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Real Shintani Functions on U(n, 1) II,

Computation of Zeta Integrals

By Masao Tsuzuki

Abstract. We explicitly evaluate the archimedian local zeta in-
tegral arising from a certain Rankin-Selberg integral considered by
Murase-Sugano associated with cusp forms on real-rank-one unitary
groups.

1. Introduction and Basic Notations

1.1. Introduction

The aim of this paper is to compute explicitly the archimedian local

zeta integrals of the real Shintani functions arising from a certain Rankin-

Selberg integral considered by Murase-Sugano for unitary groups. Let G be

a classical group defined over Q which acts on a vector space preserving a

non-degenerate ε-hermitian form and G0 the stabilizer in G of a non-zero

vector. For a pair of cusp forms f and F respectively on G0(A) and G(A),

Murase-Sugano introduced a generalized spherical function on G(A), say

Wf,F , which they call global Shintani function ([2]). Using it, they study

Rankin-Selberg type integrals attached to f and F , to evaluate them when

f and F are holomorphic Hecke eigen cusp forms in terms of the standard

L-functions of f and F in many cases ([2], [3], [4] and [5]). We can remove

this assumption of holomorphy at least when G0(R) and G(R) are both

real rank one unitary groups and calculate the local zeta integrals in a

general situation (Theorem 7.2.1). This is because our knowlegde of the

real Shintani functions is developed enough for such groups ([7]).

Now we shall explain contents of this paper briefly. We recall a few standard

concepts concerning automorphic forms on unitary groups to fix notations

in the next section. Sections 3 and 4 are preliminary in nature, where we

first recall the basic settings in the theory of Murase and Sugano, and then
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introduce a vector-valued Eisenstein series which is involved in the Rankin-

Selberg integral (6.1.1). Through a standard procedure of unwinding the

integrals, we get the so called basic identity, that relates the Rankin-Selberg

integral to a certain integral transform of the global Shintani function, as is

proved by Murase-Sugano. We reproduce the proof of it in a ‘vector-valued’

situation, for the sake of completeness of this article.

We can use the multiplicity one theorem for the real Shintani functional

(Theorem 5.1.1) to know that the global Shintani function Wf,F defined

on G(A) is decompsed into a product of two functions, say Wfin and W∞,

such that for any g ∈ G(A) the values Wfin(g) and W∞(g) depend only

on the finite part of g and the infinite part of g respectively (Proposition

5.2.1). Thus the necessary calculation of the integral transform is reduced

to the computation of the zeta integrals attached to Wfin and W∞, which

we can consider purely locally. The caluculation of zeta integrals for Wfin

is carried out by Murase-Sugano. The main body of this article is section

7, which is devoted to the evaluation of the zeta integrals for W∞ without

any assumption on the representation of G0(R) × G(R) generated by W∞.

Thanks are due to Dr. Tomonori Moriyama who pointed out a mistake in

the proof of Proposition 7.1.1 in the earlier version of this article, and also

to Dr. Yoshihiro Ishikawa who read the manuscript carefully.

1.2. Notations

For any number field F , let AF be the ring of adeles of F and AF,f the

ring of finite adeles. Put A = AQ and Af = AQ,f .

The unit group of a ring R is denoted by R∗.

Let R be a locally compact topological ring. For any x ∈ R∗, the modulus

of the automorphism a �→ xa of the underlying additive topological group

R is denoted by |x|R. For a number field F , we put |x|F = |x|AF
, x ∈ A∗

F .

For a vector space V over a field F , V ∨ denotes the dual space of V , 〈 , 〉 :

V ×V ∨ → F the natural F -bi-linear form and IV the identity map of V . For

finite dimensional F -vector spaces V and W , we always identify (V ⊗F W )∨

with V ∨ ⊗F W∨, and V ∨∨ with V by means of the canonical isomorphism.

Let F be a commutative ring. For a given positive integer n, let Fn =

Mn,1(F ) be the space of all column vectors with n entries. We naturally

identify the space EndF (Fn) with Mn(F ) by letting a matrix

A = (aij)1� i,j �n ∈ Mn(F ) operate on x = (xi)1� i�n ∈ Fn as Ax =
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(
∑n
j=1 aijxj)1� i�n ∈ Fn. We write In for IFn . For positive integers p and

q, we write Op,q the p × q-matrix whose entries are all zero.

Let G be a real reductive group, K a maximal compact subgroup and g

the complexified Lie algebra of G. Given a (g,K)-module (π,Hπ), we write

(π∨, H∨
π ) for the contragredient (g,K)-module of π and (π∞, H∞

π ) for the

smooth Fréchet G-module of moderate growth which is the canonical ex-

tention of π in the sense of [1].

2. Automorphic Forms on Unitary Groups

2.1. Unitary groups

Let E be an imaginary quadratic extension of Q, OE the ring of integers

of E. The non-trivial automorphism of E over Q is denoted by x �→ x̄.

Let V be a finite dimensional E-vector space and S : V × V → E a non-

degenerate skew Hermitian form. Let U(S) be the automorphism group of

the skew Hermitian space (V, S), i.e., U(S) is the algebraic group over Q

whose set of R-valued points is

U(S ;R) = {g ∈ GL(V ⊗QR)| S(g(v), g(w)) = S(v, w), ∀v, w ∈ V ⊗QR}

for any Q-algebra R; U(S) is a connected reductive algebraic group.

2.2. Automorphic forms

For a reductive algebraic group G over Q and a maximal compact sub-

group K∞ of G(R), let S(G) denote the space of cusp forms (with respect

to K∞) on G(A) in the sense of [6].

The space S(G) carries a (g,K∞)×G(Af)-module structure naturally, that

is induced from the right translation on the space of functions on G(A).

Here we put g = Lie(G(R)) ⊗R C.

Let (τ,Wτ ) be a finite dimensional unitary representation of K∞ and K0

an open compact subgroup of G(Af). We put

Sτ (G) = HomK∞(Wτ ,S(G)) = (W∨
τ ⊗ S(G))K∞ ,

which we consider to be a subspace of W∨
τ -valued smooth functions on G(A)

naturally. The space Sτ (G) inherits a smooth G(Af)-module structure from

that of S(G). Let Sτ (G ;K0) be the K0-invariant part of Sτ (G).
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Let (π,Hπ) be an irreducible (g,K∞)-module. We define S(G)π, the space

of π-cusp forms on G(A), to be the subspace of S(G) generated by Im(ψ)’s

with ψ : Hπ → S(G) ranging over (g,K∞)-intertwining operators. Put

Sτ (G)π = HomK∞(Wτ ,S(G)π),

Sτ (G ;K0)π = Sτ (G)π ∩ Sτ (G ;K0).

3. Preliminary Constructions

3.1. Embeddings of vector spaces

Let V0 = En and S0 a non-degenerate skew Hermitian matrix of size

n � 2. Put S0(v0, v
′
0) = tv̄0S0v

′
0 for v0, v

′
0 ∈ V0.

We put

V1 =


E

V0

E


 = En+2, e+ =


 1

On,1
0


 , e− =


 0

On,1
1




and define the skew Hermitian form S1 : V1 × V1 → E by

S1(v1, v
′
1) = tv̄1


 −1

S0

1


 v′1, v1, v

′
1 ∈ V1;

the vectors e+ and e− are isotropic vectors in V1 satisfying S1(e
+, e−) = 1.

Let η be an anisotropic vector in V1 of the form η = t(a, ta, 1) with a ∈ E

and a ∈ V0. Put ∆ = S1(η, η) = a − ā + S0(a, a), a non-zero element in E.

We put

V =

(
V0

E

)
= En+1

and define the E-linear inclusion jη : V → V1 by

jη :

(
v0

z

)
�→


āz − S0(a, v0)

v0

z


 , v0 ∈ V0, z ∈ E.

Then Im(jη) coincides with the orthogonal complement of the anisotropic

line Eη in V1 with respect to S1. Now we introduce the skew Hermitian

form Sη on V so that the map jη becomes an isometry. From the remark
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above the skew Hermitian space (V, Sη) so obtained is non-degenerate. We

explicitly have

Sη(v, v
′) = tv̄

(
S0 −S0a

−tāS0 ā − a

)
v′, v, v′ ∈ V.

