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Division Theorems in Higher-codimensional Boundary

Value Problems for E-modules

By Yuichi Sugiki

Abstract. We prove a division theorem with coefficients of rela-
tive bimicrofuntions for E-modules. Our proof is based on the Cauchy-
Kowalevski theorems for E-modules. As one of applications, we solve
Takeuchi’s conjecture. We also apply his conjecture to higher-codi-
mensional boundary value problems.

1. Introduction

Let X be a complex manifold. We denote by OX the sheaf of holomor-

phic functions on X and by DX the sheaf of differential operators with holo-

morphic coefficients on X. Sato-Kawai-Kashiwara [12] defined the sheaf EX
of microdifferential operators on the cotangent bundle T ∗X. If πX : T ∗X →
X is the projection, then πX

−1DX is a subring of EX . Kashiwara-Kawai [6]

proved the division theorem with coefficients of relative microfunctions for

D-modules (also for E-modules). In the case of D-modules, we can prove

the theorem by using the generalized Cauchy-Kowalevski theorems for D-

modules with algebraic method today (see Kashiwara [5]). In the case of

E-modules, their proof of the division theorem used the theory of quantized

contact transformations. However, the author thinks that their proof is

complicated, so we give another proof in this paper. Let M be a coherent

EX -module. Since OX is not an EX -module, we have to find a suitable defini-

tion of the holomorphic solution complex RHomEX (M,OX). This complex

was defined through the work of Bony-Schapira [2] and Kashiwara-Schapira

[9]. Ishimura [4] stated the Cauchy-Kowalevski theorem for E-modules by

using RHomEX (M,OX). Our proof uses the Cauchy-Kowalevski theorems

for E-modules.

There are many varieties of division theorems. Tose [18] proved the

division theorem with coefficients of second microfunctions in the case of

1-codimension. Kataoka-Tose [7] and Schapira-Takeuchi [13] developed the
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theory of bimicrofuntions. Takeuchi stated the division theorem with co-

efficients of relative bimicrofunctions for D-modules. We prove a division

theorem with coefficients of relative bimicrofunctions for E-modules. We

cannot apply the theory of quantized contact transformations, so the proof

of this division theorem also uses the Cauchy-Kowalevski theorems for E-
modules.

Our aim is the study of higher-codimensional boundary value problems.

Uchida [19] obtained the extension of real analytic solutions. Takeuchi [16]

applied the theory of bimicrofunctions to the edge of the wedge type the-

orems, and he also stated a conjecture. We solve his conjecture, and we

prove a local Bochner type extension theorem for hyperfunction (real ana-

lytic) solutions (cf . Takeuchi [17]).

This paper is a revised version of the author’s master thesis in the Tokyo

University. The author would like to express his deep gratitude to Prof.

Ishimura, Kataoka and Takeuchi for giving their many aids throughout this

work.

2. Review on Preliminary Notions and Results

Let us recall the definition of RHomEX (M,OX).

Let X be an n-dimensional complex manifold. We denote by Db(X) the

derived category of the complexes of sheaves on X. Take a point pX ∈ Ṫ ∗X.

Suppose thatM is a coherent EX -module on an open neighborhood of pX .

Then, we can choose a finite EX -free resolution ofM :

0→ ENr
X → ENr−1

X → · · · → EN1
X → EN0

X →M→ 0(2.1)

We assume that X is an open subset of C
n. Then, there exists a natural

homeomorphism T ∗X 	 X ×C
n. We can represent pX as (x, ξ) ∈ X ×C

n.

We write by 〈 , 〉 the canonical pairing map TxX × T ∗
xX → C. We set

{ξ}◦a := {v ∈ TxX : Re 〈v, ξ〉 ≤ 0}. By considering TxX 	 C
n, we get that

{ξ}◦a is a half space of C
n.

Let G ⊂ C
n be a proper convex cone in {ξ}◦a and let D ⊂ X be an

G-round open neighborhood of x. Then, Kashiwara-Schapira [8] defined

the ring E(G,D). By choosing G and D, the resolution (2.1) gives rise to

the following complex of finite free E(G,D)-modules :

0→ E(G,D)Nr → E(G,D)Nr−1 → · · · → E(G,D)N1 → E(G,D)N0 → 0.
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We write this complex by M•(G,D).

