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Real Shintani Functions on U(n,1)

By Masao TSUZUKI

Abstract. Let G = U(n,1) and H = U(n — 1,1) x U(1) with
n > 2. We realize H as a closed subgroup of G, so that (G, H)
forms a semisimple symmetric pair of rank one. For irreducible rep-
resentations m and 7 of G and H respectively, we consider the space
T, = Homg. g (7, Ind% (1)) with K a maximal compact subgroup in
G and gc the complexified Lie algebra of G. The functions that be-
long to Im(®) for some ® € Z,, » will be called the Shintani functions.
We prove that dimcZ, » < 1 for any 7 and any 7, giving an explicit
formula of the Shintani functions that generate a ‘corner’ K-type of 7
in terms of Gaussian hypergeometric series. We also give an explicit
formula of corner K-type matrix coefficients of 7 in the usual sense.

1. Introduction and Basic Notations

1.1. Introduction

The Shintani functions have their origin in an unpublished work by
Shintani, where he presented a new way to get an integral representation
of L-functions for automorphic forms on symplectic groups by using some
type of generalized spherical functions. In that work, he gave several con-
jectures concerning their basic properties, which have been solved affirma-
tively by Murase and Sugano [13]. Furthermore they developed a general
theory on integral representations of automorphic L-functions for classical
groups by means of such type of special functions, refering them ‘Shintani
functions’([12], [13], [14], [8])-

Now we explain more precisely what the Shintani functions are. Let G
be a reductive algebraic group defined over a local field k and H its spher-
ical subgroup which is also defined over k ([1]). Let G and H stand for
the associated locally compact groups of k-valued points, K and K their
maximal compact subgroups respectively. For an irreducible admissible rep-
resentation n X 1 of H x G, the Shintani functions belonging to n X 7 are
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defined to be K x Kg-finite functions on G which belong to the image of
a H x G-intertwining operator ® : n X 7 — C°°(G) (Shintani funtional),
where we regard G as a H x G-space by letting G act on G by the right
translation and H by the left translation.

In L-function theoretical point of view, it is important to know the
uniqueness of Shintani functional @, i.e., dimcHompgxg(nX 7w, C*°(G)) < 1,
and to have explicit formulas of the Shintani functions in some sense. By
Murase, Sugano and Kato, the uniqueness of Shintani functional and ex-
plicit formulas of the Shintani functions are available in many cases when k
is non-archimedian, G and H are unramified over k£ and nX is of class one.
But as for the groups over archimedian fields, the situation is different. They
consider only those automorphic forms whose archimedian component is a
special type of holomorphic or antiholomorphic discrete series representa-
tion, so that the corresponding Shintani functions are elementary in nature.
In order to handle automorphic forms with more general type of archimedian
component, investigations about the Shintani functions on real Lie groups
are necessary.

In this paper, we discuss the following problems for G = U(n, 1) with
n>2asGand H=U(n—-1,1) x U(1).

(1) For given irreducible Harish-Chandra modules n and = of H and G
respectively, to determine dimension of the C-vector space

Tpx = Homge i) (m, C®Ind5 (1)),

where gc denotes the complexified Lie algebra of G, K a maximal
compact subgroup such that K N H is maximally compact in H.

(2) To get an explicit formula of K-finite functions in
Sy.r = Image(Z, » @c Hy — C*Ind%(n))
on a split torus A of GG that contains a complete set of representatives
of the double coset space H\G/K. Here H, is the representation

space of 7.

Our main result can be stated roughly as follows.
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THEOREM 1.1.1.

(1) For any irreducible (gc, K)-module © and any irreducible (hc, HNK)-
module 1, we have
dimcZ, » < 1.

(2) Let T be the corner K-type for m prescribed to each w as in 8.2. Then
we have an explicit formula of some of the functions in S, . with K-
type T on a split torus of G in terms of the Gaussian hypergeometric
functions. We also have a system of difference-differential equations
which determines the A-radial parts of functions in S, » with arbitraly
K -type recursively.

One can find a more accurate form of the theorem above in Theorem
8.1.1, Theorem 8.3.1 and Theorem 8.2.1. We give a necessary condition for
the space 7, » to be non-zero (see Theorem 8.1.1, Theorem 8.2.1), which, in
some cases, is also sufficient to ensure the existance of a non-zero functional
in Z, ;.

Now we give a few words on some technical points. We already consid-
erd the problems (1) and (2) when n = 2 in [18]. Although the method
employed in this paper is basically the same as in [18], the situation be-
comes considerably complicated because the maximal compact subgroup K
is much bigger than before. In the computation we have to manipulate
concretely various operators associated with a general finite dimensional
representation of such a big compact group. For that purpose we use the
Gelfand-Zetlin basis, that is also used in [17] to discusses Whittaker model
of the discrete series representations of rank 1 classical groups.

Finally we remark several points not mentioned above. Though we
stressed L-function theoretical aspects of Shintani functions, they play a
role in various number-theoretical aspects, for example Fourier expansion
of automorphic forms, trace formulas, etc. Furthermore apart from these
applications, we believe that they are interesting themselves in view of the
harmonic analysis on homogenous spaces.

As an application of the explicit formula obtained in this paper, we can
compute a local zeta integral in the theory of Murase and Sugano, which
reduces to a kind of Mellin transformation of real Shintani functions on a
split torus. This will be discussed in another paper ([19]).
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The author expresses his profound gratitude to Professor Takayuki Oda for
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1.2. Basic notations

For given matrices X1, Xo,..., X, with X; € M,,(C), we write
diag(X1, Xo,...,X;,) for the matrix of size n = ;" n; which represents
the linear endomorphism X; & Xo @ --- @ X,,, of C* = ;% C™. For a
positive integer p, I, denotes the identity matrix of size p. For positive
integers p and ¢, we write 0,, for the p x g-matrix whose entries are all
Z€ro.

For 1= (li)lgign € 7", set |1| = Z?:l l;.
For a given real Lie group, we denote its Lie algebra and its complexified

Lie algebra by the corresponding German letter and that with the subscript
C respectively; for example L, [, [¢.

For r > 0, put

r—rt r4 1 sh(r)

For a C*°-function f defined on a Lie group G with its values in some
topological vector space and an X € g, put

Rx f(g) = lim flg exp@f )) — £(9)

This defines an action R of g on the space of functions f; the extended
action of the universal enveloping algebra U(gc) will be also denoted by R.

, g€@.

2. Preliminaries
We introduce basic objects which will be used throughout this paper.

2.1. Unitary groups
Let n be a positive integer. Put

U(n) = {z € GL,(C)| 'zz = I,.}.

Let G, be the group of linear automorphisms of C"*! preserving the Her-
mitian form w, = diag(I,,—1), that is

Gp = {9 S GLn+1(C)|thng = Wn}-
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The Lie algebra of G,, is realized as
gn = {X € g[n+1(C)| tXWn +wp X = On—f—l,n—l—l}y

considered to be a real Lie subalgebra of gl,4+1(C) = g, C.
For a pair of integers ¢, j with 1 < 4,5 < n+1, put Ejj = (6ipdjg)i <pg<ntl €
gl,+1(C); then E;;’s make up a basis of gl,41(C).

2.2. Subgroups of G,
Let n be a positive integer. Set

Ko = {diag(n, k)| k1 € U(n), ks € U(1)},
In1 Op—11 Op—11
A, = {aT = | Oin—1 ch(r) sh(r)

r> 0},
Ol,nfl Sh(’l“) Ch(T)
M, = {diag(z,u,u)| v € U(1), x € U(n — 1)}.

Then K, is a maximal compact subgroup of G,,, A, is a maximally split
torus of G, M, is the centralizer of A, in K,. Let Z, be the center of G;
it consists of all the scalar matrices in Gy, and is isomorphic to U(1).

We have isomorphisms K,, = U(n) x U(1) and M,, = U(n—1) x U(1) defined
by the assignments

(2.2.1) U(n) x U(1) > (ky, ko) — diag(ki, k2) € K,
and

(2.2.2) Un—1) xU(1) > (z,u) — diag(z,u,u) € My,
respectively.

Let H, be the fixed-point subgroup of the involution o : ¢ — S~ 1¢S5 with
S = diag(I,—1,—1,1) of Gy; it coincides with the image of the embedding

(2.2.3) Gn_1 XU(l)B far g , hoo
ha1  hss

hi1 Op—11 his
— Ol,nfl h22 0 S Gn
h31 0 h33

with hip € Mnfl((C), his € Mnfl’l(C), hsg € Ml,nfl((C) and hz3 € C. Then
the pair (G, H,) is a semisimple symmetric pair of split rank one.
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2.3. Central characters

Let L be a closed f#-stable subgroup of G, containing Z, with 6 the
Cartan involution of G,, corresponding to K,. Note that Z,, is contained in
the intersection of the center of L and K,. Given an (I¢, K, N L)-module
(p, V), if there exists an integer ¢ satisfying

(2.3.1) p(zz) = 21y, 2z, = diag(z,x,...,x), z € U(1),

we write ¢, (p) for that integer c. For example this is the case when p is
irreducible.

2.4. Induced representations and intertwining spaces

First recall the notion of admissible representation of a Lie group ([2],
[6, section 5], [22]). Let G be a reductive Lie group with compact center.
A representation (m,V) of G on a Fréchet space V is said to be admissible
if it is smooth, is of moderate growth and every irreducible continuous
representation of a maximal compact subgroup K of G occurs in 7 with
finite multiplicity. For an irreducible admissible representation 7 of G, we
define (¥, VV) to be the canonical Fréchet globalization of the dual of the
underlying (g, K')-module of 7. The canonical G-invariant pairing V x V¥ —
C is non-degenerate and 7 is canonically isomorphic to (7).

For two smooth Fréchet representations (m;, V;) with ¢ = 1,2, the space
of continuous G-homomorphisms from V; to Vs is denoted by Homg (71, m2).
Let (n,F) be an irreducible admissible representation of a closed subgroup
H of G. We can form a smooth Fréchet representation C*Ind%(n) of G
by inducing 1 from H to G. Recall that its representation space Cp°(H\G)
consists of C*°-functions F' : G — F satisfying F(hg) = n(h)F(g), g €
G, h € H, and G acts by the right-translation on that space.

ProposITION 2.4.1. Let (n,F) and (w,V) be irreducible admissible
representations of Hy, and G, respectively. Let p be the H, X G,-module
with representation space C*°(G,,) on which H, acts by the left-translation
and Gy, by the right-translation. Then there exists a canonical isomorphism

Hompy, g, (n' R, p) = Homg, (T, C‘X’Indgz (n))

such that ¥ in the space of left-hand side corresponds to ® in the space of
right-hand side if and only if

(2.4.1) U0 @ w)(g) = (®(w)(g),0), veFY, weV, gcG,
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holds. Here { , ) :F x FY — C is the canonical pairing.

Proor. Let AH, be the diagonal subgroup of H, x G,. Since =
(n¥)Y canonically, there exists a canonical isomorphism

(2.4.2)  Homag, (Y B )| AHp, 1ag,) > ¥ = & € Homp, (x| Hy, 1)

such that
(@' (w),d) =V (v @w), veEF’, we.

By the Frobenius reciprocity the intertwining space in the right-hand side
of (2.4.2) is isomorphic to

Homg,, (7, C*Ind$}" (1)).
Since AH,\(H, x G,) = G, as H, x Gp-spaces, we have p =
CwIndg}ﬁG"(lAHn). Hence by Frobenius reciprocity, the intertwining
space in the left-hand side of (2.4.2) is isomorphic to

HomHn XGn (nv g 7T7 p) °
This completes the proof. [

We introduce an infinitesimal version of Homg, (m, C”Indgz (n)), that
is our main concern in this paper. Let n be an irreducible (b, c, K, N Hy)-
module and 7 an irreducible (g, ¢, Kp)-module. We denote the canonical
Fréchet globalizations of n and 7 by the same letters. We put

Iy = Homg, o i, (m, Ind$" ()
with Indflz (n) the underlying (g, c, Kn)-module of Coolnd%;(n»

COROLLARY 2.4.1. Let n and w be as in Proposition 2.4.1. Then we
have

dimc Hompy, «c, (nY X 7, p) = dimc Homg,, (7, CmIndg’; (n)) < dimcZy) x-

PRrROOF. The first equality follows from Proposition 2.4.1. The second
inequality is a consequence of the fact that the K, -finite vectors of V is
everywhere dense. [
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3. Representation Theory of Compact Unitary Groups

In this section we recall briefly the Gelfand-Zetlin basis of a finite di-
mensional representation of a compact unitary group. For more detailed
treatment on this material, see [21] for example. Later we parametrize the
unitary duals of K,, and M,,.

3.1. Gelfand-Zetlin schemes
For a positive integer n, set

A, =77,
Ay ={1=(l)1<i<cn €Z" l; > liy1, 1 <i<n— 1}

An element of A} is called a dominant weight of size n.

For given dominant weights q = (¢;)1<i<n € A} and ' = (qg)l <j<n-1€
Af | we write g’ C q if ¢j > qj = qj+1 holds for 1 < j <n—1. A sequence
of dominant weights Q = (qi)i1<i<n is called a Gelfand-Zetlin scheme if
q; € A;.", 1 <i<nandq; Cqjyr, 1 <j<n—1; the totality of them
is denoted by GZ™. For every q € Al the subset of GZ (") consisting of
those schemes with q,, = q is denoted by GZ (”)(q).

For a given dominant weight q = (¢;)1 <i<n € A} and an integer 1 < k g n,

put g™ = (¢ + Oki)i<i<n (resp. 7% = (¢ — Ori)i<i<n); A7 € Ay
not necessarily dominant. For a Gelfand-Zetlin scheme @ = ( Mi<h<n
A Q'H (resp. Q" ) stands for the sequence of weights (q},)1<n<n such

that qj, = qp, (h#J) =q;" (resp. o =q; " ).
Forle A, mEAn 1 <k<nand1<i<n—1,set

n—1 n—1
}H(mh—lk-‘rk—h—l)}l/Z } H(mh—lk-‘rk—h) }1/2
yHm k) = P L sl = |
I II (lhflk+k h)‘ ‘ 11 (lhflk+k‘7h)‘
h=1,h#k h=1,h#k
and
n n
| IT (i, —m;+i—h) }1/2 | I dp—mi+i—h+1) }1/2
. . h=1 . o h=1
az(llm)_i n—1 i ’ bL(l7m)_i n—1 i

I1 (mh—mi—ki—h—&—l)
h#i,h=1 h#i,h=1
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PROPOSITION 3.1.1 (Gelfand-Zetlin). For every q € A}, let W(q) be
the C-vector space freely generated by symbols |Q) with Q@ = (qj)i1<j<n €
GZ"™(q). There exists a unique Lie algebra homomorphism X((ln) 1 gl (C) —
Endc(W(q)) such that Xgn)(Ejj) with 1 < j < n and Xgn)(EmH),
Xgn)(EjH,j) with 1 < j < n—1 are given by the formulae (3.1.1), (3.1.2)
and (3.1.3) below. Furthermore, the action X((1 of u(n) thus obtained can
be globalized to that of U(n) giving an irreducible U(n)-module (X((ln), W(q))

The equivalence classes of (Xsln), W(q)) for q € A} ezhaust the set U( ).

(3.1.1) X (EiIQ) = (o] — laj-11)1e),

(312)  xJELH)IQ) = Z’y ajo1 1 qz Dai(aje 5a)|QF),
=1

(3.1.3) Xsln) Ej15)|Q) = Z’)’ qj—1 9, 9)bi(qj+1 %%‘)|Qj_i>7

for @ = (aj)1<j<n € GZ™ with q; = (gij)1<i<j €AS, 1 <j<n.
PROOF. [21, page 363]. O

The Gelfand-Zetlin scheme has a nice behavior under the pullback via

the inclusion
U(n —1) 5z — diag(z, 1) € U(n).

Indeed, we have
LEMMA 3.1.1.
(1) For a dominant weight 1 € A}, set

AQ)={me Al ;|mcC1}.

Then Xln)]U(n — 1) decomposes into a multiplicity free direct sum of
Xsﬁ_l) 's with m € A(1).

(2) For every m € A(l), we define the C-linear map

Pm : W(1) — W(m)
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by giving its values on the basis |Q), Q € (1) as follows: for
Q= (1;Q) € GZ() set pi,|Q) = Q") if Q’ € GZU"=D(m) and
pL |Q) = 0 otherwise. Then

phy € Homy 1) (X U(n — 1), xin ™).

Proor. This is a consequence of Proposition 3.1.1. [

3.2. Representations of K,, and M,

The torus T, consisting of all diagonal matrices in G,, is a compact
Cartan subgroup of G,, contained in K,. Let v/—1t: be the space of all
R-linear forms t,, — /—1R; it containes £,,, the unitary character group of
T,. For 1 <k <n+1,let ¢ € L,, be the character defined by

ek(t) = tg, t:diag(tl,...,tn+1) eT,.

Then the family {€;}}7] gives a basis of the abelian group £,. The root
system for (T, K,,) is

Rcz{i(ﬁh—ek)| 1<h<k<n}.
We fix a positive system of R. as
Rér:{eh—éﬂ 1<h<k<n}.

Let £} be the set of RF-dominant elements in £,,. For 1= (Ix)1<r<n € A}
and lyp € Ay, put

(3.2.1) 1 l() Z lper + loent1-
k=1

Then L} is the totality of all A = [1 ;o] with (1,1p) € A7 x A;.
Set °T,, = T, N M,; °T, is a maximal torus in M, and consists of all
elements ¢ = diag(ti,...,tn,tht1) € Ty, with ¢, = t,41. Let °L,, be the
unitary character group of °7T;,. For 1 < ¢ < n, let °¢; be the image of
€; € Ly by the restriction map £, — °L,,. Then {°;}" , gives a basis
of the abelian group °L,. Let °R. be the root system for (°T,, M,), o
explicitly

‘Re={£(°e; —°¢;)| 1 <i<j<n—1}



Real Shintani Function 619

We fix a positive system of °R. as

"R ={% —°¢|1<i<j<n—1}.
Let °L} be the set of °RI-dominant characters in °L,. For m =
(mi)lgign_l c A;'z——l and mo € Al, put

n—1

(3.2.2) (m ;mg) = Z m;°€; + mo°ep.

i=1
Then °L; is the totality of all u = (m ;mg) with (m,mg) € A} | x A;.
By the highest weight theory, we have K, & L} and M, = °LT.

DEFINITION 3.2.1.

(1) For every A = [1;lp] € L}, we denote by 7, the representation an) D
Xl(;) of K,, = U(n) x U(1) acting on W (1). The representation space
of 7, will be also denoted by W) in some situation.

(2) For every u = (m ;mg) € °L;}, we denote by o, the representation

xR of M, = U(n — 1) x U(1) acting on W (m).

Let A=[1;lp) € £} and p = (m ;mg) € °L;". Then the integers ¢, (1)
and ¢, (0,) defined in 2.3 are given as

(3.2.3) cn(y) = 1| +1lo, cn(on) = |m|+myo.

The following proposition tells how a given irreducible representation of K,
decomposes to irreducible representations of M, when restricted to M,,.

PROPOSITION 3.2.1. Let A= [1;lp] € L.

(1) The representation Tx|M,, of M, is a multiplicity free direct sum of
o,’s with pp = (m ;¢,(7)) — |m|), m € A(l).

(2) Let m € A(l) and put p = (m ;c,(7x) — |m|). Then the C-linear map
ply : W(1) — W(m) defined in Lemma 3.1.1 make up a basis of the
one dimensional C-vector space Hompg, (x| Mp,0,).

Proor. This follows from Lemma 3.1.1. [J
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4. Review of Representation Theory of G,

We recall some facts about the representation theory of the unitary
group G, which is necessary for our study. All of the materials in this
section will be found in Kraljevi¢ [9], [10]. Though [9] and [10] deal with
the semisimple group SU(n, 1), we can translate the results into those for
U(n,1) easily. Note that our parametrizations of K and M are different
from Kraljevié’s.

4.1. K,-spectrum
The root system of g, ¢ with respect to t, c is

R={%(e; —¢)| 1 <i<j<n+1}
and that for ¢, ¢ with respect to t, c is
Re={%(e;i —¢)| 1 <i<j<n}

Put
Ry = {:l:(fi - fn—i—l)‘ 1<i< n}7

the set of non-compact roots in R. Let p. = Y1, %ei be the half sum
of roots in R7.

Given an admissible (g, c, Ky )-module (7, H,), we say that 7 is K,,-simple
if every irreducible unitary representation of K, occurs in 7|K,, with mul-
tiplicity one or zero. It is a well-known fact that an irreducible (g, c, Ky)-
module is always K,-simple in the present situation that g, = u(n,1). Put

Ly (m) = {X € L;;| Homp,, (mx, | Kn) # {0}}.

We assume that 7 has a central character, i.e., there exists an integer z such
that m(21,41) acts on H, by x*1y, for x € U(1). Then A € £ (7) implies
cn (7)) = cp(m) = 2. Hence, for such a 7, there exists a unique subset A ()
of A} such that

Li(m)={l:z— ] € L7 1€ A (m)}.

For an 1 € A} (r), take a basis f of the space Homg,, (71 .y, 7| Kyn) = C
and fix the system {.J| 1 € A;} (7)} for once and for all. The system will be
called the standard system for .
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PROPOSITION 4.1.1. A choice of the standard system {.J| 1 € A ()}
uniquely determines 2n functions

AT : A, —C, By : A, —-C, 1<k<n
satisfying
AT(1) = BF (M%) = 0 if either 1 € A (m) or 1T+ & At ()

and

T(Ennt ) 1Q) = v (an-1 5L R)ATQ) - o |QFF),
k=1

T(Ens1n)f1Q) =Y v (an-1 5L k)BE(D) - -] @Q,F)
k=1

for any Q = (qr)1<r<n € GZM(1).
ProOF. This can be found in [9, section 5. [J

If (7, Hr) is an irreducible (g, ¢, Kp)-module, then Z(g,, c), the center of
U(gn,c), acts on H, through a character "¢ : Z(g,,c) — C, the infinitesimal
character of .

It is known that the isomorphism class of 7 is determined by the two
invariants £ () and "¢(Qg,, ) with Qg,, the Casimir element of G,, ([9, The-
orem 9.2]).

4.2. Elementary representations

Let P, be a minimal parabolic subgroup of G,, having M, A,, as a Levi
subgroup. Given a complex number s € C and an irreducible unitary
representation (o,V’) of My, let V75 denote the space of all C*°-functions
¢ : G, — V such that

o(a(r)ymug) = r"o(m)e(g), >0, u€ Ny, m € My, g€ Gy,

with NN;, the unipotent radical of P,. Letting G, act on V75 by the right
translation, we have a representaion of GG,, on Vf;'js. Let V, s be the subspace
of all K,-finite functions; V, s carries a natural (g, c, K,)-module structure

0,8
™ .
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An irreducible (g, c, Ky )-module which is isomorphic to some 7,* with
suitable o and s is called to be elementary. (We adopt Kraljevic’s termi-
nology here; 7,° is called principal series commonly.) When o = o, with
= (m ;mg) € °L} we also write m,(m,mq ;s) for 75"

LEMMA 4.2.1. Let m be an elementary irreducible (g, c, Ky)-module
isomorphic to m,°, where o is an irreducible unitary representation of M,
with highest weight = (m ;mg) € °L} and s € C. Then we have

LHm)y={ =l € L] mCL c,(n\) = cn(ou)}s

cn(m) = ep(oy) = Im| + mo.

PROOF. As a result of Frobenius’ reciprocity, we know that 7, with
A € LI occurs in 7, °|K, if and only if o occurs in 7y\|M,,. This fact
combined with Lemma 3.1.1 gives the explicit form of £} (7) as above. O

4.3. Non-elementary representations
There exist n+1 sets of positive roots RE;L), 0 < h < nin R that contains

R7; the set Rz%) is given by

Ra):RjU{Ej*6n+1| 1<j<h}U{€n+1*€j|h+1<j<n}.

We put RT = Rz;) and R~ = REB). Let pM = Z?:l Wei +

Z;‘:h_ﬂ "‘Tmei + "_22hen+1 be the half the sum of roots in Ra). Let C
be the open Weyl chamber in y/—1t} corresponding to R, that is

C={A=[Ni<i<n il €V=IG] A > Ajpr, 1<j<n—1}
For each h with 0 < h < n, let Dy, be the open Weyl chamber in /—1¢t;,
corresponding to the positive root system R&), namely

Do ={N € C| Apy1 > M1},
Dh:{)\ec|)\h>)\n+l>)\h+1}7 O0<h<n
D, ={\e€C| Ay > A1}

The center of the universal enveloping algebra Z(g,, c) of g, c can be iden-
tified with S (tm(c)W, the algebra of all W-invariant symmetric tensors over
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t, c, through the Harish-Chandra isomorphism ¢¢. Here W is the Weyl
group of R, which we identify with &,,1, the symmetric group of degree
n+1letting 0 € &,,41 operate on e, 1 <k < n+1 by therule o(ex) = €g()-
For any A € € ¢, let £\ : Z(gn,c) — C denote the C-algebra homomorphism
defined by 7

X)) = X)(N), X € Z(gn,0)-

We do not give the precise definition of ¢¢ here, only remarking that if 7 is
a finite dimensional irreducible (g, c, Ky )-module with RT-highest weight
A € Ly then "§ = &4, with p = p™ . The following definition is due to
Kraljevié [10].

DEFINITION 4.3.1. Let 7 be an irreducible (g, c, Ky)-module. Let A
be a dominant weight and 0 < h < n an integer.

(1) X is called a Dp-fundamental weight of 7 if 7, occurs in 7|K, and

(2) X is called a Dy-corner of 7 if A € L (7) and A — 3 &€ L] () for all

+
B € Ry N R(h).

(3) A is called a Dp-fundamental corner of 7 if it is a Dp-fundamental
weight of m and a Dp-corner of 7 at the same time.

Let zp be an integer. For any pair of integers (h,k) with 0 < h <
k < n, let Spi(z0) be the set of all r = (rj)1<i<p+1 € AL, such that
Ir| — 20 = h + k — n and either rp, > rpyq1 or 711 > 742 Let S, be the
set of all quadratuples (h,k,r,29) such that h,k and zp are integers with
0<h<k<nandrée€ Sy(z). For a given ( = (h, k,r,20) € S, put

k n n+1
(4.3.1) )\h(C) = Z i€ + Z Ti+1€ + (ZQ — Z i + Tk+1)6n+1,
i=1 i=k+1 i=1
h n n+1
X(0) ZZTi€i+ 7“z'+1€i+(20—zTi+?“h+1)€n+1-
=1 i=h+1 =1

Note that ¢ (Tar()) = enlTar(e)) = 20 and xn(¢) 12— ph) = Exk(()£2pe—p)-
Indeed, we have

one(N(C) + 2pc — pM) = N(¢) + 2pc — p™
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with oy, the element of W = G,, 41 defined by

O’hk(i):i, iE{l,...,h}U{k‘—l—l,...,n},
Uhk(i):i—Fl, iE{h+1,...,k—1},
th(k) =n+1, O'hk(n—f—l) =h+1.

THEOREM 4.3.1. Let ( = (h,k,r,29) € S,.

(1) To ¢, there corresponds an isomorphism class Il¢ of irreducible non-
elementary (gn,c, Kn)-modules that has the following property: An ir-
reducible (gn,c, Kn)-module m belongs to the class ¢ if and only if

en(m) = 20,

(4.3.2) AI(W)Z{IGAI hzrz- 2>,

That = lhp1 = -l = Trga,

Thao 2 lpp1 = - 2 Tpy1 = ln}7

and " = Exn(¢)+2pe—p™) = EXE(Q)+200—p) -

(2) Let 7 be an irreducible (g,,c, Kn)-module in the class Ic. Then A*(C)
is the unique Dp-fundamental corner of ; )\k(C) 1s the unique Dy-
fundamental corner of w. Fori € {0,...,n} with i # h,k, © has no
D;-fundamental corner.

(3) The map ¢ — Il¢ gives a bijection from S, onto the set of isomorphism
classes of irreducible non-elementary (gn,c, Kn)-modules.

(4) The class Il; contains a unitarizable element if and only if \*(¢) =

N (6).

PrOOF. (1) and (3) follow from the matters found in [10, section 4].
(2) follows from [10, Proposition 2]. (4) follows from [10, Theorem 5 (i)]. O
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THEOREM 4.3.2. For ( = (h,k,r,20) € Sy, let I¢ be the set of pairs
of integers k = (q,p) such that 1 < g < p <n+1, q € {h,h+ 1} and
pe{k+1,k+2}. For each k = (q, p) € ¢, put

Hn—zrz € + Z Ti+1 61+ZT1+2 €;

1=q+1
+(n—h—k+rg+rp) e, € Oﬁz,
SK:’)”q—T’p—‘-k’_heC.

Then there exists a unique (gn.c, Ky)-subquotient of the elementary repre-

sentation " "*" that belongs to the class IL;.

ProOOF. This follows from [10, Proposition 3. [J
5. Decomposition of Tensor Products

In the first place we recall some basic facts on the affine symmetric space
H,\G,. We also prove some technical lemmas on decomposition of tensor
products of representations of M, K, and H,.

5.1. Decomposition of Lie algebras

Recall the involution o of G,, (see 2.2). Let g, be the (—1)-eigenspace
of the involution do of g,, and p,, that of the Cartan involution of g,,. We
have the direct sum decompositions

En = (En N hn) @ (En N qn)7 pn - (hn N pn) @ (qn N pn)

and

(5.1.1) (B Nan)c =t Nan)t @ (6, Nay) 7,
(bn N pn)(C = (bn N pn)+ S (bn N pn)_7

with

n—1
(Enmqn)+ = Z(CEi,TL7 n N qn Z(CETL )

i=1

n—1
(hn N pn)+ = Z (CEi,n—Ha hn N pn Z (CEn—H i

=1
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5.2. Structure theory

The Lie algebra of A,, is given by a,, = RH; with Hy = Ey, 41+ Enti.n;
it is a maximally split abelian subspace of q,, N p,. Let M denote the nor-
malizer of A,, in H, N K,; then M = M,, Uw, M, containes M,, as a normal
subgroup with index two, and the quotient group M, /M, is isomorphic to
the Weyl group of the root system for (g,,a,). By the structure theory of
the semisimple symmetric space G,/ H,,, we have the Cartan-Iwasawa type
decomposition of G,,.

PROPOSITION 5.2.1.

(1) The multiplication map ¢ : H, x A, X K, — Gy, (h,a,k) — hak
is a surjective C*°-map and its tangent map at (h,a,k) is surjective
if and only if a # In,41. For every a € Ay, — {In+1} we have the
decomposition

(5.2.1) gn = Ad(a )b, + a, + &,

(2) Let g = hak with h € H,, a € A, and k € K,. The fibre of ¢ above
g s given by

v (g)

)

= {(hl, 1" al, 17 k)| 1 € M} if a# Tpya,
={(M, T, I R) 1€ H,N K, Yif a=Tn41.
PRrROOF. See [15, Theorem 9, Theorem 10]. O

Let (7, W;) be a finite dimensional continuous representation of K, and
(n,Vy) a Harish-Chandra (b, ¢, Kn N Hy)-module. Let (n°°,V,>°) be a C>°-
globalization of 7 on a Fréchet space. We define C7< (H,\Gr/Ky) to be the
C-vector space consisting of C*°-functions F : G,, — Hom(WT,VnOO) with
the equivariant property

(5.2.2)  F(hgk) =n>(h)o F(g) o7(k), he H,, g Gy, ke K,.

Note that since W is of finite dimension, the C-vector space Hom (W, V,;>)

of all C-linear maps from W; to V> becomes a Fréchet space naturally.
Let us denote by C;;?T(An) the totality of C°°-functions ¢ : A, —

Homg(W7, V) which is of the form ¢ = F|A, with an F €
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Coo (Hn\Gn/Ky). Then, as a result of Proposition 5.2.1 and the equa-
tion (5.2.2), by the application F' — F|A,, the space CP% (Hn\Gn/Ky) is
mapped onto P (Ay,) isomorphically, and ¢ € Cp< (Ay) satisfies the equa-
tions

(5.2.3) n(m) o ¢(a) o 7(m™1) = p(a), m e M,, a € A,,
(5'2'4> U(Wn) o (P(a) 0 T(Wn) SO(G_I)a a € Ay,
(5.2.5) n(l) o p(Int1)o7(l) = @(Int1), le H,NK,.

5.3. Representation theory of K,, and M,

For any Ad(M,,)-stable subspace v of g, ¢, the action of M, on v is
denoted by °Ady. The subspaces (£, N q,)* and (b, N p,)T are typical
examples of such v.

PrROPOSITION 5.3.1. Let ¢ € {+,—}. The two representations
OAd({z/nﬂqn)e and oAd(bnﬂpn)E are isomorphic. The linear map v : (¢,Nqy)° —
(b, N pp)€ defined by

(5.3.1) Y(Eni) = En+1,i, V(Ein) = —Eipt1, 1€{1,...,n—1}
gives an My -isomorphism.
Proor. This is easy. [

PROPOSITION 5.3.2. Let u = (m ;mg) € °L}. Forie {l,...,n—1}
and € € {+,—}, put

(5.3.2) p = (m ;mg — €l).

Then we have

n—1
(5.3.3) oy @ OAd(gnmqn)e = @ O e
i=1
ignoring o if pct g oLt
ProOF. Put et = (S1i)i<cicn1 € Af , and °e” =

(=6n-1i)1<i<n-1 € A}_;. Then we easily see that °Adg,ng,): is iso-
morphic to oo+ .41). Hence the proposition follows from [26, page 231,
Example 2]. O
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PROPOSITION 5.3.3. Let u = (m ;mq) € °L;}. Then the M,-isomor-
phism (5.3.3) can be chosen uniquely so that the formulas

&r (Bnn-1) o I (m)|Qr1) = 7F (A2 s m,0)|Q),
€ (Bn-1n) © I (m)[Q1) =7 (dn—2 ;m,1)|Q)

holds for any |Q) = ( Di<j<n-1 € GZM 1)( ), where I (m) denotes the
M, -inclusion W (m*?) — W (m) ®c (¢, Nq,)* corresponding to (5.3.3) and
forY € (¢, Nqy)T,

EE(Y) : W(m) @c (b, Ngn)E — W(m)
is the map defined by

(5.3.7) EV)weX)=(Y,X)w, weW(m), X € (& Na)*.

Proor. This follows from matters in [21, section 18.2]. [J

From now on we assume that the isomorphisms (5.3.3) is chosen as in
Proposition 5.3.3 for any u € °L;}.

Let A = [1;l) € £} and pp = (m ;mp) € °L;} with o, occuring in 7| M,;
thus Hompy, (7a| My, 0,) = Cpl, with pl, as in Lemma 3.1.1. Taking an
R-basis {X;}7 22 of €, N g, such that (X;, X;) = tr(X;X;) = —6;;, we set

2n—2
men\ ®X

Then the right-hand side of the above identity is an element of W (m) ®
(¢, N q,)c independent of the choice of {X;}, and the map w — [pl,](w)
defines an M,-intertwining operator 7\|M;,, — 0, ® °Ad(¢,q,)c- Let pr*
(t,Ngn)c — (E,Ngn)* be the projection corresponding to the decomposition
(5.1.1) and set

[Ph)® = (1w (m) ® pr¥) o [phy).
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By taking {2*1/2(—Em +E,), (—2)*1/2(Em —i—Em)}?:_ll for {X;} above, we
have

n—1

(5.3.8) [Pl T (@) = = Pra(Ta(Bni)w) ® Ein,
=1
n—1

(5.3.9) [Pra] ™ (w) = — Z Pia (T (Bin)w) © Enp.
=1

LEMMA 53.1. Let A\=[1;ly] € L and p= (m ;mg) € °L} such that
ou occurs in Tx|M,. Then we have

(5.3.10) Pl = =D ai(1;m) - I (m) o pl s,

(5.3.11) Phal™ == bi(1;m) - I (m) o ply ..

Here in the summation in (5.3.10) resp. (5.3.11) with respect to i, the terms
for those i with m™ ¢ A(1) resp. m~* & A(1) should be ignored.

PrROOF. By the decomposition (5.3.3), the linear maps I;r(m) o plnﬂ-
with i € {1,...,n—1} such that m** € A(l) make up a basis of the C-vector
space

HOIIan (T)\‘Mn, oy ® OAd(En,ﬁqn)+)'

Since [pl,]T belongs to this space, we can write it of the form

n—1
(5.3.12) Pyl ™ = ai- I (m) o pl 1
=1

with a; € C, i € {1,...,n — 1}. In order to determine a;’s, we use the
following identity obtained from (5.3.12) by evaluating it at |Q) with @ =
(1;m% ;Q) € GZ™(1) and applying &f (Epn-1):

(5.3.13) & (Enm-1) o [Pl T1Q) = Y ai - &} (Enn-1) o I} (m) 0 py 1] Q).
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Hence using (5.3.8) and (3.1.3), we have

g:(En,n—l) o [pln]+|Q~> = _pln o T)x(En,n—l)|Q>

n—1
== 3 (@ s b m ) pha Q).
=1

Noting that ph,|Q- ) is 0 unless i = j in which case it is |m ; Q), we see that
the right-hand side of (5.3.13) becomes v~ (qn—2 ;m™, j)b;(1; m™)|m ; Q).
On the other hand, the formula (5.3.5) gives

& (Bnn-1) o I (m) 0 pp 5 |Q) = 77 (A2 sm, j)|m 5 Q).
Thus the right-hand side of (5.3.13) becomes
a7 (An—2 ;m, j)|m ; Q)
since pinﬂ]Q} = 01if i # j. Hence we get
a;7 " (An-2 3, j) = =7 (qn-2 ;™7 j)b;(1;m™)

for 1 < j < n—1. Since v (qn2 ;m?7,j) = 7 (qn_2 ;m,j) and
bj(1;m%7) = a;(l ;m), we get the desired formula. [J

5.4. Representation theory of H,

Recall that H, = G,—1 x U(1) and K,, N H,, = K,,—1 x U(1) through

the isomorphism defined by (2.2.3). For a Harish-Chandra (g,—1.c, Kn—1)-
module (19, V) and ¢o € Ay, we can extend 7 to a (b, c, K, N Hy)-module
by letting U(1)-factor of H,, act on V by x., , which is denoted by np[co].
Let n be an irreducible (b, ¢, K, N H,)-module. Then 7, the restriction of
1 to (gn—1,C, Kn—1), is irreducible and 1 = no[co] with a ¢g € Aq. The subset
A (o) of A} defined in 4.1 is also denoted by A} ().
Let {tm| m € A (o)} be the standard system for 7y, which we call the
standard system for n = no[co] and write i in place of ¢ in the sequel.
Then it is an easy matter to check that thn € Homay, (0(m s, (n)—|m])» 1 Mn)
for every m € A ().

LEMMA 5.4.1. Letn =nolco] be an irreducible (b, c, K, N H,)-module.
Then n|M,, decomposes to a multiplicity free direct sum of o(m ¢, (n)—|m|) S
with m € AT | (n).
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ProOOF. Obvious. O

Let n be as in Lemma 5.4.1 and g = (m ;myg) € °L;} with o, occuring
in n|M,. We set

(5.4.1) [(lJ(w@Y)=n{Y)ou (w), Y € (by,Npy)c, we W(m)

Then we can easily check that the map w ® Y — [th](w ® Y) defines an
M,-intertwining operator o ® °Ad(p,Ap,)c — 7/Mn. By composing [t]
with the natural inclusions (b, Np,)* — (h, NP, )C We get M,-intertwining
operators

L ]F:o® °Ad g, np)= — 1 Mn.

For = (m ;mq) € °L}, let

PE(m) : W(m) @c (£, N q,)T — W (m™)

]

be the M, -projections corresponding to the decompositions (5.3.3).

LEMMA 5.4.2. Letn be as in Lemma 5.4.1 and {ta| m € A ()} the
standard system forn. Let v be the map defined in Proposition 5.53.1. Then,
for every m € A} (n), we have

n—1
(5.4.2) [L?n]+ = - Z A?(m) : Lzﬂﬂ' o Pf(m) ° (1W(m) & ’}’71)7
=1
n—1
(5.4.3) ()™ =" Bl(m) 17 0 P (m) o (Lyym ®7 "),
=1

where A](m), B](m) withi € {1,...,n—1} are the 2(n—1) functions forn
defined in Proposition 4.1.1. In the summation of (5.4.2) resp. (5.4.3) with
respect to i, the terms for those i with m* & Af(n) resp. m~" & A} (n)
should be neglected.

Proor. Using Proposition 4.1.1 and Proposition 5.3.3, we can prove
this in the same way as Lemma 5.3.1. [J
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6. Schmid Operators and Casimir Operators

In the first subsection we introduce the Schmid operators in an abstruct
way. In the second subsection we collect several formulas on Casimir oper-
ators of subgroups of GG, for later convenience. In the final subsection we
introduce a notion of the Shintani function and give a system of equations
for Shintani functions using Schmid operators and Casimir operators.

6.1. Schmid operators

The space p,, is identified with the tangent space of G,/ K, at the base
point and is a K,-module via the adjoint action. The complexified space
pn,C decomposes into a direct sum of two irreducible K,-invariant subspaces

n n
P;t = ZCE]{J,TH—la P; = Z(CEn+1,k~
k=1 k=1

For any K,-stable subspace t of g, ¢, let Adw denote the action of K, on
that space.

Let A € L. The representation 7y ® Adyp,, ¢ decomposes to a direct sum of
irreducible representations

(6.1.1) Hn®Adp, 2 P s
BERnc(N)

with Ryc()) the set of non-compact roots 3 such that A+ 8 € £} (see [26,
page 231, Example 2]).
For k € {1,...,n}, put By = €x — €p+1. Then we have Ry, = {+0k| k €

1,....n}.

PROPOSITION 6.1.1. Let A = [l ;lp] € L. Then we can choose the
K, -isomorphism (6.1.1) uniquely so that the formula

(6.1.2) ex(Bns1n) 0 I, (NIQF) = vF (an-1 51, %)|Q),
(6.1.3) ex(Bnn1) 0 I_g, (N|Q") =77 (an-1 ;:1.5)|Q)

holds for any |Q) = (q;)1<j<n € GZ™(1), where I5()\) denotes the K-
inclusion Wxi3 — Wx ®c pn,C corresponding to (6.1.1) and for Y € p, ¢,

a(Y): W) @pac— W(Q)
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is the map defined by

(6.1.4) (V) (we X) = (Y, X)w, weW(), X €p,c.

Proor. This follows from matters in [21, section 18.2]. (I

From now on, we assume that the isomorphism (6.1.1) is chosen as in
Proposition 6.1.1 for any A € L.

Let (p, M) be a (gn,c, Kn)-module. For any A = [l ;1p] € £}, put
M\ = Homg,, (1, p|Kp).
We define C-linear operators
PV M = M Bl B € Ruc()
in the following manner. First putting
VAN (w @ X) = p(X)f(w), feM[A, weWy, X €pnc,

we define the linear map V) from M[A] to Homg, (7 ® Ady, ¢, p|Kn)-
Then for § € Ryc(A), we set

PR = VA(f) o Is(N),  fEMIAL

The linear maps of the form Pvﬁ' are called Schmid operators. We easily
have

(6.1.5) PVA(S) = ZP(Eka) o foex(Entik)
)

+ " p(Engrp) o foex(Brpyr), f €M
k=1

Here is a convention that will be adopted throughout this paper: For a non-
dominant A € £,,, we put M[A] = {0}. For a given # € R, and a given
A € L, when at least one of the weights A and A + [ is non-dominant, we
define ”Vf : M[A] = M[X + ] to be the zero map.

The following lemma will be proved easily from definitions.
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LEMMA 6.1.1. Let (p, M) and (p', M") be (gn,c, Kn)-modules and ® :
M — M a (gnc, Kn)-homomorphism. Then for X € L} and 3 € Ry, we
have

V(@ f)=®orVI(f), feMM.

Now let 1 be a Harish-Chandra (b, c, K, N Hy)-module and take the
induced representation Indgz (n) for (p, M). Then the space M[)] is nat-
urally identified with the space of functions CP5. (H,\Gn/Ky) ; the linear
opeators "Vf give rise to the first order differential operators

Vst Coo (Hn\Gn/ Kn) = O (Ha\Gon/ Kon).
: +k -k Bk —Br
For k € {1,...,n}, we write VW\ and Vn,A in place of VW\ and Vn,/\ for
simplicity.

6.2. Casimir operators

Let L be a closed subgroup of G,, stable under the Cartan involution
corresponding to K,,. Let 1 be the Casimir element of L corresponding to
the invariant form (X,Y) = trace(XY), X, Y € .

PROPOSITION 6.2.1. We have

n+1 n+1
(6.2.1) QGn Z — Z n— 2+ Q)Em' + 2 Z EijEji,
i=1 1<i<j<n+l
n+1
(6.2.2) Qg :Z Z n—2+1)E;+2 Y  EiEj,
=1 1<i<j<n
n+1 n—1
(6.2.3)  Qp, = Z i= > (n=2i+1)Ej; + (n—1)Epf1np
=1
n—1
+2 Z Ei;Ej; + 2 Z Eint1En41,,
1<i<j<n—1 i=1

(6.2.4)  Qu, = Z Eptint1 + Enp)”
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n—1
— Z(TL — QZ)El,l + 2 Z E’L]Ejl
i—1 1<i<j<n—1

PROPOSITION 6.2.2.

(1) Let m be an irreducible (gnc, Kn)-module with cn(m) = 2o, which
occurs in a subquotient of m,(p,z0 — |p| ;s) with s € C and p =
(Pi)i<i<n-1 € Af . Then Qg, acts on 7 by the scalar given by

n—1 n—1

1 1 .
Qg (7)== —-n®+ > pi+ 520 = p))” + > _(n—2i)p;.
i=1 =1

(2) Let A=1[1;lo] € L}. Then the operator TA(Qk,, ) acts on W (1) by the
scalar

e, (Lilo) =D I +15+ Y (n—2k+ 1)l
k=1 k=1

(3) Let p = (m ;mg) € °L;}. Then the operator o,(Qu,,) acts on W (m)
by the scalar

Qar, (

L (m ;mg) Zm—i— mo—i-Zn—Qz

(4) Letn = no[co] be an irreducible (b, c, HnNKy,)-module with c¢p,—1(no) =
¢, which occurs in a subquotient of m,—1(q,c— |q| ;v)[co] with v € C
and q = (¢j)1<j<n-2 € Af 5. Then Qp, acts on n by the scalar

n—2 n—2

U, (1) = 57— 2 (=1 4+ D g2+ 5 (e~ lal+ 3 (n—1-2j)g;

7=1 7j=1

Let n be an irreducible (b, c, K, N Hy)-module. Since Ad(k)Qg, =
Qg, for every k € K, the operator R, acting on CpS(H,\G,) com-
mutes with the action of K,. Hence it induces a linear operator {2, y on
Cps (Ho\Gn/Ky) for every A = [l ;lo] € L}, which we call the C’aszmzr
operator.
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6.3. Differential equations of Shintani functions

Let n be an irreducible (b, c, K, N Hy)-module and 7 an irreducible
(gn,C, Kp)-module with ¢, (7) = 2.
For ® € Z,,r and A = [l ;2 — |I]] € £} (w), we define the function ®; in
Co5, (Hp\Gy/Ky) by putting

(6.3.1) (@1(9))(w) = (o (w))(g), weW(), geGn.

The functions of the form ®; will be called the Shintani functions. The
totality of ®; with ® ranging over Z, . coincides with M[A] with M the
m-isotypic part of Indg: (n). For convention we put ®; =0 if 1 ¢ A} (7).

PROPOSITION 6.3.1. Let ® € I, and {®| 1 € A (m)} be as above.
Then we have

(6.3.2) Qpa®i(g) = Qa, (7)P1(9),
(6.3.3) VR ®1(g) = AF() @i (g),
(6.3.4) V,5®1(9) = BE )P+ (9)

for A\=[l;z— 1] € LI (7) and k € {1,...,n}.

Proor. The last two equations follow from Lemma 6.1.1 and Propo-
sition 4.1.1. The first one is rather obvious. [

7. Radial Part of Schmid Operator and Casimir Operator

Now we begin our investigation on the Shintani functions. In the first
subsection, we shall introduce the notion of standard coefficient (Definition
7.1.1 (2)), which will play a key role in our explicit computations. Its defini-
tion is based on the fact that the M, -spectrums of n and 7 are multiplicity
free. The subsections 7.2 and 7.3 are devoted to proving Theorem 7.2.1
and Theorem 7.3.1, which give explicit formulas of the A,-radial parts of
the Casimir operators and the Schmid operators in terms of the standard
coefficients; these formulas are crucial for further investigation. From now
on, n denotes an integer with n > 2.
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7.1. Standard coefficients
Let (n, V;,) be an irreducible (h,, ¢, K,NHy,)-module and A = [1;1o] € L;.
Let {t) m € A (1)} be the standard system for . We first have

LEMMA 7.1.1.

(1) The intertwining space Hompy, (Ta| My, n°°|M,y,) is zero unless cp (7)) =
cn(n).

(2) Suppose cn(T2) = cn(n). Then for every m € A | (n) N A(1) the C-
linear map wy, (M) := 11, o ply : W(l) — V> is an M, -intertwining
operator; moreover the family

{wpa(m)| m e AT, () nAD}

provides us with a basis of the finite dimensional C-vector space
Homyy, (x| My, | My,).

PRrOOF. (1) Since Z,, C M,, the assertion in (1) follows from the defi-
nition of the numbers ¢, (7)) and ¢, (n) (see 2.3).
(2) By using the branching formulas for n|M,, and 7)|M,, given in Lemma
5.4.1 and Proposition 3.2.1 respectively, we have that the intertwining space
Homyy, (7| My, n°°|M,,) decomposes to a direct sum of

(7.1.1) Homyyz,, (0(m ;—|m|+cn(r2))> T (m s () —|m]))

with m € A | (n) N A(1). The assumption c¢,(7)) = c,(n) and Schur’s
lemma imply that the space (7.1.1) is one dimensional and coincides with
Cwpya(m). O

ProrosiTiON 7.1.1. Let n and A be as above.
(1) We have that CP%. (An) = {0} unless cu(72) = cn(n) and A (m)n
A(l) # 0.

(2) Suppose cn(Tr) = cn(n). Let ¢ € CP5 (An). Then ¢ can be written
uniquely in the form

(712)  ela)= S fmir)-wa(m), >0

meAl_ | (nNA())

with {f(m ;7)m € Af () N A1)} a family of C*°-functions on
r > 0.
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ProOOF. By (5.2.3) we have ¢(Ay,) C Homyy, (7A| My, n*>°|M,) for ¢ €

Cpo, (An). Hence the proposition is a consequence of Lemma 7.1.1. [

From now on we consider representations 1 and 7, satisfying the condi-
tion

(7.1.3) en(ma) = en(n), A () NAQ) #0
since otherwise Cp<. (A,) = {0} by Proposition 7.1.1.

DEFINITION 7.1.1. Let n = no[co] be an irreducible (b, c, K, N Hy)-
module and A = [1 ;lp] € L} such that ¢, (n) = cn()).

(1) Put A7y (n]A) = A7y (n) N A(D).

(2) For a given function ¢ € C,‘;’OTA(An), the family {f(m ;r)| m €

A (n|\)} consisting of C*°-functions on r > 0 and satisfying (7.1.2)
will be called the standard coefficient of .

7.2. A,-radial part of the Casimir operator
Let n and A = [l ;lp] be as in 7.1. We impose the condition (7.1.3) on
them. There exists a unique linear operator

Rad (1) : C%2. (Ay) — C2. (Ay)

T T
such that Rad(Q ) (F|An) = (QyaF)| A, for F € CP< (Hn\Gr /Ky ), which
we call the Ap-radial part of €, x. In this subsection we shall present an
explicit formula of A,-radial part of the Casimir operator in terms of the

standard coefficients. The final result is given in Theorem 7.2.1.

Fora = a, € A, and X € g, c, let X denote the element Ad(a HX € On,C-
If a € Ay, — {In+1}, the decomposition (5.2.1), combined with the Poincaré-
Birkhoff-Witt’s theorem, implies that U(g, c) is a C-span of elements of the
form

(7.2.1) “D1H{Dy, Dy €U(hnc), q€N, DyecU(t,C)
with H1 = En,n—l—l + En—l—l,n‘

LEMMA 7.2.1. Leta € A, — {Iny1}. Take D € U(gnC) of the form
“Dy1H{ Dy with Dy € U(b,c), D2 € Uk, ) and g € N. Then we have

RpF(a) =n(D1) o RY; F(a) oa(D2), F € Cp (Ho\Gn/Ky).

T
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PROOF. We omit the proof because it is easy. [

We need an expression of (), as a linear combination of elements of the
form (7.2.1). To get such an expression, we prove lemmas. First we have

LEMMA 7.2.2. Leta=a, withr >0, r# 1. In gl,41(C) the identities

1
2.2 Eini1 = Bins1 —th(r)Ei,, i€{l,...,n—1},
(7.2.2) i+l = gy Mt th(r)Ein, i€{ n—1}
1
2. Epi1i = “Bpy1i +th(r)Ey, ie€{l,...,n—1},
(7.2.3) i = gy Dt +th(r)Eni, i€ n—1}
1 1 1 1
7.2.4 Enpi1 = ———————"H' +-H; — ~(th H,
( ) i 4sh(r)ch(r) ot 4( (r)+ th(¢)>
(7.2.5) E _—41(1H/+1H +1 th(r) + L \w
- LT 4sh(r)eh(r) 27! th(r)

hold with H' = Ey, , — Epy1nt1-
PRrROOF. These can be proved by direct matrix computations. []
Using this, we have
LEMMA 7.2.3. Leta=a, withr >0, r#1. In U(g,,c) we have

(7.2.6) Eini1Eni1

1 1
= —th(r)H H
it +5(1 - r>>
1
S & - B
4ch2(r) ( 7") ot
1 th(r)

+ Ch2—(7“) Ez n+1 En+1 7 Ch(T) ( i,n+1En,i - aEn+1,iEi,n);

ie{l,...,n—1},
and

(7.2.7) Enni1Eniin

—iHl 4 4<th( )+ thtr))Hl
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1 a ! a ! / !
- —160h2(r)3h2(r)(( H)? —2°H'H' 4 (H')?)
1 4 a ! ! 1 ! 1 !
+716ch2(r)((H)2+2 HH)—Z(H)2+§H.

PRrROOF. These can be obtained by a direct computation with the aid
of Lemma 7.2.2. [

PROPOSITION 7.2.1. Leta=a, withr >0, r #1. We have
(728) 2Qq,

=H? + (L + (2n — 1)th(r)> H,

th(r)
1 ra 17/ 117! /
1
— h2( )(aH/aH, —°H'H +H'H — QGQHn — 2QKn + 4QMn)
C r
4th(r) <=
=1

PROOF. By using (6.2.1) and (6.2.2), we have

n
(7.2.9) ¢, =2  Einr1Eni1i + Q, — Zo+ (n+ 1) Enyins,
i=1
where Zy = Z?jll E;; € gn,c. First substitute the formulas given in Lemma

7.2.3 for the terms E;,41Ey11; in the right-hand side of (7.2.9) and then
use the identities

n—1
(7.2.10) 2)  EniEin=Qxk, — Qu,
=1
1 n—1 n+1~
— 5(H’)2 + TH’ + H — Z,
n—1
(7.2.11) 2 “Eipi1“Bnyri = “Qu, — “Qu,
=1
_ %(aH/)2 —i—aZ()—i- ngl(zHl . ng_laﬁ
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with H' = Epy — Entine and H = E,p + Eng1n41 € m,c, which are
deduced from (6.2.2), (6.2.3) and (6.2.4). Since Ad(a), a € A, acts trivially

on my, ¢, we have “Qy, = Quy,, “*Zo = Zp and “H = H. Noting this remark,
we get the desired formula of ()¢, after some elementary computations. [

Now recall the map w, y(m) (see Lemma 7.1.1). For convention we
extend the domain of the map m — w,(m) to all of A,_; by setting
wyA(m) =0 form € A,_1 — A} (n|A).

We want to know explicitly the action of the terms occuring in the right-
hand side of (7.2.8) when applied to {w;; (m)}.

DEFINITION 7.2.1.
(1) Let A=[1;lp] € L. For m € A(l), we put

Tam = —|m| + ¢, (72) — 2lp = —|m]| + [1] — lo.

(2) Let n = nolco] be an irreducible (b, ¢, K, N Hy)-module. For m €
A1 (m), we put

Nm = |m| — ¢, (n) + 2¢o = [m| — cp—1(n0) + co-

LEMMA 7.2.4. For every m € A | (n|)\), we have

(7.2.12) wya(m) o TA(H') = Tx m - wya(m),

U(Hl) o wn)\(m) = "m - wn)\(m)

with H = En’n — En+17n_|_1.

PROOF. Put p = (m;cy(ry) —|ml|) € °L}. Since H' = H —2En 41,11
with H = By, + Eng1n41 € My G, using 0, (H) = (cn(7) — [m|) 1y (m) and
TA(Ent1,n+1) = 2loly (1), we have

wya(m) o Ty (H') = 1, 0 0 (H) 0 phy — 2wy A (m) 0 77 (En1,n41)
= (cn(m2) — Im]) - wy A (m) — 2lp - wy x(m)

= Ta\,m * Wy (m).
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The second formula can be proved in a similar way. (Note the assumption
cn(n) = cn(ma).) O

LEMMA 7.2.5. For every m € A | (n|\), we have

n—1

(7.2.13) > (—n(EnH,@-) © wyA(m) o 7(Eipn)
i=1

T (Eien) 0 wga(m) 0 n(En,»)
n—1 '
_ Z(ai(l 10) A7(m) - wy 5 (m ™)
=1
—b;(1 ;m)B]'(m) -wnyA(m_i)).

PROOF. Let 6y denote the left-hand side of (7.2.13). We have
(7.2.14) bm = [l © (Lw(m) @) © [P

where v : (¢, N g,

)¢ = (bp Npy)c is the M,-isomorphism in Proposition
5.3.1. Indeed, by (5.

3.1), (5.3.8), (5.3.9) and (5.4.1),

(8] © (L (m) © ) © [Pra) (w)
1

n

I
™

_

) (pinwEi,n)w) &Y= Eng) + Pl (7 (Eni)w) ® v(—Ei,m)

1=

n—

(—W(Enﬂ,z')b?n 0 P (T(Ein)w) + n(Eipi1)el, o Pin(T(En,z‘)w)>
1

<.
I

I
(o9

m-

On the other hand we have

(7.2.15) (] © (1w (m) © 7) © [P

n—1
=2 (az’(l ;m) A7 (m) - wy x (m*?)
=1

—b;(1 ;m)B](m) -wn)\(m_i))
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Indeed,

(2] © (L (m) @) © [Phy]

n—1

= [t o (1®7) o (—Zai(l ;m) - L' (m) o py

=1

n—1
=S bl im) - I (m) o pini)

n—1 = ' ‘
=> <ai(l ;m) A (m) - wy A (m ™) = b(1 ;m) B} (m) - Wn,A(mZ)>-
i=1

Here the first equality follows from Lemma 5.3.1 and the second one is a
consequence of the formulas

(i) o (1®7) o0 I (m) = —AJ(m) - .
(1] o (1®7) oI, (m) = B'(m) - "

that is a paraphrase of Lemma 5.4.2. We get the conclusion by (7.2.14) and
(7.2.15). O

From the above two lemmas, using Lemma 7.2.1 and Proposition 7.2.1,
we finally obtain the desired formula.

THEOREM 7.2.1. Let n = nolco] be an irreducible (b, c, Kn N Hy)-
module and X\ = [1 ;1] € L}. Suppose the condition (7.1.3) is satisfied
for them. Let ¢ € C° (Ay) and {f(m ;r)| m € A [ (n|\)} its standard

T

coefficient. Then forr >0, r # 1

(7.2.16) 2Rad(8,-)¢(ar)

S (Y e

meAS_ (n|\)

+ (ﬁ + (2n — 1)th(r)>rd%f(m ;r)

1 Tm — TAm 2
+<{— ’ + 2Q m ;zp— |m
{ chg(r)shQ(r) ( 2 ) a1, ( 20 — [mi)
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1
. (n,mnm Ry R 20, () + 2%, (1 : Do)
ch*(r) ’
4, (m o — |mr>) }f(m ;r>] - (m)

n—1
+ 4Cthh(% S <ai(l ) AT(m) f(m :7) - wy »(m™)
meAT_ (n]A) i=1

) ) ) () ),
where
Tam = —|m|+ 2 —2lp,  7m =|m| — 20 + 2o
with zg = ¢y (1)) = cn(n).

7.3. Ap-radial part of Schmid operators
To begin with we introduce a notation, that will be used in the sequel:
For A\=[l;lp) € L}, ee{+,—} and k € {1,...,n}, put

AXF =X+ efp = 1% ;1g — el] € L,.

Let n and A = [1;lp] € L} be as in 7.1. We impose on them the condition
(7.1.3). There exist the linear operator
Rad(V;4) : Co%, (An) — O (An)

7T Ttk

such that Rad(V;3)(F|An) = (V,AF)[A4, for F € G (H\Gn/Kny),
which will be called the Ay,-radial part of V5. In this subsection we have
an explicit form of the A,-radial part of the Schmid operators in terms of
the standard coefficients. The final result is given in Theorem 7.3.1.

First we prove lemmas for later use. Recall the map €, in Proposition

6.1.1.

LEMMA 7.3.1. Letm € Af [ (n|\) and B € Ruc()).
(1) If B = B, then we have

(7.3.1)  wya(m)oex(Eny1n)oIg (A) =~1(m k1) “ Wy -k (m).
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(2) If B = —Px, then we have

(7.3.2)  wya(m)oex(Ennt1)ol-pg,(A\) =7 (m k1) w, y-(m).

PRrOOF. We consider the case (1). Since Ad(m)(Epn+1n) = Ent1n for
m € M, the map €)(E,+1,,) belongs to the space

HOII]Mn (7’>\ [ Adpn,C|Mn7 T)\|Mn).

Put 4 = (m ;c,(72) — |m|). Then pl, € Homyy, (72| My, 0,). Hence pl, o
ex(Ent1,n) is in

(7.3.3) Homyy, (7a ® Adp, o| My, 04)-

Let Pg()) : 7n ® Adpe — Tayg be the Ky-projection corresponding to the
decomposition (6.1.1). By (6.1.1) and Proposition 3.2.1, the linear maps
pi;k o P (\) with k € {1,...,n}, e € {+,—} such that m € A(I°*) make
up a basis of the space (7.3.3). Since pl, 0 ex(Ent1.4) is zero on Wy @ p;,,

there exist constants ¢, k € {1,...,n} such that
i k
+
pin © 6)\(En-‘rl,n) = Z Ck - pin o P,Bk ()‘)
k=1
Since Pg, (A) o I, (A) = 1y q+x), we have

1tk

(7.3.4) pln (e} EA(EH-HJL) e} Iﬂk ()\) =Ck " Pm

for ke {1,...,n}. Let Q = 1** ;m ; Q") € GZ™(11F) with Q' € GZ("~2).
The right-hand side of (7.3.4) evaluated at |Q) gives ¢ - pbi"|Q). Using the
formula (6.1.2), we see that the left-hand side evaluated at |Q)) becomes

v (m 1L ke Q).
Since pgk|Q> = p}m}Q;k> :‘m ;Q’>, we get ¢x = v (m ;1 k). This com-

pletes the proof of (7.3.1). The formula (7.3.2) can be proved in the same
way. [



646 Masao TSUZUKI

LEMMA 7.3.2. We have

n—1
(7.3.5) ZTA(Ei,n) o Ex(En+1,i)

= Z ex(Entin) o (A ® Ad +)(EniEin)

n—1

- Z T)\(En,iEi,n) o E)\(En+1,n) - (TL - l)eA(En+1,n)a
=1

(7.3.6) - Z TA(En,i) 0 ex(Eint1)

= Z 6)\ n n+1 7—/\ ® Ad )(Ei,nEn,i)

n—1
- Z T)\(Ei,nEn,i) o E)\(En,nJrl) - (TL - l)eA(En,nJrl)-
=1

PrROOF. This is a paraphrase of formulas found in [17, p.350] and easily
checked by a direct computation. [

LEMMA 7.3.3. Letm € Al [ (n|\) and B € Ruc()).
(1) If B = Bk, then we have
(7.3.7) an Alm O 7’)\ ) @) 6/\(En+1’i) o) Iﬁk(A)
_(T)\,m + lO - lk +k— 1)7+(m ;17 k) : wn,)\"’k (m)

(2) If B = —P, then we have

(7.3.8) Z wya(m) o Tx(Ep ;) o ex(Eini1) o I_g, (N

_(T)\,m +lo—lg+k— ’I’L)’}/_ (m i1, k) ) wn,)\*’“(m)'
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ProoOF. This is essentially [17, Lemma 3.1.2]. We shall reproduce the

proof in our frame work. We prove (7.3.7). The formula (7.2.10) can be
rewritten as

n—1

1 ~ n—1
Z E,iEin= Dy + §QKn +HE, 1041 — TEn+l,n+1 - E721+1,n+1
i=1

1 1 1
with Dy = =S, — 520 + gH — H? Dy belongs to Z(m,,c). Thus if
XN =[';ly] € £} and ¢ € Homyy, (Ta| My, 0,,), then we have

n—1
(7.3.9) o TX(Z E,;E;in)

=1

1 n—1
= (Dart) + 521 589 + o = ey = "0~ 1),

where p = (m ;29 — |m|) and Djs(u) is the scalar by which the operator
ou(Dar) acts on W(m). By (7.3.5), we have

n—1
(7.3.10) > b o A(Ein) 0 ex(Ens1,) 0 Ig, (A)
=1
n—1
= (pin o GA(En—i-l,n) o ng ()\)) O Th+k (Z En,iEi,n)
=1

n—1

— P © A EniBin) 0 ex(Ent1n) 0 I,(N)
i=1

—(n—1)pl, 0 ex(Bni1n) o I, (N).
Applying (7.3.9) with taking pl, o ex(Eni1.0) © I3, (\) for ¥, we know that
the first term of the right-hand side of (7.3.10) becomes
1
(Dar0)+ 390,07 <o = 1)+ (o = hm i -

n—1

- (lo—l)—(lo—1)2>

X Pin © GA(En—H,n) olg, ()‘)
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As for the second term, we also apply (7.3.9) with taking pl, for ¢ to get

n—1

1
~(Darlo+ 90, 000+ ool Ho 18 phnoes (B o o, (V)

Substituting these two expressions to (7.3.10), we have

n—1

(7.3.11) Y P 0 Ta(Bin) 0 ex(Bnt1i) 0 Ig, (V)
=1

_ (%gmﬁk 1l — 1) + (20 — [ml)(lp — 1)

”;1%—1y4m—n2

1
- §QKn(1 ilo) — (20 — [ml)lg

+n
2

1
o+ 12— (n— 1>) oL 0 ex(Enpin) 0 L, (V).

After some elementary computations using the formula of Qg (17% ;1o — 1)
and Qg, (1 ;1p) in Proposition 6.2.2 (2), we have that the right-hand side of
(7.3.11) equals

—(Tam +lo — le + k — 1)phy 0 x(Eps1n) 0 I, (N).

The formula (7.3.7) follows from this combined with Lemma 7.3.1. The
formula (7.3.8) can be treated in the same way. [J

LEMMA 7.34. Forle AT, me A ,,1<k<nandl<i<n-—1,

n’ n—1’
set
v (m,i Lk
n—1 n
[T (mn—le+k—h=1) T (h—mi+i—h)e
— S(i, k) h;éz,Zzl nilh;ﬁk,h:l ’
I h=0U+i—=h) J] (mp—m;+i—h-—1)
htk,h=1 h#i,h=1

vy (m,i ;1 k)



Real Shintani Function 649

n—1 n
H (mp—Ilg+k—h) J[ (Uh—mi+i—h+1) 12
= S0,k |2 e
II (h=lg+k—h) J[] (mp—mij+i—h+1)
hetk,h=1 h#ih=1

with S(i, k) expressing +1 or —1 according to i > k or i < k respectively.
Let m € A(l) and i,k € {1,...,n}, i # n satisfying m™ € AQTF) resp.
m~' € A(Q17%). Then for any Gelfand-Zetlin scheme Q = (qj)1<j<n—1 €
GZM=D(m™?) resp. € GZ™D(m™) we have

pJIm oex(Enyin-1)0 Is, ()‘)‘IHCv mﬂa Q)
=7 (dn—2 ;m,i)y" (m, i ;1,k)|m,Q),
resp.
P © x(En-1nt1) 0 I_g, (A)I7F,m™", Q)
=7 (An—2 ;m, )y (m,i;1,k)[m, Q).

PrOOF. This can be deduced from the formulas in [21, page 385]. [

LEMMA 7.3.5. Letm € Af [ (n|\) and B € Ruc()).

(1) If B = B, then we have

n—1

(7.3.12) > n(Eing1) 0 wya(m) o ex(Enyri) 0 15, (N)
=1
n—1

= Z’ﬁ(m,i ;1 k)A] (m) 'wm/\%(m"’i).
i=1

(2) If B = —Px, then we have

n—1
(7313) Z 77(En+1,z) o wn)\(m) o 6/\(Ei,n+1) e} I_/@k: ()\)
=1
n—1 .
= >y (mi s LR)BY(m) - wy ok (m ).

=1
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PROOF. We prove (7.3.12). Let pr* : p} — (h, N pn)T denote the
projection corresponding to the direct sum decomposition p; = (h,Np,,) T @
(gn Npn)™; prtis an M,,-homomorphism and

n—1

pri(Y) = Z<Y7 Eni1i)Bint1, Y €p).
=1

Firstly we have the formula

n—1

(7.3.14) Y n(Eint1) owpa(m) o ex(Bprri) = [th]™ o (P © pr).
i=1

Indeed, for every w € W(l) and Y € (h, Np,)T, by the definition of [ih],

we have

[L]F o (P @ pri)(w®Y) = n(prT (V) o ul, o phy(w)
n—1

= n(Z(Y, En+1,1;>Ei,n+1) © wn)\(m) (w)

=1

n—1
— Z N(Einy1) o wpa(m)((Y, Epy15)w)
i=1

n—1
= Z N(Ein+1) o wya(m) o ex(Eny1,) (Y © w).
i=1
Let Ap denote the left hand-side of (7.3.12). Then by using (7.3.14) and
(5.4.2), we have

(7.3.15)  Am =[] " o (phy @ prT) o I5, (V)
n—1
- Z Al(m)eg ;o P (m) o (pr @7 opr) o Iy, (A).
=1

Put 4 = (m ;29 — |m|). Since P;"(m) o (p, ® y~LoprT) oI5 ()) lives in

+k
HOHan (T)\Jrk |Mn, O'MJri) = CpinJri’

there exists a constant c¢;; such that

1tk

(7.3.16) P (m) o (p, @7 oprt) oI5, (A) = cik - Phyti-
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Substituting this into the final formula of (7.3.15), we get

Z Al (m)c - w, yrr (m™).

To conclude the proof, it suffices to determine the values of c¢;;’s.
Noting Z" ' IF(m)o P (m) = Lw (m)@c(t,ng.)+» the equations (7.3.16)
for i € {1,...,n — 1} gives us the identity

(7.3.17) (Pl @y~ o prt) o Ig, (A Z cix - I (m) o pl .

Using the identity

1

—&u(Enn-1) 0 (P ® 7 ' opr) = ply 0 x(Ent1n-1),

we get from (7.3.17) the formula

(7.3.18) —phaoex(Enyin1)o I (N
n—1
= Z it * €u(Bnn-1) o I} (m) o pl::ﬂ
=1

Let Q = (1+k ;m‘” ;Q/) c G’Z(")(l‘*‘k) with Q' = (q]‘)lgjgn—z c Gz n-2).
By Lemma 7.3.4, we have

Pin © A (Bnt1,0-1) © 15, (V@) = 7H (A2 ;m,8)y" (m, i 51, k)jm 5 Q).
On the other hand, the right-hand side of (7.3.18) evaluated at Q equals
Cit,* €u(Bnn—1) 0 Ii+ (m)|m+l QQI>
and this becomes
cit -7 (An—2 ;m,4)|m ; Q')
by (5.3.5). Hence the identity (7.3.18) evaluated at |@> gives us
_fy+(qn—2 ;1m, Z)fy—'—(m?Z ; 17 k)|m 7Ql> = Cik - ’Y+(qn—2 ;1m, 7’)|m ; Q/>

Thus we get ¢;, = —y*(m, 7 ;1,k) to conclude the proof. [J
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Now we have the desired formula.

THEOREM 7.3.1. Let n = nolco] be an irreducible (b, c, K, N Hy)-
module and X\ = [1 ;1] € L. Suppose the condition (7.1.3) is satisfied
for them. Let ¢ € CX (Ay) with standard coefficient {f(m ;r)] m €

T

AS  (mIN)}. For B € Ruc(N), the A,-radial part of Vg)\ is given as follows:
(1) If B = Bk, then
(7.3.19) Rad(V;I;)@(ar)
1 d
= Y rman{prgfmo)
meAT_; (1)
1 1 1
—  pa—=(th
* (g~ 1000+ )
+ th(T‘)(T)\,m +lo—lp +k— 1)) f(m ;r)} S Wy Ak (m)

n—1 r]m
+ ) Zv*(m,i;l,k‘)Ai( ) fm ;1)

h
mGAzil(nM) i=1 ¢ (T’)
+i)'

. wn7A+k (m

(2) If B = —Dk, then
(7.3.20) Rad(V,%)e(ar)

= X vman{yrg s

r
meA:71(77|>\)

-1 1
(e + (00 +

—th(r)(Tam +lo —lp+k— n)) f(m ;7")} '(.U,,]’)\—k(m)

1
m)ﬁ,m

n—1 (m
Y iy e s

mEAI—l (nlA) =1

Wy Ak (m™).
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Here
Tam = —|m| + 2z — 2lp, Nm = [m| — 20 + 2co

with zg = cn(72) = cn(n). The number v*(m ;1,k) is given in 3.1 and
vF(m,i ;1,k) is given in Lemma 7.3.4.

PrRoOOF. Take an F' € C2°. (H,\G,/K,) with F|A, = ¢. We give a

T

proof of (7.3.19). By (6.1.5), we first have

(7.3.21) VA F(a;) = Rp, . Flar) o ex(Eny14) 0 15, (A).
i—1

Noting Lemma 7.2.1 and using the formulas (7.2.2) and (7.2.4), we have

REi,nHF(a)
- ﬁn(Ei,nH) o F(a) — th(r)F(a) o z(Ein), i€{l,...,n—1},
RE, ... F(a)

1 , 1 1 1 /
= mn(ﬂ )o F(a) + §RH1F(CL) — Z(th(r) + th(r))F(a) o TA(H).

Inserting these to (7.3.21), we get

(7.3.22) VA F(a,)
1
- (4sh(7‘)ch(r)

1
~1 (th(r) +

N(H') o Fla) + 5 Ry, F(a)

) F@ 0 ) ) o a(Bria ) o 15 )
n—1 1
+ ; (ch_(r)n(Ei’"H) o F(a)
—th(r)F(a) o T,\(Ei,n)) 0 ex(Ent1,i) 0 I, (N)
Now substituting the expression

Fla)= Y  flm;r)-wpa(m)

mEAIil(nP\)
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to the right-hand side of (7.3.22), and using the formulas (7.2.12), (7.3.1),
(7.3.7) and (7.3.12) we compute

VA (ar)
= > {gfaf(m ;7)
meAt (1)
1 1 1
+ (mﬁm - Z(th(T’) + W)T/\’m>f(m ;7")}
X wyA(m) o ex(Enyin) 0 Ip, (A)

+ > f(m;r)

mEA:zr—l(U')\)

n—1
1

X {ch(r) Zn(Ei,n-‘rl) o wn)\(m) oex(Ent1,) o0 Is, (\)
=1

n—1
th(r) Y wpa(m) 0 72 (Ei ) © ex(Eng i) 0 Ig, <A>}
=1

=Y {%T’d%f(m 7)

meAT_ (n|A)

1 1 1
+ (mnm - Z(th(r) + m)TA,m>f(m ,r)}

Xy (m 1L k) - w, ek (m)
n—1
b s g Xt kA m) e

mEAI—1(77|>\) =1

+ th(T‘)(T)\,m +lg—Ilp +k— 1)’y+(m i LE)- Wy A+k (m)}
This completes the proof. [

7.4. Difference-differential equations for standard coefficients of
Shintani functions

Let n = no[co] be an irreducible (b, ¢, Ky, N Hy)-module and 7 an irre-

ducible (g, ¢, Kp)-module. We suppose that zp = ¢, (1) = ¢, () is satisfied.

Given ® € 7, », we have defined a system of functions {®;| 1 € A} (7)} in
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6.3. Since ®; belongs to the space C;;’OT[I;ZO—\IH (H,\Gy/K,), we can consider
its standard coefficients {fi(m ;7)| m € A | (n|\)} as in Definition 7.1.1.
In Proposition 6.3.1, we already have a system of equations for the family
of the Shintani functions ®;’s in an abstruct form. Using the explicit for-
mula of A,-radial part of the Casimir operators and the Schmid operators
obtained in Theorem 7.2.1 and Theorem 7.3.1, we can rewrite the equations
in Proposition 6.3.1 in terms of the standard coeflicients to have a system of
difference-differential equations among fj(m ;7)’s in a quite explicit form.

In the sequel we write 75, for the number 7y if A = [1 ;2 — [1]].

THEOREM 7.4.1.

(1) For every 1 € Af(m) and m € At [ (n|N), the functions fi(m ;r),
Am* ey i€ {1,...,n — 1} and film™ ;7), i € {1,...,n — 1}
satisfy the difference-differential equation

(Orm : (T%)zﬁ(m ;) + (ﬁ + (2n — 1)th(r)>r%fl(m )

_ 1 hm — 7—rln ?
" { ch?(r)sh?(r) < 2 >
+2Qy, (m ;20 — |m|) — 2Qg,, (1)

1
+ Ch2 (’I") <Tl!n77m - 7712n - T11n2 + 2QHn (77)

+2Qk, (1520 — 1) — 495, (m 5 20 — ]m|)> }fl(m ;)

4th(r) i, i —i —i .
+ ch(r) ;(ai(lvm )A] (m™) fi(m™ ;)

- ) ) ) i ) )
=0.
(2) For every 1 € A (m) and m € A | (n|\) such that my_1 > li, the

functions fi(m ;r), fitm™ ;7), i € {1,...,n — 1} and firx(m ;7)
satisfies the equation

d nm—Tl

(S™m: 7" (msL, k){ (T% ¥ Bsh(rjeh(r)
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+ th(r)(zo0 — |m| + 2k — 2[;, — 2)) film ;)

Zazl m )4 (m )f(m‘i;r)}

ly—miy+i—k+1

= 24701 )fw«(m 7).

(3) For everyl € A (m) and m € A | (n|\) such that m™ € At () —
A(1), the functions fy(m ;r) and fie(m™** ;1) satisfy the equation

(THC)lm :

mi iy AR ) = AR fron ().

(4) For every 1 € At (m) and m € AF | (n|\) such that ly > my, the
functions fi(m ;7), i(lm™ ;7r), i € {1,....,n — 1} and fi—x(m ;7)
satisfy the equation

- ‘ B ‘ d 77m_7_11n
(S m s (L] (v - e

— th(r)(z0 — |m| + 2k — 21}, — 2n)> Silm ;7)

n—1 ; ;
2 bi(l ;m*") B! (m*") i
+ch(7‘)z ik hmTn)

— 2BT(1) fie(m ;7).

(5) For1e€ Af(r) and m € A} [ (n|\) such that m~*=D ¢ AT (n) —
A(1), the functions Fi(m ; r) and F—x(m~® =1+ ) satisfy the equation

_ 1
(T k)l,m : mBZA(m)fl(m ;1) = B (1) fi-r(m —(=1) ;7).
Here
T =2/ = |m| — 20, Nm = [m| — 20 + 2co.

PRrROOF. We can obtain the equation (C);m from the equation (6.3.2)
using Theorem 7.2.1 easily. Next we shall explain how to deduce the equa-
tions (S™)1m and (TH*);,, from the equation (6.3.3): Take an 1 € A} (m)
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and an integer k € {1,...,n}. We start from the formula (7.3.19) with
A =1[1;20—|l]]. We examine the second summation with respect to m in
the right-hand side of (7.3.19). For simplicity, we put

Al (m)

i(m) = +mz
di(m) =" (0,751 k)=3 oS

HAlm;r), 1e{l,...,n—1}

form € A (n|)\) and ¢;(m) = 0 for m € A,—1 — A} (n|\). We have

Z Z¢Z r])\+k( +i)

m€A$7 (n|r) =1

= D D _dim) e (m™)+ Y7 dr(m) - wy e (m)
mEAI_l(nM) i#k meg:]r,k

+ > ¢n(m) - wy 4 (m*)

meA} | (nN)—€%

= Z Z d)z(m_z) : wn,/\w Z (Z)k Wn, )ﬁLk( +k)

ik m—icAT | (n|A) meg; Tk

+ > $r(m ) - w, yok (m).

m-FeAl (-

Here 8:;’; denotes the set of all m € A | (n|A) such that m** € At | (n) —

A(l) when k£ € {1,...,n — 1}, and Erff\l = (. We show that if a given
m € A, _; satisfies

(a) i £k, mteAl (n\) and m¢& Al | (n\) or
(b) m™* e Al (n]\), m™* ¢ ET]H; and m ¢ A (n|A),

then w, y++(m) =0, ie. m & A}, (n|ATF).

Assume m € A | (n) satisfies the condition (a). Then we have m~* € A(l)
and m ¢ A(l), hence m; = [; + 1. Since i # k, the condition m; = [; + 1
implies m ¢ A(1**). Next we assume m € A1 | (n) satisfies the condition
(b). The requirments m—* ¢ EWH; and m~* € AT | (n|\) are equivalent to
m ¢ A (n) — A(1). Since we assume m € A (), we have m € A(1) to
get m € A [ (n|\). But this contradicts the assumption in (b). Thus we
see that (b) implies m & At | (n).
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Consequently we have that Rad(V;i’f\)(bl(aT) is expressed as a sum of

(7.4.1) Z <’y+(m ;LE)F(m) + i qﬁi(mi)) “wy \+k (M)

meA (n]A)

with
Fm) = im0+ { g = 7h)
+ th(r) (T}n +2(lp — g + k — 1)) }fl(m 0r)
and
(7.4.2) D ge(m) - wy yx(m™F),
meE, 3

Take an m € A | (n|\) with my_1 > Ii; then wy sk (m) # 0. Thus com-
paring the coefficients of w,, y++(m) in the both sides of the equation (6.3.3)
evaluated at ¢ = a, with using the formula

Y L k) (e —mi i — k+1) =4t (m 51 E)a;(1;m ™),

we get the equation (S**);,. Take an m € A [ (n|\) with m™* €
A (n) — A(D); then 4" (m, k ;1,k) = 1. Noting this, we get the equation
(T**)1.;m by comparing the coefficients of Wy Atk (m**) in the both sides of
the equality (6.3.3). The equations (S7%);;, and (T7%);;, can be deduced
from the equation (6.3.4) in the same way. O]

8. Explicit Formula of Shintani Function and Multiplicity Free
Theorem for 7, -

In this section we prove a multiplicity free theorem for the space of
intertwining operators Z, » (Theorem 8.3.1) and give an explicit formula of
some of the standard coefficients of Shintani functions with a special K-
type (Theorem 8.2.1). The proof of Theorem 8.2.1 will be given in the next
section. In the first subsection we give a necessary condition for the space
T,,x to be non-zero (Theorem 8.1.1).
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8.1. A neccessary condition of 7, . # {0}
Let 1 be an irreducible (b, c, K, N Hy,)-module.
For an integer ¢ with 1 < i< n — 1, put

m; (n) = sup{m;| m = (m;)1<;j<n-1 € A}_1(n)},
my (n) = inf{m;| m = (mj)1<j<n-1 € A_1(n)}

By the explicit form of AT | (n) given by Lemma 4.2.1 and Theorem 4.3.1(1),
we have m; (n) = m; (n), 1 <i<n—1,

+oo=mi(n) =my(n) = =m_(n) > oo,
+o00>my(n) =my(n) = =my_(n) = -0
and
At () ={me A [ mf(n)=m;=m; (), 1<i<n—1}
Put m}(n) = —oo, my(n) = +oo. For any A = [l ;lp] € L} with 1 =

(I)1 <k <n € A} such that ¢, (1\) = c,(n), we have

(8.1.1) Ay () = {m e Ay | inf(l;, m (1)) = mi = sup(liv1, my (1)),
1<i<n—1}

LEMMA 8.1.1. Letn be as above and m an irreducible (g, c, Ky )-module
with ¢, (1) = cn(n). Let @ € T, » and {®1] 1 € A} (m)} the corresponding
system of Shintani functions. Let 1 = (Ix)1<r<n € A} and k an integer
with 1 <k < n. If

(a) mf(n) > Uy, 1™ € A} and AZ(1) =0, or
(b) U >my_,(n), 1% € A} and BF(1) =0,
then we have ®1(g) =0, g € Gy,.

PrROOF. We assume the condition (a) and will show ®; = 0. Let
(m ;7)| m € A (n|\)} be the standard coefficients of ®j|A,. Since
m;(n) = —oo, the condition (a) means 1 < k < n. The assumption
m;} () > Iy implies that the set

{f

Exy = {me AT (N m*™ € AT, (n) - A}



660 Masao TSUZUKI

is non empty and actually coincides with the set of those m =
(mi)1<i<n—1 € AT (n|\) with mg = lx. (Note we always have I > my, for
m € AT [ (n|\).) For any m € A | (n|A), set 6x(m) = I, — my. We shall
prove f(m ;r) = 0 for m € A |(n|\) by induction on the integer 6x(m).
If 65 (m) = 0, then m € S;F’; Hence by the equation (T*k)Lm in Theorem
7.4.1, we have A](m)f(m ;r) = 0. Since m, m™ € A'_,(n), the irre-
ducibility of n means A}(m) # 0; see [9, Corollary 7.2] and [9, Proposition
8.3]. Thus we have f(m ;r) = 0 in this case. Let d > 0 and take an index
m € AP (n|\) with éx(m) = d. We show f(m ;r) = 0, assuming that
f(m' ;r) =0 for all m’ € A | (n|\) with 6x(m’) < d. If m*™ ¢ AT | (n),
then we must have my = mj () > li, a contradiction. Hence we have
m*™* € AT (n) on one hand. From the assumption 6x(m) = d > 0, we
have m** ¢ AT | (n) — A(1) on the other hand. Thus m** € Al | (n|\).
Now we can use the equation (STF), 1m+# in Theorem 7.4.1 to have

P fm ) 4 B(m ™ ) )

1 ”il a;(1;m z—i—k)AW( z,+k)

—i4k .
+ch(r lk—m;+i—k+1 f(m i)

1=1,i#k

1 ax(l;m)A ( ) ) =
+Ch(7‘) lk—mk f(m7 )_O

with a function Fi(m™* ;r). It is obvious that 6x(m**) = &, (m~#+F) =
d—1 < d for i # k. Hence by the induction-assumption, all the terms in
the left-hand side except those involving f(m ;) are zero. Thus we get

ax(l; m)A](m)f(m ;7) = 0.

The number ax(l ;m) is not zero because m, m** € A(l). As for the
number A} (m), we know that it is also not zero by [9, Corollary 7.2] and [9,
Proposition 8.3] since m, m*™* € AT (). Thus f(m ;7) = 0 as desired. OJ

THEOREM 8.1.1. Let n be an irreducible (b, c, K, N Hy)-module and ©
an irreducible (gn.c, Kn)-module. Let X = (1 ;o] € L} () be a Dp-corner of
m with 0 < h < n. If T, » # {0}, then we have

(a) cn(n) = ca(m), Ay_1(nlA) #0,
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(b) my_,(n) =1 for k € {1,...,h} with 17% € A},
(c) mi(n) <l for k€ {h+1,...,n} with 1% € A}

Here m;} (n) = —oo and mq (n) = +00.

PRrROOF. Since the (g, c, Ky)-module 7 is irreducible and since G,, =
H,A,K,, ® =0ifand only if ®|A,, is identically zero. Hence the linear map
® — P)|A, is injective. In particular 7, » # {0} implies Cp<, (An) # {0};
hence ¢, (n) = ¢, (7) and A} (n|\) # 0 by Proposition 7.1.1. The remaining
conditions in the theorem come from the previous lemma; indeed, that 1 is
a Dy-corner of m means B (1) = 0 for k € {1,...,h} and AJ(1) = 0 for
ke{h+1,...,n}. 0

8.2. Explicit formula of Shintani functions

Let n = no[co] be an irreducible (b, ¢, K, N Hy)-module and 7 an irre-
ducible (g, c, Ky)-module with zg = ¢, (7). From now on we assume the
conditions (a), (b) and (c) in Theorem 8.1.1. In this subsection we give an
explicit formula of A,-radial part of Shintani functions for corner K, -type.
First of all, we introduce a notation: For an integer h € {0,...,n}, put
h* =sup(1,h) and h~ = inf(n — 1, h).
We prescribe to 7 a triple (lp,h,s) with 1y = (Ix)1<k<n € Af (W), h €
{0,...n}, s € C as follows:

(i) If 7 is elementary, then we take s € C and p = (
so that # 2 w(p,z0 — |p| ;$). Put Iy =pi, 1 <k <n—1, I, =pp
and h = n.

(ii) If 7 is non elementary, then we can take ¢ = (u,v,r, z9) € S, so that
7 belongs to the class Il (see Theorem 4.3.1.). Here u, v and 2y are
integers such that 0 < u < v < n, and r = (7j)1<j<nt1 € A:H
such that |r| — 29 = w4+ v — n and either r, > ryy1 or 71 > ry4o.
When 7,41 > 742 we put A\g = AY(¢) and h = v. When 7,41 = ry42
we put \g = A*(¢) and h = w. Since ¢, (7) = 20, Ao is of the form
)\0 = [10 J 20 — |10|] with l() € Aj{(ﬂ) Put s = ‘10’ + lh* — 20— 2h+ +n.

Note that A\g = [lp ; 20— |lo|] € £} () is a D,,_1-corner of 7 if 7 is elementary
and is a fundamental Dp-corner of m and I, > lj,41 if 7 is non-elementary.
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DEFINITION 8.2.1. For an integer h with 0 < h < n and a subset M
of At |, we denote by 9™ (M) the set of all m € M such that m~* ¢ M
for 1 <i<hand mt" ¢ M for h <i<n—1.

LEMMA 8.2.1. Letl € A;{ and h an integer with 0 < h < n. Then
the set OMAT (n|\) consists of a unique element if h = 0 or h = n. If
0 < h < n, then projecting the h-th coordinate, we have a bijection from
OMWAT | (n|N) onto the interval inf(l,, m; (1)) = my, = sup(lp1,m;, (n)) in
7.

Proor. This follows readily from (8.1.1). O
For any m = (m;)1<i<n—1 € 5(h)A:f_1(77‘)\0)a put

(8.2.1) fm = mp, if 0<h<mn,
pom =1, if A =0,
pm = ln, if h=mn,

and define the numbers 0y, Om and ay, by

(8.2.2) Om = Z lgr1 — Z I, — Z m; + Z m;

ht<k<n—1 1<k<h™ Rt <i<n—1 1<i<h™
and
(8.2.3) Bm = ||m| — lo| + col,
(8.2.4) om = —0m+ pim — lp+ — 1+ 5+ 0.

THEOREM 8.2.1. Let (lp, h, s) be the triplet for m as above. Given ® €
Tyx, let @y, be the Shintani function with Ky-type Ao = [lo ;20 — [lo|]. Let
{f(m ;r)] m € At [ (n|Xo)} be the standard coefficients for ®y,|A,. Then
there exists a family of constants {y(m)] m € dMWAYT | (n|Xo)} such that
f(m ;7) with m € 9MAT  (n|\o) equals

(825)  y(m)(sh(r))’ (ch(r))*m
% 2F1<50_5+Bm_,um+lh+ +1’
2
—80— 8+ Bm — fbm +lp+ +1
2

i1+ Bm ;thQ(r)>
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with s a complex number determined by

(8.2.6) s2 =20, (n) —2¢3 + (n —1)* = (Jm| — pm — 20 + co)?
n—1 n—1
+ 2<—z:mi2 — Z(n— 2iym; + p2,
i=1 i=1

4+ (n — 20 ) e + [1o| — 2 Z U +9m>.

ht<k<n

When 0 < h < n, the family {y(m)] m € dMWAt | (n|Xo)} satisfies the
following recurrence relations:
H (lk—mh—i-h—k—l—l)
h<k<n
[T (mi—mp+h—i
h<i<n—1
= —ap(l;m ") A} (m™")y(m™")

(8.2.7)

: /Bm’Y(m)

form € OMWAT | (n|Ao) with |m| — |lp| + co > 0;

(8.2.8)

(lk —mp+h—k)
1

VA

k

N

}Zmi Ry Pmoy(m) = bu(1 ) By m )y (m )

1<i<h

N

form € OMWAT | (n|Ao) with |m| — || + o < 0.

Assume 0 < h < n. Let us define mg = (m{(n))1<i<n—1 € An_1 by
putting

(8.2.9) md(n) = sup(liz1,m; (n)), 1<i<h,
m?(n) = inf(li,mf (), h<i<n-—1,

mh(n) = [lo| —co — Y _m{(n).
i#h

PROPOSITION 8.2.1. Let {y(m)| m € 9MAT (n|\o)} be a family of
complex numbers satisfying (8.2.7) and (8.2.8). Then it is unique up to a
multiplicative constant. Moreover y(m) = 0 for all m € WAL (n|)\o)
unless one of the following three conditions holds:
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(i) mp(n) <1 and my () < lpir-
(i) In < mp(n) and I, < myf ().

(iii) sup(lp41,my, (1)) < m)(n) < inf(lp, my (1))

PROOF. We have three possibilities: (i) m{(n) < sup(lp4+1,m;, (1)),
(i) suplnermy () < mi() < if(pmf(n) and (i) md(m) >
inf(lp, m; (n)). If we are in the case (i), then Bm = |m|— [ly| +¢co > 0 for all
m € 9"AT  (n|Xo). Let m; be the unique element of 9™ AT (n|\g) such
that mfh gz 8(’"‘)A:Lr_1(77|)\0). Apply (8.2.7) for m = m;. Then the right-
hand side of (8.2.7) is zero. In the left-hand side, the second factor fm # 0
and the first factor is zero if and only if my, = sup(l41,m;, (1)) equals lj41.
Hence y(my) = 0 if l41 < my (1), which in turn gives v(m) = 0 for all
m € 9WAT | (n|\o) by (8.2.7). It is clear that (8.2.7) determines y(m) from
v(m;) uniquely. If we are in the case (i), mg € 9™ AT | (n|Ao). Given the
number (my), we can recursively determine y(m) with mj; > mj(n) by
(8.2.7) and y(m) with my < mQ(n) by (8.2.8). If we are in the case (iii),
by a similar argument as in the case (i), using (8.2.8) in this case, we have
y(m) = 0if [, > my (n). O

8.3. Multiplicity free theorem
To begin with, we prepare a Lemma.

LEMMA 8.3.1. Let I be a subset of {1,...,n — 1}. Let x = {x;}ier

and y = {yi}icr be families of indeterminates. Put A = ( a

1
Yj—T; ) (’i,j)GIX[’
matriz with coefficient in the field Q(x;,y;| i € I). Then the inverse matrix

of A is given as A~! = (Tpg(%,¥)) (p.g)erxr with

[T(wi—=zq) I (yp— )

el 1€1,i#q
r X,y)= : N NUAS I
Y =T e T o)
i€l,i#q i€l i#p

In other words, we have

Lpy(x,y) ,
Z p('l_a: :6pj7 pajej
qel y] q
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LEMMA 8.3.2. Let A =[1;z0— |l]] € L} (7) be a Dy-corner of m with
h € {0,...,n}. We define subsets J* of {1,...,n — 1} as
Jo={ic{l,...,h Y 17" € A},
Jt={je{h, . ..,n—1} 10D e AT}

Let {f(m ;7)] m € A} | (n|A)} be the standard coefficients of @, with ® €
7

7

(1) For everym € A [ (n|\) and j € JT, we have

(8:3.1) Frsudim™)Am™)fm™ i)
d
= Z {Taf(m ;7)
keJ+
+ M+th( )(20 — |m| + 2(=le1 + k) ) f(m ;7)
2sh(r)ch(r) AGY k41 o
2 g alim A M)
+ ch(r) Z logr —mi+i—k f(m™ ;r) Cjk(m),
gJt
with
I[I gy —mu+v—k) [T (Ups1 —mj+j—p)
C—ﬁ_ (m) = veJ v ] peJt
jk H (my_mj+j—y) H (lk+1_lp+1+p—]{7)7
Ve v peJt p#k
keJt.

(2) For every m € At [ (n|\) and i € J~, we have

(8.3.2) C}:—(i)bi(l .ot B (m ™) f(m* ;)
o d . Thm — Tlln
- it~ (s

T th(r) (20 — |m] + 2(—1i + n>))f<m .7)

(1 -m+tNB(m+i
N Z bi(1;m J)Bj.(m 7)
ch(r) oyt ly—mj+j—k

o 51) e m).
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with
[I (e—my+v—k) I (pb—mit+i—p)
o (m) _ veJ— v#i peJ—
ik I my—mi+i—-v) I (Uk—Ilp+p—Fk)
veJ— v#i peJ~ ,pF#k

keJ .

PRrROOF. By the choice of 1, we have B (1) = 0 for k¥ € J~ and
A7 (1) = 0 for k € J*. We explain how to deduce (8.3.1) starting with
the equations (ST*+1), ., with k& € J* and m € A}  (n/)\). Take an
m € A, (n)\) and put

f(m™ ;7)

X, =a,(lp ;m™")Al(m™") ()

ve{l,...,n—1}

Then the equation (ST*+1)); ., can be written as

X‘
(8.3.3) > . J =Y, keJt

with
1

d m — Trn
n;:<ﬁﬁ-%5%6&563+¢hwx%-4nq+2k—h%g>fun;m

B P
oyt lg1 —my +v—F

If we put x = (m; —1);cj+ and 'y = (lp+1—h)peg+, then c;rk(m) =T(x,y):
hence by Lemma 8.3.1, we have

ey, (m)
(8.3.4) § j vk _ = b4, v, jeJt.
S e —my =k

Since (8.3.3) is a system of linear equations with respect to X, j € J*, we
can solve it, using (8.3.4), to get

keJ+
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Thus we obtain (8.3.1). The formula (8.3.2) can be obtained in a similar
way. [

Now we have one of the main results of this article.

THEOREM 8.3.1 (Multiplicity free theorem). Let n be an irreducible
(bn,c, Kn N Hy)-module and ™ an irreducible (g, c, Kn)-module. We then
have dimcZ, . < 1. Moreover I, . = {0} unless the conditions (a), (b)
and (c) in Theorem 8.1.1 and one of the conditions (i), (i) and (iii) in
Proposition 8.2.1 are satisfied.

PrROOF. Let A\g = [lyp ;20 — |lo|]] be as before; see (i) and (ii) in 8.2.
By Proposition 8.2.1 the family of constants {y(m)} for ® € Z, » in The-
orem 8.2.1 is unique up to a multiplicative constant. Moreover the vector
{y(m)| m € dMAT | (n|Xo)} € €O A1 (o) depends on @ linearly. Hence
we have only to show that v(m) = 0 for m € 9" A} (n|)\g) implies & = 0.
If y(m) = 0, then f(m ;r) = 0, r > 0 for all m € dMWAYt | (n|\o) by
Theorem 8.2.1. Using the equations (8.3.1) and (8.3.2), we can show that
f(m ;7) is identically zero for all m € A | (n|A\g) by induction on the num-

ber 6(m) = inf o+ ) lm — n|. In view of the formula (7.1.2), we

1("7‘)\0
then have ®;,(a) = 0, a € A,. As we explained in the proof of Theorem
8.1.1, the map ® +— ) |A, is a linear injection. Hence we have ® = 0
as desired. This proves the first part of the theorem. The second part is

already proved in Theorem 8.1.1 and Proposition 8.2.1. [
9. Proof of Theorem 8.2.1

The aim of this section is to prove Theorem 8.2.1. Throughout this
section we retain the situation of 8.2. Recall that given an irreducible
(gn,c, Kp)-module 7, we have attached a triple (lp,h,s) to m at the be-
ginning of 8.2. Put lp = ()1 <k <n € A} and 2y = ¢, (7). For simplicity we
write Ty, for the number 79 (see 7.4).

9.1. Proof of Theorem 8.2.1
We first have

LEMMA 9.1.1.  Let (g, h,s) be as above. If w is elementary, then we
take p = (pi)1<i<n—1 € A | so that m = w(p, 20 — |p| ;8). Otherwise, we
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define the weight p = (pi)1<i<n—1 € Af_| by putting p; = 1;, 1 <i < h™,
pi = liy1, b <i<n—1. Then 7 occurs in a (g, C, Kn)-subquotient of
m(p, 20 — || 5 5).

ProOoOF. This is a consequence of Theorem 4.3.2. ]

LEMMA 9.1.2. Let I be a subset of {1,...,n — 1}. Given families of
indeterminates {x;}icr and {y;}icr, we have the following formulas in the

field Q(zs, yi| i € I):

[I(xn —yi+i—h)

hel 1
— - =1, kel
; II Wj—yi+i—jar—yi+i—k
jELj#i
Hl(iﬂk —yj+3j—k)
je _ _ ,
> I1 (xk—th—k)_zxk Zy
kel hel h#k kel el
[T(ze—yi +i—k)
II (zx—xp+h—k)

kel

hel hitk
1 1 1 .
= 5(25% > )+ 5(23%)2 - 5(22;02 +Y iy — Yk
kel iel kel iel iel kel

PrROOF. As for the last two formula see [9, Lemma 2.1]. The first

formula is obtained from the second one by differentiation with respect to

In order to prove Theorem 8.2.1, we first show that f(m ;7) with m €
OMAT  (n|\o) satisfies a second order differential equation. Let J* be the
set defined in Lemma 8.3.2 with 1 = 1.

PROPOSITION 9.1.1.  Let {f(m ;r)| m € A (n|Xo)} be a family of
C*®-functions on r > 0 which satisfies the system of difference-differential
equations (C)iy.m, (S_i)lo,m and (5+(j+1))107m foricJ ,jeJ" and m €
AT (nXo). For anm € WAL [ (n|Xo), the function f(m ;r) satisfies the
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second order differential equation

(9.1.1) (r%)Qf(m ;) + <L + (2n + 20, — 20, — 1)th(r)>

th(r)
X r%f(m ;7)
A (=)
ch?(r)sh?(r) 2
1
+ s (Pt = 1 = 7 260, 0) + 260,15 20 — 1)
ch*(r)

A, (m 520 — [ml) — 2((65)° + (65)?)
220 — [m) (O + 0%) — (en — 7an) (055 + Om) — A + 2em)
20, (m ;20 — ) — 200, (1) + 2((0m)° + (032)%)

—2(z0 — lm|) (0, + 0,4{1) +4nf,, — 2@m}

x f(m;r) =0,
with
(9.1.2) Nm = |m| — 2o + 2co, Tm = 2|lp| — |m| — 2o,
(9.1.3) Om =D b= mi Oh=> lui— > mi
keJ— ieJ— keJ+t ieJ+t
(9.1.4) @m:Zm?+Zm?—le—ZliH
ieJ— ieJt keJ- keJ+
=20 imi 4 Y im) +2( )kl + Y kligr).
ieJ— ieJ+ keJ— keJ+

PrROOF. Since m € dMAT | (n|Xg) we may set f(m™ ;r) = 0 for
i¢ JT and f(m™ ;r) =0for j & J~ in (C)ym, (8.3.1) and (8.3.2). By
substituting (8.3.1) and (8.3.2) to the equation (C)j, m, we can eliminate

fm™7 :r), j€J and f(m™ ;r), i € J to get

(9.1.5) (rd%)Qf(m i)



670 Masao TSUZUKI

1
+<th(r 2n+2 )" Y cp(m

keJ—ieJ—
—22 Z ) — 1)th(r )>rdiif(m;r)
keJt jeJ+
) -1 m — Tm 2 _
+f(m ,vﬂ){chz(r)shz(r)( ) 26, an 530~ o)

1

ch?(r

20, (120 — 1) — 4, (m 20 |m|>)

+2th(r) > ) ¢ (m ir)

keJ—ieJ—™
—ath(r) 30 ST eh(m)Fyf(m r)}
keJt jeJ+
=0,
with
- lm — Tm
F ir)=—————— —1th — 2(— —
o or) = =y 0 (ol 2 k)
i ) = m T _ _
i) = gy + ) (el 2t ).

Using Lemma 9.1.2, we can prove formulas

D ICTIED SYAED S

keJt jeJ+ keJ+ jeJt
D calm) =D b= m
keJ—ieJ— keJ— €]~

and

ZZ]k F+mr)

keJ+ ]eJ+

2sh Z b1 = Z mj)

jeJt
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+ th(r < Z lgt1 — Z mJ (z0 — |m| — Z lpr1 + Z mj

keJ+ jeJt keJt jeJ*
IDILED I NEED DYTNELD S
jeJT keJ+ keJ+ jeJt
> 2 culm)Fy (mir)
keJ—ieJ—
—Tm
= ek (T Z b= 2 ma)
ieJ—

+ th(r ( Z b= Y m)(lm| =20+ Y l— Y mi+2n)

keJ— ieJ— keJ— i€J~

> mi+ Zl%—ZZklk+2Zimi>.

icJ~ keJ— keJ— ieJ~

671

We substitute these formulas into (9.1.5); then after some calculation, we
finally get (9.1.1). O

Changing variables we see below that the differential equation (9.1.1) is
transformed to the Gaussian hypergeometric differential equation to get its
C*°-solution explicitly.

PRrROPOSITION 9.1.2.

The differential equation (9.1.1) in Proposition

9.1.1 has, up to a multiplicative constant, a unique C*°-solution on r > 0

given by
(9.1.6) (sh(r))?(ch(r))* 2 Fy (X, Xm 51+ B 5807 (r)),
where

(9.1.7) B = '% ;

a is a solution of

(9.1.8) (a+ B)(a+ B+ 2n — 20 +20) = P

with

(9.1.9) P = 2Qy (m ;20 — |m|) — 2Q¢, ()
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+2(0° + 0:52) — 2(20 — [m|) (0, + 055) + 4nfy, — 26,
and X, X, are two solutions of

(9.1.10) 2X +a+n+0, —0F —1)° = Qm

m

with

2
(9.1.11) Qm = (n+ 0o — 05 —1)% + (”‘“%) + Tl — T — T,

+2Qm, (n) + 29k, (1 ; 20 — 1) — 4Q4z, (m ; 20 — |m])
— 2(0” + 0%) + 2(20 — |m]) (05, + 611)
— (N — Tm) (05, + 0 — 4nb, + 260.,.

PROOF. Setting
z = th%(r),

we get a diffeomorphism from r > 1 to 0 < z < 1. Now put
w(z) = (sh(r)) = (ch(r)) =" f(m ;r)

with § and « satisfying (9.1.7) and (9.1.8). Then after some computations,
the equation (9.1.1) is transformed to the hypergeometric differential equa-
tion

w —a+n+05 — 05 \dw

1
—Z((OzﬂLn—i—@r_n—G;;—l)z—Qm)w:O-

Since the function f(m ;r) is C* around r = 1, it turns out that w(z) is a
constant multiple of the hypergeometric series o Fy (X;h, X 31+ 3 ;2). O

LEMMA 9.1.3. Letp € A;Ll be the weight given in Lemma 9.1.1. Then
for every m € OMWAT | (n|Ao), we have

Or + 0, = |lo| — |m| — ptm,
9;2 — 0., = Om,
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n—1 n n—1 n
Om =Y mi—> =2 imi+2) ki
i=1 k=1 i=1 k=1

AT

ht<k<n

o] = |p| + lp+-

PrROOF. Leti,j € {l,....,n—1}. Thenifi & J , l; =m; if j & JT,
lj+1 = m;. Form this observation, the lemma follows. [

Using Lemma 9.1.3, we can make the values of P, and Qn given by
(9.1.9) and (9.1.11) trimmer form.

LEMMA 9. 1 4. Letp € A:_l be the weight given in Lemma 9.1.1. Then
form e WAL (n|Xo), we have

Pm = (0 — Om — 1+ pim — Uy + 8) (O — O — 10— i + [t — 5),
Qm = 2925, (1) — 2¢5 + (n — 1)* — (Jm| — pum + co — 20)*

n—1 n—1

2= X mE = Y 2+ 0= 20 o+
=1 =1

- > lk+9§1—0;1>.

ht<k<n

PRrROOF. The proof is a tedious and long calculation. By Proposition
6.2.2 and Lemma 9.1.1, we first have

Qpr,(m 529 — lm|) — Qg, (7 Zm —}—Z n— 2i)m; + ;(zo — |m|)?
n—1
—S— ——ZpZ Zn—2z)
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Since Tm + 2lp = 20 — |m|, we have

n—1 n—1 n—1 n—1
= Q(me - Zp? —QZimi —i-ZZipi)
i=1 i=1 i=1 i=1

+2n(|m| — |p[) + (20 — [m|)* = (20 — |p|)* — 5* + n?
+ (08 — 05)% + (04, + 05)% — 2(20 — ym\)(e+ +65)

+4nb,, — Zm —Zlk+22klk—221mz

+ piZy — 20T pm — 2 Z

h+<k<n
= (04— O — )2 + 20655 — O) + 20((m] — [p]) + 4nd —
+ (20 — [m[)? = (20 — [PI)* + (0 + Om)* — 2(20 — Im|) (0, + 0;,)

n—1 n n
—2um+4h+um+2(—zpf+Zl,§—22klk

] k=1 k=1
+2Zzpl+2 S

h+<k<n
= (0% — 05, —n)? +2n(0L + 0, — |p| + |m|) — s*
+ (20 — |m| 0 —02)% — (20 — |p|)? — 202, + 4h™ fim

sz +Zlk—22klk+221pz+2 S

h+<k<n
= (0 — O — n)2
+ (20 — m| — 6, — 65,)* + 2n(6;, + 0, — |P| + [m])
— (20 — Ipl)2 — 8% = 23, + 4hT i

sz +Zlk—22klk+221pl+2 S

h+<k<n
= (6 — O — 1)’

+ (Ipl — Im| = 6, — 0)° + 2(Ip| — 20 + n) (65 + 6 + [m| — |p])
— 5% —2u2, + AhT pm + 20 — AR Ty
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n—1 n
212, + 20T 1y — Zp?+2l,%
—22k1k+222pz+2 Z

h+<k<n

Now using Lemma 9.1.3, we have
[p| — [m| — O — Oy = pim — ly+-
Inserting this formula to the last expression of Py,, we compute

Pm:(gr_;_gr:l_n)2

+ (um —Ip+)* +2(Ip| — 20 + 1) (lp+ — fim)
g2 —2( lh+)(/~‘m+lh+)+4h+(,um lh+)

2(—124 +2h Tl — ip? +Zl,§ - QZklk
7 k=1 k=1
+2Zzpz+2 >

h+<k<n

= (0 — O — 0)?
— (e — lpt)* — s
+2(Ip+ = pim) I+ — pm + Pl — 20 + 0+ Iyt + pim — 207)

n—1 n n
212, + 20" s — Zp% + -2 ki
] k=1 k=1
+221p2+2 oo

h+<k<n
= (0 — O — 1)’
— (I — pn = 8)> + 2(Ipt — pm) 2+ — 20" + 0+ |p| — 20 — 5)

n—1 n n
212, + 20T s — Zp% +Y -2kl
] k=1 k=1
+2Zzpl+2 oo

h+<k<n

2
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If h=0o0r h =n, then py, = I+ by the definition. If 0 < h < n, then by
definition of ly, p and s we have

s =2+ —2hT +n+ |p| — 2.
Therefore the formula
2(Lp+ — pim) 2+ — 2R 4+ p| — 20 —5) =0

is valid. Furthermore using the explicit values of 1y and p, we see that

n—1 n n n—1

B+ 2h e =Y R Y B -2) k2 g2 Y =0

i=1 k=1 k=1 i=1 ht<k<n

Combining these observations, we finally get
P = (0, — 05 = 1)* = (It — fim — 5)°

to conclude the computation for P,. Next we calculate Qm. By using
Proposition 6.2.2 and Lemma 9.1.3, we have

Q. (lo 520 = [lo) = 2z, (m 5 20 — [mf) + O

1
= (20 — [o])* — (20 = m|)? + n(|lo| — [ml]) + [lo| + pi3 — 20" i

-2 Z Iy,

ht<k<n

By inserting this and the values of 7y, and 7y, given by
Nm = |m| — 2o + 2co, Tm = 2|lp| — |m| — 2o
to the formula (9.1.11), we compute

Qm = (O — O — 1+ 1) + (Jm| — [lo| + o)
+ (Jm| = 20 + 2¢0)(2[1o| — |m| — 20) — (Jm| — 2 + 2co)*
— (2llo| — [m| — 20)* — 2(Jm| — [lo| + o) (655, + Omm)
—2(012 +6072) 4+ 2(20 — |m|) (05 + 02,) — 4nb,
+2(20 — [1o])? = (20 — |m|)* + 2n(|lo| — [m]) + 25, — 4h™ im
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+2(l = D Ik) + 29, (n) — 2, (m 5 20 — [m))

ht<k<n
= (O — Om)® = 2(n — 1) (0 — ) + (n = 1)* + (jm| — [lo| + ¢0)®
+ (Jm| — 20 4 2¢0)(2|1o| — |m| — 2o — |m| + 20 — 2¢p)
— (2[1o| — [m| — 20)* — 2(lm| — [lo| + c0) (6 + Om)
—2(052 +60..2) 4 2(20 — |m|) (0 + 05,) — 4nfby,
+2(20 — [o])* = (20 — [m))* + 2n(|lo| — [m|) + 243, — 40" pim
+ 2(|lo| — Z k) +2Qm,(n) — 202, (m ;20 — |ml)
ht<k<n
= — (0, + 65)” + 2n(0, — 0, + [lo| — [m| — 267, — i)
+ (jm| = [lo| + c0)® 4 2(Jm| — 20 + 2c0)(|lo| — [m] — co)
— (2[lo| — Jm| — 20)* = 2(Jm| — [lo| + o) (655, + ;)
+2(20 — |ml) (6, + 00
+ 2(z0 — |1])% — 2(20 — |m|)? + 2¢2

+ Rm,
where
Run = 2012, — 407" pimn + 20pim 4+ 200 = > 1)
ht<k<n
+2Qp, (n) — 27, (M 5 29 — |m|)
+ (20 — |m|)2 — 20(% + (n— 1)2 +2(04 —0,).
Since
(9.1.12) 05 + 0 — |lo| + |m| + p1m = 0,

by Lemma 9.1.3, the second term in the last expression of @y, is zero. Thus

Qm = — (0 + 0m)* + (Im| — [Io| + c0)?
+ 2(|m[ — 20 + 2¢o)(|lo| — |m| — o)
— (2|lo| — |m| — 20)* = 2(Jm| — [lo| + o) (655, + O
+2(20 — [m) (0, + O
+2(20 — [1o])* = 2(20 — [m[)* + 2¢5 + Rm
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= —(b5 + 0)” + (Jm| = [Io| + o)?
+2(|1o| = |m| — co)(|m| — 20 + 2co + 05, + 02) — (2|1 — |m| — 20)?
+2(20 — |m|)(65 + Omm)
+2(z0 — \10])2 —2(zp — ]m\)Q + 20% + Rm
= —(b5 + 0)” + (Jm| = [Io| + o)?
—2(lm| — [lg| + co)(Jm| — 20 + 67, + 6;) — 4co(lm| — [lo| + co) + 2¢5
— 4(z0 — |lo])* + 4(20 — [lo]) (20 — [m|) = (20 — |m])?
+2(20 — [m|) (0, + 0)
+2(20 — \10|)2 —2(z0 — ]m|)2 + Rm
= — (0 + 0m)” + 2(20 — |m|) (6 + 0) — (20 — |m])?
+ (Im] — [lo| 4 c0)® = 2(Jm| — [Io| + c0) (651, + O + [m| — 20)
—4eo(Jm| — 1] + ¢o) + 203
— 2(z0 — |m|)* + 4(z0 — [lo[) (20 — |m]) — 2(z0 — [lo])* + R
= — (0 + 0 + [m| — 20)% + (Jm| — [Io| + o)®
—2(|lm| — [lo| + o) (0 + 05, + m| — z0) — 2(Jm| — [lo| + c0)? + R
= —(6 + 0 + 2Im| — [lo| + co — 20)* + Rm
= —(|m| — pm + co — 20)* + Rm,

where to obtain the last equality we used (9.1.12). Now by Proposition
6.2.2, we have

n—1 n—1

Qi (m ;20 — [m]) — %(ZO )2 =Y w2+ Y (0 — 20)ms.

=1 1=1

Hence

Ry =2Qp,(n) — 20(2) +(n— 1)2
n—1

n—1
+ 2<— Zm? - Z(n — 20)Ym; + 2, + 2(n — 20 ) i + |Lo|
i=1 i=1

-2 ) zk+9§1—9;n>.m

ht<k<n
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PROOF OF THEOREM 8.2.1. The formula (8.2.5) of f(m ;) with m €
OM AT (n|\o) is no other than (9.1.6) in Proposition 9.1.2. If h = 0 or
h = n, then the set 9MAT  (n|)\o) consists of a unique element (Lemma
8.2.1). Hence there is nothing to say in this case. If 0 < h < n, then we
have to deduce the recurrence relations (8.2.7) and (8.2.8) among v(m)’s.
We need the following formulae, whose validity is confirmed by comparing
the Taylor series expansion of both side at z = 0:

d
(9.1.13) zd—gFl(a,b ;e52)+ (e —1)2F1(a,b ;e 2)
z

= (C_l)QFl(a7b 7C_1 ;Z)v
d
(9.1.14) Z(l*Z)EQFl(CL,b jeiz)+ <(1 —a—b)z+c— 1)2F1(a,b C 5 2)
=(c—1)2Fi(a—1,b—1;¢c—1;2).

If {m| — [lo] + ¢o > 0, then changing variables from 7 to z = th?(r) and
using the formula (9.1.13), we can easily deduce (8.2.7) from (8.3.2). If
|m|—|1|4+cp < 0, then in the same way we obtain (8.2.8) starting with (8.3.3)
with the aid of (9.1.14). This completes the proof of Theorem 8.2.1. [J

9.2. The case when 7 is elementary
Here we take a look at a special case. Let 7 be an irreducible (g, c, K»)-
module isomorphic to m,(p, po ;s) with s € C, (p ;po) € °L;.

PROPOSITION 9.2.1. Let n = mp,-1(q,qo ;t)[co] with t € C, (q ;q0) €
°Lr 1, co €M Putp= (pi)i<i<n—1 and 4 = (gj)1<j<n—2. Assume that
n is irreducible. Then dimcZy, < 1. Moreover we have I, = {0} unless
Ip| —|a] = —po + qo + co and q C p. Under these conditions, put

lo=(p1,p2- - Pn-1,Pn—1) € A} (),
my = (q1,92, - - -+ qn—2,Pn—1) € A:—1(77’)\0)-

Let ® € I, and {f(m ;r)| m € A} (n|)o)} the standard coefficient of
®y,|Ap. Then f(myg ;1) is, up to a constant, given by the formula
(Sh(r))\l'o—(m(Ch(r))s—n—co-ﬂm—l+p0—(10—|P0—tI0\

l—s+t+|po—qo| 1—s—t+ |po— qo
><2F1( 2!19 (I|, 2\19 ol

14 [po — qo ;thQ(T))-
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REMARK 9.2.1. We can prove that the condition q C p and |p|—|q| =
—po + qo + co above is actually a necessary and sufficient condition for Z,, »
to be non zero ([20]).

9.3. The case when 7 is discrete series

Recall the notations in 4.3. For each integer 0 < h < n, put E?h =
(L, + p) N Dy. Then Z", the union of El for h € {0,...,n}, is the set
of Harish-Chandra parameters of discrete series representations of G,. It
can be deduced from [10, Theorem 6] that if 7 is a discrete series repre-
sentation of G,, with Harish-Chandra parameter A = [(Aj)1<j<n ; Ant1] €
E{y) then m belongs to the class Il¢, ¢ = (h,h,r,2) with z = Z?;l Aj,
r= (Tj)lgjgnJrl S A;L'_+1 such that

2j—n

T’j:)\j—i-T, je{l,...,h},
2] —n—2 .
rj-‘—l:)\j_"%a jE{h+1,...,n},
n
Thel = Angt1 +h— —.

2
Note that
AL> > AR > Al > Appl > - > Ay

holds. Moreover it turns out that the Dp-fundamental corner A\g = [y ;2 —
[lp]] defined in 8.2 (ii) coincides with the minimal K,,-type (Blattner param-
eter) of m and is actually given as lg = (71, ..., 7h, Tha2, -« Fntl)-
Let n = no[co] and 7 be discrete series representaions of H,, and G,, respec-
tively. We shall explicitly write down the necessary conditions for Z, » # {0}
stated in Theorem 8.1.1. Here we refrain from a thorough investigation,
and instead just look at a special case. Let pu = [(ti)i<i<n—1 ;tn] €
E?};l for h € {0,...,n — 1} be the Harish-Chandra parameter of 79 and
A= N)i<j<n s n41] € Elyy with k€ {0,...,n} that of 7. We assume
k=h+1<n.
ProprosiTION 9.3.1. Let ™ and n be as above.
(1) We have I, . < 1. Moreover I, = {0} unless co + Y iy pti =
Z?ill Aj and one of the inequalities

AL > U1 > A > o> AR > Up > Apgl > At
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> fp > a1l > Apg2 > 00 > fp—1 > Ap,
AL > p1 > Ay > > Ay > g > i > fatl
> A1 > Apgl > Apga >0 > o1 > A

holds.

(2) Let [(mi)i<i<n—1 ;mo] € L (o) be the minimal K,_1-type of no
and [([j)1<j<n ;lo) € L} (w) the minimal K,,-type of m. Assume the
condition in (1). Then the set OMAT | (n|\o) coincides with the set
of

my = (mla e, Mp, Y, Mpy2, ... amn—l)

with inf(lp41,mp41) < Y < lpyo. For @ € Iy o, let {f(m ;r)] m €
A (n|Xo)} be the standard coefficient of ®y,. Then the function
f(my ;7) is a constant multiple of the function

(sh(r))"

% (Ch(r))—2€K+m0_2l0_2h_2+zh+1<i§n L= cicht1 itoigjcnt1 Mi—Thi1<jan—1 M5
2
X 2F1<6/€-|—1+l() —mo, ek +2h+2—n+1lo —mpt1 ;1 + || ;th (7‘))

with k = y — mpy1 + lo — mo and € expressing 0 or 1 according as
k=0 o0r<0.

REMARK 9.3.1. When n = 2 the condition in (1) is actually a necessary
and sufficient condition for dimcZ, » = 1 (see [24], [18]). In [20], we prove
that this is true even if n > 2.

10. Matrix Coefficients

In this chapter we present an explicit formula of A,-radial part of matrix
coeflicients of irreducible (g, c, K,)-modules. The computations and proofs
of propositions will be omitted because they are quite similar to those for
Shintani functions.

10.1. Matrix coefficients
Let (m, Hy) be an irreducible (g, c, K, )-module and {.T| 1 € A} ()} the
standard system for 7. Since 7| K, is a multiplicity free direct sum of images
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of i, 1 € A (), we get a family of K,-homomorphisms {wl| 1€ A (7)}
with @b : H, — W(1) such that @k oJ = 0if I #1 and @l o = Ly -
Now for every A = [L;¢,(m) — [1]], N =[V ;en(w) — |V|] € L} (7), put

Fyag) =y on™(g) o], g€ Gy
Then Fy ) : Gy, — Hom(W (1), W(')) is a C*°-function such that
(10.1.1)  Faa(K'gk) = 7 (K') o Faa(g) o ma(k), K, k€ Ky, g€ Gy
The functions of the form F) \ will be called (X', \)-matriz coefficient of 7.

By the Cartan decomposition G = K,A,K, and the equivariant prop-
erty (10.1.1), Fy  is completely determined by its restriction to A,, say
©x . As a consequence of (10.1.1), the image of ¢y ) is contained in
Homy, (T)\’an TN |Mn)

LEMMA 10.1.1.  Set A(N|X) = A(l') N A(l) (see Lemma 3.1.1). For
every m € A(N|N), put

a})\’,)\(m) = Ji}l © pi‘n?
where ji : W(m) — W(V') is the map defined by
Q) =.Q)

for Q € GZ(”_I)(m), and pln is the map in Lemma 8.1.1. Then
{Oyva(m)] m € AW[N)} is a C-basis of the C-vector space
HomMn(T)\’Mn,TX|Mn).

m
Jv

By this lemma, we can express @y ) of the form
v a(ar) = Z fva(mir)-oya(m), ar € Ay
meA(N|A)

with a uniquely determined family {fy x(m ;r)] m € A(N|X)} consisting
of C"*°-functions on r > 0.

Here is a necessary condition for F y to be non zero.

LEMMA 10.1.2. Let X', XA € L} (w). Then Fy y is identically zero un-
less cn(Ta) = cn(Tn) and A(N|N\) # 0.
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10.2. Differential equations for matrix coefficients
For the induced representation M = Ind (7')\/), we have the Schmid
operators as we explained in 6.1:

V 1O, 1 (G \Gr/Ky) — CFF (K \Gn/Kn)

T)\/ T)\ TA/ T>\+B

for A € £} and 8 € Ry. Let
QA’,A (O ( n\Gn/K ) — O L ( n\Gn/Kn)

T/ TA T/ TA

be the Casimir operator.
Here is the system of differential equations for the matrix coefficients:

PROPOSITION 10.2.1.  The family {Fy | X, X € L} (m)} satisfies the
equations

Qv aFyva(g) = Qa, (1) Fyxa(9),
Vi Fya(g) = AL (D Fy xoi(9),
VS Fya(g) = BE(1) Fy e (9)

for ke {1,...,n}. Here A7(1), BJ(1) are the 2n functions for m introduced
i Proposition 4.1.1.

(
(

10.3. Difference-differential equations

Through the same type of procedure that we explained in detail for the
Shintani functions (see §7), we can write down the equations in Proposition
10.2.1 in terms of standard coefficients of F) )’s. Here is the result:

THEOREM 10.3.1.  The system { fy x(m ;r)| m € A(N|\)} satisfies the
following system of differential equations:

2 J—
(r) foatm i)+ (1) + 5t ) feaam )
+ Gy a(m) fya(m ;7)

Ach(r) =2 ) »

+b;(1' ;m)b;(1 ;m) frv x(m™ ﬂ’))
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=0

QAg(l)fN,Hk (m ;7)

(
(T,\/,m + Thm 1

an(a() T mgy P 20— =l k- 1))>
n—1 ; 1 : ne y
X fya(m;r) + Sh?r) ZZEmZer)‘zE k:rj:)l fua(m™ ;T)}

2BE (1) fyr p—k(m 57)

=7 (m ;k,l){Tifx,A(m ;7)

TA’m+TAm 1
<2sh< jenr) e (2= =)
n—1 bz
X fya(m shr z; li—mz+z— )fx (m ;r)}
with
G)\/,)\(m)

_ 1 (T)\’,m‘i‘T)\,m)Q
— ch®(r)sh?(r) 2

1
+—— <(T)\’,m)2 + T mTAm + (am)? — 2Qx, 1 520 — |V])
sh®(r)

— QQKn(l R0 — |1D + 4QMn(m 20 — |m|)>

+2Qp, (m ;20 — |m|) — 2Qg,, (7).

10.4. Explicit formula for matrix coefficients with corner K, -type
For an irreducible (g, c,K,)-module 7, we have attached a triple
(lp, h, s) at the beginning of 8.2. Put zy = ¢, (7) and A\g = [lo ;20— |1]] € £}
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Then, by definition, Ay is D,,_i-corner or Dp-corner according as 7 is ele-
mentary or not. Now we give an explicit formula of (N, \g)-matrix coeffi-
cients of m. Put ' = (I} )1 <k <n and ly = ()1 <k <n. Then

A()\/‘/\o) = {I’Il € Ai_ﬂ inf(l;, lz) = my = Sup(l;+1,li+1), 1= 1, ey — 1}.
Thus the set A(N|\g) is non-empty if and only if
inf(I;,5;) = sup(li . liv1), 1€{1,...,n—1}

We assume that 1’ satisfies this inequality as well as ¢, (7x/) = cp(7,). Let
O A(N|X\o) be the subset of AT | defined as in Definition 8.2.1.

For m € A(XN|)\g), let pum and 6y, be the numbers defined by (8.2.1) and
(8.2.2) respectively.

THEOREM 10.4.1. Let m € 9MWA(N|)\g). Then the function
Iy xo(m 57) s, up to a constant, given by the formula

(sh(r))/m=rHIH2m (ch(p)) S Hm =t =12y By (ViE Vi 51+ Zim 5807 ()

with Zym = 0,

zZ2 = 2(2 02+ (n—2k+ 1)z;> — (lm| = [lo| = pm)* + (n — 1)*

k=1 k=1
n—1 n—1
+ 2(— > omi = (0= 20)my + pdy + (n = 207 ) + [l
=1 =1
) Z I, + 0m>

ht<k<n
and
1= pm e — s+ V] 4 [lo] — [m| — 20 + Z
m 2 bl
1—pm + 1l —s = V| = |lo] + I m| + 20 + Zm
5 )
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10.5. A few examples
We consider the case when the representation 7 is an elementary repre-
sentation of G,,.

PRrROPOSITION 10.5.1. Let # = 7m,(s ;p,po) with s € C, (p ;po) €
OE:L'_I be an irreducible elementary representation of Gy. Let 1y € A} () be
the as in 8.2 (i) and put Ao = [lp ;20 — |lo|] with z0 = |po| + po. Then for
my = (p2,...,Pn—1,Pn—1) € A(Xo|Xo), the function fx,x,(mg ;7) is given
by the formula

s—n+po _szn=ro .
92 y “Pn—1 9 )

N+ p1 — Pn—1 ;thQ(r)> .

(ch(r))> " FPr17P1, <P1 —

Next we consider the non-elementary representations.

PROPOSITION 10.5.2. Let m be a non-elementary representation with
the triplet (lp,h,s) as in 8.2 (ii). Assume 0 < h < n. Then for m =
(mi)1<i<n—1 € OMWANo| o), the function fr,,(m ;7) is given by

(Ch(?“))8+mh—lh—l1+ln—n2F1(h—mh +11, 20— ’10| —lp,+h i li—1l,+n ;thQ(T)).
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