Let j0 : V0 → V denote the E-linear inclusion given by

j0(v0) =

(
v0

0

)
, v0 ∈ V0.

Then j0 : V0 → V is an isometry and its image coincides with the orthogonal

complement of the anisotropic line Eξ in V with respect to Sη, where ξ =

∆−1t(ta, 1) ∈ V.

3.2. Embeddings of groups

Put G0 = U(S0), G1 = U(S1) and G = U(Sη). Then we have a sequence

of inclusions of algebraic groups

G0
ι0→ G

ι→ G1,(3.2.1)

where ι0 and ι are homomorphisms defined by

ι0(g0)(j0(v0) + tξ) = j0(g0v0) + tξ, g0 ∈ G0, v0 ∈ V0, t ∈ E,

ι(g)(jη(v) + tη) = jη(gv) + tη, g ∈ G, v ∈ V, t ∈ E.

Note that ι0(G0) coincides with the stabilizer of the vector ξ in G and ι(G)

that of the vector η in G1.

3.3. A parabolic subgroup

Let P1 be the maximal parabolic Q-subgroup of G1 defined as the sta-

bilizer of the isotropic line Ee+ of V1. Let R be a Q-algebra. For (g0, t) ∈
G0(R) × (E ⊗QR)∗, put

m1(g0 ; t) = diag(t, g0, t̄
−1)

For y ∈ (E ⊗QR)n and z ∈ E ⊗QR with z − z + S0(y, y) = 0, we put

n1(y ; z) =


 1 −tȳS0 z

On,1 In y

0 O1,n 1


 .
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Then the elements m1(g0 ; t) (resp. n1(y ; z)) make up the set M1(R) (resp.

N1(R)) with M1 (resp. N1) a Levi Q-subgroup of P1 (resp. the unipotent

radical of P1). We quote the following lemma from [2].

Lemma 3.3.1.

(1) Suppose that G is Q-isotropic. Then there exists an element x0 ∈
G1(Q) such that {In+2, x0} gives a complete set of representatives

for P1(Q)\G1(Q)/ι(G(Q)) and x−1
0 P1(Q)x0 ∩ ι(G(Q)) = ι(P(Q)),

ι(N(Q)) ⊂ x−1
0 N1(Q)x0 with N the unipotent radical of a parabolic

Q-subgroup P in G. We have P1(Q) ∩ ι(G(Q)) = ι ◦ ι0(G0(Q)).

(2) Suppose that G is Q-anisotropic. Then we have G1(Q) =

P1(Q)ι(G(Q)) and P1(Q) ∩ ι(G(Q)) = ι0 ◦ ι(G0(Q)).

Proof. See [2, Proposition 2.4, Lemma 2.5, Lemma 2.6]. �

3.4. An assumption at the archimedian place

We assume that the signature of (V0(R), S0) is ((n − 1)+, 1−) and that

of (V(R), Sη) is (n+, 1−). Then the skew Hermitian space (V1(R), S1) has a

signature (n+, 2−). Put 2d = −
√
−1∆. We have d > 0 from the assump-

tion.

3.5. Maximal compact subgroups at the archimedian place

Fix a negative line V −
0,∞ (through the origin) in V0(R) = Cn and put

V −
∞ = j0(V

−
0,∞), V −

1,∞ = jη ◦ j0(V
−
0,∞) + C · η.

Let K∞, K0,∞ and K1,∞ be the stabilizers of V −
0,∞, V −

∞ and V −
1,∞ in G0(R),

G(R) and G1(R) respectively. From the assumption in 3.4, K0,∞, K∞ and

K1,∞ are maximal compact subgroups of G0(R), G(R) and G1(R) respec-

tively. We fix these maximal compact subgroups throughout this article.

When we speak of automorphic forms on G0(A), G(A) and G1(A), we al-

ways understand that they are required to be finite under the actions of the

maximal compact subgroups K0,∞, K∞ and K1,∞ respectively.

Now take a vector v−n in V −
0,∞ with

√
−1S0(v

−
n , v−n ) = −1. Let (v+

i )1� i�n−1

be an orthonormal basis of the orthogonal complement of V −
0,∞ in V0(R),
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i.e.,
√
−1S0(v

+
i , v+

j ) = δij , S0(v
+
i , v−n ) = 0 for 1 � i, j � n − 1. Put

ξ+
i = j0(v

+
i ), 1 � i � n − 1,

ξ+
n = (2d)−1/2ξ, ξ−n+1 = j0(v

−
n )

and

η+
i = jη ◦ j0(v

+
i ), 1 � i � n − 1,

η+
n = jη(ξ

+
n ), η−n+1 = jη(ξ

−
n+1), η−n+2 = (2d)−1/2η.

Then {v+
1 , . . . , v+

n−1, v
−
n }, {ξ+

1 , . . . , ξ+
n−1, ξ

+
n , ξ−n+1} and {η+

1 , . . . , η+
n−1, η

+
n ,

η−n+1, η
−
n+2} are pseudo-orthonormal basis of V0(R) = Cn, V(R) = Cn+1

and V1(R) = Cn+2 respectively. We shall fix these basis in what follows.

For positive integers p and q, let

U(p, q) = {g ∈ GLp+q(C)| tgdiag(Ip,−Iq)g = diag(Ip,−Iq)}.(3.5.1)

Put

c0 = (v+
1 v+

2 . . . v+
n−1 v−n ) ∈ Mn(C),

c = (ξ+
1 ξ+

2 . . . ξ+
n ξ−n+1) ∈ Mn+1(C),

c1 = (η+
1 η+

2 . . . η+
n η−n+1 η−n+2) ∈ Mn+2(C).

Then the maps

G0(R) � g0 �→ c0
−1g0c0 ∈ U(n − 1, 1),(3.5.2)

G(R) � g �→ c−1gc ∈ U(n, 1),(3.5.3)

G1(R) � g1 �→ c1
−1g1c1 ∈ U(n, 2)(3.5.4)

give isomorphisms of Lie groups.

Lemma 3.5.1. The diagram

G0(R)
ι0−−−→ G(R)

ι−−−→ G1(R)

∼=
	 ∼=

	 ∼=
	

U(n − 1, 1)
i0−−−→ U(n, 1)

i−−−→ U(n, 2)
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is commutative, where the virtical arrows are maps defined by (3.5.2), (3.5.3)

and (3.5.4), and i0 and i are given as

i0 : U(n − 1, 1) �
(

x11 x12

x21 x22

)
(3.5.5)

−→


 x11 On−1,1 x12

O1,n−1 1 0

x21 0 x22


 ∈ U(n, 1),

i : U(n, 1) � y −→ diag(y, 1) ∈ U(n, 2).(3.5.6)

Proof. Obvious. �

We put

k0[u0 ;x0] = c0 diag(u0, x0) c0
−1, u0 ∈ U(n − 1), x0 ∈ U(1),

k[u ;x] = c diag(u, x) c−1, u ∈ U(n), x ∈ U(1),

k1[u1 ;u2] = c1 diag(u1, u2) c1
−1, u1 ∈ U(n), u2 ∈ U(2).

Then we obviously have

K0,∞ = {k0[u0 ;x0] | u0 ∈ U(n − 1), x0 ∈ U(1)},
K∞ = {k[u ;x] | u ∈ U(n), x ∈ U(1)},
K1,∞ = {k1[u1 ;u2] | u1 ∈ U(n), u2 ∈ U(2)}.

We also have

ι0(k0[u0 ;x0]) = k[diag(u0, 1) ;x0], u0 ∈ U(n − 1), x0 ∈ U(1),(3.5.7)

ι(k[u ;x]) = k1[u ; diag(x, 1)], u ∈ U(n), x ∈ U(1)(3.5.8)

from Lemma 3.5.1.

By the Iwasawa decomposition we have G1(R) = P1(R)K1,∞. Hence for

g1 ∈ G1(R), we can write

g1 = m1(β(g1) ; t(g1))n1(g1)k1(g1)

with β(g1) ∈ G0(R), t(g1) ∈ C∗, n1(g1) ∈ N1(R) and k1(g1) ∈ K1,∞. But

this decomposition is not unique. We need the structure of the intersection

P1(R) ∩ K1,∞ explicitly.
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Lemma 3.5.2. For t ∈ C(1) and g0 = k0[u0 ;x0] ∈ K0,∞ with u0 ∈
U(n − 1), x0 ∈ C(1), we have

m1(g0 ; t)n1(tg
−1
0 a − a ;−t−1S0(a, tg

−1
0 a − a))

= k1[diag(u0, t) ; diag(x0, t)],

and the group P1(R) ∩ K1,∞ consists of all the points of this form.

Proof. A direct computation. �

3.6. Compact groups at finite places

Let K0,f , Kf and K1,f be open compact subgroups of G0(Af), G(Af) and

G1(Af) respectively with the following properties.

(a) ι0(K0,f) ⊂ Kf and ι(Kf) ⊂ K1,f .

(b) G1(Af) = P1(Af)K1,f , i.e., for g1 ∈ G1(Af) there exist β(g1) ∈ G0(Af),

t(g1) ∈ A∗
E,f , n1(g1) ∈ N1(Af) and k1(g1) ∈ K1,f such that

g1 = m1(β(g1) ; t(g1))n1(g1)k1(g1).

(c) If m1(g0,f ; tf) ∈ K1,fN1(Af) with g0,f ∈ G0(Af) and tf ∈ A∗
E,f , then

g0,f ∈ K0,f and tf ∈
∏
pO∗

E,p.

We fix K0,f , Kf and K1,f with these properties for once and for all.

By the property (b) and Lemma 3.5.2, we have Iwasawa decomposition

G1(A) = P1(A)K1,fK1,∞.

Remark 3.6.1. In [2], [5], by means of maximal OE-integral lattices,

a concrete choice of (K0,f ,Kf ,K1,f) is made. Since our main concern in this

paper is archimedian local theory, we refrain from recalling their construc-

tion but extract a necessary properties of Kf etc. above just to ensure the

well-definedness of the function Ψ in Lemma 4.1.2.

4. Eisenstein Series

In this section we introduce a vector-valued Eisenstein series which en-

ters in the definition of the Rankin-Selberg integrals that will be introduced

in section 6.
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4.1. Vector-valued Eisenstein series

Let (τ0,W0) and (τ,W ) be irreducible unitary representations of K0,∞
and K∞ respectively. Since the centers of K0,∞ and K∞ respectively equal

{k0[x
+
0 In−1 ;x−

0 ] | x±
0 ∈ C(1)} and {k[x+In ;x−] | x± ∈ C(1)}, Schur’s lemma

implies there exist pairs of integers (c+
0 , c−0 ) and (c+, c−) such that

τ0(k0[x
+
0 In−1 ;x−

0 ]) = (x+
0 )c

+
0 (x−

0 )c
−
0 IW0 , x+

0 , x−
0 ∈ C(1),(4.1.1)

τ(k[x+In ;x−]) = (x+)c
+
(x−)c

−
IW , x+, x− ∈ C(1).(4.1.2)

We call (c+, c−) and (c+
0 , c−0 ) the central characters of τ and τ0 respectively.

We assume that τ0 occurs in τ |K0,∞ = τ◦(ι0|K0,∞), and fix a K0,∞-inclusion

iτ0τ : W0 → W once and for all. We then have c− = c−0 .

Lemma 4.1.1. There exists a unique unitary representation τ1 of K1,∞
on W , the representation space of τ , satisfying

τ1(k1[u1 ;u2]) = τ(k[u1 ; 1]) det(u2)
c−0 , u1 ∈ U(n), u2 ∈ U(2).(4.1.3)

Proof. Obvious. �

We take an idele class character ω : A∗
E/E∗ → C∗ of E. We assume that

ω(tf) = 1, tf ∈
∏
p

O∗
E,p,(4.1.4)

ω(t∞) = t
−c−0 −c++c+0∞ , t∞ ∈ C(1).(4.1.5)

Lemma 4.1.2. Let f ∈ Sτ∨0
(G0 ;K0,f). Then there exists a unique W -

valued function (g1, s) �→ Ψ(f ⊗ω ; s ; g1) on G1(A)×C that is smooth with

respect to the first variable and holomorphic with respect to the second one

and satisfies

Ψ(f ⊗ ω ; s ;m1(g0 ; t)n1) = ω(t)|t|sE · iτ0τ (f(g0)),(4.1.6)

g0 ∈ G0(A), t ∈ A∗
E , n1 ∈ N1(A),

Ψ(f ⊗ ω ; s ; g1k1,fk1,∞) = τ1(k1,∞)−1Ψ(f ⊗ ω ; s ; g1),(4.1.7)

k1,f ∈ K1,f , k1,∞ ∈ K1,∞.
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Proof. For a g1 ∈ G1(A), we can write it of the form

g1 = m1(g0; t)n1k1,∞k1,f,

g0 ∈ G0(A), t ∈ A∗
E , n1 ∈ N1(A), k1,f ∈ K1,f, k1,∞ ∈ K1,∞.

along the decomposition G1(A) = P1(A)K1,fK1,∞ (see 3.6). The conditions

(4.1.6) and (4.1.7) mean

Ψ(f ⊗ ω ; s ; g1) = ω(t)|t|sE · τ1(k
−1
1,∞)iτ0τ (f(g0)).(4.1.8)

Thus we have only to show that the right-hand side of (4.1.8) does not

depend on a choice of Iwasawa decompositions of g1. If g1 =

m1(g
′
0 ; t′)n′

1k
′
1,fk

′
1,∞ is another decomposition of g1 similar to above, then

we have

m1(g
−1
0 g′0 ; t−1t′)n′′

1 = (k1,fk1,∞)(k′
1,fk

′
1,∞)−1

with some n′′
1 ∈ N1(A). Hence Lemma 3.5.2 and (c) in 3.6 imply that there

exist k0,∞ = k0[u0 ;x0] ∈ K0,∞ with u0 ∈ U(n − 1), x0 ∈ C(1), y∞ ∈ C(1)

and k0,f ∈ K0,f, yf ∈
∏
pO∗

E,p such that

g−1
0 g′0 = k0,∞k0,f, t−1t′ = y∞yf, k1,∞k′

1,∞
−1 = k1[u1 ;u2]

with

u1 = diag(u0, y∞) ∈ U(n), u2 = diag(x0, y∞) ∈ U(2).

Using the K0,f -invariance of f and (4.1.4), we have

ω(t′)|t′|sE · τ1(k
′
1,∞)−1 ◦ iτ0τ ◦ f(g′0)

= ω(ty∞yf)|ty∞yf|sE · τ1(k
−1
1,∞k1[u1 ;u2]) ◦ iτ0τ ◦ f(g0k0,∞k0,f)

= ω(ty∞yf)|ty∞yf|sE · τ1(k1,∞)−1 ◦ τ1(k1[u1 ;u2]) ◦ iτ0τ ◦ τ0(k0,∞)−1 ◦ f(g0)

= ω(y∞)ω(t)|t|sE · τ1(k1,∞)−1 ◦ τ1(k1[u1 ;u2]) ◦ τ(k0,∞)−1 ◦ iτ0τ ◦ f(g0)

= ω(y∞)ω(t)|t|sEx−c−
0

· τ1(k1,∞)−1 ◦ τ1(k1[u1 ;u2]) ◦ τ(k[diag(u0, 1) ; 1])−1 ◦ iτ0τ ◦ f(g0).
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By Lemma 4.1.1 and the relation c−0 = c−, we have

x−c−
0 · τ1(k1[u1 ;u2]) ◦ τ(k[diag(u0, 1) ; 1])−1 ◦ iτ0τ ◦ f(g0)

= x
−c−0
0 (x0y∞)c

−
0

· τ(k[diag(u0, y∞) ; 1]) ◦ τ(k[diag(u0, 1) ; 1])−1 ◦ iτ0τ ◦ f(g0)

= y
c−0∞ · τ(k[diag(In−1, y∞) ; 1]) ◦ iτ0τ ◦ f(g0)

= y
c++c−0∞ · τ(k[diag(y−1

∞ In−1, 1) ; 1]) ◦ iτ0τ ◦ f(g0)

= y
c++c−0∞ · (τ |K0,∞)(k0[y

−1
∞ In−1 ; 1]) ◦ iτ0τ ◦ f(g0)

= y
c++c−0∞ · iτ0τ ◦ τ0(k0[y

−1
∞ In−1 ; 1]) ◦ f(g0)

= y
c++c−0∞ · iτ0τ (y

−c+0∞ f(g0))

= y
c+−c+0 +c−0∞ · iτ0τ (f(g0)).

Using (4.1.5), we finally have

ω(t′)|t′|sE · τ1(k
′
1,∞)−1iτ0τ (f(g′0)) = ω(t)|t|sE · τ1(k1,∞)−1iτ0τ (f(g0))

as desired. �

Let s ∈ C and ω the idele class character as above. Let π0 be an

irreducible (g0,K0,∞)-module with g0 = Lie(G0(R)) ⊗ C. Let f ∈
Sτ∨0

(G0 ;K0,f)π∨0 . We introduce a vector-valued Eisenstein series as

E(P1 ; f ⊗ ω ; s ; g1)(4.1.9)

=
∑

γ1∈P1(Q)\G1(Q)

Ψ

(
f ⊗ ω ; s +

n + 1

2
; γ1g1

)
, g1 ∈ G1(A).

The holomorphic function given by the absolutely convergent infinite series

(4.1.9) on Re(s) > (n + 1)/2 has a meromorphic continuation to the whole

C ([9]). We have

E(P1 ; f ⊗ ω ; s ; γ1g1k1,∞k1,f) = τ1(k1,∞)−1E(P1 ; f ⊗ ω ; s ; g1),

γ1 ∈ G1(Q), k1,∞ ∈ K1,∞, k1,f ∈ K1,f.
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5. Shintani Functions

In this section we first recall the definition of local Shintani functions

briefly and then introduce the global Shintani function associated with a

pair of cusp forms on G0(A) and G(A). Using the multiplicity free theorem

for the real Shintani functional (Theorem 5.1.1), we prove that the global

Shintani function is a product of a real Shintani function and a function on

the finite adeles (Proposition 5.2.1).

Here is a convention, that will be adopted hereafter. By the inclusions

ι0 : G0 → G and ι : G → G1, we consider G0 and G to be subgroups of G1;

correspondingly, for g0 ∈ G0 and g ∈ G, we simply write g0 and g in place of

ι0(g0) and ι(g) respectively. Let g0 and g be the complexified Lie algebras

of G0(R) and G(R) respectively.

5.1. Real Shintani functions

Let (π0, Hπ0) and (π,Hπ) be irreducible (g0,K0,∞)-module and irre-

ducible (g,K∞)-module respectively. Let S(G(R)) be the Schwartz space

for G(R) in the sense of Casselman [1, page 392]. It is a smooth Fréchet

G(R) × G(R)-module of moderate growth. By restricting the action to the

subgroup G0(R)×G(R), S(G(R)) is considered to be a G0(R)×G(R)-module.

Put

Imod(π0|π) = Hom(g0⊕g,K0,∞×K∞)(π
∨
0 � π,S(G(R)))

and

Sh(π0, π) = Im(Imod(π0|π) ⊗ Hπ0
∨ ⊗ Hπ → S(G(R))),

where the arrow stands for the natural map; Sh(π0, π) becomes a π∨
0 � π-

isotypic (g0 ⊕ g,K0,∞ × K∞)-submodule of S(G(R)). For irreducible finite

dimensional continuous representations (τ0,W0) and (τ,W ) of K0,∞ and

K∞ respectively, we set

Shτ0,τ (π0, π) = HomK0,∞×K∞(W∨
0 ⊗CW, Sh(π0, π)),

which we consider to be a subspace of the space of smooth W0⊗CW∨-valued

functions on G(R) in the obvious manner. Any function which belongs to

the space Shτ0,τ (π0, π) is called a Shintani function with K0,∞ × K∞-type

(τ∨
0 , τ) belonging to the representation π0

∨ � π.
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Theorem 5.1.1 (Multiplicity free theorem). Let π0 and π be as above.

Then

dimCImod(π0|π) � 1.

Proof. Put H = G0(R)Z with Z the center of G(R). We can extend

the representation π∞
0 of G0(R) to H so that the extended representation

η∞ of H, when restricted to Z, corresponds to the same character as π∞|Z.

Since the inclusion S(G(R)) ↪→ C∞(G(R)) is continuous, by [7, Corollary

2.4.1, Theorem 8.3.1], we have

dimCHomH×G(R)((η
∞)∨ � π∞,S(G(R)) � 1.(5.2.1)

By [1, Corollary 10.5], any Φ ∈ Imod(π0|π) can be extended to a continuous

intertwining operator (η∞)∨ � π∞ → S(G(R)); hence dimCImod(π0|π) is

dominated by the left-hand side of (5.2.1). �

5.2. Global Shintani functions arising from automorphic forms

Let (τ0,W0) and (τ,W ) be finite dimensional unitary representations

of K0,∞ and K∞ respectively. Let dg0 = dG0(A)(g0) be a Haar measure of

G0(A) and dġ0 the corresponding quotient measure on G0(Q)\G0(A). For

automorphic forms f ∈ Sτ∨0
(G0) and F ∈ Sτ (G), we consider the integral

Wf,F (g) =

∫
G0(Q)\G0(A)

f(g0) ⊗ F (g0g)dġ0, g ∈ G(A).(5.3.1)

It turns out that this defines a W0 ⊗ W∨-valued smooth function Wf,F on

G(A) which we call the global Shintani function associated with f and F

([2], [3], [4], [5]).

From definition we have the equation

Wf,F (k0,∞gk∞) = (τ0(k0,∞) ⊗ τ∨(k∞)−1)Wf,F (g),(5.3.2)

k0,∞ ∈ K0,∞, k∞ ∈ K∞.

As a consequence of the multiplicity free theorem for the real Shintani func-

tional (Theorem 5.1.1), we have the following.

Proposition 5.2.1. Let (π0, Hπ0) and (π,Hπ) be irreducible

(g0,K0,∞)-module and irreducible (g,K∞)-module respectively. Let f ∈
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Sτ∨0
(G0)π0

∨ and F ∈ Sτ (G)π. Suppose that Wf,F |G(R) is not identically

zero. Then there exists a unique real Shintani function W∞
f,F ∈ Shτ0,τ (π0, π)

and a unique smooth function W f
f,F : G(Af) → C such that W f

f,F (In+1) = 1

and

Wf,F (g∞gf) = W f
f,F (gf)W∞

f,F (g∞), gf ∈ G(Af), g∞ ∈ G(R).(5.3.4)

Proof. By assumption we can take a K0,∞-inclusion ι
π∨0
τ∨0

: W∨
0 → H∨

π0

and a K∞-inclusion ιπτ : W → Hπ. There exists a (g0,K0,∞)-intertwining

operator ψ0 : Hπ0
∨ → Sτ∨0

(G0) and a (g,K∞)-intertwining operator ψ :

Hπ → Sτ (G) such that

〈f(g0), w
∨
0 〉 = ψ0(ι

π∨0
τ∨0

(w∨
0 ))(g0), w∨

0 ∈ W∨
0 , g0 ∈ G0(A),(5.3.6)

〈F (g), w〉 = ψ(ιπτ (w))(g), w ∈ W, g ∈ G(A).

(Note that τ∨
0 and τ occur in π∨

0 |K0,∞ and π|K∞ with multiplicity one

since G0(R) and G(R) are real-rank-one unitary groups and π0 and π are

irreducible.) Now for each gf ∈ G(Af), putting

Φf,F (gf ; v0
∨ ⊗ v)(g∞)(5.3.7)

=

∫
G0(Q)\G0(A)

ψ0(v0
∨)(g0) · ψ(v)(g0gfg∞)dġ0,

v0
∨ ∈ H∨

π0
, v ∈ Hπ, g∞ ∈ G(R),

we get an element Φf,F (gf ;−) of Imod(π0|π). From the definitions of

Φf,F (gf ;−) and Wf,F we have

Φf,F (gf ; ι
π∨0
τ∨0

(w∨
0 ) ⊗ ιπτ (w))(g∞) = 〈Wf,F (gfg∞), w∨

0 ⊗ w〉,(5.3.8)

w∨
0 ∈ W∨

0 , w ∈ W.

Since Wf,F (e∞) �= 0 for an element e∞ ∈ G(R), there exist some u∨
0 ∈ W∨

0

and u ∈ W such that

c0 = 〈Wf,F (e∞), u∨
0 ⊗ u〉 �= 0.
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Because dimCImod(π0|π) � 1, we then have dimCImod(π0|π) = 1 and

Φf,F := Φf,F (In+1 ;−) provides a basis of the space Imod(π0|π). Hence

for every gf ∈ G(Af), we can write

Φf,F (gf ;−) = W f
f,F (gf) · Φf,F

with a unique complex number W f
f,F (gf); then W f

f,F (In+1) = 1 is obvious.

We have the equation

W f
f,F (gf) = c−1

0 〈Wf,F (e∞gf), u
∨
0 ⊗ u〉, gf ∈ G(Af),

from which the smoothness of W f
f,F follows. Now putting

〈W∞
f,F (g∞), w∨

0 ⊗ w〉 = Φf,F (ι
π∨0
τ∨0

(w∨
0 ) ⊗ ιπτ (w))(g∞),

w∨
0 ∈ W∨

0 , w ∈ W, g∞ ∈ G(R),

we get W∞
f,F : G(R) → W0 ⊗ W∨ with the desired property. The uniquness

of W∞
f,F and W f

f,F is clear. �

6. Zeta Integrals and Basic Identity

In the first place, we introduce the Rankin-Selberg integrals for a pair of

vector valued cusp forms f on G0(A) and F on G(A), that is considerd by

Murase-Sugano when f and F are scalar valued holomorphic automorphic

forms. The main purpose of this section is to recall the basic identity that

relates the Rankin-Selberg integral to an integral transform of the global

Shintani function associated with f and F (Proposition 6.1.1). In 6.2, we

define the local zeta integrals for real Shintani functions.

6.1. Rankin-Selberg integals and basic identity

Let (τ0,W0) and (τ,W ) be irreducible unitary representations of K0,∞
and K∞ respectively. We assume that τ0 occurs in τ ◦ (ι0|K0,∞) and take a

K0,∞-inclusion iτ0τ : W0 → W . As in Lemma 4.1.1, we form τ1, a represen-

tation of K1,∞. Let ω : A∗
E/E∗ → C∗ be an idele class character satisfying

the conditions (4.1.4) and (4.1.5).

Let dg = dG(A)(g) be a Haar mesure of G(A) and dġ the corresponding quo-

tient measure on G(Q)\G(A). For a W0-valued cusp form f ∈ Sτ∨0
(G0 ;K0,f),

we have introduced the W -valued Eisenstein series E(P1 ; f⊗ω ; s ; g1), g1 ∈
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G1(A), s ∈ C. Now we take a W∨-valued cusp form F ∈ Sτ (G ;Kf) and

consider the following zeta integral after Murase-Sugano.

Zf⊗ω,F (s) =

∫
G(Q)\G(A)

〈E(P1 ; f ⊗ ω ; s − 1

2
; g), F (g)〉dġ, s ∈ C.(6.1.1)

It turns out that the integral converges absolutely and the resulting function

Zf⊗ω,F (s) is meromorphic on C.

The identity in the next proposition is the so called basic identity, which

has been established by [5] in the present context. For g1 ∈ G1(A), we write

g1 = m1(β(g1) ; t(g1))n1(g1)k1,∞(g1)k1,f(g1),(6.1.2)

β(g1) ∈ G0(A), t(g1) ∈ A∗
E , n1(g1) ∈ N1(A),

k1,∞(g1) ∈ K1,∞, k1,f(g1) ∈ K1,f.

We remark that such a decomposition of g1 is not unique.

Proposition 6.1.1 (Murase-Sugano). Let f , ω and F be as above and

Wf,F : G(A) → W0 ⊗W∨ the global Shintani function associated with f and

F . For s ∈ C with Re(s) > (n + 1)/2, we have the identity

Zf⊗ω,F (s) =

∫
G0(A)\G(A)

εττ0 ◦ (IW0 ⊗ τ∨
1 (k1,∞(g))) ◦Wf,F (β(g)−1g)(6.1.3)

× ω(t(g))|t(g)|s+n/2E dG0(A)\G(A)(ġ),

where ετ0τ : W0 ⊗CW∨ → C is the map defined by

εττ0(w0 ⊗ w∨) = 〈iτ0τ (w0), w
∨〉, w0 ∈ W0, w∨ ∈ W∨(6.1.4)

and dG0(A)\G(A)(ġ) denotes the quotient measure of dG(A)(g) by dG0(A)(g0).

Proof. We reproduce the proof here for completeness following [2],

[3], [4] and [5]. We only consider the case when G is Q-isotropic; otherwise

the proof is easier. First substituting the expression (4.1.9) to (6.1.1) and

then dividing the range of summation into G(Q)-orbits, we get

Zf⊗ω,F (s) = ZIn+2(s) + Zx0(s)
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with

Zy(s) =

∫
G(Q)\G(A)

∑
γ1∈Xy

〈
Ψ

(
f ⊗ ω ; s +

n

2
; γ1g

)
, F (g)

〉
dġ,

where Xy = P1(Q)\
(
P1(Q)yG(Q)

)
with y = In+1 or x0 (Lemma 3.3.1).

Noting the bijection
(
y−1P1(Q)y ∩ G(Q)

)
\G(Q) ∼= Xy, we can rewrite the

integral Zy(s) as

Zy(s) =

∫
G(Q)\G(A)

×
∑

γ∈(y−1P1(Q)y∩G(Q))\G(Q)

〈
Ψ

(
f ⊗ ω ; s +

n

2
; yγg

)
, F (γg)

〉
dġ

=

∫
(y−1P1(Q)y∩G(Q))\G(A)

〈
Ψ

(
f ⊗ ω ; s +

n

2
; yg

)
, F (g)

〉
dġ.

Now we examine two integrals Zy(s) with y = In+2, x0 separately. We

first consider the case y = x0. Let P and N be as in Lemma 3.3.1. Along

the decomposition G(A) = P(A)KA = M(A)N(A)KA with KA = K∞Kf and

P = MN a Levi decomposition, we can write dG(A)(g) = dm · dn · dk with

Haar measures dm, dn and dk of M(A), N(A) and KA respectively. We may

assume that vol(KA) = 1. For m ∈ M(A), n ∈ N(A) and k ∈ KA, noting

x0nx
−1
0 ∈ N1(A) and x0mx−1

0 ∈ P1(A) (Lemma 3.3.1), we have

Ψ

(
f ⊗ ω ; s +

n

2
; x0mnk

)
= τ(k∞)−1Ψ

(
f ⊗ ω ; s +

n

2
; x0m

)
.

Using this, we have

Zx0(s) =

∫
M(Q)\M(A)

∫
N(Q)\N(A)

∫
KA

×
〈

Ψ

(
f ⊗ ω ; s +

n

2
; x0mnk

)
, F (mnk)

〉
dṁdṅdk

=

∫
M(Q)\M(A)

∫
KA

〈
τ(k∞)−1Ψ

(
f ⊗ ω ; s +

n

2
; x0m

)
,

τ∨(k∞)−1

∫
N(Q)\N(A)

F (mn)dṅ

〉
dkdṁ

=

∫
M(Q)\M(A)

〈
Ψ

(
f ⊗ ω ; s +

n

2
; x0m

)
,

∫
N(Q)\N(A)

F (mn)dṅ

〉
dṁ.
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By the cuspidality of F , the integral of F (mn) over n ∈ N(Q)\N(A) in the

right-hand side of the last equality vanishes. Hence Zx0(s) = 0 for all s ∈ C

if Re(s) > (n + 1)/2.

Next we consider the case y = In+2. Since P1(Q) ∩ G(Q) = G0(Q)

(Lemma 3.3.1), we have

ZIn+2(s)(6.1.5)

=

∫
G0(Q)\G(A)

〈
Ψ

(
f ⊗ ω ; s +

n

2
; g

)
, F (g)

〉
dġ

=

∫
G0(A)\G(A)

∫
G0(Q)\G0(A)

〈
Ψ

(
f ⊗ ω ; s +

n

2
; g0g

)
, F (g0g)

〉
dġ0dġ

=

∫
G0(A)\G(A)

∫
G0(Q)\G0(A)

×
〈

Ψ

(
f ⊗ ω ; s +

n

2
; g0β(g)−1g

)
, F (g0β(g)−1g)

〉
dġ0dġ.

The last equality follows by a change of variable g0 → g0β(g)−1. For g′0 ∈
G0(A), we have

g′0 = m1(g
′
0 ; 1)n1

(
(g′0

−1 − In)a ; S0(a, a − g′0a)
)

by a computation. Thus we get

g′0g = m1

(
g′0β(g) ; t(g)

)
n′

1k1,∞(g)k1,f(g)

with some n′
1 ∈ N1(A). Hence we may take

β(g′0g) = g′0β(g), t(g′0g) = t(g),(6.1.6)

k1,∞(g′0g) = k1,∞(g), k1,f(g
′
0g) = k1,f(g)

for g′0 ∈ G0(A) and g ∈ G(A). For given g0 ∈ G0(A) and g ∈ G(A), put

g′0 = g0β(g)−1. Then using (6.1.6), we have

Ψ

(
f ⊗ ω ; s +

n

2
; g0β(g)−1g

)
(6.1.7)

= ω(t(g′0g))|t(g′0g)|s+n/2E · τ1(k1,∞(g′0g))−1 ◦ iτ0τ ◦ f(β(g′0g))

= ω(t(g))|t(g)|s+n/2E · τ1(k1,∞(g))−1 ◦ iτ0τ ◦ f(g0).
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Substituting (6.1.7) to the last formula of (6.1.5), we have

ZIn+2(s)

=

∫
G0(A)\G(A)

∫
G0(Q)\G0(A)

〈
τ1(k1,∞(g))−1iττ0(f(g0)), F (g0β(g)−1g)

〉

× ω(t(g))|t(g)|s+n/2E dġ0dġ

=

∫
G0(A)\G(A)

∫
G0(Q)\G0(A)

εττ0

(
f(g0) ⊗ τ∨

1 (k1,∞(g))F (g0β(g)−1g)

)

× ω(t(g))|t(g)|s+n/2E dġ0dġ

=

∫
G0(A)\G(A)

εττ0 ◦ (IW0 ⊗ τ∨
1 (k1,∞(g1))) ◦Wf,F (β(g)−1g)

× ω(t(g))|t(g)|s+n/2E dġ. �

6.2. Local zeta integrals

Retain the situation of 6.1. Let π0 be an irreducible (g0,K0,∞)-module

and π an irreducible (g,K∞)-module. Suppose that Wf,F |G(R) is not iden-

tically zero. Then from Proposition 5.3.1, the global Shintani function

Wf,F : G(A) → W0 ⊗CW∨ decomposes as

Wf,F (gfg∞) = W∞
f,F (g∞) · W f

f,F (gf), gf ∈ G(Af), g∞ ∈ G(R).

Here W∞
f,F ∈ Shτ0,τ (π0, π) and W f

f,F : G(Af) → C is a smooth function on

G(Af). Furthermore the pair (W∞
f,F ,W f

f,F ) is uniquely determined from f

and F if we require W f
f,F (In+1) = 1 in addition. Write ω = ωf · ω∞ with

ωf = ω|A∗
E,f and ω∞ = ω|C∗. Then we have

Zf⊗ω,F (s) = Zf(W f
f,F ;ωf ; s)Z∞(W∞

f,F ;ω∞ ; s)

with

Zf(W f ;ωf ; s) =

∫
G0(Af)\G(Af)

W f(β(gf)
−1gf)ωf(t(gf))|t(gf)|s+n/2AE,f

dġf,

Z∞(W∞ ;ω∞ ; s)

=

∫
G0(R)\G(R)

εττ0 ◦ (IW0 ⊗ τ∨
1 (k1(g∞)) ◦W∞(β(g∞)−1g∞)

× ω∞(t(g∞))|t(g∞)|s+n/2C d ˙g∞.
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Thus caluculation of the zeta integral Zf⊗ω,F (s) is reduced to those of

Zf(W f ;ωf ; s) and Z∞(W∞ ;ω∞ ; s). Assume f and F are Hecke eigen

forms in the sense of [5]. Then the calculation of the zeta integral over

finite adeles Zf(W f ;ωf ; s) is completely carried out by Murase-Sugano and

one can find the result in [5]. As for Z∞(W∞ ;ω∞ ; s), they also calculate

it under a certain assumption. In the next section we calculate the archi-

median local zeta integrals Z∞(W∞ ;ω∞ ; s) in a rather general situation.

7. Calculation of Archimedian Local Zeta Integrals

The aim of this section is to calculate the local zeta integrals for real

Shintani functions introduced in 6.2. We do not impose any condition on

(g0 ⊕ g,K0,∞ ×K∞)-module for the Shintani functions in question; but the

calculation can be done for those functions with a rather special K0,∞×K∞-

type. The final result is found in Theorem 7.2.1.

In this section, all groups that enter in the discussion are real points

of algebraic groups, so we omit the subscript ∞ from notations for such

points; for example we write g for the general element of G(R) in place of

g∞. Moreover we put G0 = G0(R), G = G(R), G1 = G(R), K0 = K0,∞,

K = K∞ and K1 = K1,∞.

7.1. A reduction

Let (π0, Hπ0) be an irreducible (g0,K0)-module and (π,Hπ) an irre-

ducible (g,K)-module. Let (τ0,W ) and (τ,W ) be irreducible unitary repre-

sentations of K0 and K respectively such that τ0 occurs in τ ◦ (ι0|K0). Let

(c+, c−) be the central character of τ and (c+
0 , c−0 ) that of τ0. By assumption

we have c−0 = c−. Further we assume that τ0 and τ occurs in π0|K0 and

π|K with multiplicity one. Fixing a K0-embedding iτ0τ : W0 → W , we define

a linear map εττ0 : W0 ⊗CW∨ → C by the formula (6.1.4). In this setting we

consider the local zeta integrals, that is defined by

Z∞(W ;ω ; s) =

∫
G0\G

εττ0 ◦ (IW0 ⊗ τ∨
1 (k1(g))) ◦W(β(g)−1g)(7.1.1)

× ω(t(g))|t(g)|s+n/2C dġ

for W ∈ Shτ0,τ (π0, π) and a quasi-character ω : C∗ → C∗ such that

ω(t) = t−c
−
0 −c++c+0 , t ∈ C(1),(7.1.2)
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which means that ω is of the form

ω(y) = ȳ(b−c+0 +c++c−0 )/2y(b+c+0 −c+−c−0 )/2, y ∈ C∗(7.1.3)

with a complex number b.

We define ar to be the element of G such that

ar(ξ
+
n ) = ch(r)ξ+

n + sh(r)ξ−n+1,(7.1.4)

ar(ξ
−
n+1) = sh(r)ξ+

n + ch(r)ξ−n+1,

ar(ξ
+
i ) = ξ+

i , 1 � i � n − 1

with sh(r) = 2−1(r − r−1), ch(r) = 2−1(r + r−1).

Let Z be the center of G. Note that it is isomorphic to U(1) and is contained

in K. Let dz be the Haar measure of Z with total mass one. Let dZG0\G(ġ)

be the G-invariant measure on ZG0\G such that

∫
ZG0\G

(∫
Z

h(zg)dz

)
dZG0\G(ġ) =

∫
G0\G

h(ġ)d(ġ)

for any left G0-invariant, positive valued measurable function h.

Lemma 7.1.1. There exists a positive constant C0 such that for any

left ZG0-invariant continuous function h : G → R+ the formula

∫
ZG0\G

h(g)dZG0\G(ġ) = C0

∫ ∞

1

∫
K

h(ark)sh(r)(ch(r))2n−1dk
dr

r
(7.1.5)

holds.

Proof. This is a consequence of the integral formula found in [10,

page 110, Theorem 2.5]. �

Lemma 7.1.2. Let ar, r > 0 be as in (7.1.4). We have

ι(ar) = n(y ; z)−1m1

(
In ;

1

ch(r)

)
k1

[
In ;

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)]
(7.1.6)
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with

y = −(2d)1/2th(r)v−n +

(
1

ch(r)
− 1

)
a,

z = −th2(r)a +
1

ch(r)

(
1 − 1

ch(r)

)
S0(a, a) + (2d)1/2

th(r)

ch(r)
S0(a, v

−
n )

− (2d)1/2th(r)S0(v
−
n , a).

Proof. A direct computation. �

Proposition 7.1.1. For any W ∈ Shτ0,τ (π0, π), we have

Z∞(W ;ω ; s) = C0

∫ ∞

1
εττ0(W(ar))ω(ch(r))−1sh(r)(ch(r))−2s+n−1 dr

r
.

Proof. For notational simplicity, we put

ρ(k1) = IW0 ⊗ τ∨
1 (k1), k1 ∈ K1.

For any z ∈ Z and any g ∈ G, we have

β(zg) = β(g), t(zg) = t(g), k1(zg) = k1(g)z

because z belongs to K and ι(K) ⊂ K1. We then have∫
G0\G

ρ(k1(g))W(β(g)−1g)ω(t(g))|t(g)|s+n/2C dzdġ

=

∫
ZG0\G

∫
Z

ρ(k1(zg))W(β(zg)−1zg)ω(t(zg))|t(zg)|s+n/2C dzdġ

=

∫
ZG0\G

∫
Z

ρ(zk1(g))W(β(g)−1gz)ω∞(t(g))|t(g)|s+n/2C dzdġ

=

∫
ZG0\G

ρ(k1(g))

∫
Z

ρ(z)W(β(g)−1gz)dzω∞(t(g))|t(g)|s+n/2C dġ

=

∫
ZG0\G

ρ(k1(g))W(β(g)−1g)ω(t(g))|t(g)|s+n/2C dġ.
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Note that the last equality is a consequence of the equation

W(β(g)−1gz) = ρ(z)−1W(β(g)−1g), z ∈ Z.

Next we apply the integration formula (7.1.5). By Lemma 7.1.2, we may

assume

β(ark) = In, t(ark) =
1

ch(r)
,

k1(ark) = k1

[
In ;

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)]
k

for k ∈ K and r > 0. Thus we have

Z∞(W ;ω ; s)

= C0

∫ ∞

1

∫
K

εττ0

{
ρ

(
k1

[
In ;

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)]
k

)
W(ark)

}

× ω(ch(r))−1

∣∣∣∣ 1

ch(r)

∣∣∣∣
s+n/2

C

sh(r)(ch(r))2n−1 dr

r
dk

= C0

∫ ∞

1
εττ0 ◦

{∫
K
IW0 ⊗ τ∨

1

(
k1

[
In ;

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)]
k

)
τ∨(k)−1dk

}

×W(ar)ω(ch(r))−1

∣∣∣∣ 1

ch(r)

∣∣∣∣
s+n/2

C

sh(r)(ch(r))2n−1 dr

r
.

The last equality follows from

W(ark) = (IW0 ⊗ τ∨(k)−1)W(ar), k ∈ K.

To conclude the proof, we have only to give the following remark. By Lemma

4.1.1, we have

τ∨
1

(
k1

[
In ;

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)]
k

)
= τ∨(k) det

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)−c−0
= τ∨(k)

for any k ∈ K. Hence, we have∫
K
IW0 ⊗ τ∨

1

(
k1

[
In ;

(
1

ch(r) − sh(r)
ch(r)

sh(r)
ch(r)

1
ch(r)

)]
k

)
τ∨(k)−1dk = IW0 ⊗ IW∨ . �
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7.2. The main theorem

In this subsection and the next, we freely use the results in [7]. For

unexpected notations, see also [7].

In the sequel we identify G0 and G with U(n−1, 1) and U(n, 1) respectively

by the isomorphisms (3.5.2) and (3.5.3).(Note that U(n, 1) is written by Gn
in [7].) Then K0 and K correspond to Kn−1 and Kn in the notation of [7]

respectively.

Let π0 be an irreducible (g0,K0)-module with central character z0, π an

irreducible (g,K)-module with central character z. Let τ0 = τ
Kn−1

µ̃ and

τ = τKn

λ̃
with µ̃ ∈ L+

n−1(π0) and λ̃ ∈ L+
n (π) ([7, Definition 3.2.1]) satisfying

the following.

(i) Let (l, h, ν) with l = (lj)1� j �n ∈ Λ+
n (π) be the triple for π defined in

[7, 8.2]. Then λ̃ = [l ; z − |l|].

(ii) Let m±
i (π) with i ∈ {1, . . . , n − 1} be the integers (or ±∞) such that

Λ+
n−1(π0) = {p = (pj)1� j �n−1 ∈ Λ+

n−1| m−
j (π0) � pj � m+

j (π0),

1 � j � n − 1}.

(see [7, 8.1]). Then µ̃ = [m ; z0 − |m|] with m = (mj)1� j �n−1 such

that

(a) mj−1 = m−
j−1(π0) � lj for j ∈ {2, . . . , h} with l−j ∈ Λ+

n ;

(b) mj = m+
j (π0) � lj for j ∈ {h + 1, . . . , n − 1} with l+j ∈ Λ+

n ;

(c) If 0 < h < n, then

sup(lh+1,m
−
h (η)) � mh � inf(lh,m

+
h (η));

(iii) z − z0 = |l| − |m|.

It turns out that m satisfying the conditions above is unique if exists. We

assume the existance of such an m. Then τ0 occurs in τ |K0.

Theorem 7.2.1. Let ω be a quasi-character of C∗ satisfying the condi-

tion (7.1.2) with c+ = |l|, c+
0 = |m| and c−0 = z−|l| = z0−|m|. Let b be the

complex number such that ω(y) = yb for y > 0. For s ∈ C with 2Re(s) >
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sup(−ν̃, ν̃) + θm − b, the integral Z∞(W ;ω ; s) with W ∈ Shτ0,τ (π0, π)

converges absolutely and given by

Z∞(W ;ω ; s)(7.2.1)

= C0
deg(τ0)γ0(W)

2

×
Γ

(
s +

b − θm + ν̃

2

)
Γ

(
s +

b − θm − ν̃

2

)

Γ

(
s +

b − θm − ν0 + 1

2

)
Γ

(
s +

b − θm + ν0 + 1

2

)

with C0 the constant which enters in the integration formula (7.1.5), ν̃, ν0

and θm the complex numbers respectively defined by

ν̃ = ν + µm − lh+ ,(7.2.2)

ν2
0 = 2ΩG0(π0) + (n − 1)2 − (|m| − µm − z0)

2

+ 2

(
−
n−1∑
i=1

m2
i −

n−1∑
i=1

(n − 2i)mi + µ2
m

+ (n − 2h+)µm + |l| − 2
∑

h+<k�n
lk + θm

)
,

θm =
∑

h+ � k�n−1

lk+1 −
∑

1� k�h−
lk −

∑
h+ � i�n−1

mi +
∑

1� i�h−
mi,(7.2.3)

and

γ0(W) = 〈W(In+1), w
∨
τ0 ⊗ iτ0τ (wτ0)〉,(7.2.4)

where wτ0 is a highest weight vector for τ0 and w∨
τ0 that for τ∨

0 such that

〈wτ0 , w∨
τ0〉 = 1.

The rest of this subsection is devoted to giving a proof of this theorem.

Let {ιπ0
p | p ∈ Λ+

n−1(π0)} be the standard system for π0 ([7, 4.1]). For

p = (pj)1� j �n−1 ∈ Λ+
n−1, let p̌ = (p̌j)1� j �n−1 be the dominant weight

defined by p̌j = −pn−j . Then it is the highest weight of W (p)∨. Since

Λ+
n−1(π

∨
0 ) = {p̌|p ∈ Λ+

n−1(π0)}, we can put the standard system of π∨
0 as

{ιπ
∨
0

p̌ | p ∈ Λ+
n−1(π0)} with ι

π∨0
p̌ : W (p)∨ → H∨

π0
; we assume that it is taken
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so that

〈ιπ0
p (w0), ι

π∨0
p̌ (w∨

0 )〉 = 〈w0, w
∨
0 〉, (w0, w

∨
0 ) ∈ W (p) × W (p)∨

holds. Let {ιπq| q ∈ Λ+
n (π)} be the standard system for π.

Let Φ ∈ Imod(π0|π). As in the proof of Theorem 5.1.1, we extend the

representation π∞
0 to η∞ of H = ZG0 and let Φ̃ : π∞ → C∞IndGH(η∞)

be the G-intertwining operator that corresponds to Φ by the isomorphism

in [7, Proposition 2.4.1]. Let Φ̃l be the function defined by [7, (6.3.1)]

and {fl(n ; r)| n ∈ Λ+
n−1(η|λ)} the corresponding standard coefficients ([7,

Definition 7.1.1 (2)]).

Lemma 7.2.1. For Φ ∈ Imod(π0|π), let us define a function Φm,l : G →
W (m) ⊗ W (l)∨ by the formula

〈Φm,l(g), w∨
0 ⊗ w〉 = Φ(ι

π∨0
m̌ (w∨

0 ) ⊗ ιπl (w))(g), w∨
0 ∈ W (m)∨, w ∈ W (l).

Then Shτ0,τ (π0, π) = {Φm,l| Φ ∈ Imod(π0|π)}. We have the formula

〈Φm,l(ar), w
∨
0 ⊗ w〉 = fl(m ; r) · 〈ιπ0

m ◦ pl
m(w), ι

π∨0
m̌ (w∨

0 )〉,
w∨

0 ∈ W (m)∨, w ∈ W (l)

for r > 0.

Proof. The first part is obvious. The second part follows from the

definition of the standard coefficients ([7, (7.1.2)]). (For the definition of

pl
m see [7, Lemma 3.1.1].) �

Lemma 7.2.2. Let εττ0 : W (m) ⊗ W (l)∨ → C be the map defined in

Proposition 6.1.1 determined by the K0-inclusion iτ0τ : W (m) → W (l) such

that pl
m ◦ iτ0τ = 1W (m). We then have

εττ0(Φl,m(ar)) = deg(τ0)fl(m ; r)(7.2.5)

for r > 0. Here deg(τ0) = dimCW (m).

Proof. Let {w0,i}i∈I0 be a basis of W (m) and {w∨
0,i}i∈I0 its dual bases

of W (m)∨. Let {wj}j∈I with I0 ⊂ I be a basis of W (l0) such that wi =

iτ0τ (w0,i) for i ∈ I0, and {w∨
j }j∈I its dual basis.
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We have

Φm,l(ar) =
∑
i∈I0

∑
j∈I

〈Φm,l(ar), w
∨
0,i ⊗ wj〉w0,i ⊗ w∨

j .

Since εττ0(w0,i ⊗ w∨
j ) = δij , i ∈ I0, j ∈ I by definition, we have

εττ0Φm,l(ar) =
∑
i∈I0

∑
j∈I

〈Φm,l(ar), w
∨
0,i ⊗ wj〉εττ0(w0,i ⊗ w∨

j )

=
∑
i∈I0

〈Φm,l(ar), w
∨
0,i ⊗ wi〉

= fl(m ; r)
∑
i∈I0

〈ιπ0
m ◦ pl

m(wi), ι
π∨0
m̌ (w∨

0,i)〉

= fl(m ; r)
∑
i∈I0

〈ιπ0
m (w0,i), ι

π∨0
m̌ (w∨

0,i)〉

= deg(τ0)fl(m ; r).

The third equality follows from Lemma 6.2.1, and the last equality is a

consequence of the equation

〈ιπ0
m (w0,i), ι

π∨0
m̌ (w∨

0,i)〉 = 〈w0,i, w
∨
0,i〉 = 1, i ∈ I0. �

From the assumptions (i), (ii) and (iii), m ∈ ∂(h)Λ+
n−1(η|π). Hence by

[7, Theorem 8.2.1], there exists a constant γ0 such that

fl(m ; r) = γ0(ch(r))αm
2F1(X

+, X− ; 1 ; th2(r)), r > 0.(7.3.6)

Here we put

X± =
±ν0 − µm + lh+ − ν + 1

2
,

αm = µm − lh+ − n + ν + θm.

(Note βm = ||l| − |m| − z + z0| = 0 by the condition (iii).)

Putting r = 1 in the equation (7.3.6), we obtain γ0 = fl(m ; 1). From

Proposition 7.1.1 and Lemma 7.1.1, we have

Z∞(Φm,l ;ω ; s)

= C0γ0 deg(τ0)

∫ ∞

1
2F1(X

+, X− ; 1 ; th2(r))(ch(r))−2s+n−1+αm−bdr

r
.
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Now, making change of variables from r to x = th2(r), we have

ch(r) = (1 − x)−1/2, sh(r) = x1/2(1 − x)−1/2,

dr

r
=

1

2
x−1/2(1 − x)−1dx,

hence

Z∞(Φm,l ;ω ; s) = C0
γ0 deg(τ0)

2

∫ 1

0
2F1(X

+, X− ; 1 ;x)(1 − x)σ−1dx

with

σ = s − n + αm − b

2
.

We need a lemma.

Lemma 7.2.3. For σ, a, b ∈ C such that Re(σ) > sup(0,Re(a+b)−1),

the formula∫ 1

0
(1 − x)σ−1

2F1(a, b ; 1 ;x)dx =
Γ(σ)Γ(1 + σ − a − b)

Γ(1 + σ − a)Γ(1 + σ − b)

holds.

Proof. See [11, page 399, formula (4)]. �

Applying the lemma above, we have the conclusion in Theorem 7.2.1.

7.3. A special case

Recall the setting of [7, 9.3]. Let π0 be a discrete series representation of

G0 = U(n− 1, 1) with Harish-Chandra parameter µ = [(µi)1� i�n−1 ;µn] ∈
Ξn−1

(h) , and π a discrete series representation of G = U(n, 1) with Harish-

Chandra parameter λ = [(λj)1� j �n ;λn+1] ∈ Ξn(k) such that 1 < k =

h + 1 < n. Then the conditions (i), (ii) and (iii) in 7.2 is equivalent to the

following.

(i) [(lj)1� j �n ; l0] is the Blattner parameter of π;

(ii) [(mi)1� i�n−1 ;m0] is the Blattner parameter of π0 and

λ1 > µ1 > λ2 > · · · > λh > µh > λh+1 > λn+1

> µn > µh+1 > λh+2 > · · · > µn−1 > λn

holds;
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(iii) l0 = m0.

The numerical data (ν̃, ν0, θm) which involves in the formula (7.2.1) is

given as

ν̃ = mh+1 − l0 + n − 2(h + 1),

ν0 = mh+1 − l0 + n − 1 − 2h,

θm =
∑

h+1<i�n
li −

∑
1� i�h+1

li +
∑

1� j<h+1

mj −
∑

h+1<j �n−1

mj .

Remark 7.3.1. The condition (i), (ii) and (iii) above implies

dimCImod(π0|π) = 1 ([8]).
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