We denote by XG the set X endowed with the G-topology, and by φG :

X → XG the natural continuous map. To construct RHomEX (M,OX), we

need the following proposition.

Proposition 2.1 (Kashiwara-Schapira [8]). There exists a G-round

open neighborhood U of x such that for any pair Ω0 ⊂ Ω1 of G-open subsets

of X with Ω1 − Ω0 ⊂⊂ U , we have :

φG
−1RφG∗RΓΩ1−Ω0(OX) ∈ Db(E(G,D)Ω1).

We set Z := Ω1 − Ω0. We write by O(G,Z) the object

φG
−1RφG∗RΓZ(OX).

We denote by Db(Ω1; pX) the localization of Db(Ω1) at pX . Further

information of Db(Ω1; pX) can be found in Kashiwara-Schapira [10]. Re-

mark that the connection between OX and O(G,Z) is as follows. There is

a natural isomorphism

O(G,Z) 	 OX

in Db(Ω1; pX). We have the natural functor Db(Ω1) → Db(Ω1; pX). Fol-

lowing Ishimura [4], we denote by

RHomEX (M,OX)pX

the image of the complex RHomE(G,D)(M
•(G,D),O(G,Z)) in Db(Ω1).

For any object F ∈ Db(X), we write the micro-support of F by SS(F ).

Theorem 2.2 (Kashiwara-Schapira [9]). Set V := Int(Z) × Int(G◦a)
⊂ X × C

n 	 T ∗X. Then, we have an estimation of the micro-support :

SS(RHomE(G,D)(M
•(G,D),O(G,Z))) ∩ V ⊂ supp(M) ∩ V.

Let Y be a d-codimensional complex submanifold of X and let f be an

embedding map from Y to X. Then we have the natural morphisms :

T ∗Y
tf ′
←− Y ×X T ∗X

fπ−→ T ∗X.
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Let p ∈ Y ×X T ∗X. We set pX := fπ(p) and pY := tf ′(p). We define the

full subcategory Db
f (X; pX) of Db(X; pX) as :

Db
f (X; pX)

:= {F ∈ Db(X; pX) | tf ′−1
(pY ) ∩ fπ−1(SS(F )) ⊂ {p} near pX}.

Kashiwara-Schapira [10] defined the microlocal inverse image :

f−1
p : Db

f (X; pX) −→ Db(Y ; pY ).

If F ∈ Db
f (X; pX), then f−1

p F is as follows. Take the refined microlocal

cut-off F ′ → F at pX . Then, we may set f−1
p F := f−1F ′.

We say that f is non-characteristic forM at p ifM satisfies the following

condition :

tf ′
−1

(pY ) ∩ fπ−1(SS(M)) ⊂ {p} near pX .(2.2)

Suppose that f is non-characteristic for M at p. Then, Sato-Kawai-

Kashiwara [12] defined the inverse image f−1
p
M. Note that f−1

p
M is a

coherent EY -module on a neighborhood of pY . The Cauchy-Kowalevski

theorems for E-modules are as follows.

Theorem 2.3 (Ishimura [4]). Suppose that f is non-characteristic for

M at p. Then, we have the natural isomorphism :

f−1
p RHomEX (M,OX)pX

∼→RHomEY (f−1
p
M,OY )pY

in Db(Y ; pY ).

Sugiki-Takeuchi [14] gave a more precise proof of Theorem 2.3.

Let M be an n-dimensional real analytic manifold and let N be a d-

codimensional submanifold of M . We suppose that X (resp. Y ) is a com-

plexification of M (resp. N). Then we get the following diagram :

T ∗
NY

tf ′
N←−−−−− T ∗

NX�
�

T ∗Y
tf ′

←−−−−− Y ×X T ∗X
fπ−−−−−→ T ∗X.
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We set :

CN := Hn−d(µN (OY ))⊗ orN |Y
CN |X := Hn(µN (OX))⊗ orN |X ,

where µN (·) is the microlocalization functor and orN |Y , orN |X are the orien-

tation sheaves. CN (resp. CN |X) is called the sheaf of microfunctions (resp.

relative microfunctions).

The division theorem with coefficients of relative microfunctions for E-
modules is as follows.

Theorem 2.4 (Kashiwara-Kawai [6]). Let M be a coherent EX-mod-

ule on a neighborhood of pX . Suppose that f is non-characteristic forM at

p. Then, we have :

RHomEX (M, CN |X)pX [d] 	 RHomEY (f−1
p
M, CN )pY .

Kashiwara-Kawai [6] transformed CN |X into the sheaf of microfuntions

with holomorphic parameters CO by using the theory of quantized contact

transformations to prove this theorem, but we give another proof here. Our

proof uses the Cauchy-Kowalevski theorems for E-modules.

Proof. Set F := RHomEX (M,OX)pX . By Theorem 2.2, we get F ∈
Db

f (X; pX). Take the refined microlocal cut-off F ′ → F at pX . We apply

Theorem 6.7.1 of [10] to F ′. Then, we obtain :

Rtf ′N ∗(µN (F ′)) ∼→µN (ωY |X ⊗ f−1F ′),(2.3)

where ωY |X is the relative dualizing complex. We shall calculate (2.3). We

get :

µN (F ′)pX 	 µN (F )pX 	 RHomEX (M, µN (OX))pX .

By Theorem 2.3, we also get :

µN (f−1F ′)pY 	 µN (f−1
p F )pY 	 RHomEY (f−1

p
M, µN (OY ))pY .

It completes the proof. �
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3. A Division Theorem with Coefficients of Relative Bimicro-

functions for E-modules

In this section we prove a division theorem with coefficients of relative

bimicrofunctions for E-modules. Let us recall the theory of bimicrofunc-

tions.

Let M ′′ be a real analytic manifold and let X ′′ be a complexification of

M ′′. Suppose that gM : M → M ′′ and g : X → X ′′ are submersions. Then

we get the following diagram :

N
fN−−−−−→ M

gM−−−−−→ M ′′
�

�
�

Y
f−−−−−→ X

g−−−−−→ X ′′,

Moreover, we suppose that hN := gM ◦ fN and h := g ◦ f are submersions.

Set L := g−1(M ′′), H := h−1(M ′′). Then, we obtain sequences of

manifolds N ⊂ L ⊂ X, N ⊂ H ⊂ Y . We also get the following diagram :

T ∗
NH ×H T ∗

HY
tf ′

NL←−−−−− T ∗
NL×L T

∗
LX�πH

�πL

N ×H T ∗
HY

∼←−−−−− N ×L T
∗
LX.

Definition 3.1 (Kataoka-Tose [7] and Schapira-Takeuchi [13]). We

set :

CNH := Hn−d(µNH(OY ))⊗ orN

CNL := Hn(µNL(OX))⊗ orN ,

where µNH(·) is the bimicrolocalization functor (See [13] and Takeuchi [15]).

CNH (resp.CNL) is called the sheaf of bimicrofunctions (resp. relative bimi-

crofunctions).

Note that we have :

T ∗
ML×L T

∗
LX 	 T ∗

(M×LT
∗
LX)(T

∗
LX) ⊂ T ∗(T ∗

LX) 	 T(T ∗
LX)(T

∗X),

where we used the Hamiltonian isomorphism −H : T ∗(T ∗
LX) 	

T(T ∗
LX)(T

∗X). For any F ∈ Db(X), the support of the complex µML(F ) is

estimated in the following way.



Higher-codimensional Boundary Value Problems 601

Proposition 3.2 (Funakoshi [3] and Koshimizu-Takeuchi [11]). For

any F ∈ Db(X), we have :

supp(µML(F )) ⊂ T ∗
(M×LT

∗
LX)(T

∗
LX) ∩ CT ∗

LX
(SS(F )).

We shall recall the condition of non-microcharactericity to state the

division theorem. We define the relative cotangent bundle T ∗(X/X ′′) by

the following exact sequence :

0 −→ V := X ×X′′ T ∗X ′′ −→ T ∗X −→ T ∗(X/X ′′) −→ 0.

Considering Hamiltonian isomorphism, we have :

V
π̇Y←− Ṫ ∗

YX ×X V −→ T ∗(X/X ′′)×X V 	 TV (T ∗X).

Note that Ṫ ∗
YX ×X V −→ T ∗(X/X ′′)×X V is a locally closed embedding.

Definition 3.3 (Bony [1]). Let q ∈ V and let M be a coherent EX -

module on a neighborhood of q. We say thatM is non-microcharacteristic

for Y along V at q ifM satisfies π̇−1
Y (q) ∩ CV (supp(M)) = ∅.

We state a division theorem with coefficients of relative bimicrofunctions

for E-modules.

Theorem 3.4. Let p ∈ N ×L T
∗
LX ⊂ V and let M be a coherent EX-

module on a neighborhood of pX . If M is non-microcharacteristic for Y

along V at p, then there exists a quasi-isomorphism :

Rtf ′NL!RHomEX (M, CNL)[d] 	 RHomEY (f−1
p
M, CNH)(3.1)

on π−1
H (pY ).

Proof. Set F := RHomEX (M,OX)pX . By the condition of non-

microcharactericity, we get F ∈ Db
f (X; pX). Here we use Proposition 3.4 of

[17]. Take the refined microlocal cut-off F ′ → F at pX . Then, there exists an

open neighborhood W0 (not necessary conic) of pX on V and an open conic
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neighborhoodW1 of {x}×X Ṫ
∗
YX in T ∗X such that (W0+W1)∩SS(F ′) = ∅.

Hence, we obtain :

Rtf ′NL!µNL(F ′) 	 µNH(ωY |X ⊗ f−1F ′)

on π−1
H (pY ). By applying Proposition 3.2, we get :

µNL(F ′) 	 µNL(F ) 	 RHomEX (M, µNL(OX)).

Moreover, by Theorem 2.3, we get

µNH(f−1F ′) 	 µNH(f−1
p F ) 	 µNH(RHomEY (f−1

p
M,OY )pY )

	 RHomEY (f−1
p
M, µNH(OY )).

Therefore, it completes the proof. �

4. Applications

We solve the conjecture of Takeuchi [16].

Theorem 4.1. Let p ∈ N ×L T
∗
LX ⊂ V and let M be a coherent EX-

module on a neighborhood of pX . If M is non-microcharacteristic for Y

along V at p, then we have :

RjHomEX (M, CNL) = 0(4.1)

for any j < d on π−1
L (pX).

Proof. By the assumption of non-microcharactericity, we know

the finiteness of the morphism tf ′NL on the support of the complex

RHomEX (M, CNL). Hence (4.1) follows from (3.1). It completes the

proof. �

We apply this result to higher-codimensional boundary value problems.

Let us recall the definition of partially ellipticity by Bony-Schapira [2]. We

define the relative cotangent bundle T ∗(M/M ′′) by the following exact se-

quence :

0 −→ Λ := M ×M ′′ T ∗
M ′′X ′′ −→ T ∗

MX −→ T ∗(M/M ′′) −→ 0.
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Note that Λ 	 M ×L T
∗
LX ⊂ V = X ×X′′ T ∗X ′′ ⊂ T ∗X. We have the

injection :

T ∗(M/M ′′)×M Λ −→ T ∗(X/X ′′)×X V 	 TV (T ∗X)

and the projection π̇Λ : Ṫ ∗(M/M ′′)×M Λ→ Λ.

Definition 4.2 (Bony-Schapira [2]). Let q ∈ Λ and let M be a co-

herent DX -module on X. We say that M is partially elliptic along V at q

ifM satisfies π̇−1
Λ (q) ∩ CV (char(M)) = ∅.

We denote by BM the sheaf of hyperfuncions on M . We set the projec-

tion θ : T ∗
NX → T ∗

NM . Then, our main result is as follows.

Theorem 4.3. