 )

such that the first arrow is an exact closed immersion and the second arrow

is formally log etale and P
(n)
1 is also affine. Then, by replacing (P

(n)
1 , L

(n)
1 )

by (P
(n)
1 , L

(n)
1 ) and (P (n,•), L(n,•)) by ((P (n,•), L(n,•))×̂

(P
(n)
1 ,L

(n)
1 )

(P
(n)
1 ,

L
(n)
1 ))int, we may assume that (X

(n)
1 ,M

(n)
1 ) ↪→ (P

(n)
1 , L

(n)
1 ) is an exact closed

immersion and P
(n)
1 is affine.

Let P̂
(n)
1 be the formal completion of P

(n)
1 along X

(n)
1 . Then, since there

exists the canonical equivalence of sites X
(n)
1,et � P̂

(n)
1,et, there exists uniquely
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an etale hypercovering hn : P̂
(n,•)
1 −→ P̂

(n)
1 such that P̂ (n,•) ×

P̂
(n)
1
X

(n)
1

∼
=

X(n,•) holds. Put L̂
(n,•)
1 := L

(n)
1 |P̂ (n,•)

1
. On the other hand, let P̂ (n,m) be the

formal completion of P (n,m) along X(n,m) and put L̂(n,m) := L(n,m)|P̂ (n,m) .

Let P̃ (n,m) be the formal completion of P̂
(n,m)
1 ×̂Spf V P̂

(n,m) alongX(n,m) and

let L̃(n,m) be the pull-back of the log structure on the fine log formal scheme

((P̂
(n,m)
1 , L̂

(n,m)
1 )×̂(Spf V,N)(P̂

(n,m), L̂(n,m)))int to P̃ (n,m). Then we have the
following diagram:

(X
(n)
1 ,M

(n)
1 )

gn←−−−−− (X(n,•),M(n,•)) (X(n,•),M(n,•)) (X(n,•),M(n,•))� � � �
(P̂

(n)
1 , L̂

(n)
1 )

hn←−−−−− (P̂
(n,•)
1 , L̂

(n,•)
1 )

pr
(•)
1←−−−−− (P̃ (n,•), L̃(n,•))

pr
(•)
2−−−−−→ (P̂ (n,•), L̂(n,•)),

where the vertical arrows are the canonical closed immersions. Let us note

the following claim:

Claim. Zariski locally on X(n,m), there exists an exact closed immer-

sion

(X(n,m),M (n,m)) ↪→ (P
(n,m)
1 , L

(n,m)
1 )

of (X(n,m),M (n,m)) into a fine log formal V -scheme (P
(n,m)
1 , L

(n,m)
1 ) formally

etale (in the classical sense) over (P
(n)
1 , L

(n)
1 ) such that (P̂

(n,m)
1 , L̂

(n,m)
1 ) is

the completion of (P
(n,m)
1 , L

(n,m)
1 ) along (X(n,m),M (n,m)).

Proof of Claim. Since the morphism X(n,m) −→ X
(n)
1 is etale, there

exists an affine open sub formal scheme U = Spf A ⊂ P (n)
1 and an affine

open subscheme V0 ⊂ X(n,m) which satisfies the following condition: If

we put U0 := SpecA0 = U ×
P

(n)
1
X

(n)
1 , then V0 = SpecA0[t1, · · · , tr]/

(f1, · · · , fr) holds, where fi (1 ≤ i ≤ r) are elements in A0[t1, · · · , tr] such

that det
(

∂fi
∂tj

)
i,j

is invertible on V0. Let f̃i (1 ≤ i ≤ r) be any lift of

fi to A[t1, · · · , tr] and let V be Spf (A[t1, · · · , tr]/(f̃1, · · · , f̃r))∧, where ∧

denotes the p-adic completion. Then, since we have V ×U U0 = V0, the

natural morphism V −→ U is formally etale on a neighborhood of V0. Let

V ′ ⊂ V be the etale locus. Then (V ′, L(n)
1 |V ′) −→ (P

(n)
1 , L

(n)
1 ) is formally

etale, (V0,M
(n,m)|V0) ↪→ (V ′, L(n)

1 |V ′) is an exact closed immersion and the

completion of V ′ along V0 is isomorphic to some open subscheme of P̂
(n,m)
1 .

So the assertion is proved. �
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Now we define the log de Rham complexes associated to E on three

tubular neighborhoods of X(n,m). First, since we have ]X(n,m)[log
P̂ (n,m)

=

]X(n,m)[log

P (m,n) , E induces the log de Rham complex DR(]X(n,m)[log
P (n,m) , E) on

]X(n,m)[log

P̂ (n,m)
. We denote it simply by D̂R

(n,m)
. Second, by the above claim,

we have the isomorphism ]X(n,m)[log
P̂

(n,m)
1

=]X(n,m)[log
P

(n,m)
1

locally. So E induces

the log de Rham complex DR(]X(n,m)[log
P

(n,m)
1

, E) locally on ]X(n,m)[log
P̂

(n,m)
1

.

One can check that this de Rham complex is independent of the choice of

P
(n,m)
1 in the claim and so it defines the log de Rham complex globally on

]X(n,m)[log

P̂
(n,m)
1

. We denote it simply by D̂R
(n,m)

1 . Finally, let (P
(n,m)

, P
(n,m)

)

be ((P
(n,m)
1 , L

(n,m)
1 )×(Spf V,N)(P

(n,m), L(n,m)))int (it is defined locally). Then

P̃ (n,m) is the completion of P
(n,m)

along X(n,m). So, we have the isomor-

phism ]X(n,m)[P̃ (n,m)=]X(n,m)[
P

(n,m) locally. So E induces the log de Rham

complex DR(]X(n,m)[log
P

(n,m) , E) locally on ]X(n,m)[log
P̃ (n,m) . One can check that

this de Rham complex is independent of the choice of P
(n,m)
1 in the claim

and so it defines the log de Rham complex globally on ]X(n,m)[log
P̃ (n,m) . We

denote it simply by D̃R
(n,m)

. Let us denote the morphism of simplicial rigid

analytic spaces

]X(n,•)[log
P̃ (n,•)−→]X(n,•)[log

P̂
(n,•)
1

,

]X(n,•)[log
P̃ (n,•)−→]X(n,•)[log

P̂ (n,•) ,

by pr
(•)
1,K ,pr

(•)
2,K respectively and denote the specialization map

]X(n,•)[log
P̂

(n,•)
1

−→ X(n,•)

by ŝp(•). Then the proof of the isomorphism (2.2.11) is reduced to the

following claim:

Claim. Let the notations be as above. Then:

(1) We have the isomorphism

Rpr
(•)
1,K,∗D̃R

(n,•)
= D̂R

(n,•)
1 .
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(2) We have the isomorphism

Rpr
(•)
2,K,∗D̃R

(n,•)
= D̂R

(n,•)
.

(3) We have the isomorphism

Rgn,∗Rŝp(•)
∗ D̂R

(n,•)
1 = Rsp

(n)
1,∗DR(]X(n)[

P
(n)
1
, E).

We prove the above claim. First, let us prove the assertions (1) and

(2). We may replace • by m ∈ N and we may consider locally. So, the

morphisms

pr
(m)
1 : (P̃ (n,m), L̃(n,m)) −→ (P̂

(n,m)
1 , L̂

(n,m)
1 ),

pr
(m)
2 : (P̃ (n,m), L̃(n,m)) −→ (P̂ (n,m), L̂(n,m))

are the completions of the morphisms

(P
(n,m)

, L
(n,m)

) −→ (P
(n,m)
1 , L

(n,m)
1 ),(2.2.12)

(P
(n,m)

, L
(n,m)

) −→ (P (n,m), L(n,m)),(2.2.13)

respectively. Since the morphisms (2.2.12) and (2.2.13) are formally log

smooth, the assertions (1) and (2) follows from Lemma 2.2.15.

The assertion (3) follows from the lemma below. Hence the above claim

is proved and the proof of the proposition is now finished (modulo the

lemma below). �

Lemma 2.2.17. Let X be a scheme of finite type over k and let X ↪→ P

be a closed immersion of X into a Noetherian formal scheme P over Spf V

such that X is a scheme of definition of P . Let ψ : X(•) −→ X be an etale

hypercovering of X and let ϕ : P (•) −→ P be the unique etale hypercovering

of P satisfying P (•) ×P X = X(•). Let us denote the morphism of rigid

analytic spaces P
(•)
K −→ PK associated to ϕ by ϕK = {ϕ(•)

K }. Denote the

spacialization maps

P
(•)
K −→ P (•),

PK −→ P,
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by sp(•), sp, respectively. Let E be a coherent sheaf on PK and put E(•) :=

ϕ∗KE. Then we have the isomorphism

RϕK,∗Rsp
(•)
∗ E

(•) = Rsp∗E.

Proof. Note that the 4-tuples P := ((P, triv. log str.),

(X, triv. log str.), X ↪→ P, id) and P (n) := ((P (n), triv. log str.),

(X(n), triv. log str.), X(n) ↪→ P (n), id) form exact widenings of X over Spf V .

So one can define the system of universal enlargements Tm := TX,m(P ),

T
(n)
m := TX(n),m(P (n)). By comparing the explicit description of the system

of universal enlargements given in Section 2.2 and the definition of the rigid

analytic spaces PK , P
(n)
K given in Section 2.1, one can see the following:

(1) We have the admissible covering PK =
⋃

m Tm,K .

(2) T
(n)
m,K = (ϕ

(n)
K )−1(Tm,K) holds.

Let FP , FP (•) be the direct limit topos associated to P , P (•) respectively and

let

γ : FP∼ −→ PZar,

γ(•) : FP (•),∼ −→ P
(•)
Zar

be the morphism of topoi defined in the end of Section 2.2. Then we have

Rϕ∗Rsp
(•)
∗ E

(•) = Rϕ∗sp
(•)
∗ E

(•) (Theorem B of kiehl)

= Rϕ∗γ
(•)
∗ {(sp(•)|

T
(•)
m,K

)∗(E
(•)|

T
(•)
m,K

)}m

= Rϕ∗Rγ
(•)
∗ {(sp(•)|

T
(•)
m,K

)∗(E
(•)|

T
(•)
m,K

)}m
(Proposition 2.1.31)

= Rγ∗RFϕ∗{(sp(•)|
T

(•)
m,K

)∗(E
(•)|

T
(•)
m,K

)}m,

when we denoted the morphism of topoi

FP (•),∼ −→ FP∼
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induced by ϕ by Fϕ.

On the other hand, we have

Rsp∗E = sp∗E (Theorem B of kiehl)

= γ∗{(sp|Tm,K
)∗(E|Tm,K

)}m
= Rγ∗{(sp|Tm,K

)∗(E|Tm,K
)}m (Propsotion 2.1.31).

So we have to show the isomorphism in the derived category of the category

of sheaves on FP

RFϕ∗{(sp(•)|
T

(•)
m,K

)∗(E
(•)|

T
(•)
m,K

)}m = {(sp|Tm,K
)∗(E|Tm,K

)}m.

Note that it suffices to show the restriction of both sides to the derived

category of the category of sheaves on Tm,Zar is isomorphic. Noting the

equality

(sp(•)|
T

(•)
m,K

)∗(E
(•)|

T
(•)
m,K

) = (ϕ(•)
m )∗(sp|Tm,K

)∗(E|Tm,K
)

(where ϕ
(n)
m is the morphism T

(n)
m −→ Tm), one can see that it suffices to

prove the following claim:

Claim. For an isocoherent sheaf E on Tm, one has the isomorphism

Rϕ
(•)
m,∗ϕ

(•),∗
m E = E.

We give a proof of the claim. If we can prove that the morphism T
(•)
m −→

Tm is an etale hypercovering, the claim follows from the fpqc descent for

formal schemes. So it suffices to prove it. Moreover, to prove it, it suffices

to prove that the morphism T
(n)
m −→ Tm is formally etale. To prove this

claim, we may assume that P := Spf A and P (n) := Spf A(n) are affine. Put

X := SpecA/I and fix a system of generators f1, · · · , fr of I. Let us define

the rings Am, A
(n)
m by

Am := A[ti (i ∈ Nr, |i| = m)]/(πti − f i (i ∈ Nr, |i| = m)),

A(n)
m := A(n)[ti (i ∈ Nr, |i| = m)]/(πti − f i (i ∈ Nr, |i| = m))
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(where we used the multi-index notation). Then we have

Tm = Spf (Am/(p-torsion))∧, T (n)
m = Spf (A(n)

m /(p-torsion))∧,

where ∧ denotes the p-adic completion. Since Am and A
(n)
m are Noetherian,

we have

(Am/(p-torsion))∧
∼
= A∧m/(p-torsion),

(A(n)
m /(p-torsion))∧

∼
= (A(n)

m )∧/(p-torsion).

If we can prove that the homomorphism α : A∧m −→ (A
(n)
m )∧ is formally

etale, then the homomorphism

A∧m/(p-torsion) −→ (A(n)
m )∧/(p-torsion)

coincides with the push-out of α by the projection

A∧m −→ A∧m/(p-torsion).

In particular, it is formally etale and we are done. So it suffices to prove the

formal etaleness of the homomorphism α. That is, we have only to prove

the etaleness of the homomorphism

Am/π
kAm −→ A(n)

m /πkA(n)
m

for any k ∈ N. Since we have ImAm ⊂ πAm and ImA
(n)
m ⊂ πA(n)

m , this

assertion is reduced to the etaleness of the homomorphism

Am/I
NAm −→ A(n)

m /INA(n)
m

for any N ∈ N. Since we have

Am/I
NAm = A/IN [ti (i ∈ Nr, |i| = m)]/(πti − fm (i ∈ Nr, |i| = m)),

A(n)
m /INA(n)

m

:= A(n)/INA(n)[ti (i ∈ Nr, |i| = m)]/(πti − fm (i ∈ Nr, |i| = m)),
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the assertion is reduced to the etaleness of the homomorphism

A/IN −→ A(n)/INA(n)

and it follows from the formal etaleness of the morphism P (n) −→ P . Hence

the claim is proved and so the proof of the lemma is now finished. �

Remark 2.2.18. Note that the above definition is independent of the

choice of a chart of (Spf V,N) whose existence is assumed above. Moreover,

we can define the analytic cohomology even when (Spf V,N) does not admit

a chart in the following way.

Let us assume given the diagram

(2.2.14) (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where N is a fine log structure on V , ι is the canonical exact closed im-

mersion and f is a morphism of fine log schemes of finite type. (We do not

assume the existence of a chart of (Spf V,N).) Then there exists a finite

Galois extension V ⊂ V1 such that (Spf V1, N) admits a chart. Let G1 be

the Galois group of V1 over V and let

(2.2.15) (X1,M)
f−→ (Spec k1, N)

ι
↪→ (Spf V1, N)

be the base change of the diagram (2.2.14) by the morphism (Spf V1, N) −→
(Spf V,N). Let E be a locally free isocrystal on (X/V )logconv,et and denote

the pull-back of E to (X1/V1)
log
conv,et by E1. Then we define the analytic

cohomology of (X,M) over (Spf V,N) with coefficient E by

H i
an((X,M)/(Spf V,N), E) := H i

an((X1,M)/(Spf V1, N), E1)G1 .

Let us prove the well-definedness of the above definition. Let V2 be an-

other finite Galois extension of V with Galois groupG2 such that (Spf V2, N)

also admits a chart. To prove the well-definedness, we may assume that

V1 ⊂ V2 holds. Let G be the Galois group of V2 over V1. Let

(X2,M)
f−→ (Spec k2, N)

ι
↪→ (Spf V2, N)
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be the base change of the diagram (2.2.14) by the morphism (Spf V2, N) −→
(Spf V,N) and denote the pull-back of E to (X2/V2)

log
conv,et by E2. Take a

good embedding system

(2.2.16) (X1,M)←− (X1,M
(•)
1 ) ↪→ (P

(•)
1 , L

(•)
1 )

of (X1,M) over (Spf V1, N) and let

(2.2.17) (X2,M)←− (X2,M
(•)
2 ) ↪→ (P

(•)
2 , L

(•)
2 )

be the base change of the diagram (2.2.16) by the morphism (Spf V2, N) −→
(Spf V1, N). Then the diagram (2.2.17) is also a good embedding system.

Denote the natural morphism of simplicial rigid analytic spaces

]X
(•)
2 [

P
(•)
2
−→]X

(•)
1 [

P
(•)
1

by ϕ(•). Then it is easy to see the following:

ϕ
(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2)G = DR(]X

(•)
1 [

P
(•)
1
, E1),

Rϕ
(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2) = ϕ

(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2).

Applying the specialization map sp(•) :]X
(•)
1 [

P
(•)
1
−→ X

(•)
1 , we obtain the

following:

sp
(•)
∗ ϕ

(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2)G = sp

(•)
∗ DR(]X

(•)
1 [

P
(•)
1
, E1),

Rsp
(•)
∗ Rϕ

(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2) = sp

(•)
∗ ϕ

(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2).

Noting that sp
(•)
∗ ϕ

(•)
∗ DR(]X

(•)
2 [

P
(•)
2
, E2) is a sheaf of Q-vector spaces, the

above two isomorphisms imply the isomorphism

H i
an((X2,M)/(Spf V2, N), E2)G = H i

an((X1,M)/(Spf V1, N), E1).

By taking the G1-invariant part, we obtain the isomorphism

H i
an((X2,M)/(Spf V2, N), E2)G2 = H i

an((X1,M)/(Spf V1, N), E1)G1 .
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Hence we obtain the well-definedness.

Remark 2.2.19. In this section, we have defined the analytic coho-

mology for log schemes. It would be natural to ask whether we can define

rigid cohomology of a fine log scheme. Let (Spec k,N)
ι
↪→ (Spf V,N) be the

canonical exact closed immersion such that (Spf V,N) admits a chart. Let

us assume given an open immersion (X,M) ⊂ (X ′,M ′) of fine log schemes

of finite type over (Spec k,N). Then, by taking a good embedding system

of (X ′,M ′), it is possible to define the candidate of the rigid cohomology

H i
rig((X,M) ⊂ (X ′,M ′)/(Spf V,N), E) of the pair (X,M) ⊂ (X ′,M ′) over

(Spf V,N) (where E is a locally free isocrystal on (X ′/V )logconv,et) as in the

case of rigid cohomology. Then, one should prove the following conjecture

to assure the well-definedness:

Conjecture 2.2.20. The above definition of the rigid cohomology

H i
rig((X,M) ⊂ (X ′,M ′)/(Spf V,N), E) is independent of the choice of the

good embedding system of (X ′,M ′) chosen above.

Next, we would like to define the rigid cohomology for a fine log scheme

(X,M) which is separated and of finite type over (Spec k,N). For simplicity,

let us consider the case of trivial coefficient. To define it, we need the

following conjecture:

Conjecture 2.2.21 (Log version of Nagata’s theorem). Let (X,M)

be a fine log scheme over (Spec k,N). Then there exists an open immer-

sion (X,M) ↪→ (X ′,M ′) of (X,M) into a fine log scheme (X ′,M ′) over

(Spec k,N) such that X ′ is proper over Spec k. (We call such an open

immersion (X,M) ↪→ (X ′,M ′) as a log compactification of (X,M)).

Under this conjecture, we can define the candidate of the rigid cohomol-

ogy H i
rig((X,M)/(Spf V,N)) by H i

rig((X,M)/(Spf V,N)) := H i
an((X,M) ⊂

(X ′,M ′)/(Spf V,N)), where (X,M) ⊂ (X ′,M ′) is a log compactification.

Then, one should prove the following conjecture to assure the well-defined-

ness:

Conjecture 2.2.22. Let (X,M) be as above and assume given two

log compactifications (X,M) ↪→ (X ′,M ′), (X,M) ↪→ (X ′′,M ′′). Then the
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rigid cohomology of the pair (X,M) ↪→ (X ′,M ′) is isomorphic to that of

the pair (X,M) ↪→ (X ′′,M ′′).

To define the rigid cohomology of a single fine log scheme with coeffi-

cient, we need to develop a nice theory of overconvergent isocrystals on log

schemes.

2.3. Log convergent Poincaré lemma

Assume given the diagram (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N), where

f is a morphism of finite type between fine log schemes, N is a fine log

structure on Spf V and ι is the canonical exact closed immersion. Let E be

a locally free isocrystal on (X/V )logconv,et. In this section, we prove that the

cohomology H i((X/V )logconv,et, E) of E in the log convergent site (X/V )logconv,et

(which we call the log convergent cohomology of E) is canonically isomor-

phic to the analytic cohomologyH i
an((X/V )log, E) of (X,M) over (Spf V,N)

with coefficient E , which is defined in the previous section. Recall that the

analytic cohomology H i
an((X/V )log, E) is, roughly speaking, defined as the

cohomology of the log de Rham complex associated to E on certain rigid

analytic space. The theorems which calculate cohomology groups by certain

de Rham complexes are sometimes called Poincaré lemma. So we call this

result as log convergent Poincaré lemma. It is a log version of convergent

Poincaré lemma proved by Ogus ([Og2]).

First we prepare several morphisms of ringed topoi which we need in

this section. Let (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N) be as above. Let

ε : (X/V )log,∼
conv,et −→ (X/V )log,∼conv,Zar be the morphism of topoi defined as fol-

lows: For a sheaf E on (X/V )logconv,et, ε∗E is defined by ε∗E(T ) := E(T ) (T ∈
Enl((X/V )log)) and for a sheaf E on (X/V )logconv,Zar, ε

∗E is defined as the

sheafification of the presheaf T �→ E(T ) on (X/V )logconv,et. For a (pre-

)widening T , the similar morphism (X/V )log,∼conv,et|T −→ (X/V )log,∼conv,Zar|T will

be also denoted by ε.

Next, define a morphism of topoi

u : (X/V )log,∼conv,Zar −→ X∼Zar

as follows: For a sheaf E on (X/V )logconv,Zar, define u∗E by

u∗E(U) := Γ((U/V )logconv,Zar, j
∗E),
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where U ⊂ X is an open set and j∗ : (X/V )log,∼conv,Zar −→ (U/V )log,∼conv,Zar

is the natural restriction. For a sheaf E on XZar, define u∗E by

(u∗E)(T ) := Γ(T, z∗E) for each enlargement ((T,MT ), (Z,MZ), i, z). Let

ũ : (X/V )log,∼
conv,et −→ X∼Zar be the composite u ◦ ε.

Next, for a (pre-)widening T , define a morphism of topoi

jT : (X/V )log,∼conv,τ |T −→ (X/V )log,∼conv,τ (τ = Zar or et)

as follows: For an object g : E −→ hT in (X/V )log,∼conv |T , define jT,∗(g : E −→
hT ) to be the sheaf of sections of g, and for an object E in (X/V )log,∼conv , define

j∗TE to be the projection E×hT −→ hT . We put uT := u ◦ jT , ũT = ũ ◦ jT .

Next, for an exact widening T , define a morphism of ringed topoi

φT : (X/V )log,∼conv,τ |T −→ T∼τ (τ = Zar or et)

as follows: Let E be a sheaf on (X/V )logconv,τ |T and let U −→ T be an

object in Tτ . Then U has the canonical structure of exact widening defined

as the pull-back of that of T to U . Let {Un} be the system of universal

enlargements of U . Then we define φT,∗E by φT,∗E(U) := lim←−n
E(Un → T ),

where Un → T is the composite Un → U → T . For a sheaf E on Tτ ,

define φ∗TE by φ∗TE(g) := g∗E(T ) for an enlargement T ′ and a morphism

of widenings g : T ′ −→ T .

Finally, for an exact widening T , define the functor

φ8T ,∗ : (X/V )log,∼conv,Zar|T −→ FT∼

by φ8T ,∗E(U) := E(U ↪→ Tn −→ T ), where E is an object on left hand side

and U is an open set in Tn. (Note that φ8T ,∗ is not a part of a morphism of

topoi.)

One can check that there exists the following diagram of topoi for an

exact widening T :

(X/V )log,∼conv,Zar|T
φ�T ,∗−−−→ FT∼

γ∗−−−→ T∼Zar

jT,∗

� ∥∥∥
(X/V )log,∼conv,Zar −−−→

u∗
X∼Zar ←−−−

z∗
Z∼Zar,
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where γ∗ is the functor of taking the inverse limit of the direct image defined

in Section 2.1.

Then we have the following lemma:

Lemma 2.3.1. The functor φ8T ,∗ sends an injective sheaf to a flasque

sheaf.

Proof. We omit the proof, since it is the same as that in [Og2, (0.4.1)].

(Note that we need Lemma 2.1.24(=[Og2, (0.2.2)]) to prove this lemma.) �

Next we prove the following propositions:

Proposition 2.3.2. Let (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N) be as

above and assume that ι ◦ f admits a chart C0. Let T be an affine exact

widening of (X,M) over (Spf V,N) with respect to C0. Then the following

assertion holds.

(1) φ8T ,∗ is exact.

(2) Let E be an isocrystal on (X/V )logconv,Zar|T . Then we have

Hq((X/V )logconv,Zar|T , E)
∼
= Hq(FT , φ8T ,∗E)

for all q ≥ 0 and these groups vanish for q > 0.

Proof. The proof is similar to that in [Og2, (0.4.2)].

One can check the assertion (1) directly, so we omit the proof. Now we

will prove the assertion (2). By Lemma 2.3.1, there exists a Leray spectral

sequence for φ8T ,∗ and it degenerates by (1). So we get the former statement.

Moreover, by definition, φ8T ,∗E is a crystalline K ⊗V O8T -module. So the

above cohomology groups vanish for q > 0 by Proposition 2.1.31. �

Proposition 2.3.3. Let (X,M) −→ (Spec k,N) ↪→ (Spf V,N), C0
be as in the previous proposition. Let T be an affine exact widening of

(X,M) over (Spf V,N) with respect to C0 and let E be an isocrystal in

(X/V )log,∼
conv,et|T . Then we have RqũT,∗E = 0 and RqjT,∗E = 0 for q > 0.

Proof. The proof is similar to that in [Og2, (0.4.3)]. First, we may

assume X is affine.
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Since Rqε∗E = 0 holds for q > 0 by Proposition 2.1.21, RqũT,∗E is the

sheaf associated to the presheaf

U �→ Hq((U/V )logconv,Zar|T , ε∗E)

and it vanishes for q > 0 by Proposition 2.3.2. So we have RqũT,∗E = 0 for

q > 0.
Next we prove the vanishing RqjT,∗E = 0 (q > 0). To show this, it

suffices to show that the sheaf (RqjT,∗E)T ′ on T ′Zar induced by RqjT,∗E
vanishes for any charted affine enlargement T ′ and q > 0. Let T × T ′ be
the direct product as a charted affine widening, and form the exactification
(T × T ′)ex. Now let us consider the following commutative diagram:

(T ′ × T )ex,∼Zar

γ←−− 8(T ′ × T )ex,∼
φ �(T ′×T )ex,∗←−−−−−−−−− (X/V )log,∼conv,Zar|(T ′×T )ex

pr

� jT |T ′
�

T ′∼
Zar T ′∼

Zar ←−−−
φT ′

(X/V )log,∼conv,Zar|T ′

ε←−− (X/V )log,∼conv,et|(T ′×T )ex
jT ′ |T−−−−→ (X/V )log,∼conv,et|T

jT |T ′
� jT

�
ε←−− (X/V )log,∼conv,et|T ′ −−→

jT ′
(X/V )log,∼conv,et.

Since there exists an exact left adjoint functor jT ′,! of the functor j∗T ′ (which

can be shown as in the case without log structure [Og2]), the functor j∗T ′

sends injectives to injectives. Similarly, (jT ′ |T )∗ sends injectives to injec-

tives. Moreover, the functors (jT ′ |T )∗, φT ′,∗, φ 8(T ′×T )ex,∗, j
∗
T ′ and ε∗ are

exact. So we get the following equations.

(RqjT,∗E)T ′ = φT ′,∗ε∗j
∗
T ′RqjT,∗E

= φT ′,∗ε∗R
q(jT |T ′)∗(jT ′ |T )∗E

= Rq(pr ◦ γ)∗φ 8(T ′×T )ex,∗ε∗(jT ′ |T )∗E
= Rqpr∗γ∗φ 8(T ′×T )ex,∗ε∗(jT ′ |T )∗E (Proposition 2.1.31),

and the last term is equal to zero for q > 0 because γ∗φ 8(T ′×T )ex,∗ε∗(jT ′ |T )∗E
is quasi-coherent and the morphism (T × T ′)ex −→ T ′ is affine. So we have

the vanishing RqjT,∗E = 0 for q > 0. �
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Corollary 2.3.4. Let T be an affine exact widening and E be an

isocrystal on (X/V )log,∼conv,et|T . Then jT,∗E is ũ∗-acyclic.

Proof. In fact,

Rũ∗(jT,∗E) = Ru∗RjT,∗ε∗E (Proposition 2.3.3)

= Rz∗Rγ∗Rφ8T ,∗ε∗E
= Rz∗γ∗φ8T ,∗ε∗E (Lemma 2.3.1, Proposition 2.1.31)

= z∗γ∗φ8T ,∗ε∗E (affinity of z)

= ũ∗jT,∗E . �

Now we begin the proof of the log convergent Poincaré lemma. We will

work on the commutative diagram

(2.3.1)

(X,M)
i−−−→ (P,L)

f

� g

�
(Spec k,N)

ι−−−→ (Spf V,N),

where f is a morphism of finite type between fine log schemes, N is a fine

log structure on Spf V , ι is the canonical exact closed immersion, i is a

closed immersion into a fine log formal V -scheme (P,L) and g is a formally

log smooth morphism. Assume moreover that (Spf V,N) admits a chart

ϕ : QV −→ N and (X,M), (P,L) are of Zariski type.

For the moment, let us assume moreover the following conditions:

(a) P is affine.

(b) The diagram (X,M)
i
↪→ (P,L)

g−→ (Spf V,N) admits a chart C =

(QV
ϕ→ N,RP → L, SX → M,Q → R

α→ S) extending ϕ such that

αgp is surjective.

Denote the chart (QV
ϕ→ N,SX → M,Q → S) of g ◦ i = ι ◦ f induced

by C by C′0. Then the diagram

(X,M)
i−−−→ (P,L)∥∥∥ g

�
(X,M)

ι◦f−−−→ (Spf V,N)
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admits a chart CP := (QV
ϕ→ N,RP → L, SX → M,SX → M,DP ), where

DP is the diagram

S
α←−−− R∥∥∥ �

S ←−−− Q.

So P := ((P,L), (X,M), i, id), CP ) is a charted affine pre-widening of (X,M)

over (Spf V,N) with respect to the chart C′0. Let P := ((P ,L), (X,M), i, id)

be the exactification of P and let P̂ := (P̂ , L̂), (X,M), î, id) be the widening

associated to P . Put R := (αgp)−1(S). Then the diagram

(X,M)
i−−−→ (P ,L)∥∥∥ g

�
(X,M)

ι◦f−−−→ (Spf V,N)

admits a chart CP := (QV
ϕ→ N,RP → L,RX → M,RX → M,DP ), where

DP is the diagram

R
id←−−− R∥∥∥ �

R ←−−− Q,

(Q → R is the composite Q → R ↪→ R). Let C0 be the restriction of the

chart CP to the morphism ι ◦ f . Then (P , CP ) is an exact charted affine

pre-widening of (X,M) over (Spf V,N) with respect to the chart C0. Let

CP̂ be the pull-back of the chart CP to the diagram

(X,M)
î−−−→ (P̂ , L̂)∥∥∥ g

�
(X,M)

ι◦f−−−→ (Spf V,N).

Then (P̂ , CP̂ ) is an exact charted affine widening of (X,M) over (Spf V,N)

with respect to the chart C0. Now, for a locally free isocrystal E on

(X/V )log
conv,et, put

ωi
P̂
(E) := jP̂ ,∗(j

∗
P̂
E ⊗OX/V

φ∗
P̂
(ωi

P/V |P̂ )).
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Then we have the following theorem, which is a log version of [Og2, (0.5.4)]:

Theorem 2.3.5. Let the notations be as above. Then,

(1) For a charted affine enlargement T = ((T,MT ), (Z,MZ), i, z), CT )

of (X,M) over (Spf V,N) with respect to the chart C0, we have

ωi
P̂
(E)(T ) = lim←−n

E(TZ,n((T × P̂ )ex))⊗OP
ωi
P/V .

(2) There exists a canonical structure of complex on ω•
P̂
(E).

(3) (Log convergent Poincaré lemma) The adjoint homomorphism

E −→ jP̂ ,∗j
∗
P̂
E = ω0

P̂
(E) induces the quasi-isomorphism

E ∼−→ ω•
P̂
(E).

Proof. First we prove the assertion (1). Let ψ : F −→ hP̂ be the

object in (X/V )logconv,et|P̂ defined by ψ−1(S → P̂ ) = E(S) ⊗OP
ωi
P/V . Then

we have

ωi
P̂
(E)(T ) = Hom(hT , jP̂ ,∗(j

∗
P̂
E ⊗OX/V

φ∗
P̂
(ωi

P/V |P̂ )))

= Hom(j∗
P̂
hT , j

∗
P̂
E ⊗OX/V

φ∗
P̂
(ωi

P/V |P̂ ))

= Hom(hT×P̂ → hP̂ ,F
ψ→ hP̂ )

= lim←−n
Hom(hTZ,n((T×P̂ )ex) → hP̂ ,F

ψ→ hP̂ )

= lim←−n
E(TZ,n((T × P̂ )ex))⊗OP

ωi
P/V ,

as desired.

Next we prove the assertions (2) and (3). Since X is affine, any en-

largement is affine (with respect to the chart C0) etale locally. So it suf-

fices to construct a canonical, functorial structure of complex on ω•
P̂
(E)T

(:= the sheaf on TZar induced by ω•
P̂
(E)) for charted affine enlargements

T := (((T,MT ), (Z,MZ), i, z), CT ) with respect to C0. Put CT = (QV
ϕ→

N,RX →M,UT →MT , U
′
Z → Z,DT ), where DT is the diagram

U ′ ←−−− U� �
R ←−−− Q
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such that Ugp → (U ′)gp is surjective. Let (Pm, Lm) be the m-th log in-

finitesimal neighborhood of (P ,L) in (P ,L) ×(Spf V,N) (P ,L). Let pi,m :

(Pm, Lm) −→ (P ,L) be the i-th projection (i = 1, 2) and put Xm
i :=

p−1
i,m(X). Let s : R ⊕Q R −→ R be the homomorphism induced by the

summation and put R(1) := (sgp)−1(R). Let βi be the composite R
i-th incl.−→

R⊕Q R ↪→ R(1). Then the diagram

(Xm
i , L

m) −−−→ (Pm, Lm)� �
(X,M)

ι◦f−−−→ (Spf V,N)

admits a chart Ci := (QV → N,RX → M,R(1)Pm → Lm, R(1)Xm
i
→

Lm,Di), where Di is the diagram

R(1)
id←−−− R(1)

βi

� �
R ←−−− Q,

and the diagram
(X,M) −−−→ (Pm, Lm)∥∥∥ �
(X,M)

ι◦f−−−→ (Spf V,N)

admits two charts which are defined as the pull-backs of the charts Ci (i =

1, 2), which we denote also by Ci by abuse of notation. Then, for m ∈ N
and i = 1, 2, we have exact charted affine pre-widenings

Pm,i := (((Pm, Lm), (X,M)), Ci),
Pm

i := (((Pm, Lm), (Xm
i , L

m)), Ci),
P := (((P ,L), (X,M)), Ci),

and the following commutative diagram of exact charted affine pre-widen-

ings:
Pm,i −−−→ Pm

i� q′′i

�
P P ,
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where the chart of the morphism q′′i is induced by βi. Now we take the

products with T := (((T,MT ), (Z,MZ), i, z), CT ) (in the category of affine

pre-widenings with respect to C0). Then we obtain the following diagram

of charted affine pre-widenings (but not exact in general):

Pm,i × T −−−→ Pm
i × T� q′i

�
P × T P × T.

Now we calculate the exactifications of the charted affine pre-widenings

which appear in the above diagram. In the following, for a (pre-)widening

S := ((S,MS), (Y,MY )), we denote the ring of global sections of OS simply

by Γ(S). Note that the restriction of the chart of P × T to the closed

immersion

(Z,MZ) ↪→ (P ,L)×(Spf V,N) (T,MT )

is given by the monoid homomorphism δ : (R ⊕Q U)int −→ U ′, and the

restriction of the chart of Pm
i × T (resp. Pm

i × T ) to the closed immersion

(Z,MZ) ↪→ (Pm, Lm)×(Spf V,N) (T,MT )

(resp. (Zm
i ,MZ) ↪→ (Pm, Lm)×(Spf V,N) (T,MT ),

where Zm
i := (q′i)

−1(Z)) is given by the monoid homomorphism

εi : (R(1)⊕τi,Q U)int −→ (R(1)⊕β1,R U
′)int,

where τi is the composite Q −→ R
β1−→ R(1). Let γi : R(1) −→ R ⊕

(Rgp/Qgp) (i = 1, 2) be the monoid homomorphism given by γ1((x, y)) :=

(xy, y), γ2((x, y)) := (xy, x). Then one can see easily that γi’s are isomor-

phisms and that the composite

R ↪→ R⊕ (Rgp/Qgp)
γ−1
i−→ R(1)

coincides with the homomorphism βi. So we have the following isomor-

phisms:

(R(1)⊕βi,R U
′)int ∼= ((R⊕ (Rgp/Qgp))⊕R U

′)int (via γi)
∼
= (Rgp/Qgp)⊕ U ′,
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(R(1)⊕τi,Q U)int ∼= (R(1)⊕βi,R (R⊕Q U)int)int

∼
= ((R⊕ (Rgp/Qgp))⊕R (R⊕Q U)int)int (via γi)
∼
= (Rgp/Qgp)⊕ (R⊕Q U)int.

One can see that, via the above isomorphisms, the homomorphism εi is

compatible with

id⊕ δ : (Rgp/Qgp)⊕ (R⊕Q U)int −→ (Rgp/Qgp)⊕ U ′.

Put W := (δgp)−1(U ′) and Wi := (εgpi )−1((R(1) ⊕βi,R U
′)int) (i = 1, 2).

Then we have the isomorphism Wi
∼
= (Rgp/Qgp)⊕W . Hence we obtain the

following isomorphism:

Γ((Pm,i × T )ex)(2.3.2)
∼
= (Γ(Pm,i × T )⊗Z[(R(1)⊕τi,Q

U)int] Z[Wi])
∧

∼
= (Γ(Pm)⊗Γ(P ) Γ(P × T )⊗Z[(R⊕QU)int] Z[W ])∧

∼
= Γ(Pm)⊗Γ(P ) Γ((P × T )ex).

By the same argument, we obtain the isomorphism

(2.3.3) Γ((Pm
i × T )ex)

∼
= Γ(Pm)⊗Γ(P ) Γ((P × T )ex).

Now let us consider the following diagram of exact pre-widenings for i = 1, 2:

(2.3.4)

(Pm,i × T )ex
ri−−−→ (Pm

i × T )ex� qi

�
(P × T )ex (P × T )ex.

By the isomorphisms (2.3.2) and (2.3.3), the underlying morphism of formal

schemes of qi (i = 1, 2) are flat and the underlying morphism of formal

schemes of ri (i = 1, 2) are identities.

For n ∈ N, put En := ETZ,n((P×T )ex)
∼
= ETZ,n((P̂×T )ex), E

m
i,n :=

ETZ,n((Pm
i ×T )ex) and Em,i

n := ETZ,n((Pm,i×T )ex). On the other hand, let E
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be the coherent sheaf on the rigid analytic space ]Z[logPm×T associated to E .
Then, by Lemma 2.1.26 and the isomorphism (2.3.3), we have

(2.3.5)

{
Em

1,n
∼
= En ⊗OP

OPm ,

Em
2,n
∼
= OPm ⊗OP

En.

Next, by Proposition 2.1.27, we have the isomorphism of inductive systems

of formal V -schemes

{TZ,n((Pm,i × T )ex)}n ∼= {TZ,n((Pm
i × T )ex)}n

and it induces the isomorphism of the projective systems of sheaves on Z

(2.3.6) {Em
i,n}n

∼
= {Em,i

n }n.

Thirdly, let us note that we have the equivalences of categories

Φi :

 compatible family of

isocoherent sheaves on

{TZ,n((Pm,i × T )ex)}n

 ∼−→
(

coherent sheaf on

]Z[logPm×T

)
,

and that we have

(2.3.7) Φi({Em
i,n}n) = E (i = 1, 2),

by definition of E. (See the proof of Proposition 2.2.7.) By the equations

(2.3.5), (2.3.6) and (2.3.7), we have the isomorphism

Φ2({OPm ⊗OP
En}n)

∼
= Φ1({En ⊗OP

OPm}n).

Denote the specialization map ]Z[logPm×T−→ Z by sp. Then, by applying sp∗
to the above isomorphism, we get the isomorphism

OPm ⊗OP
ω0
P̂
(E)T = OPm ⊗OP

lim←−n
En −→ lim←−n

En ⊗OP
OPm

= ω0
P̂
(E)T ⊗OP

OPm ,
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which we denote by θm. Then we define the homomorphism

d : ω0
P̂
(E)T −→ ω1

P̂
(E)T = ω0

P̂
(E)T ⊗OP

ω1
P/V

by d(e) := θ1(1⊗ e)− e⊗ 1, and extend it to the diagram

ω•
P̂
(E)T := [ω0

P̂
(E)T d→ ω1

P̂
(E)T d→ · · · d→ ωq

P̂
(E)T d→ · · · ]

by extending d to

d : ωq

P̂
(E)T = ω0

P̂
(E)T ⊗OP

ωq
P/V −→ ω0

P̂
(E)T ⊗OP

ωq+1
P/V = ωq+1

P̂
(E)T

by setting x ⊗ η �→ d(x) ∧ η + x ⊗ dη. The construction of the diagram

ω•
P̂
(E)T is functorial with respect to the charted affine enlargement T , and

one can check that the diagram ω•
P̂
(E)T is independent of the choice of the

chart CT of T . So, by varying T , we obtain the diagram

ω•
P̂
(E) := [ω0

P̂
(E) d→ ω1

P̂
(E) d→ · · · d→ ωq

P̂
(E) d→ · · · ].

We prove that the diagram ω•
P̂
(E) forms a complex and that the adjoint

map E −→ jP̂ ,∗j
∗
P̂
E = ω0

P̂
(E) induces the quasi-isomorphism E ∼−→ ω•

P̂
(E).

To prove it, it suffices to check it on charted affine enlargements T :=

(((T,MT ), (Z,MZ), i, z), CT ) with respect to C0 such that ET is a free K⊗V

OT -module. We have

ω0
P̂
(E)T = lim←−n

(K ⊗V OTZ,n((P×T )ex))⊗K⊗OT
ET .

Note that the diagram (2.3.4) is defined over T . By this fact, one can see

that ET is annihilated by d. So the homomorphism

d : ω0
P̂
(E)T −→ ω1

P̂
(E)T = ω0

P̂
(E)T ⊗OP

ω1
P/V

is expressed as d(a⊗ e) = d(a)⊗ e (a ∈ lim←−n
(K⊗V OTZ,n((P×T )ex)), e ∈ ET ),

where

d : lim←−n
(K ⊗V OTZ,n((P×T )ex)) −→ lim←−n

(K ⊗V OTZ,n((P×T )ex))⊗OP
ω1
P/V
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is obtained by applying the functor sp∗ to the relative differential

d̃ : O
]Z[logP×T

−→ ω1
]Z[logP×T /]Z[T

,

where ω1
]Z[logP×T /]Z[T

is defined by ω1
]Z[logP×T /]Z[T

:= ω1
]Z[logP×T

/g∗Kω
1
]Z[T

(gK :

]Z[log
P×T−→]Z[T is the morphism induced by the projection g : P×T −→ T ).

Since d̃ ◦ d̃ = 0 holds, we have d ◦ d = 0. So the diagram ω•
P̂
(E) forms a

complex.

To prove that E −→ ω•
P̂
(E) is a quasi-isomorphism, it suffices to show

that the relative de Rham complex on ]Z[logP×T

DR := [O
]Z[logP×T

d̃→ ω1
]Z[logP×T /]Z[T

d̃→ ω2
]Z[logP×T /]Z[T

d̃→ · · · ]

satisfies the quasi-isomorphism RgK,∗DR = O]Z[T . Note that we have the

diagram
(Z,MZ) −−−→ ((P × T )ex,M(P×T )ex)∥∥∥ gex

�
(Z,MZ)

i−−−→ (T,MT ),

where horizontal lines are exact closed immersions and gex(:= the mor-

phism induced by g) is formally log smooth. (Here we denoted the log

structure defined on (P × T )ex defined by the exactification of the charted

affine pre-widening P × T by M(P×T )ex .) Since gex is formally smooth on a

neighborhood of Z, we have the isomorphism (by weak fibration theorem)

(2.3.8) ]Z[logP×T=]Z[(P×T )ex
∼
= Dr

V×]Z[T= Dr
A

Zariski locally on T , where r is the relative dimension of g. So, by Theorem

B of Kiehl, we have RgK,∗DR = gK,∗DR. So it suffices to prove that the

homomorphism O]Z[T −→ gK,∗DR is a quasi-isomorphism. Note that it

suffices to prove the quasi-isomorphism

Γ(T1,K ,O]Z[T )
∼−→ Γ(T1,K , gK,∗DR)
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for any admissible open affinoid T1,K ⊂ TK =]Z[T satisfying g−1
K (T1,K)

∼
=

T1,K ×Dr
V . By replacing T by T1, the assertion is reduced to the proof of

the quasi-isomorphism

(2.3.9) Γ(]Z[T ,O]Z[T )
∼−→ Γ(]Z[T , gK,∗DR) = Γ(]Z[logP×T ,DR)

under the existence of the isomorphism (2.3.8).

Put T := SpmA. For s ∈ N, put A(s)K := Γ(Dr
A,ODr

A
), Ω1

A(s)K
:=

⊕s
i=1A(s)Kdti and Ωq

A(s)K
:=
∧q Ω1

A(s)K
, where t1, · · · , ts are the coordinate

of Ds
A. Then, one can see, by the construction of the isomorphism (2.3.8)

due to Berthelot, that Γ(]Z[logP×T ,DR) is identified with the relative de Rham

complex

C(A, r) := [0→ A(r)K → Ω1
A(r)K

→ Ω2
A(r)K

→ · · · ]

via the isomorphism (2.3.8). So, to prove the quasi-isomorphism (2.3.9), it

suffices to prove the equations

Hq(C(A, r)) =

{
K ⊗V A, q = 0,

0, q > 0.

This is nothing but Lemma 2.2.16. So the proof of the theorem is com-

pleted. �

We have the following corollary:

Corollary 2.3.6. Assume we are given the diagram

(X,M)
i−−−→ (P,L)

f

� g

�
(Spec k,N)

ι−−−→ (Spf V,N)

as in (2.3.1) (but we do not assume the conditions (a) and (b)), and let

E be a locally free isocrystal on (X/V )logconv,et. Then there exists uniquely

a complex ω•P (E) in (X/V )log,∼conv,et and a quasi-isomorphism E ∼−→ ω•P (E)



104 Atsushi Shiho

satisfying the following condition: Let P ′ ⊂ P be an open immersion and

put (X ′,M ′) := (X,M)×(P,L) (P ′, L). Then, if the diagram

(X ′,M ′) −−−→ (P ′, L)

f

� g

�
(Spec k,N)

ι−−−→ (Spf V,N)

satisfies the conditions (a) and (b), the complex ω•P (E)|
(X′/V )logconv,et

and the

quasi-isomorphism E|
(X′/V )logconv,et

∼−→ ω•P (E)|
(X′/V )logconv,et

are identical with

ω•
P̂ ′(E|(X′/V )logconv,et

) and E|
(X′/V )logconv,et

−→ ω•
P̂ ′(E|(X′/V )logconv,et

) defined in The-

orem 2.3.5 respectively, and this identification is functorial.

Proof. Since P is of Zariski type, the above diagram satisfies the con-

ditions (a) and (b) Zariski locally on P . So, if we prove that the definition of

ω•
P̂
(E) is independent of the chart C which was chosen before the theorem,

we can glue the complex ω•
P̂
(E), and if we denote the resulting complex

on (X/V )log
conv,et by ω•P (E), this complex satisfies the required conditions.

Hence it suffices to prove that the definition of ω•
P̂
(E) is independent of the

chart C.
Let us take another chart C′ of the diagram (X,M) ↪→ (P,L) −→

(Spf V,N). To show the required independence, we may assume that there

exists a morphism of charts C −→ C′. Let P̂ ′ be the exact widening defined

as P̂ by using the chart C′ instead of C and let ω•
P̂ ′(E) be the complex de-

fined as ω•
P̂
(E) by using the chart C′ instead of C. Then the morphism of

charts C −→ C′ induces the homomorphism of complexes

ω•
P̂
(E) −→ ω•

P̂ ′(E).

It suffices to prove that the above homomorphism induces an isomorphism

on each degree. By the assertion (1) of Theorem 2.3.5, we have

ωi
P̂
(E)T = lim←−n

ETZ,n(P̂×T )ex ⊗OP
ωi
P/V ,

ωi
P̂ ′(E)T = lim←−n

ETZ,n(P̂ ′×T )ex ⊗OP
ωi
P/V .
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Now note that we have the diagram of functors


compatible family of

isocoherent sheaves on

{TZ,n((P̂ × T )ex)}n

 Φ−−−→

 coherent sheaf on

]Z[log
P̂×T


α

� ∥∥∥
compatible family of

isocoherent sheaves on

{TZ,n((P̂ ′ × T )ex)}n

 Φ′
−−−→

 coherent sheaf on

]Z[log
P̂×T

 ,

where Φ and Φ′ are equivalences of categories and α is the pull-back by the

morphism of inductive systems of formal schemes {TZ,n((P̂ ′ × T )ex)}n −→
{TZ,n((P̂ × T )ex)}n. So we have the isomorphism

Φ({ETZ,n((P̂×T )ex) ⊗OP
ωi
P/V }n) = Φ′ ◦ α({ETZ,n((P̂×T )ex) ⊗OP

ωi
P/V }n)

∼−→ Φ′({ETZ,n((P̂ ′×T )ex) ⊗OP
ωi
P/V }n).

By applying the functor sp∗ (where sp is the specialization map ]Z[logP×T−→
Z) to the above isomorphism, we get the isomorphism

lim←−n
ETZ,n(P̂×T )ex ⊗OP

ωi
P/V

∼−→ lim←−n
ETZ,n(P̂ ′×T )ex ⊗OP

ωi
P/V ,

that is, the isomorphism

ωi
P̂
(E)T ∼−→ ωi

P̂ ′(E)T .

So the proof is finished. �

Remark 2.3.7. The similar argument shows that the complex ω•P (E)
is independent of the choice of the chart ϕ : QV → N of (Spf V,N) chosen

above. Details are left to the reader.
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Corollary 2.3.8. Assume we are given the diagram

(X,M)
i−−−→ (P,L)

f

� g

�
(Spec k,N)

ι−−−→ (Spf V,N)

as in Corollary 2.3.6 and let E be a locally free isocrystal on (X/V )logconv,et.

Then we have the canonical quasi-isomorphism

Rũ∗E = sp∗DR(]X[logP , E).

Proof. By Theorem 2.3.5 and Corollary 2.3.6, we have the diagram

Rũ∗E −→ Rũ∗ω
•
P (E)←− ũ∗ω•P (E),

and the first arrow is a quasi-isomorphism. We prove first that the second

arrow is also a quasi-isomorphism. To prove this, we may work Zariski

locally. So we may assume the conditions (a) and (b). Then we have

Rũ∗ω
•
P (E) = Rũ∗jP̂ ,∗(φ

∗
P̂
(ω•P/V |P̂ )⊗ j∗

P̂
E)

= ũ∗jP̂ ,∗(φ
∗
P̂
(ω•P/V |P̂ )⊗ j∗

P̂
E) (Corollary 2.3.4)

= ũ∗ω
•
P (E).

So we obtain the assertion.

Now it suffices to prove the isomorphism (not only the quasi-isomor-

phism)

ũ∗ω
•
P (E) ∼= sp∗DR(]X[logP , E).

To prove it, it suffices to construct the functorial isomorphism Zariski lo-

cally. So we may assume the conditions (a) and (b). Let ϕ : F −→ hP̂ be as

in the proof of Theorem 2.3.5 and let e be the initial object of (X/V )log,∼conv,et.

Then we have

Γ(X, ũ∗ω
i
P (E)) = Γ(X, ũ∗jP̂ ,∗(φ

∗
P̂
(ωi

P/V |P̂ )⊗ j∗
P̂
E))
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= Hom(e, jP̂ ,∗(φ
∗
P̂
(ωi

P/V |P̂ )⊗ j∗
P̂
E)

= Hom(hP̂
id−→ hP̂ ,F

ϕ−→ hP̂ )

= lim←−n
E(TX,n(P̂ ))⊗OP

ωi
P/V .

Hence we have the isomorphism of the global sections of each degree Γ(X,

ũ∗ωi
P (E)) ∼= Γ(X, sp∗DR(]X[logP , E)i). Since this isomorphism is functorial

with respect to (X,M) ↪→ (P,L), we obtain the isomorphism of sheaves

ũ∗ωi
P (E) ∼= sp∗DR(]X[logP , E)i.
Now we prove that the above isomorphism induces the isomorphism of

complexes. Note that, for any charted affine enlargement T with respect

to C0, the diagram (2.3.4) in the proof of Theorem 2.3.5 is defined over the

following diagram of affine enlargements:

Pm −−−→ Pm
i� �

P P ,

where Pm is the underlying enlargement of Pm,i. (Note that it is indepen-

dent of i.) Then, by the construction of the complex ω•P (E)(T ) and that

of the complex sp∗DR(]X[logP , E) given in Remark 2.2.9, one obtains the

following: for any charted affine enlargement T , the differential

Γ(X, sp∗DR(]X[logP , E)q−1) −→ Γ(X, sp∗DR(]X[logP , E)q)

is compatible with the differential

ωq−1
P (E)(T ) −→ ωq

P (E)(T )

via the homomorphisms

Γ(X, sp∗DR(]X[logP , E)r)
∼
= Γ(X, ũ∗ω

r
P (E)) −→ ωr

P (E)(T ) (r = q − 1, q).

Note that this compatibility is true for any charted affine enlargement T .

So the above compatibility implies that the differential

Γ(X, sp∗DR(]X[logP , E)q−1) −→ Γ(X, sp∗DR(]X[logP , E)q)
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is compatible with the differential

Γ(X, ũ∗ω
q−1
P (E)) −→ Γ(X, ũ∗ω

q
P (E))

via the isomorphism Γ(X, sp∗DR(]X[logP , E)r)
∼
= Γ(X, ũ∗ωr

P (E)) (r = q −
1, q). Hence the complex sp∗DR(]X[logP , E) is isomorphic to the complex

ũ∗ω•P (E) as complexes on XZar. So the proof of the corollary is finished. �

Corollary 2.3.9 (Log Convergent Poincaré Lemma). Let us assume

given the diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is of finite type, ι is the canonical exact closed immersion and

assume that (Spf V,N) admits a chart. Then, for a locally free isocrystal E
on (X/V )log

conv,et, we have the isomorphism

H i((X/V )logconv,et, E)
∼
= H i

an((X/V )log, E).

Proof. Take a good embedding system

(X,M)
g←− (X(•),M (•))

i
↪→ (P (•), L(•))

and let sp(•) be the specialization map

]X(•)[log
P (•)−→ X(•).

Then we have

H i((X/V )logconv,et, E)
∼
= H i((X(•)/V )logconv,et, g

∗E) (Proposition 2.1.20)

∼
= H i(X

(•)
Zar, Rũ∗(g

∗E))
∼
= H i(X

(•)
Zar, sp

(•)
∗ DR(]X(•)[log

P (•) , g
∗E))

(Corollary 2.3.8)
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∼
= H i(X,Rg∗Rsp∗DR(]X[logP , g

∗E))
(Theorem B of Kiehl)

= H i
an((X/V )log, E).

So we are done. �

Remark 2.3.10. One can see easily that the above isomorphism is in-

dependent of the choice of the good embedding system.

Remark 2.3.11. Let us assume given the diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is of finite type, N is a fine log structure on Spf V and ι is the

canonical exact closed immersion. In this remark, we prove that the iso-

morphism

H i((X/V )logconv,et, E)
∼
= H i

an((X/V )log, E)
holds even if (Spf V,N) does not admit a chart.

Let V ′ be a finite Galois extension of V with Galois group G such that

(Spf V ′, N) admits a chart. Put X ′ := X ×V V
′ and let g : X ′ −→ X be

the canonical projection. Then we have the isomorphism

H i
an((X/V )log, E) ∼= H i

an((X
′/V ′)log, E)G,

by definition given in Remark 2.2.18. On the other hand, by Corollary

2.3.9, we have the isomorphism

H i((X ′/V ′)logconv,et, g
∗E) ∼= H i

an((X
′/V ′)log, g∗E),

and one can see that this isomorphism is G-equivariant. So it suffices to

prove the isomorphism

H i((X/V )logconv,et, E)
∼
= H i((X ′/V ′)logconv,et, g

∗E)G.

First, since V ′ is etale over V , we have the canonical equivalence of site

(X ′/V ′)log
conv,et � (X ′/V )logconv,et. Denote the morphism of topoi

(X ′/V )log,∼conv,et −→ (X/V )log,∼conv,et
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induced by g by g := (g∗, g∗), by abuse of notation.

Let I be an injective sheaf on (X/V )logconv,et. We prove that g∗I is flabby.

To prove this, it suffices to prove the vanishing Ȟq(U , g∗I) = 0 (q > 0) for

any enlargement T in (X ′/V )logconv,et and any covering U := {Tλ −→ T}λ of

T (see [Mi, III.2.12]). Since the objects Tλ, T naturally define the objects in

(X/V )log
conv,et and the covering U naturally defines a covering in (X/V )logconv,et,

we have Ȟq(U , g∗I) = Ȟq(U , I) = 0 (q > 0), as desired. Hence g∗I is flabby.

Now let us consider the following diagram of topoi:

(X/V )log,∼conv,et
g←−−− (X ′/V )log,∼conv,et

u

� u′
�

Xet
f←−−− X ′et,

where u′ is the functor u for X ′. Note that we have the isomorphism

f∗ ◦ u∗ = u′∗ ◦ g∗. Let us take an injective resolution E −→ I•. Then

g∗E −→ g∗I• is a flabby resolution of g∗E . So we have

(2.3.10) f∗(Ru∗E) = f∗u∗I
• = u′∗g

∗I• = Ru′∗g
∗E .

Now let us note that we have the Hochschild-Serre spectral sequence

Hp(G,Hq(X ′et, f
∗Ru∗E)) =⇒ Hp+q(Xet, Ru∗E).

Applying (2.3.10), we get the Hochschild-Serre spectral sequence for log

convergent cohomology

Hp(G,Hq((X ′/V )logconv,et, g
∗E)) =⇒ Hp+q((X/V )logconv,et, E).

Since Hq((X ′/V )logconv,et, g
∗E)’s are Q-vector spaces, the above spectral se-

quence always degenerates. Hence we get the desired isomorphism

H i((X/V )logconv,et, E)
∼
= H i((X ′/V )logconv,et, g

∗E)G = H i((X ′/V ′)logconv,et, g
∗E)G.
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2.4. Log convergent cohomology and rigid cohomology

Let us assume given the diagram

(X,M)
f−→ (Spec k, triv. log str.) ↪→ (Spf V, triv. log str.),

where (X,M) is an fs log scheme of Zariski type and f is a proper log

smooth morphism of finite type. Put U := Xtriv and denote the open

immersion U ↪→ X by j. Let a ∈ N, a > 0 and assume that there exists a

lifting σ : Spf V −→ Spf V of the a-times iteration of the absolute Frobenius

Fk : Spec k −→ Spec k. Let E be an F a-isocrystal (whose definition will be

given in Definition 2.4.2) on (X,M) over Spf V . Then, as we will see in

Proposition 2.4.1, ‘the restriction of E to U ’ has naturally the structure of

an overconvergent isocrystal on U over Spf V , which we denote by j†E . The

purpose of this section is to prove the isomorphism

(2.4.1) H i
rig(U/K, j

†E) ∼= H i
an((X/V )log, E).

Since we have shown the isomorphism

H i
an((X/V )log, E) ∼= H i((X/V )logconv,et, E)

in the previous section (we will see that E is indeed locally free in Proposi-

tion 2.4.3), the isomorphism (2.4.1) implies the isomorphism

H i
rig(U/K, j

†E) ∼= H i((X/V )logconv,et, E)

between rigid cohomology and log convergent cohomology. The impor-

tant part of the proof of the isomorphism (2.4.1) is due to Baldassarri and

Chiarellotto([Ba-Ch], [Ba-Ch2]): We reduce the proof of the isomorphism

to certain local assertion and prove it by using the theory of p-adic differen-

tial equations with log poles on unit disk over smooth affinoid rigid analytic

space, which is developped by them.

First, we define the restriction functor from the category of locally free

isocrystals on log convergent site to the category of overconvergent isocrys-

tals. Assume we are given the diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),
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where f is a morphism between fine log formal V -schemes of finite type,

N is a fine log structure on Spf V such that (Spf V,N) admits a chart and

ι is the canonical exact closed immersion. Put U := Xf -triv and denote

the open immersion U ↪→ X by j. Then, we have the canonical restriction

functor

j∗ : Iconv,et((X/V )log) −→ Iconv,et((U/V )log) � Iconv,et(U/V ).

On the other hand, we can construct the functor

r : I†(U,X) −→ Iconv,et(U/V )

in the following way: Take a diagram

(2.4.2) X
g←− X(•) i

↪→ P (•),

where g is a Zariski hypercovering and i is a closed immersion into a sim-

plicial formal V -scheme such that each P (i) is formally smooth on a neigh-

borhood of U (i) := X(i) ×X U . Then, an object E ∈ I†(U,X) defines a

pair (E(0), ϕ), where E(0) is an object in I†(U (0), X(0), P (0)) and ϕ is an

isomorphism

p2E(0) ∼−→ p1E(0)

in I†(U (1), X(1), P (1)) (where pi (i = 1, 2) is the functor I†(U (0), X(0),

P (0)) −→ I†(U (1), X(1), P (1)) induced by the i-th projection) which reduces

to the identity in I†(U (0), X(0), P (0)) and satisfies the cocycle condition in

I†(U (2), X(2), P (2)). Denote the open immersion U (i) ↪→ X(i) by j(i). First

let us define the functor

r(i) : I†(U (i), X(i), P (i)) −→ Iconv,et(U
(i)/V )

as follows: For n ∈ N, denote the (n + 1)-fold fiber product of P (i) over

Spf V by P (i)(n). For a strict neighborhood O of ]U (i)[P (i)(n) in ]X(i)[P (i)(n),

let us denote the inclusion ]U (i)[P (i)(n)↪→ O by αO. Then pull-back by αO’s

induce the functor

α(i)(n) :

(
coherent

j(i),†O]X(i)[
P (i)(n)

-modules

)
−→

(
coherent

O]U(i)[
P (i)(n)

-modules

)
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for i, n ∈ N. Since the functors α(i)(n) are compatible with projections with

respect to n, it induces the functor

I†(U (i), X(i), P (i)) −→ Str′′(U (i) ↪→ P (i)/Spf V ).

By composing it with the equivalence

Str′′(U (i) ↪→ P (i)/Spf V ) � Iconv,et(U
(i)/V ),

we obtain the functor r(i). Then, since the functors r(i) (i ∈ N) are com-

patible with projections with respect to i, r(i)’s for i = 0, 1, 2 define the

functor

r : I†(U,X) −→ Iconv,et(U/V ).

One can check that this definition is independent of the choice of the dia-

gram (2.4.2).

Now we construct a functor

j† : I lfconv,et((X/V )log) −→ I†(U,X)

which is compatible with j∗ and r:

Proposition 2.4.1. Let (X,M) −→ (Spec k,N) ↪→ (Spf V,N), U, j, j∗

and r be as above and assume that (X,M) is of Zariski type. Then there

exists a functor

j† : I lfconv,et((X/V )log) −→ I†(U,X)

such that r ◦ j† = j∗ holds.

Proof. Take a diagram

(X,M)
g←− (X(•),M (•))

i
↪→ (P (•), L(•)),

where g := {g(n)}n is a Zariski hypercovering satisfying (g(n))∗M
∼
= M (n)

and i is a locally closed immersion into a simplicial fine log formal V -

scheme such that each (P (n), L(n)) is formally log smooth over (Spf V,N)

of Zariski type and formally smooth (in the classical sense) over (Spf V,N)
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on a neighborhood of U (n) := X(n)×X U . (The existence of such a diagram

can be shown in a similar way as Proposition 2.2.11. The detail is left to

the reader.) Denote the open immersion U (•) ↪→ X(•) by j(•). Since the

categories I lfconv,et((X/V )log) and I†(U,X) satisfy the descent property for

Zariski open covering of X, it suffices to construct the functors

j(n),† : I lfconv,et((X
(n)/V )log) −→ I†(U (n), X(n)) = I†(U (n), X(n), P (n))

which are compatible with the transition morphisms of simplicial objects

such that r(n) ◦ j(n),† = j(n),∗ holds, where r(n) is the functor r for U (n) ↪→
X(n).

First, let us note the following claim:

Claim. Let ((X,M)
i
↪→ (P,L)) be an object in the category Z intro-

duced in Proposition 2.2.4, and let U be an open set of X such that i|(U,M)

is exact. Then there exists a canonical map

ϕ : ]X[logP −→]X[P

and there exists a strict neighborhood V of ]U [P in ]X[P such that the

morphism ϕ−1(V ) −→ V induced by ϕ is an isomorphism.

Proof of Claim. If there exists a factorization

(X,M)
i′
↪→ (P ′, L′)

f ′
−→ (P,L)

such that i′ is an exact closed imersion and f ′ is formally log etale, then we

have ]X[log
P =]X[P ′ by definition. So we define ϕ as the morphism ]X[P ′−→

]X[P induced by f ′. In general case, we can define ϕ Zariski locally on

P , since there exists a factorization as above Zariski locally. Moreover,

we can define the morphism ϕ :]X[logP −→]X[P globally by gluing this local

definition.

Let us prove the latter statement. To prove it, we may work Zariski

locally and so we may assume the existence of the above factorization.

Then, f ′ is formally etale on a neighborhood of U . Then, we can apply

Theorem 1.3.5 and so there exists a strict neighborhood V of ]U [P in ]X[P
such that ϕ−1(V ) −→ V is an isomorphism. �
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Let us denote the essential image of the category I lfconv,et((X
(n)/V )log)

via the equivalence of categories

Iconv,et((X
(n)/V )log) � Str′′((X(n),M (n)) ↪→ (P (n), L(n))/(Spf V,N))

by Str′′((X(n),M (n)) ↪→ (P (n), L(n))/(Spf V,N))lf . Then I lfconv,et((X
(n)/

V )log) is equivalent to Str′′((X(n),M (n)) ↪→ (P (n), L(n))/(Spf V,N))lf . One

can see that, for any object (E, ε) in Str′′((X(n),M (n)) ↪→ (P (n), L(n))/

(Spf V,N))lf , E is a locally free O
]X[logP

-module.

Now we construct a functor

j(n),† :Str′′((X(n),M (n)) ↪→ (P (n), L(n))/(Spf V,N))lf

−→ I†(U (n), X(n), P (n)).

For m ∈ N, let (P (n)(m), L(n)(m)) be the (m + 1)-fold fiber product of

(P (n), L(n)) over (Spf V,N). By the claim, we have the morphism

]X(n)[log
P (n)(m)

−→]X(n)[P (n)(m),

which we denote by ϕ(n)(m). Let us take strict neighborhoods V (n)(m) of

]U (n)[P (n)(m) in ]X(n)[P (n)(m) satisfying the following conditions:

(1) The morphisms (ϕ(n)(m))−1(V (n)(m)) −→ V (n)(m) are isomor-

phisms.

(2) For any projections α∗ : P (n)(m) −→ P (n)(m′) corresponding to an

injective map α : [0,m′] ↪→ [0,m], the induced map of rigid anan-

lytic spaces α∗K :]X(n)[P (n)(m)−→]X(n)[P (n)(m′) satisfies V (n)(m) ⊂
(α∗K)−1(V (n)(m′)).

Let

pi :]X(n)[P (n)(1)−→]X(n)[P (n) (i = 1, 2),

pij :]X(n)[P (n)(2)−→]X(n)[P (n)(1) (1 ≤ i < j ≤ 3)

be the projections and let

∆ :]X(n)[P (n)−→]X(n)[P (n)(1)
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be the diagonal map. Put V
(n)

(0) := ∆−1(V (n)(1)). Then, by the above

conditions on V (n)(m)’s, any object (E, ε) in the category Str′′((X(n),

M (n)) ↪→ (P (n), L(n))/(Spf V,N)) defines the following data:

(1) A locally free sheaf E on V (n)(0).

(2) An isomorphism ε : p∗2E
∼−→ p∗1E on V (n)(1) satisfying p∗12(ε) ◦

p∗23(ε) = p∗13(ε) on V (n)(2) and ∆∗(ε) = id on V
(n)

(0).

By pushing these data to ]X(n)[P (n) , we obtain an object in the category

I†(U (n), X(n), P (n)). So we have constructed the functor

Str′′((X(n),M (n)) ↪→ (P (n), L(n))/(Spf V,N))lf −→ I†(U (n), X(n), P (n)),

which is the definition of the functor j(n),†.
Let us define the functor

j(n),† : I lfconv,et((X
(n)/V )log) −→ I†(U (n), X(n)) = I†(U (n), X(n), P (n))

by the composite

I lfconv,et((X
(n)/V )log) � Str′′((X(n),M (n)) ↪→ (P (n), L(n))/(Spf V,N))lf

j(n),†

−→ I†(U (n), X(n), P (n)).

Then one can check easily that this functor has the required properties.

Hence the assertion is proved. �

Now we prove the comparison theorem between the analytic cohomology

and the rigid cohomology. In the following in this section, we consider the

following situation: We are given a diagram

(X,M)
f−→ (Spec k, triv. log str.) ↪→ (Spf V, triv. log str.),

where (X,M) is an fs log scheme and f is a proper log smooth mor-

phism of finite type. In the following, we write (Spec k, triv. log str.) and

(Spf V, triv. log str.) simply by Spec k,Spf V , respectively. Put U := Xtriv

and denote the open immersion U ↪→ X by j.

First we define the notion of F a-isocrystals on (X/V )logconv,et :=

((X,M)/V )conv,et.
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Definition 2.4.2. Let the notations be as above and let FX :

(X,M) −→ (X,M), Fk : Spec k −→ Spec k be the absolute Frobenius

endomorphisms. Let a ∈ N, a > 0 and assume there exists a morphism

σ : Spf V −→ Spf V which coincides with F a
k modulo the maximal ideal of

V . Then we have the following commutative diagram:

(X,M)
Fa
X−−−→ (X,M)� �

Spec k
Fa
k−−−→ Spec k� �

Spf V
σ−−−→ Spf V.

For an isocrystal E on log convergent site ((X,M)/V )conv,et, denote the pull-

back of E by (F a
X , F

a
k , σ) in the above diagram by F a,∗E. An F a-isocrystal

on log convergent site ((X,M)/V )conv,et with respect to σ is a pair (E ,Φ),

where E is an isocrystal on ((X,M)/V )conv,et and Φ is an isomorphism

F a,∗E −→ E.

Next proposition assures that an F a-isocrystal is in fact a locally free

isocrystal:

Proposition 2.4.3. Let the notations be as in the above definition and

let (E ,Φ) be an F a-isocrystal on ((X,M)/V )conv,et. Then E is a locally free

isocrystal.

Proof. It suffices to prove the following: For any x ∈ X, there exists

a formally log smooth lifting i : (X,M) ↪→ (P,L) over Spf V defined on

an etale neighborhood of x̄(:= a geometric point with image x) such that

the value of E on the enlargement P := ((P,L), (X,M), i, id) is a locally

free K ⊗V OP -module around x̄. So we may assume that (X,M) admits a

chart RX →M such that Rx̄
∼
=Mx̄/O×X,x̄ holds and that X is smooth over

Spec k[R] ([Kf, (3.1.1)]). By shrinkingX if necessary, there exists an integer

r such that X is etale over Spec k[R ⊕ Nr] and x is defined by the locus

{a = 0 | a ∈ R⊕Nr}. So there exists a formal scheme P which is etale over

Spf V {R⊕Nr} such that P modulo π coincides with X. Then, if we define
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L to be the log structure on P associated to the monoid homomorphism

R → V {R ⊕ Nr} → Γ(P,OP ), we obtain a lifting (P,L) of (X,M) which

is formally log smooth over Spf V . By shrinking P , we may assume P

is affine. Let τ : (P,L) −→ (P,L) be the unique morphism which lifts

FX : (X,M) −→ (X,M) and compatible with σ : Spf V −→ Spf V and the

homomorphism R⊕ Nr −→ R⊕ Nr defined by ‘multiplication by pa’.

Put P = Spf A and let m be the maximal ideal of K ⊗ A defined by

R⊕Nr. Denote the value of E at P (regarded as a K⊗A-module) by E. It

suffices to show that the localization Em of E at m is a flat (K⊗A)m-module.

To show this, it suffices to show that E/mnE is a flat (K ⊗A)/mn-module

for any n ≥ 1.

It is well-known that K ′ := (K ⊗ A)/m is a finite extension field of K.

Choose an isomorphism (K ′)t
∼
= E/mE and let f : ((K ⊗ A)/mn)t −→

E/mnE be a lifting of this isomorphism. Let I be the kernel of f . Then I

is contained in (m/mn)t and we have the isomorphism

(2.4.3) ((K ⊗A)/mn)t/I
∼−→ E/mnE.

Let us tensor the both sides with ⊗K⊗A,τn(K ⊗ A)/mn. Since there exists

a natural surjection

((K ⊗A)/mn)t/I −→ ((K ⊗A)/m)t,

we have the surjection

((K ⊗A)/mn)t/I⊗K⊗A,τn(K ⊗A)/mn

−→ ((K ⊗A)/m⊗K⊗A,τn (K ⊗A)/mn)t.

For any x ∈ m, we have τn(x) ∈ mpan ⊂ mn. Hence the right hand side is

isomorphic to ((K⊗A)/mn)t and so the left hand side is also isomorphic to

((K⊗A)/mn)t. Therefore, if we tensor the left hand side of the isomorphism

(2.4.3) with ⊗K⊗A,τn(K ⊗A)/mn, it becomes a free (K ⊗A)/mn-module.

On the other hand, E comes from an F a-isocrystal. So, if we tensor

the right hand side of the isomorphism (2.4.3) with ⊗K⊗A,τn(K ⊗ A)/mn,

it is again isomorphic to E/mnE. Hence E/mnE is a free (hence flat)

(K ⊗A)/mn-module, as desired. �
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Now we state the main theorem in this section:

Theorem 2.4.4. Let

(X,M)
f−→ Spec k

ι
↪→ Spf V

be as above and assume that (X,M) is of Zariski type. Put U := Xtriv and

denote the open immersion U ↪→ X by j. Let E be one of the following:

(1) E = KX/V holds.

(2) There exists a lifting σ : Spf V −→ Spf V of the a-times iteration of

the absolute Frobenius on Spec k (a > 0) and E is an F a-isocrystal

on (X/V )logconv,et with respect to σ.

Then we have the isomorphism

H i
rig(U/K, j

†E) ∼= H i
an((X/V )log, E).

First, let us recall the following result, which is an immediate conse-

quence of results due to Kempf–Knudsen–Mumford–Saint-Donat ([KKMS])

and Kato ([Kk2]):

Proposition 2.4.5. Let (X,M) be an fs log scheme of Zariski

type which is log smooth over Spec k. Then there exists a morphism

f : (X,M) −→ (X,M) of fs log schemes of Zariski type given by ‘sub-

division of fan’ which satisfies the following conditions:

(1) f is proper, birational, log etale, X is regular, and Xtriv is isomor-

phic to Xtriv.

(2) For any point x ∈ X, there exists a natural number r(x) such that

M x̄/O×X,x̄

∼
= Nr(x) holds.

(3) Let U be an open set of X and suppose we have a formally log smooth

lifting i : (U,M) ↪→ (P,L) over Spf V such that (P,L) is of Zariski

type. Then we can construct the following diagram:

(f−1(U),M)
i−−−→ (P ,L)

f

� g

�
(U,M)

i−−−→ (P,L)
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Here i is a formally log smooth lifting over Spf V , g is formally log

etale, (P ,L) is of Zariski type and Rg∗OP = OP holds.

Proof. We only sketch the outline of the proof. The details are left

to the reader.

First, via the equivalence of categories in Corollary 1.1.11, we may work

in the category of fs log schemes with respect to Zariski topology. (Note

that all the argument in [Kk2] is done in the category of fs log schemes with

respect to Zariski topology.)

Let (F,MF ) be the fan ([Kk2, (9.3)]) associated to (X,M). (Note that

(X,M) is log regular by [Kk2, (8.3)].) Then there exists a proper sub-

division ϕ : (F ,MF ) −→ (F,MF ) such that, for any x ∈ F , there ex-

ists a natural number r(x) satisfying MF ,x
∼
= Nr(x) ([KKMS, I,Theorem

11], [Kk2, (9.8)]). Then, we can define ‘the fiber product’ (X,M) :=

(X,M)×(F,MF ) (F ,MF ) ([Kk2, (9.10)]). Then it is known that ‘the projec-

tion’ f : (X,M) −→ (X,M) satisfies the conditions (1) and (2).

Let us prove the assertion (3). Note that we have the morphism of

monoidal spaces

(P,L/O×P ) = (U,M/O×X) −→ (F,MF ).

So we can define ‘the completed fiber product’

(P ,L) := (P,L)×̂(F,MF )(F ,MF ),

and the projection g : (P ,L) −→ (P,L) fits into the diagram in the state-

ment (3) of the proposition. The assertion Rg∗OP = OP follows from the

equation Rf∗Of−1(U) = OU , which is proved in [Kk2, (11.3)]. �

Now we begin the proof of Theorem 2.4.4:

Proof of Theorem 2.4.4. Since the proof is long, we divide it into

three steps.

Step 1. First, we construct the homomorphism

H i
an((X/V )log, E) −→ H i

rig(U/K, j
†E).
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Let us take an open covering X =
⋃

i∈I Xi of X by finite number of open

subschemes and a formally log smooth lifting (Xi,M) ↪→ (Pi, Li) over Spf V

such that (Pi, Li) is of Zariski type and the value of E at the enlarge-

ment Pi := ((Pi, Li), (Xi,M), (Xi,M) ↪→ (Pi, Li), (Xi,M) ↪→ (X,M)) is a

free K ⊗V OPi-module. Then we put (X(0),M (0)) := (
∐

i∈I Xi,M |∐
i∈I Xi

),

(P (0), L(0)) :=
∐

i∈I(Pi, Li) and denote the exact closed immersion (X(0),

M (0)) ↪→ (P (0), L(0)) induced by the morphisms (Xi,M) ↪→ (Pi, Li) (i ∈ I)
by i(0). For n ∈ N, let (X(n),M (n)) (resp. (P (n), L(n))) be the (n+ 1)-fold

fiber product of (X(0),M (0)) (resp. (P (0), L(0))) over (X,M) (resp. Spf V ).

Then one can form the good embedding system

(X,M)
g← (X(•),M (•))

i(•)→ (P (•), L(•))

naturally. (Here i(•) is the morphism induced by the fiber products of i(0).)

Let ϕ(n) : ]X(n)[log
P (n)−→]X(n)[P (n) be the morphism defined in the claim in

the proof of Proposition 2.4.1.

Suppose for the moment that the morphism i(n) : (X(n),M (n)) ↪→
(P (n), L(n)) has a factorization

(2.4.4) (X(n),M (n)) ↪→ (P̃ (n), L̃(n)) −→ (P (n), L(n)),

where the first arrow is an exact closed immersion and the second arrow is

formally log etale. Then we have ]X(n)[log
P (n)=]X(n)[P̃ (n) . Now note that P̃ (n)

is formally smooth over Spf V on a neighborhood of U (n) := X(n) ×X U .

So j†E defines the de Rham complex DR(]X(n)[P̃ (n) , j†E) on ]X(n)[P̃ (n) . By

definition of j†E , we have the isomorphism

DR(]X(n)[P̃ (n) , j
†E) = lim−→O

αO,∗α
∗
ODR(]X(n)[P̃ (n) , E),

where O runs through the strict neighborhoods of ]U (n)[P̃ (n) in ]X(n)[P̃ (n)

and we denoted the inclusion O ↪→]X(n)[P̃ (n) by αO. So we have the canon-

ical homomorphism

DR(]X(n)[P̃ (n) , E) −→ DR(]X(n)[P̃ (n) , j
†E).

Now let us consider the case that the morphism i(n) does not necessar-

ily have the factorization (2.4.4). Since (X(n),M (n)) and (P (n), L(n)) are
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of Zariski type, the morphism i(n) has has the factorization (2.4.4) Zariski

locally. Then one can define the de Rham complex DR(]X(n)[P̃ (n) , j†E) lo-

cally, and one can see that this complex can be glued and gives the de Rham

complex on ]X(n)[log
P (n) , which we denote by DR(]X(n)[log

P (n) , j
†E). Moreover,

one can glue the homomorphism

DR(]X(n)[P̃ (n) , E) −→ DR(]X(n)[P̃ (n) , j
†E)

and hence it gives the homomorphism

DR(]X(n)[log
P (n) , E) −→ DR(]X(n)[log

P (n) , j
†E).

Since this construction is compatible with respect to n, we can define the

homomorphism

(2.4.5) DR(]X(•)[log
P (•) , E) −→ DR(]X(•)[log

P (•) , j
†E).

Now we prove the quasi-isomorphism

(2.4.6) Rϕ
(•)
∗ DR(]X(•)[log

P (•) , j
†E) ∼= DR(]X(•)[P (•) , j†E).

First we may replace • by n. Then, since we can work Zariski locally on

P (n), we may assume the existence of the factorization (2.4.4). Then, since

the morphism P̃ (n) −→ P (n) is formally etale on a neighborhood of U (n),

the assertion follows from Proposition 1.3.10. Hence, by applying Rϕ
(•)
∗ to

the homomorphism (2.4.5), we obtain the homomorphism

(2.4.7) Rϕ
(•)
∗ DR(]X(•)[log

P (•) , E) −→ DR(]X(•)[P (•) , j†E).

By applying the functor H i(X,Rg∗Rsp
(•)
∗ −) (where sp(•) is the specializa-

tion map ]X(•)[P (•)−→ X(•)) to the homomorphism (2.4.7), we obtain the

homomorphism

H i
an((X/V )log, E) −→ H i

rig(U/K, j
†E).

Step 2. In this step, we reduce the theorem to the case that X is

regular and M is the log structure associated to a simple normal crossing



Crystalline Fundamental Groups II 123

divisor. Let (F,MF ) be the fan associated to (X,M) and take a proper

subdivision (F ,MF ) −→ (F,MF ) of (F,MF ) such that, for any x ∈ F , there

exists a natural number r(x) such that MF ,x
∼
= Nr(x) holds. Let (X,M) be

(X,M)×(F,MF ) (F ,MF ) and let h be ‘the projection’ (X,M) −→ (X,M).

(Then X is regular andM is the log structure associated to a simple normal

crossing divisor.) Let us denote the open immersion U = Xtriv ↪→ X by j,

and denote the restriction of E to (X/V )logconv,et by E .
Take a diagram

(X,M)
g← (X(•),M (•))

i(•)→ (P (•), L(•))

as in Step 1. Put (X
(•)
,M

(•)
) := (X,M) ×(X,M) (X(•),M (•)), and let

(P
(0)
, L

(0)
) be (P (0), L(0)) ×(F,MF ) (F ,MF ). For n ∈ N, let (P

(n)
, L

(n)
) be

the (n+ 1)-fold fiber product of (P
(0)
, L

(0)
) over Spf V . Then we have the

following commutative diagram:

(X,M)
g←−−− (X

(•)
,M

(•)
)

i
(•)

−−−→ (P
(•)
, L

(•)
)

h

� h(•)
� h̃(•)

�
(X,M)

g←−−− (X(•),M (•))
i(•)−−−→ (P (•), L(•)).

Now let us note that the log scheme (P
(n)
, L

(n)
) is of Zariski type by Propo-

sition 2.4.5. Moreover, g is a Zariski hypercovering and Xtriv = U holds.

Hence, by the argument of Step 1, the above diagram induces the following

commutative diagram of cohomologies:

H i
an((X/V )log, E) −−−→ H i

rig(U/K, j
†E)

h∗
� �

H i
an((X/V )log, E) −−−→ H i

rig(U/K, j
†E).

One can easily see that j
†E is identical with j†E . Hence the right vertical

arrow is an isomorphism. If the homomorphism h∗ is an isomorphism, we

may replace (X,M) by (X,M) to prove the theorem, that is, the proof of

Step 2 is done. So, in the following, we prove that h∗ is an isomorphism.
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Let sp(n) be the specialization map ]X(n)[log
P (n)−→ X(n) and let ψ(n) be

the morphism ]X
(n)

[log
P

(n)−→]X(n)[P (n) induced by h̃(n). To prove h∗ is iso-

morphic, it suffices to prove that the morphism

(2.4.8) Rsp
(n)
∗ DR(]X(n)[log

P (n) , E) −→ Rsp
(n)
∗ Rψ

(n)
∗ DR(]X

(n)
[log
P

(n) , E)

is a quasi-isomorphism. Let us consider the following diagram

(2.4.9)

(X(n),M (n))
i(n)

−−−→ (P (n), L(n))∥∥∥ π

�
(X(n),M (n))

ν(n)

−−−→ (P (0), L(0)),

where π is the first projection and ν(n) is the composite

(X(n),M (n))
1-st proj.−→ (X(0),M (0))

i(0)

↪→ (P (0), L(0)).

Then ν(n) is a locally closed immersion and π is formally log smooth. Let

sp
(n)
0 be the specialization map

]X(n)[log
P (0)−→ X(n)

and let πK be the morphism

]X(n)[log
P (n)−→]X(n)[log

P (0)

induced by π. Then we have

Rsp
(n)
∗ DR(]X(n)[log

P (n) , E) = Rsp
(n)
0,∗RπK,∗DR(]X(n)[log

P (n) , E)

= Rsp
(n)
0,∗DR(]X(n)[log

P (0) , E),

since π is formally log smooth. On the other hand, let us consider the

following diagram:

(2.4.10)

(X
(n)
,M

(n)
)

i
(n)

−−−→ (P
(n)
, L

(n)
)∥∥∥ π

�
(X

(n)
,M

(n)
)

ν(n)

−−−→ (P
(0)
, L

(0)
),
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where π is the first projection and ν(n) is the composite

(X
(n)
,M

(n)
)

1-st proj.−→ (X
(0)
,M

(0)
)
i
(0)

↪→ (P
(0)
, L

(0)
).

Then the diagrams (2.4.9) and (2.4.10) are compatible with the projections

h(•), h̃(•) (• = 0, n). Let πK be the morphism

]X
(n)

[log
P

(n)−→]X
(n)

[log
P

(0)

induced by π. Then one has the natural morphism of rigid analytic spaces

ψ
(n)
0 :]X

(n)
[log
P

(0)−→]X(n)[log
P (0)

induced by h̃(0). Then we have πK ◦ ψ(n) = ψ
(n)
0 ◦ πK . So we obtain the

quasi-isomorphisms

Rsp
(n)
∗ Rψ

(n)
∗ DR(]X

(n)
[log
P

(n) , E) = Rsp
(n)
0,∗Rψ

(n)
0,∗RπK,∗DR(]X

(n)
[log
P

(n) , E)

= Rsp
(n)
0,∗Rψ

(n)
0,∗DR(]X

(n)
[log
P

(0) , E).

Hence the assertion of Step 2 is reduced to the following claim: The homo-

morphism

(2.4.11) DR(]X(n)[P (0) , E) −→ Rψ
(n)
0,∗DR(]X

(n)
[
P

(0) , E)

is a quasi-isomorphism. By shrinking P (0), we may assume that (P (0), L(0))

is a formally log smooth lifting of (X(n),M (n)) over Spf V and that the

diagram

(X
(n)
,M

(n)
)

ν(n)

−−−→ (P
(0)
, L

(0)
)� h̃(0)

�
(X(n),M (n))

ν(n)

−−−→ (P (0), L(0))

is Cartesian. Then, since E is locally free, the above claim follows from

the quasi-isomorphism Rh̃
(0)
∗ OP

(0) = OP (0) , which is proved in Proposition

2.4.5. Hence the proof of Step 2 is now finished.
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Step 3. In this step, we reduce the assertion to a certain local assertion.

Let X be a smooth scheme over k, M be the log structure on X associated

to a simple normal crossing divisor on X, and take a diagram

(X,M)
g← (X(•),M (•))

i(•)→ (P (•), L(•))

as in Step 1. Let us denote the specialization map ]X(•)[log
P (•)−→ X(•) by

sp(•). Then the homomorphism

H i
an((X/V )log, E) −→ H i

rig(U/K, j
†E)

is obtained by applying H i(X,Rg∗Rsp
(•)
∗ −) = H i(]X(•)[log

P (•) ,−) to the ho-

momorphism

DR(]X(•)[log
P (•) , E) −→ DR(]X(•)[log

P (•) , j
†E).

Note that we have the spectral sequence

Ep,q
1 = Hq(]X(p)[log

P (p) ,−) =⇒ Hp+q(]X(•)[log
P (•) ,−).

Hence it suffices to prove that the homomorphism

H i(]X(n)[log
P (n) ,DR(]X(n)[log

P (n) , E)) −→ H i(]X(n)[log
P (n) ,DR(]X(n)[log

P (n) , j
†E))

is an isomorphism for any i, n ∈ N. Since the assertion is Zariski local on

P (n) (which follows from the spectral sequence induced by Zariski hypercov-

ering of P (n)), we may assume that the closed immersion (X(n),M (n)) ↪→
(P (n), L(n)) admits a factorization

(X(n),M (n)) ↪→ (P̃ (n), L̃(n)) −→ (P (n), L(n)),

where the first arrow is an exact closed immersion and the second

arrow is formally log etale. (Then we have DR(]X(n)[log
P (n) , j

†E) =

DR(]X(n)[P̃ (n) , j†E).) Let us consider the following diagram

(2.4.12)

(X(n),M (n))
i(n)

−−−→ (P (n), L(n))∥∥∥ π

�
(X(n),M (n))

ν(n)

−−−→ (P (0), L(0)),
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where the notations are as those in Step 2. Let πK be as in Step 2. Then,

since π is formally log smooth, we have

H i(]X(n)[log
P (n) ,DR(]X(n)[log

P (n) , E))
∼
= H i(]X(n)[P (0) ,DR(]X(n)[P (0) , E)).

On the other hand, since the composite

P̃ (n) −→ P (n) −→ P (0)

is formally smooth on a neighborhood of U (n) := X(n) ×X U , we have

H i(]X(n)[log
P (n) ,DR(]X(n)[log

P (n) , j
†E)) = H i(]X(n)[P̃ (n) ,DR(]X(n)[P̃ (n) , j

†E))
∼
= H i(]X(n)[P (0) ,DR(]X(n)[P (0) , j†E)).

Hence it suffices to prove that the homomorphism

H i(]X(n)[P (0) ,DR(]X(n)[P (0) , E)) −→ H i(]X(n)[P (0) ,DR(]X(n)[P (0) , j†E))

is an isomorphism. By shrinking P (0), we may assume that P (0) is a formally

smooth lifting of X(n) and that the log structure L(0) is defined by relative

simple normal crossing divisor over Spf V . Hence the proof of the theorem

is reduced to the proposition below. So the proof of the theorem is finished

modulo the following proposition. �

Proposition 2.4.6. Let X be an affine scheme which is smooth of

finite type over k, and let P be a formally smooth lifting over Spf V . Let

(t1, · · · , tn) be a lifting of a regular parameter of X to P . Let r ≤ n be a

natural number and put Di := {ti = 0} ⊂ P,D :=
⋃r

i=1Di, Zi := {ti =

0} ⊂ X,Z :=
⋃r

i=1 Zi. Let L be the log structure on P associated to the pair

(P,D) and let M be the log structure on X associated to the pair (X,Z).

Put U := X − Z and denote the open immersion U ↪→ X by j. Let E be

one of the following:

(1) E = KX/V .

(2) There exists a lifting σ : Spf V −→ Spf V of the a-times iteration of

absolute Frobenius of Spec k (a > 0) and E is an F a-isocrystal on

((X,M)/V )conv,et with respect to σ such that the value of E on the

enlargement ((X,M), (P,L), (X,M) ↪→ (P,L), id) is a free K ⊗V

OP -module.
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For λ ∈ Γ, |π| < λ < 1, let Uλ be PK−[Z]P,λ and denote the open immersion

Uλ ↪→ PK by jλ. Then the canonical homomorphism

H i(PK ,DR(PK , E)) −→ H i(PK ,DR(PK , j
†E))

= H i(PK , lim−→λ→1
jλ,∗j

∗
λDR(PK , E))

is an isomorphism.

In the following, we give a proof of the above proposition. The argument

is essentially due to Baldassarri and Chiarellotto ([Ba-Ch], [Ba-Ch2]). It

suffices to prove the homomorphism

H i(PK ,DR(PK , E)) −→ H i(PK , jλ,∗j
∗
λDR(PK , E))

is an isomorphism for λ ∈ Γ, |π| < λ < 1. First, we consider a certain nice

admissible covering of PK ([Ba-Ch, (4.2)]):

Proposition 2.4.7 (Baldassarri-Chiarellotto). Let η ∈ Γ, λ < η < 1.

For a subset S of [1, r], put

PS,η := {x ∈ PK | |ti(x)| < 1 for i ∈ S, |ti(x)| ≥ η for i ∈ [1, r]− S},
VS,η := {x ∈ PK | |ti(x)| = 0 for i ∈ S, |ti(x)| ≥ η for i ∈ [1, r]− S}.

Then, VS,η is a smooth rigid analytic space (for definition, see [Be3]) and

there exists a retraction qS : PS,η −→ VS,η of the inclusion VS,η −→ PS,η
such that PS,η is a trivial bundle whose fiber is an open disk of radius

1 of dimension s := |S|. (That is, qS induces the isomorphism PS,η
∼
=

VS,η ×Ds
K .) Via the identification PS,η

∼
= VS,η ×Ds

K , we have PS,η ∩ Uλ =

VS,η × Cs
K,λ, where Cs

K,λ is the open annulus {x ∈ Ds
K |λ < |ti(x)| < 1} of

dimension s. Moreover, we have an admissible covering⋃
S⊂[1,r]

PS,η = PK .

When E is in the case (2) in Proposition 2.4.6, let σK : SpmK −→
SpmK be the morphism induced by σ and let σPK

: PK −→ PK be the
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morphism compatible with σK and satisfying σ∗PK
(ti) = tp

a

i . Then we have

σPK
(PS,η1/pa ) ⊂ PS,η, σPK

(VS,η1/pa ) ⊂ VS,η. On the other hand, let σDs
K

be

the morphism Ds
K −→ Ds

K compatible with σK and satisfying σ∗Ds
K

(ti) =

tp
a

i . Then the argument of [Ba-Ch, (4.2)] shows that, via the identification

PS,η
∼
= VS,η × Ds

K , the morphism σPK
on the left hand side is identified

with the morphism σPK
×σK σDs

K
on the right hand side.

Now we reduce Proposition 2.4.6 to a certain assertion on the open

disk over smooth affinoid rigid analytic space. To do this, we make some

observations.

First, let (E,∇) be the integrable log connection on PS,η
∼
= VS,η ×

Ds
K associated to E . Then, since j†E is overconvergent, the integrable

connection is overconvergent in the sense of Baldassarri-Chiarellotto ([Ba-

Ch], [Ba-Ch2]), by [Ba-Ch, §6, pp. 41–42]. Moreover, in the case (2) in

Proposition 2.4.6, the log connection (E,∇) has an F a-structure, that is,

we have an isomorphism σ∗PK
(E,∇)

∼
= (E,∇) on PS,η1/pa .

Next, for m ∈ N, let Im be the set

{(S0, · · · ,Sm) | Sj ⊂ [1, r]}.

For S := (S0, · · · ,Sm) ∈ Im, denote the set
⋂m

j=0 Sj by S and let PS,η be

the rigid analytic space
⋂m

j=0 PSj ,η. Then we have the spectral sequence

Ep,q
1 =

⊕
S∈Ip

Hq(PS,η,−) =⇒ Hp+q(PK ,−).

So it suffices to prove that the homomorphism

H i(PS,η,DR(PK , E)) −→ H i(PS,η, jλ,∗j
∗
λDR(PK , E)) (S ∈ Im,m ≥ 0)

are isomorphisms for some η satisfying λ < η < 1, η ∈ Γ. Note that we have

PS,η := {x ∈ PK | |ti(x)| < 1 for i ∈
m⋃
j=0

Sj , |ti(x)| ≥ η for i ∈ [1, r]− S}.

Let us define VS,η by

VS,η := {x ∈ PK | |ti(x)| = 0 for i ∈ S, |ti(x)| ≥ η for i ∈ [1, r]− S,

|ti(x)| < 1 for i ∈
m⋃
j=0

Sj − S}.



130 Atsushi Shiho

Then, one can see that PS,η ⊂ PS,η and VS,η ⊂ VS,η are admissible open sets.

Moreover, the retraction qS : PS,η −→ VS,η of Proposition 2.4.7 induces the

retraction PS,η −→ VS,η and it induces the isomorphism PS,η
∼
= VS,η ×Ds

K ,

where s = |S|. Note moreover that V
S,η1/pb = VS,η ∩ VS,η1/pb is quasi-Stein

for any b ∈ N.

From the above observations, we can reduce the proof of Proposition

2.4.6 to the following:

Proposition 2.4.8. Let A be a Tate algebra such that S := SpmA is

smooth (in the sense of [Be3]) and let s ∈ N. Denote the open immersion

S×Cs
K,λ ↪→ S×Ds

K =: T by j and the projection T −→ S by π. Let S ⊂ S
be an admissible open set which is quasi-Stein and put T := S ×Ds

V ⊂ T .

Let ω1 be the log differential module

π∗Ω1
S ⊕

s⊕
i=1

OTdlog ti

and put ωq := ∧qω1. Then ω• forms the log de Rham complex. Then:

(1) The canonical homomorphism

H i(T , ω•) −→ H i(T , j∗j
∗ω•)

is an isomorphism.

(2) Assume there exists a sequence of affinoid admissible open sets

S ⊃ S1 ⊃ S2 ⊃ · · ·

and a finite flat morphism σS : S1 −→ S over σK satisfying the

following conditions:

(a) σS(Sn) ⊂ Sn−1 holds.

(b) Sn := S ∩ Sn is quasi-Stein for any n.

Put Tn := Sn×Ds
V , Tn := Sn×Ds

V and let σT := σS ×σK σDs
V
. Let

E be an OT -module of the form π∗F , where F is a locally free A-

module and let ∇ : E −→ E⊗ω1 be an integrable log connection on

T which is overconvergent in the sense of Baldassarri-Chiarellotto.

Assume moreover that there exists an isomorphism

Φ : σ∗T (E,∇)
∼
= (E,∇)|T1 .
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Denote the de Rham complex associated to (E,∇) by DR(E,∇).

Then, for sufficiently large integer n, the canonical homomorphism

H i(Tn,DR(E,∇)) −→ H i(Tn, j∗j
∗DR(E,∇))

is an isomorphism.

Remark 2.4.9. To deduce Proposition 2.4.6 from Proposition 2.4.8, it

suffices to apply the proposition in the case where S = VS,η, Sn = VS,η1/pan

and S = VS,η hold and (E,∇) is the integrable log connection on PS,η

associated to E .

To prove Proposition 2.4.8, we recall the theory of p-adic differential

equations with log pole on unit open disk over a smooth affinoid rigid ana-

lytic space, which is due to Baldassarri-Chiarellotto ([Ba-Ch2]).

Let A,S, T, π be as in Proposition 2.4.8 and let (E,∇) be an OT module

of the form π∗F (F is a locally free A-module) with an overconvergent

integrable log connection. Let o : S −→ T be the zero section and put

ω1
T/S := ω1/π∗Ω1

S . Then, by taking the residue along ti
∂
∂ti

to the composite

E
∇−→ E ⊗ ω1 −→ E ⊗ ω1

T/S ,

we obtain the A-linear endomorphism o∗E −→ o∗E, which we denote by

ϕi. Then we have the following([Ba-Ch2, (1.5.3)]):

Lemma 2.4.10 (Baldassarri-Chiarellotto). There exists a polynomial

Qi with coefficient K such that Qi(ϕi) = 0 holds.

For 1 ≤ i ≤ s, let Pi be the minimal monic polymonial such that Pi(ϕi) =

0 holds. Define Λ(E,∇) ⊂ Ks
(where K is the algebraic closure of K) by

Λ(E,∇) := {(ξ1, · · · , ξs) |Pi(ξi) = 0}.
In the following, we assume Λ(E,∇) ⊂ Ks holds. (By replacing K by

a finite extension, we may assume it.) For ξ := (ξ1, · · · , ξs) ∈ Ks, we call

(E = π∗F,∇) a ξ-simple object if ∇(f) =
∑s

i=1 ξifdlog ti holds for f ∈ F .

Then we have the following ([Ba-Ch2, (6.5.2)]):
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Proposition 2.4.11 (Baldassarri-Chiarellotto). Let us fix a subgroup

Σ ⊂ K which contains Z and which does not contain a p-adic Liouville

number. Then, if Λ(E,∇) is contained in Σs, (E,∇) can be written as a

successive extension of ξ-simple objects for ξ ∈ Λ(E,∇).

Moreover, we have the following ([Ba-Ch, §6]):

Proposition 2.4.12 (Baldassarri-Chiarellotto). Let (E,∇) be a ξ-

simple object, where ξ := (ξ1, · · · , ξs) and each ξi is a p-adic non-Liouville

number which is not contained in Z>0. Then the canonical homomorphism

H i(T,DR(E,∇)) −→ H i(T, j∗j
∗DR(E,∇))

is an isomorphism.

Outline of proof. By taking an admissible covering of S, we can

reduce to the case where F is a free A-module of finite rank. Since T and

the inclusion T ′ := S × Cs
A,λ ↪→ T are quasi-Stein, we have

H i(T,DR(E,∇)) = H i(Γ(T,DR(E,∇))),

H i(T, j∗j
∗DR(E,∇)) = H i(Γ(T ′, j∗DR(E,∇))).

Let us prepare some notations: Put AT := Γ(T,OT ), AT ′ := Γ(T ′,OT ′).

Let F := Γ(S, F ) and E := Γ(T,E) = F ⊗A AT . Let ω1 := ⊕s
i=1ATdlog ti

and let ωq be the q-th exterior power of ω1 over AT . Let DR be the relative

log de Rham complex

0→ E
∇→ E ⊗ ω1 ∇→ · · · ,

where∇ is defined by∇(f) :=
∑s

i=1 ξifdlog ti (f ∈ F ). Put DR
′
:= DR⊗AT

AT ′ . Finally, put Ωq
A := Γ(SpmA,Ωq

SpmA).

Then, by introducing the filtration of Katz-Oda type on Γ(T,DR(E,∇))

and Γ(T ′, j∗DR(E,∇)), we obtain the following commutative diagram:

Ep,q
1 = Hq(DR)⊗ Ωp

A =⇒ Hp+q(Γ(T,DR(E,∇)))� �
Ep,q

1 = Hq(DR
′
)⊗ Ωp

A =⇒ Hp+q(Γ(T ′, j∗DR(E,∇))).
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So it suffices to prove that the canonical homomorphism DR −→ DR
′
is a

quasi-isomorphism. One can prove it by constructing a homotopy explicitly

([Ba-Ch, (6.6)]). �

Now we give a proof of Proposition 2.4.8.

Proof of Proposition 2.4.8. First we prove the assertion (1). Let

S =
⋃∞

j=1 Sj be an admissible covering of S by increasing admissible open

affinoid rigid analytic spaces. Put T j := Sj ×Ds
V . Then, we have

H i(T , ω•) = H i(Γ(T , ω•))

= H i(lim←−j
Γ(T j , ω

•)),

H i(T , j∗j
∗ω•) = H i(Γ(S × Cs

V,λ, ω
•))

= H i(lim←−j
Γ(Sj × Cs

V,λ, ω
•)).

One can see, by using the quasi-Steinness of T j and T , that the projective

system {Γ(T j , ω
q)}j satisfies lim←−

1{Γ(T j , ω
q)}j = 0. By the same reason, we

have lim←−
1{Γ(Sj × Cs

V,λ, ω
q)}j = 0. So we get the following diagram, where

the horizontal lines are exact:

0 −−→ lim←−
1 Hi−1(Γ(T j , ω

•)) −−→ Hi(T , ω•) −−→ lim←−Hi(Γ(T j , ω
•)) −−→ 0� � �

0 −−→ lim←−
1 Hi−1(Γ(Sj × Cs

V,λ, ω
•)) −−→ Hi(T , j∗j∗ω•) −−→ lim←−Hi(Γ(Sj × Cs

V,λ, ω
•)) −−→ 0.

Hence it suffices to prove that the canonical homomorphism

H i(Γ(T j , ω
•)) −→ H i(Γ(Sj × Cs

V,λ, ω
•))

is isomorphism for any i and j. By the quasi-Steinness of T j and Sj , this

homomorphism is nothing but the homomorphism

H i(T j , ω
•) −→ H i(T j , j∗j

∗ω•).

Since Sj is a smooth admissible rigid analytic space and the trivial log

connection (OT j
, d) is a (0, · · · , 0)-simple object, the above homomorphism
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is isomorphic by Proposition 2.4.12. So the proof of the assertion (1) is

finished.

Next let us prove the assertion (2). First, let us prove the following

claim:

Claim. we have Λ((E,∇)|Tn) = {(0, · · · , 0)} for sufficiently large n.

Proof of Claim. Let ϕi,n be the endomorphism ϕi for (En,∇n) and

let Pi,n be the minimal monic polynomial with coefficient K such that

Pi,n(ϕi,n) = 0 holds. Since ϕi,n is the restriction of ϕi to End(i∗E|Sn), we

have Pi,n′(ϕi,n) = 0 if n ≥ n′ holds. Hence Pi,n′ is divisible by Pi,n. So

Pi,n’s are the same for sufficiently large n. We denote it by Pi,∞.

We prove that Pi,∞ has no non-zero root. Let us assume the contrary

and let a be the non-zero root such that |a| is minimal. Let τ : K −→ K

be the endomorphism induced by σ : Spf V −→ Spf V . Since σ∗T (En,∇n) =

(En+1,∇n+1) holds, we have τ(Pi,∞)(pϕi,n+1) = 0, where τ acts on K[x] by

the action on coefficients. Put Q(x) := τ(Pi,∞)(px). Then Q(x) is divisible

by Pi,∞. Since the degrees are the same, we have Q(a) = 0. Then we have

Pi,∞(pτ−1(a)) = τ−1(τ(Pi,∞)(pa)) = τ(Q(a)) = 0.

Since 0 < |pτ−1(a)| = p−1|a| < |a| holds, the above equation contradicts to

the definition of a. Hence the assertion is proved. �

Now take an integer n satisfying the conclusion of the claim and let

Sn =
⋃∞

j=1 Sn,j be an admissible covering of Sn by increasing admissible

open affinoid rigid analytic spaces. Put Tn,j := Sn,j × Ds
V . Then, by the

argument for the proof of the assertion (1), it suffices to prove that the

homomorphism

H i(Tn,j ,DR(E,∇)) −→ H i(Tn,j , j∗j
∗DR(E,∇))

is an isomorphism for any j. Since Sn,j is a smooth admissible rigid analytic

space and we have Λ((E,∇)|Tn,j
) ⊂ Λ((E,∇)|Tn) = {(0, · · · , 0)}, the above

homomorphism is isomorphic by Propositions 2.4.11 and 2.4.12. So the

proof of the assertion (2) is finished and the proof of proposition is now

completed. �
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Since the proof of Proposition 2.4.8 is finished, the proof of Proposition

2.4.6 is also finished and the proof of Theorem 2.4.4 is now completed.

Corollary 2.4.13. Under the assumption of Theorem 2.4.4, we have

the isomorphism

H i((X/V )logconv,et, E)
∼
= H i

rig(U/K, j
†E).

Proof. It is immediate from Theorem 2.4.4 and Corollary 2.3.9. �

Remark 2.4.14. Theorem 2.4.4 is true for more general E ’s: In fact, in

the notations of Propositions 2.4.8 and the paragraphs following it, the con-

ditions Λ(E,∇) ⊂ Σs and ξi /∈ Z>0 (1 ≤ i ≤ s) for any ξ := (ξ1, · · · , ξs) ∈
Λ(E,∇) are the only conditions which we need to apply the results of Bal-

dassarri and Chiarellotto.

Chapter 3. Applications

Throughout this chapter, let k be a perfect field of characteristic p > 0,

let W be the Witt ring of k and let V be a totally ramified finite extension

of W . Denote the fraction field of W by K0 and the fraction field of V

by K. For n ∈ N, put Wn := W ⊗ Z/pnZ. In this chapter, we give some

applications of the results in the previous chapter to rigid cohomologies and

crystalline fundamental groups.

In Section 3.1, we prove results on finiteness of rigid cohomologies with

coefficients. In Section 3.2, we give an alternative proof of Berthelot-Ogus

theorem for fundamental groups, which was proved in the previous paper

[Shi]. We remark that the condition is slightly weakened. In Section 3.3,

we give the affirmative answer to the following problem, which we asked in

[Shi]: Let X be a proper smooth scheme over k, D a normal crossing divisor

and M the log structure associated to the pair (X,D). Put U := X − D
and let x be a k-valued point in U . Then, does the crystalline fundamental

group πcrys
1 ((X,M)/SpfW,x) depend only on U and x? We use the com-

parison between rigid cohomology and log convergent cohomology to solve

this problem.
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3.1. Notes on finiteness of rigid cohomology

In this section, we prove some results on finiteness of rigid cohomologies

with coefficients. In the case of trivial coefficient, the finiteness of rigid

cohomologies is proved by Berthelot ([Be4]). In the case of curves, the

finiteness of rigid cohomologies with coefficients (under certain condition)

is proved by Crew ([Cr2]). In the case that the coefficient is a unit-root

overconvergent F a-isocrystal, the finiteness is proved by Tsuzuki ([Ts2]).

Here we prove the finiteness in the case that the coefficient is an overcon-

vergent F a-isocrystal which can be extended to an F a-isocrystal on log

compactification. This result, together with a version of quasi-unipotent

conjecture, allows us to prove (the conjectual) finiteness result in the case

that the coefficient is an overconvergent F a-isocrystal.

Before proving the finiteness result of rigid cohomologies, we prove the

comparison theorem between log convergent cohomology and log crystalline

cohomology, which is the key to the proof of the finiteness results. Let us

consider the following situation

(3.1.1) (X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is a log smooth morphism of finite type between fine log schemes, N

is a fine log structure on Spf V and ι is the canonical exact closed immersion.

In the previous paper ([Shi, §5.3]), we defined a functor

Φ : Iconv,et((X/W )log) −→ Icrys((X/W )log).

(In the previous paper, we assumed that f is integral, but to define the

functor Φ, this condition is not necessary.) For an object E = K ⊗ F in

Icrys((X/W )log) (F ∈ Ccrys((X/W )log)), we put

H i((X/W )logcrys, E) := Q⊗Z H
i((X/W )logcrys,F).

Then we have the following theorem. (It is a log version of a result of

Berthelot [Og2, (0.7.7)].)

Theorem 3.1.1. Let the notations be as above. Then, for E ∈
I lfconv,et((X/W )log), we have the isomorphism

H i((X/W )logconv,et, E)
∼
= H i((X/W )logcrys,Φ(E)).
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Remark 3.1.2. Here we remark that we may assume that (SpfW,N)

has a chart to prove the above theorem. Indeed, let W ′ be a finite Galois

extension ofW with Galois group G such that (SpfW ′, N) has a chart, and

let

(X ′,M) −→ (Spec k′, N) ↪→ (SpfW ′, N)

be the base change of the diagram (3.1.1) by (SpfW ′, N) −→ (SpfW,N).

Let E ′ be the restriction of E to I lfconv,et((X
′/W ′)log). Then, by Remark

2.3.11, we have the isomorphism

H i((X/W )logconv,et, E)
∼
= H i((X ′/W ′)logconv,et, E ′)G,

and one can prove in the same way the isomorphism

H i((X/W )logcrys,Φ(E)) ∼= H i((X ′/W ′)logcrys,Φ(E ′))G.

One can see (by construction which we will give below) that the homomor-

phism

H i((X ′/W ′)logconv,et, E ′) −→ H i((X ′/W ′)logcrys,Φ(E ′))

is G-equivariant. So, if it is isomorphic, we obtain the desired isomorphism

H i((X/W )logconv,et, E)
∼
= H i((X/W )logcrys,Φ(E))

by taking the G-fixed part. So we may replace W by W ′, that is, we may

assume that (SpfW,N) admits a chart. So, in the following, we assume

this condition.

Before giving a proof of the theorem, we recall some properties of Φ and

we make some observations in local situation.

First, let us consider the following situation: Let (X,M) be as above and

assume that it is of Zariski type, and assume we are given a closed immersion

i : (X,M) ↪→ (P,L) into a fine log formal V -scheme (P,L) of Zariski type

which is formally log smooth over (SpfW,N). Assume moreover that the

diagram

(X,M)
i
↪→ (P,L) −→ (SpfW,N)
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admits a chart

(3.1.2) (QV → N,RP → L, SX →M,Q→ R
α→ S),

such that αgp is surjective. Let (P (n), L(n)) be the (n+ 1)-fold fiber prod-

uct of (P,L) over (SpfW,N) and denote the closed immersion (X,M) ↪→
(P (n), L(n)) induced by i by i(n). Let R(n) be the (n + 1)-fold push out

(in the category of fine monoids) of R over Q and let α(n) : R(n) −→ S

be the homomorphism defined by (r1, · · · , rn+1) �→ α(r1 · · · rn+1). (Then

(P (n), L(n)) has a chart R(n)P (n) → L(n).) Put R̃(n) := (α(n)gp)−1(S),

P̃ (n) := P (n)×̂Spf Zp{R(n)}Spf Zp{R̃(n)} and let L̃(n) be the pull-back of

the canonical log structure on Spf Zp{R̃(n)} to P̃ (n). Then the morphism

i(n) has the factorization

(X,M) ↪→ (P̃ (n), L̃(n)) −→ (P (n), L(n)),

where the first arrow is an exact closed immersion and the second arrow

is formally log etale. Let {(TX,m(P̃ (n)), LX,m(P̃ (n)))}m be the system

of universal enlargements of the exact pre-widening ((X,M), (P̃ (n), L̃(n)),

i(n), id), and let (D(n),MD(n)) be the p-adically completed log PD-envelope

of (X,M) in (P (n), L(n)). Then, in the previous paper, we have shown

that there exists a morphism (D(n),MD(n)) −→ (TX,N (P̃ (n)), LX,N (P̃ (n)))

for sufficiently large N induced by the universality of blow-ups. One can

see that the induced morphism β(n) : (D(n),MD(n)) −→ {(TX,m(P̃ (n)),

LX,m(P̃ (n)))}m to the inductive system is independent of the choice of N .

The morphism β(n) (n = 0, 1, 2) is compatible with projections and diago-

nals, and so they induce the functor

Ψ : Iconv,et((X/W )log) � Str′((X,M) ↪→ (P,L))

−→ HPDI((X,M) ↪→ (P,L)).

(For the definition of HPDI((X,M) ↪→ (P,L)), see [Shi, (4.3.1)].) On the

other hand, we defined the fully-faithful functor

Λ : Icrys((X/W )log) −→ HPDI((X,M) ↪→ (P,L))
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in [Shi, §4.3]. Then the functor

Φ : Iconv,et((X/W )log) −→ Icrys((X/W )log)

is characterized by the equality Ψ = Λ ◦ Φ.

Let us define the functor

γ(n) :

(
coherent sheaf on

]X[logP (n)

)
−→

(
isocoherent sheaf

on D(n)

)

by the composite

(
coherent sheaf on

]X[logP (n)

)
�

 compatible family of

isocoherent sheaves on

{TX,m(P̃ (n))}m


β(n)∗−→

(
isocoherent sheaf

on D(n)

)
.

Then the functor

Iconv,et((X/W )log) � Str′′((X,M) ↪→ (P,L)) −→ HPDI((X,M) ↪→ (P,L))

induced by γ(n) (n = 0, 1, 2) is identical with the functor Ψ.

Now let us consider the following situation: Let (X,M) be as above

and assume that it is of Zariski type, and assume we are given a closed

immersion i : (X,M) ↪→ (P,L) into a fine log formal V -scheme (P,L) of

Zariksi type which is formally log smooth over (Spf V,N). (But we do not

assume the existence of the chart as in the previous paragraph.) Since the

diagram (X,M) ↪→ (P,L) −→ (SpfW,N) admits a chart as in the previous

paragraph Zariski locally, we can define the functor γ(n) (n ∈ N) Zariski

locally. Moreover, one can check that the definition of γ(n) is independent

of the chart. So we can glue the functor γ(n), and so the functor γ(n) is

defined globally. Hence we have the functor

Ψ : Iconv,et((X/W )log) � Str′′((X,M) ↪→ (P,L))

−→ HPDI((X,M) ↪→ (P,L))
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also in this case, and we have the equality Φ ◦ Λ = Ψ.

Keep the notations of the previous paragraph and let E be an object in

the category Iconv,et((X/W )log). Let (E, ε) be the corresponding object in

Str′′((X,M) ↪→ (P,L)). Then (E, ε) defines the integrable log connection

∇ : E −→ E ⊗ ω1
]X[logP

on ]X[log
P and the associated log de Rham complex DR(]X[logP , E). On the

other hand, let (E′, ε′) be an object in HPDI((X,M) ↪→ (P,L)). Let

D1 be the first infinitesimal neighborhood of D in D(1). Then we have

Ker(OD1 −→ OD)
∼
= ω1

D := ω1
P/W |D, by [Kk, (6.5)]. Let us denote the

pull-back of the isomorphism ε′ to D1 by ε′1 : OD1 ⊗ E′ ∼−→ E′ ⊗ OD1 .

Then, one can define the log connection

∇′ : E′ −→ E′ ⊗ ω1
D

by ∇′(e) := ε′1(1⊗ e)− e⊗ 1. Assume that (E′, ε′) comes from an object E
in Icrys((X/W )log). Then the log connection (E′,∇′) is integrable: Indeed,

put E := K0 ⊗ F (F ∈ Ccrys((X/W )log) and let Fn be the restriction of

F to Ccrys((X/Wn)log). Then, by [Kk, (6.2)], we have the log connections

∇′n : Fn,D −→ Fn,D⊗ω1
D and they are integrable. Since we have (E′,∇′) :=

K0⊗W lim←−n
(Fn,D,∇′n,D), (E′,∇′) is also integrable. In this case, we denote

the log de Rham complex associated to (E′,∇′) by DR(D, E).
Now let E be an object in Iconv,et((X/W )log) and let (E, ε) be the asso-

ciated object in Str′′((X,M) ↪→ (P,L)). On the other hand, put (E′, ε′) :=

Ψ(E) = Λ(Φ(E)). Then we have the integrable log connection (E,∇) on

]X[log
P associated to (E, ε) and the integrable log connection (E′,∇′) on

D associated to (E′, ε′). Now let us note that, for any coherent sheaf F

on ]X[log
P (n), we have the functorial homomorphism sp∗F −→ γ(n)(F ) on

DZar = XZar. In particular, we have the homomorphism

sp∗(E ⊗ ωq

]X[logP

) −→ E′ ⊗ ωq
D

for q ∈ N. Let us prove the following lemma:
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Lemma 3.1.3. With the above notations, the following diagram is com-

mutative:

(3.1.3)

sp∗E
sp∗∇−−−→ sp∗(E ⊗ ω1

]X[logP

)� �
E′

∇′
−−−→ E′ ⊗ ω1

D.

Proof. We may work Zariski locally. So we may assume the exis-

tence of the chart (3.1.2). So we can define the fine log formal schemes

(P̃ (n), L̃(n)) as above. Let P̃ 1 be the first infinitesimal neighborhood of

P̃ (0) in P̃ (1). One can define the functor

γ1 :

(
coherent sheaf on

]X[log
P̃ 1

)
−→

(
isocoherent sheaf

on D1

)

in the same way as the functor γ(n). Let pi :]X[P̃ 1−→]X[P̃ (0)=]X[logP (i =

1, 2) be the projections and denote the pull-back of ε to ]X[P̃ 1 by ε1 :

p∗2E
∼−→ p∗1E. By the definitions of ∇ and ∇′, it suffices to show the

equality γ1(ε1) = ε′1. Let us consider the following commutative diagram:

D(1) −−−→ {TX,m(P̃ (1))}m� �
D1 −−−→ {TX,m(P̃ 1)}m.

One can see that γ1(ε1) is obtained by pulling back ε by the composite

D1 −→ {TX,m(P̃ 1)}m −→ {TX,m(P̃ (1))}m,

and that ε′1 is obtained by pulling back ε by the composite

D1 −→ D(1) −→ {TX,m(P̃ (1))}m.

So the assertion follows from the commutativity of the above diagram. �
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By the diagram (3.1.3), we obtain the morphism of complexes

(3.1.4) sp∗DR(]X[logP , E) −→ DR(D,Φ(E)).

Now let us note the following lemma:

Lemma 3.1.4. Let the notations be as above and let E := K0⊗F be an

object in Icrys((X/W )log). Denote the projection (X/W )log,∼crys −→ X∼et −→
X∼Zar by ũ. Then we have

Q⊗Z Rũ∗F = DR(D, E).

Proof. Denote the canonical morphism of topoi X∼et −→ X∼Zar by ε.

Then we have Rε∗ε∗DR(D, E) = DR(D, E), since each term of DR(D, E) is

isocoherent. Let u be the projection (X/W )log,∼crys −→ X∼et. Then it suffices

to prove the quasi-isomorphism

Q⊗Ru∗F = ε∗DR(D, E).

Let Fn be the restriction of F to Ccrys((X/Wn)log). Then, by [Kk, (6.4)]

and the limit argument of [Be-Og, (7.23)], we have

Ru∗F = lim←−n
ε∗DR(D,Fn) = ε∗ lim←−n

DR(D,Fn).

By tensoring with Q over Z, we obtain the assertion. �

Now we give a proof of Theorem 3.1.1:

Proof of Theorem 3.1.1. Take a good embedding system

(X,M)
g← (X(•),M (•))

i(•)→ (P (•), L(•)).

(Note that there exists a good embedding system, since we have assumed

that (SpfW,N) admits a chart in Remark 3.1.2.) Let us denote the special-

ization map ]X(•)[log
P (•)−→ X(•) by sp(•). Let (D(n),MD(n)) be the

p-adically completed log PD-envelope of (X(n),M (n)) in (P (n), L(n)).
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Denote the restriction of E (resp. Φ(E)) to Iconv,et((X
(•)/W )log) (resp.

Icrys((X
(•)/W )log)) by E(•) (resp. Φ(E)(•)). Then, since one has Φ(E(•)) =

Φ(E)(•), we have the homomorphism

(3.1.5) sp
(•)
∗ DR(]X(•)[log

P (•) , E(•)) −→ DR(D(•),Φ(E)(•))

induced by the homomorphism (3.1.4). By applying H i(X,Rg∗−), we ob-

tain the homomorphism

(3.1.6) H i
an((X/W )log, E) −→ H i((X/W )logcrys,Φ(E))

(The expression of the right hand side follows from Lemma 3.1.4 and the

cohomological descent.) By Corollary 2.3.9, it suffices to prove that the

homomorphism (3.1.6) is an isomorphism. To prove this, it suffices to show

the homomorphism

(3.1.7) sp
(n)
∗ DR(]X(n)[log

P (n) , E(n)) −→ DR(D(n),Φ(E)(n))

induced by (3.1.5) is a quasi-isomorphism. To prove this, we may assume

that P (n) and X(n) are affine. Let us take a formally log smooth lifting

(X(n),M (n)) ↪→ (P (n), L(n)) of (X(n),M (n)) over (SpfW,N). Then, both

sides of (3.1.7) is unchanged if we replace (P (n), L(n)) by

(P (n), L(n))×̂(Spf W,N)(P
(n), L(n)) and then by (P (n), L(n)). So we may as-

sume that (P (n), L(n)) is a formally log smooth lifting of (X(n),M (n)) over

(SpfW,N). Then, it is easy to see that sp
(n)
∗ DR(]X(n)[log

P (n) , E(n)) is identical

with DR(D(n),Φ(E)(n)) in this case. So the assertion is proved and hence

the proof of the theorem is now finished. �

We have the following corollary (cf. [Og2, (0.7.9)]):

Corollary 3.1.5. Let N be a fine log structure on SpfW and denote

the pull-back of it to Spf V by the same letter. Assume given the following

diagram

(X,M)
f−→ (Spec k,N)

ι
↪→ (Spf V,N),

where f is a proper log smooth morphism between fine log formal

schemes and ι is the canonical exact closed immersion. Then, for E ∈
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Iconv,et((X/V )log), the log convergent cohomology H i((X/V )logconv, E) is a

finite-dimensional K-vector space.

Proof. Let V ′ be the Galois closure of W ⊂ V with Galois group

G. Then, by the base-change property of log convergent cohomology with

respect to Spf V ′ −→ Spf V , we may assume that V = V ′ holds. For g ∈ G,

let σg : Iconv,et((X/V )log) −→ Iconv,et((X/V )log) be the functor induced

by g : Spf V −→ Spf V and put E ′ :=
⊕

g∈G σg(E). Then E is a direct

summand of E ′ and there exists an object E0 in Iconv,et((X/W )log) such

that E ′ is the pull-back of E0 to Iconv,et((X/V )log). Again by base-change

property, we are reduced to show the finite dimensionality of the K0-vector

space H i((X/W )logconv, E0). By Theorem 3.1.1, we have the isomorphism

H i((X/W )logconv, E0)
∼
= H i((X/W )logcrys,Φ(E0)),

and the finite dimensionality of H i((X/W )logcrys,Φ(E0)) follows from the ar-

gument in [Be-Og, §7] (which is valid also in the case of log crystalline

cohomology). �

Remark 3.1.6. The assumption ‘N is defined on SpfW ’ can be weak-

ened to the assumption ‘N is defined on Spf V1, where V1 is a sub complete

discrete valuation ring of V with absolute ramification index < p−1’, since

the theory of log crystalline cohomology works well over such a base. We

expect that the above corollary is valid without these assumptions. If one

has the reasonable theory of log crystalline site with level m (m ∈ N), one

will be able to remove these assumptions.

Corollary 3.1.7. Let (X,M) be an fs log scheme of Zariski type

which is proper and log smooth over k. Let E be one of the following:

(1) E = KX/V .

(2) There exists a lifting σ : Spf V −→ Spf V of the a-times iteration

of the absolute Frobenius of Spec k (a > 0) and E is a locally free

F a-isocrystal on (X,M) over Spf V with respect to σ.

Put U := Xtriv and denote the open immersion U ↪→ X by j. Then the rigid

cohomology group H i
rig(U/K, j

†E) is a finite-dimensional K-vector space.

Proof. Immediate from Theorem 2.4.4 and Corollary 3.1.5. �
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Now we state a version of quasi-unipotent conjecture on overconver-

gent F a-isocrystals and prove that this conjecture implies the finiteness

of rigid cohomology in the case that the coefficient is an overconvergent

F a-isocrystal.

Conjecture 3.1.8 (A version of quasi-unipotent conjecture). Let us

assume that there exists a lifting σ : Spf V −→ Spf V of the a-times iteration

of the absolute Frobenius of Spec k. Let X be a smooth scheme of finite type

over k and let E be an overconvergent F a-isocrystal on X over Spf V with

respect to σ. Then, there exist:

(1) A proper surjective generically etale morphism f : X1 −→ X,

(2) An open immersion j : X1 ↪→ X1 into a projective smooth variety

such that D := X1 −X1 is a simple normal crossing divisor,

(3) An F a-isocrystal F on (X1,M) (where M is the log structure asso-

ciated to the pair (X1, D)) over Spf V ,

such that j†F ∼= f∗E holds in I†(X1).

This conjecture is true in the case that E is trivial by the alteration

theorem of de Jong ([dJ]). Moreover, this conjecture is true if E is a unit-

root overconvergent F a-isocrystal ([Ts1]). This conjecture can be regarded

as a p-adic analogue of the quasi-unipotentness of l-adic sheaves. Then we

have the following theorem:

Theorem 3.1.9. Let us assume that Conjecture 3.1.8 is true. Let us

assume that there exists a lifting σ : Spf V −→ Spf V of the a-times iteration

of the absolute Frobenius of Spec k. Let X be a smooth scheme of finite type

over k and let E be an overconvergent F a-isocrystal on X with respect to σ.

Then the rigid cohomology H i
rig(X/K, E) is a finite dimensional K-vector

space.

Proof. The method of proof is the same as that of [Be4, Théorème

3.1] and [Ts2, Theorem 6.1.1]. So we only sketch the outline.

By induction, we prove the following two assertions:

(a)n H i
rig(X/K, E) is finite dimensional for any X which is smooth over k

with dimX ≤ n and for any overconvergent F a-isocrystal E on X.
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(b)n H i
Z,rig(X/K, E) is finite dimensional for any closed immersion Z ↪→ X

of a scheme Z of finite type over k with dimZ ≤ n into a smooth scheme

X over k and for any overconvergent F a-isocrystal E on X.

First we prove the implication (b)n−1 + (a)n =⇒ (b)n. To prove (b)n, we

may assume that Z is reduced. By long exact sequence of excision and

the hypothesis (b)n−1, we may assume that the closed immersion Z ↪→ X

is a smooth pair, and that there exists a lifting Z ↪→ X of Z ↪→ X over

SpecV such that Z,X are smooth over V and that there exists an etale

morphism X −→ SpecV [Nd] for some d. Then, by [Ts2, Theorem 4.1.1],

we have the isomorphism H i
Z,rig(X/K, E)

∼
= H i−2c

rig (Z/K, E|Z), where c :=

dimX − dimZ. So the hypothesis (a)n implies the finite-dimensionality of

H i
Z,rig(X/K, E).
Next, we prove the implication (b)n =⇒ (a)n+1. Let X, E be as in the

assertion (a)n+1, and let f : X1 −→ X, j : X1 ↪→ X1,M and F as in

Conjecture 3.1.8. Let U := SpecA0 ⊂ X be an affine open subscheme such

that the morphism f |f−1(U) : f−1(U) −→ U is etale. Then it is finite etale.

Put f−1(U) := SpecB0. First, we have the isomorphism

H i
rig(X1/K, f

∗E) ∼= H i
rig(X1/K, j

†F)

and it is finite-dimensional by Corollary 3.1.7. By long exact sequence

of excision and the hypothesis (b)n, the group H i
rig(U1/K, f

∗E) is finite-

dimensional. Now note the following claim:

Claim. The homomorphism

f∗ : H i
rig(U/K, E) −→ H i

rig(U1/K, f
∗E)

is an injection into a direct summand.

Proof of Claim. The proof is almost the same as that in [Be4,

Proposition 3.6]. Let ϕ0 : A0 −→ B0 be the ring homomorphism induced

by f . Then we have the weakly completed V -algebras A†, B† and a ring

homomorphism ϕ : A† −→ B† lifting ϕ0. By [Be4, Proposition 3.6], ϕ is

finite flat. On the other hand, it is known that one can associate to E the de

Rham complex E ⊗ Ω•
A† (where E is a finitely generated A†-module) such
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that H i
rig(U/K, E) = H i(E⊗Ω•

A†) holds (for example, see [Ts2, (2.2)]). Via

this correspondence, the de Rham complex associated to f∗E is identical

with (E ⊗ Ω•
A†) ⊗A† B†. Since B† is finite flat over A†, one can define the

trace morphism

tr : (E ⊗ Ω•A†)⊗A† B† −→ E ⊗ Ω•A†

such that the composite with the natural inclusion

E ⊗ Ω•A† −→ (E ⊗ Ω•A†)⊗A† B†

(note that it corresponds to f∗) is equal to the multiplication by [B† :

A†]. Hence H i
rig(U/K, E) = H i(E ⊗ Ω•

A†) is a direct summand of H i((E ⊗
Ω•

A†)⊗A† B†) = H i
rig(U1/K, f

∗E) via the homomorphism f∗. �

By the claim, H i
rig(U/K, E) is finite-dimensional. Again by the long

exact sequence of excision and the hypothesis (b)n, we obtain the finite-

dimensionality of H i
rig(X/K, E), as desired. �

3.2. A remark on Berthelot-Ogus theorem for fundamental

groups

In this section, we give an alternative proof of Berthelot-Ogus theorem

for fundamental groups, which was proved in the previous paper [Shi]. We

remark that here we prove the theorem under a slightly weaker assumption.

The main result in this section is as follows:

Theorem 3.2.1 (Berthelot-Ogus theorem for π1). Assume we are

given the following commutative diagram of fine log schemes

(Xk,M) ↪→ (X,M) ←↩ (XK ,M)

↓ f ↓ ↓
(Spec k,N) ↪→ (SpecV,N) ←↩ (SpecK,N)

↘ ↓
(SpecW,N),

where the two squares are Cartesian, f is proper and log smooth. Assume

moreover that H0
dR((X,M)/(Spf V,N)) = V holds, and that we are given

a V -valued point x of Xf -triv. Denote the special fiber (resp. generic fiber)
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of x by xk (resp. xK). Then there exists a canonical isomorphism of pro-

algebraic groups

πcrys
1 ((Xk,M)/(SpfW,N), xk)×K0 K

∼
= πdR

1 ((XK ,M)/(SpecK,N), xK).

Remark 3.2.2. We remark here the difference of the assumption in

the above theorem and that in the Berthelot-Ogus theorem for fundamental

groups proved in the previous paper ([Shi, (5.3.2)]). First, we do not need

the assumption ‘f is integral’ to prove the theorem, which we needed in

[Shi, (5.3.2)]. Second, we do not need the assumption ‘Xk is reduced’ to

prove the theorem, which we also needed in [Shi, (5.3.2)].

Proof. Let X̂ be the p-adic completion of X. First we prove the

equivalence of categories

NC((XK ,M)/(SpecK,N)) � N Iconv,et((Xk,M)/(Spf V,N)).

Let α be the composite

N Iconv,et((Xk,M)/(Spf V,N)) � N Iconv((X̂,M)/(Spf V,N))

ι−→ N Iinf((X̂,M)/(Spf V,N)),

where ι is the functor defined in [Shi, §5.2]. Since we have the equivalence

of categories

(3.2.1) N Iinf((X̂,M)/(Spf V,N)) � NC((XK ,M)/(SpecK,N))

by [Shi, (3.2.16)], it suffices to prove that the functor α gives an equivalence

of categories. By [Shi, (5.2.2)], we may work formally etale locally on X̂. So

we may assume that (X̂,M) is affine of Zariski type. (Then so is (Xk,M).)

To prove that α gives an equivalence of categories, it suffices to show that

there exists canonical isomorphisms

(3.2.2) H i((Xk/V )logconv,et, E)
∼−→ H i((X̂/V )loginf , α(E)) (i = 0, 1)
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for any E ∈ N Iconv,et((Xk/V )log). By log convergent Poincaré lemma and

Theorem B of Kiehl, we have the isomorphism

H i((Xk/V )logconv,et, E)
∼
= H i(X, sp∗DR(X̂K , E)).

(Strictly speaking, we should enlarge V and take Galois-invariant part if

(Spf V,N) does not admit a chart. But the above isomorphism remains

true also in this case.) On the other hand, the object corresponding to

α(E) via the equivalence (3.2.1) is nothing but the formal log connection

sp∗DR(X̂K , E)0 −→ sp∗DR(X̂K , E)1. By the interpretation of extension

class in the category N Ĉ((X̂,M)/(Spf V,N)), we have

H i((X/V )loginf , E)
∼
= H i(X, sp∗DR(X̂K , E)0 −→ sp∗DR(X̂K , E)1)
∼
= H i(X, sp∗DR(X̂K , E))

for i = 0, 1. Hence we have the canonical isomorphism (3.2.2). So we

obtained the equivalence of categories

NC((XK ,M)/(SpecK,N)) � N Iconv,et((Xk,M)/(Spf V,N)).

Since we haveH0
dR((XK ,M)/(SpecK,N)) = K, we obtain the isomorphism

H0((X/V )logconv,et,KX/V )
∼
= K

and so the above two categories are neutral Tannakian. (The neutrality

follows from the existence of the base points xK and xk.) So we obtain the

isomorphism of fundamental groups

(3.2.3) πconv
1 ((Xk,M)/(Spf V,N), xk)

∼
= πdR

1 ((XK ,M)/(SpecK,N), xK).

Next, since we have the base-change property

H0((X/V )logconv,et,KX/V )
∼
= H0((X/W )logconv,et,KX/W )⊗K0 K,

we have H0((X/W )logconv,et,KX/W ) = K0. So we have the base-change prop-

erty of fundamental groups

πconv
1 ((Xk,M)/(Spf V,N), xk)(3.2.4)

∼
= πconv

1 ((Xk,M)/(SpfW,N), xk)×K0 K,



150 Atsushi Shiho

by [Shi, (5.1.13)]. By the isomorphisms (3.2.3) and (3.2.4), the proof is

reduced to the proof of the isomorphism

πconv
1 ((Xk,M)/(SpfW,N), xk)

∼
= πcrys

1 ((Xk,M)/(SpfW,N), xk),

that is, to the proof of the equivalence of the functor

Φ : N Iconv,et((Xk,M)/(SpfW,N)) −→ N Icrys((Xk,M)/(SpfW,N))

defined in [Shi, (5.3.1)]. This follows from the canonical isomorphisms

H i((X/W )logconv,et, E)
∼
= H i((X/W )logcrys,Φ(E)) (i = 0, 1)

for E ∈ N Iconv,et((X/W )log), which is proved in Theorem 3.1.1. �

3.3. Independence of compactification for crystalline

fundamental groups

In the previous paper (Shi, [§4.2]), we considered the following problem:

Problem 3.3.1. Let X be a connected proper smooth scheme over k

and let D ⊂ X be a normal crossing divisor. Denote the log structure on

X associated to D by M . Put U := X −D, and let x be a k-valued point

of U . Then, is the crystalline fundamental group πcrys
1 ((X,M)/SpfW,x)

of (X,M) over SpfW with base point x independent of the choice of the

compactification (X,D) of U as above?

In the previous paper, we gave the affirmative answer under the condition

dimU ≤ 2. We needed this condition because we used the resolution of

singularities due to Abhyankar ([A]) and the theorem on the structure of

proper birational morphism between surfaces due to Shafarevich ([Sha]). In

this section, we give the affirmative answer to the above question in general

case. We use the category of nilpotent overconvergent isocrystals to prove

this problem.

First, we recall the rigid fundamental group for a k-scheme, which is due

to Chiarellotto and Le Stum ([Ch], [Ch-LS], [Ch-LS2]). Let X be a scheme

which is separated and of finite type over k. Then, by [Be3, 2.3.3(iii)], the

category I†(X) of overconvergent isocrystals is an abelian tensor category,
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and it is easy to check that it is rigid. Let us denote the unit object of the

category I†(X) by O. (In local situation, it is identical with (j†O]X[P , id).)

By [Be3, (2.2.7)] and [Ch-LS2, (1.3.1)], we have the isomorphisms

HomI†(X)(E , E ′) = H0
rig(X/K,Hom(E , E ′)),

ExtI†(X)(E , E ′) = H1
rig(X/K,Hom(E , E ′)),

for E , E ′ ∈ I†(X). Let us note the following lemma:

Lemma 3.3.2. Let X be a scheme which is separated and of finite

type over k and assume that H0
rig(X/K,O) is a field. Then the category

N I†(X)(:= the nilpotent part ([Shi, (1.1.9)]) of the abelian tensor category

I†(X)) is a Tannakian category.

Proof. Since I†(X) is an abelican tensor category and End(O) =

H0
rig(X/K,O) is a field, the category N I†(X) is an abelian category by

[Shi, (1.2.1)]. Moreover, one can check easily that N I†(X) has a tensor

structure which makes it a rigid abelian tensor category. So it suffices to

prove the existence of the fiber functor N I†(X) −→ VecL for a field L.

Let X ⊂ X be a compactification of X, and let U ⊂ X be an affine

open subset. Put U := U ∩X. (Note that it is not empty.) Take a closed

immersion U ↪→ P of U into a formal V -scheme P which is formally log

smooth over Spf V . Since the specialization map PK −→ P is surjective

by [Be3, (1.1.5)], the admissible open set ]U [P in ]U [P is non-empty. Let

SpmA ⊂ ]U [P be a non-empty admissible open set of ]U [P and take a

maximal ideal I of A. Put L := A/I. Then we can define the functor

ξ : N I†(X) −→ VecL as the composite

N I†(X) −→ (A-modules)

−→ VecL,

where the first arrow is defined by the evaluation at the rigid analytic

space SpmA and the second arrow is induced by the ring homomorphism

A −→ A/I = L. Then one can see that this functor is an exact tensor

functor, noting the fact that the essential image of the first arrow consists

of free modules. Then, by [D2, (2.10)], ξ is faithful. Hence ξ is a fiber

functor and so we are done. �
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So we can define the rigid fundamental group as follows. This definition

is due to Chiarellotto and Le Stum ([Ch], [Ch-LS], [Ch-LS2]).

Definition 3.3.3 (Definition of πrig
1 ). Let X be a scheme which is

separated and of finite type over k and let x be a k-valued point of X.

Then we define the rigid fundamental group of X over K with base point

x by

πrig
1 (X/K, x) := G(N I†(X), ωx),

where ωx is the fiber functor

N I†(X) −→ N I†(x) � VecK

induced by the closed immersion x ↪→ X and the notation G(· · · ) is as in

Theorem 1.1.8 in [Shi].

The main result in this section is as follows:

Theorem 3.3.4. Let (X,M) be one of the following:

(1) (X,M) is an fs log scheme of Zariski type which is proper and log

smooth over k.

(2) X is a proper smooth scheme of finite type over k and M is the log

structure associated to a normal crossing divisor on X.

Put U := Xtriv and denote the open immersion U ↪→ X by j. Then there

exists the canonical equivalence of categories

N Iconv,et((X/V )log) � N I†(U).

In particular, for a k-valued point x of U , we have the isomorphism

πconv
1 ((X,M)/Spf V, x)

∼
= πrig

1 (U/K, x).

Proof. First, let us consider the case (1). In this case, we prove that

the functor

j† : Iconv,et((X/V )log) −→ I†(U,X) = I†(U)
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induces the equivalence of categories. To prove it, it suffices to prove that

the homomorphisms induced by j†

H i((X/V )logconv, E) −→ H i
rig(U/K, j

†E) (i = 0, 1)

are isomorphisms for any E ∈ N Iconv,et((X,M)/(Spf V,N)). By five lemma,

it suffices to prove that the homomorphisms

H i((X/V )logconv,KX/V ) −→ H i
rig(U/K,O)

are isomorphisms for any i ∈ N. It is already proved in Theorems 2.4.4. So

we are done.

Next, let us consider the case (2). Note that there exists a log etale

proper birational morphism

f : (X,M) −→ (X,M)

which is defined by a composition of blow-ups whose centers are smooth

self-intersections of irreducible components of D such that X is smooth

and M is the log structure associated to a simple normal crossing divisor

f−1(D)red on X. Then we have Xtriv = Xtriv = U and Rf∗OX = OX . Now

let us note the following proposition:

Proposition 3.3.5. Let f : (X,M) −→ (X,M) be as above and

let E be an object in I lfconv,et((X/V )log). Denote the restriction of E to

I lfconv,et((X/V )log) by E. Then the homomorphism

H i((X/V )logconv,et, E) −→ H i((X/V )logconv,et, E)

induced by f is an isomorphism.

Proof. By log convergent Poincaré lemma, it suffices to show that the

homomorphism

H i
an((X/V )log, E) −→ H i

an((X/V )log, E)

induced by f is an isomorphism.
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Let us take the diagram

(X,M)
g←− (X(0),M (0))

i(0)

↪→ (P (0), L(0)),

where g is an etale covering such that M (0) is associated to a simple nor-

mal crossing divisor on X(0), and (P (0), L(0)) is a log smooth lifting of

(X(0),M (0)) over Spf V such that P (0) is formally log smooth over Spf V

and that L(0) is associated to a relative simple normal crossing divisor on

P (0) over Spf V . For n ∈ N, let (X(n),M (n)) (resp. (P (n), L(n))) be the

(n + 1)-fold fiber product of (X(0),M (0)) (resp. (P (0), L(0))) over (X,M)

(resp. Spf V ), and put (X
(n)
,M

(n)
) := (X,M)×(X,M) (X(n),M (n)). Then

the morphism

(X
(0)
,M

(0)
) −→ (X(0),M (0))

is induced by a subdivision of fan. So this morphism fits into a Cartesian

diagram

(X
(0)
,M

(0)
)

i
(0)

−−−→ (P
(0)
, L

(0)
)� g(0)

�
(X(0),M (0))

i(0)−−−→ (P (0), L(0)),

where g(0) is a formally log etale morphism. Then we have Rg
(0)
∗ OP

(0) =

OP (0) . Let (P
(n)
, L

(n)
) be the (n + 1)-fold fiber product of (P

(0)
, L

(0)
)

over Spf V . Let g(n) be the morphism (P
(n)
,M

(n)
) −→ (P (n), L(n)) in-

duced by g(0) and denote the associated morphism of rigid analytic spaces

]X
(n)

[log

P
(n)−→]X(n)[log

P (n) by g
(n)
K . Let sp(n) :]X(n)[log

P (n)−→ X(n) be the spe-

cialization map. Then, it suffices to prove the quasi-isomorphism

Rsp
(•)
∗ Rg

(•)
K,∗DR(]X

(•)
[log
P

(•) , E)
∼
= Rsp

(•)
∗ DR(]X(•)[log

P (•) , E).

To prove this, we may replace • by n. Since (X(n),M (n)) is etale (in

classical sense) over (X(0),M (0)), there exists a formally etale morphism

(P
(n)
1 , L

(n)
1 ) −→ (P (0), L(0)) such that (P

(n)
1 , L

(n)
1 )×(P (0),L(0)) (X(0),M (0)) =
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(X(n),M (n)) holds. Let (P
(n)
2 , L

(n)
2 ) be the (n + 1)-fold fiber product of

(P
(n)
1 , L

(n)
1 ) over Spf V . Then we have the commutative diagram

(X(n),M (n)) (X(n),M (n)) (X(n),M (n))� � �
(P

(n)
1 , L

(n)
1 )

π1←−−− (P
(n)
2 , L

(n)
2 )

π2−−−→ (P (n), L(n)),

where the vertical arrows are closed immersions and πi (i = 1, 2) are for-

mally log smooth. Let sp
(n)
i : ]X(n)[log

P
(n)
i

−→ X(n) be the specialization map

(i = 1, 2). Then we have the quasi-isomorphisms

Rsp
(n)
∗ DR(]X(n)[log

P (n) , E) = Rsp
(n)
2,∗DR(]X(n)[log

P
(n)
2

, E)

= Rsp
(n)
1,∗DR(]X(n)[log

P
(n)
1

, E).

On the other hand, let (P
(n)
1 , L

(n)
1 ) := (P

(n)
1 , L

(n)
1 )×(P (0),L(0)) (P

(0)
, L

(0)
)

and let (P
(n)
2 , L

(n)
2 ) be the (n + 1)-fold fiber product of (P

(n)
1 , L

(n)
1 ) over

Spf V . Denote the morphism

(P
(n)
i , L

(n)
i ) −→ (P

(n)
i , L

(n)
i )

induced by g(n) by g
(n)
i and denote the associated morphism of rigid analytic

spaces ]X
(n)

[log
P

(n)
i

−→]X(n)[log
P

(n)
i

by g
(n)
i,K . Then, since the morphisms

(P
(n)
2 , L

(n)
2 ) −→ (P

(n)
, L

(n)
),

(P
(n)
2 , L

(n)
2 ) −→ (P

(n)
1 , L

(n)
1 ),

induced by π1, π2 are formally log smooth, we have the quasi-isomorphisms

Rsp
(n)
∗ Rg

(n)
K,∗DR(]X

(n)
[log
P

(n) , E) = Rsp
(n)
2,∗Rg

(n)
2,K,∗DR(]X

(n)
[log
P

(n)
2

, E)

= Rsp
(n)
1,∗Rg

(n)
1,K,∗DR(]X

(n)
[log
P

(n)
1

, E).
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So it suffices to prove the quasi-isomorphism

Rsp
(n)
1,∗Rg

(n)
1,K,∗DR(]X

(n)
[log
P

(n)
1

, E) ∼= Rsp
(n)
1,∗DR(]X(n)[log

P
(n)
1

, E).

Now let us note the equalities ]X
(n)

[log
P

(n)
1

= P
(n)
1,K , ]X(n)[log

P
(n)
1

= P
(n)
1,K . Since

the each term of DR(]X(n)[log
P

(n)
1

, E) is a locally free O
P

(n)
1,K

-module, it suffices

to prove that Rg
(n)
1,K,∗OP

(n)
1,K

= O
P

(n)
1,K

holds. This follows from the flat base

change and the quasi-isomorphism Rg∗OP
(0) = OP (0) , which we already

remarked. Hence the assertion is proved and so the proof of the proposition

is finished. �

Proof of Theorem 3.3.4 (continued). By Proposition 3.3.5, the

functor

f∗ : N Iconv,et((X/V )log) −→ N Iconv,et((X/V )log)

induced by f∗ is an equivalence of categories. Let us denote the open

immersion U ↪→ X by j. We define the functor

j†f : N Iconv,et((X/V )log) −→ N I†(U)

by the composite j
† ◦ f∗. Then, since f∗ and j

†
are equivalences, j†f is also

an equivalence of categories.

Note that the functor j†f a propri depends on the choice of f . We prove

that the functor j†f is in fact independent of the choice of f . Note that we

have the following commutative diagram for any f as above:

(3.3.1)

N Iconv,et((X/V )log)
j†f−−−→ N I†(U)

j∗
� r

�
N Iconv,et(U/V ) N Iconv,et(U/V ),

where the functors j∗ and r are the functors defined in Section 2.4. Suppose

for the moment the injectivity of the homomorphism

(3.3.2) H1((X/V )logconv,et,KX/V ) −→ H1((U/V )conv,et,KU/V ),
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which we prove in the proposition below. Note that we have the isomor-

phism

H0((X/V )logconv,et,KX/V )
∼
= H0((U/V )conv,et,KU/V ).

Indeed, since we may replace k by a finite extension to prove it, we may

assume the existence of a k-valued point of U , and in this case, both sides

are equal to K by the argument in the proof of [Shi, (5.1.11)]. Then, by

five lemma, one can see that the homomorphism

H0((X/V )logconv,et, E) −→ H0((U/V )conv,et, E)

is an isomorphism for any E in N Iconv,et((X/V )log). Hence j∗ is fully-

faithful. Then the diagram (3.3.1) implies the fact that the functor j†f is

independent of the choice of f . So the proof is reduced to the injectivity

of the homomorphism (3.3.2). Hence the proof of the theorem is finished

modulo the proposition below. �

Proposition 3.3.6. Let X be a smooth scheme of finite type over k

and and let M be the log structure associated to a normal crossing divisor

D on X. Put U := X −D and denote the open immersion U ↪→ X by j.

Then the homomorphism

j∗ : H1((X/V )logconv,et,KX/V ) −→ H1((U/V )conv,et,KU/V )

is injective.

Proof. By considering the interpretation by the extension class, it

suffices to show the following claim: Let

(3.3.3) 0→ KX/V → E → KX/V → 0

be an exact sequence in Iconv,et((X/V )log) and assume it splits in the cat-

egory Iconv,et(U/V ). Let s : KU/V −→ E|U be a splitting in Iconv,et(U/V ).

Then there exists a splitting s̃ : KX/V −→ E in Iconv,et((X/V )log) which

extends s.

First we prove that it suffices to prove this assertion etale locally. Let

X(0) :=
∐

i∈I Xi −→ X be an etale covering by schemes of finite type

over k with |I| < ∞ and let M (0) be the pull-back of M to X(0). Let
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(X(1),M (1)) := (X(0),M (0)) ×(X,M) (X(0),M (0)) and put U (i) := X(i) ×X

U (i = 0, 1). Then claim 2 in [Shi, (5.1.11)] implies the injectivity of the

homomorphism

H0((X(1)/V )logconv,et,KX(1)/V ) −→ H0((U (1)/V )conv,et,KU(1)/V ).

So the homomorphism

j(1),∗ : H0((X(1)/V )logconv,et, E) −→ H0((U (1)/V )conv,et, E)

is injective for E ∈ N Iconv,et((X
(1)/V )log). Assume we are given an exact

sequence as in (3.3.3) and denote the pull-back of E to Iconv,et(X
(i)/V ) (i =

0, 1) by E(i). Let us consider the following diagram, where the vertical lines

are exact:

0 0� �
H0((X/V )logconv,et, E)

j∗−−−→ H0((U/V )conv,et, E|U )

α

� α′
�

H0((X(0)/V )logconv,et, E(0))
j(0),∗−−−→ H0((U (0)/V )conv,et, E|U(0))

β

� β′
�

H0((X(1)/V )logconv,et, E)
j(1),∗−−−→ H0

conv((U
(1)/V )conv,et, E).

Now assume we are given a splitting s : KU/V −→ E|U in Iconv,et(U/V ).

Then, if we know the proposition for each Xi (i ∈ I), there exists s̃(0) :

KX(0)/V −→ E(0) in Iconv,et((X
(0)/V )log) satisfying j(0),∗(s̃(0)) = α′(s).

Then we have

j(1),∗(β(s̃(0))) = β′(j(0),∗(s̃(0))) = β′(α′(s)) = 0.

Since j(1),∗ is injective, we have β(s̃(0)) = 0 and so there exists an element

s̃ ∈ H0((X/V )logconv,et, E) such that α(s̃) = s̃(0) holds. For such an element

s̃, we have

α′(j∗(s̃)) = j(0),∗(α(s̃)) = j(0),∗(s̃(0)) = α′(s)
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and so j∗(s̃) = s holds as desired, since α′ is injective.

So we may assume that there exists a formally log smooth lifting of

(X,M) to an affine fine log formal V -scheme (P,L), a lifting {t1, · · · , tn}
of a regular parameter of X to P and an integer r ≤ n such that L is

associated to the relative simple normal crossing divisor {t1 · · · tr = 0} on

P over Spf V . Put Q := Ptriv and let K ′ be the fraction field of the integral

domain Γ(P,OP )/(t1, · · · , tn). Then, by the argument of [Cr1, §4], there

exists the following diagram:

Γ(PK ,OPK
) −−−→ K ′[[t]]b� �

Γ(QK ,OQK
)

i−−−→ K ′((t)),

where the rings K ′[[t]]b and K ′((t)) are defined as follows: (Here we use

multi-index notation for ti’s.)

K ′[[t]]b := {
∑
l∈Nn

alt
l | al ∈ K ′, |al| is bounded.}.

K ′((t)) := {
∑
l∈Zn

alt
l | al ∈ K ′, |al| is bounded, |al| → 0 (m(l)→ −∞)}.

Here, for l = (l1, l2, · · · , ln) ∈ Zn, m(l) is defined by

m(l) := min{l1, l2, · · · , ln}.

By the same method as in [Cr1, (4.7.1)], one can show the equation

(3.3.4) Im(i) ∩K ′[[t]]b = Γ(PK ,OPK
).

Now we prove the proposition in the above situation. Assume we are

given an exact sequence (3.3.3) which splits in Iconv,et(U/V ). By results of

[Shi, Chap. 5], N Iconv,et((X/V )log) is equivalent to the category of isoco-

herent sheaves on (P,L) with nilpotent integrable formal log connections,

and N Iconv,et(U/V ) is equivalent to the category of isocoherent sheaves on

Q with nilpotent integrable formal connections. Let

∇ : E −→ E ⊗ ω1
(P,L)/V
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be the integrable formal log connection corresponding to E . Since P is

affine, E is isomorphic to (K⊗OP )⊕2 as sheaves, and by this identification,

the connection ∇ can be expressed by a matrix of the form(
d η

0 d

)
,

where η ∈ K ⊗ ω1
(P,L)/V and d is the usual differential on K ⊗ OP . Since

the exact sequence (3.3.3) splits in the category Iconv,et(U/V ), there exists

an element f ∈ Γ(QK ,OQK
) such that η = df holds. If we can show that f

belongs to Γ(PK ,OPK
), we are done. By the equation (3.3.4), it suffices to

show that i(f) ∈ K ′[[t]]b holds.

The element i(η) can be expressed as follows:

(3.3.5) i(η) =

r∑
i=1

ηit
−1
i dti +

n∑
i=r+1

ηidti.

Here ηi ∈ K ′[[t]]b (1 ≤ i ≤ n). Let ei be the multi-index (0, · · · , 0,
i

1̌

, 0, · · · , 0) of length n. For any multi-index m = (m1,m2, · · · ,mn) of length

n, the equation

(3.3.6) dtm =
∑

1≤i≤n
mi �=0

mit
m−eidti

holds. In particular, the term tmdti with mi = −1 does not appear in the

right hand side. Since d(i(f)) = i(η) holds, one can see from the expression

(3.3.5) that i(η) is in fact in
⊕n

i=1K
′[[t]]bdti. Let m be a multi-index

(m1,m2, · · · ,mn) such that mi0 < 0 holds for some 1 ≤ i0 ≤ n, and let

am be the coefficient of tm in i(f). Note that for any multi-indices l,m of

length n, the equation

tl−eidti = tm−ejdtj

implies i = j and l = m. So, by the equation (3.3.6), the coefficient of

tm−ei0dti0 in i(η) = d(i(f)) is equal to ammi0 . Since i(η) ∈
⊕n

i=1K
′[[t]]bdti

holds, we obtain ammi0 = 0. So am = 0 holds for such m. Therefore

i(f) ∈ K ′[[t]]b holds and the proof of the proposition is now finished. �
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Since the proof of Proposition 3.3.6 is finished, the proof of Theorem

3.3.4 is completed.

As a corollary, we can give the affirmative answer to Problem 3.3.1:

Corollary 3.3.7. In the situation of Problem 3.3.1, the crystalline

fundamental group πcrys
1 ((X,M)/SpfW,x) depends only on U and x, that

is, Problem 3.3.1 is true.

Proof. It is immediate from Theorem 3.3.4 and the isomorphism

(3.3.7) πconv
1 ((X/W )log, x)

∼
= πcrys

1 ((X/W )log, x),

which follows from [Shi, (5.3.1)]. (One can also deduce the isomorphism

(3.3.7) from the isomorphisms of cohomologies

H i((X/W )logconv,et,KX/W )
∼
= H i((X/W )logcrys,K0 ⊗OX/W ) (i ∈ N)

of Theorem 3.1.1.) �
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propres première partie, prépublication de l’IRMAR 96-03.



162 Atsushi Shiho

[Be4] Berthelot, P., Finitude et pureté cohomologique en cohomologie
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Maghrébine Math. 2 (1993), 161–175.
[Og1] Ogus, A., F -isocrystals and de Rham Cohomology II — Convergent

Isocrystals, Duke Math. J. 51 (1984), 765–850.
[Og2] Ogus, A., The Convergent Topos in Characteristic p, in Grothendieck

Festschrift, Progress in Math., Birkhäuser.
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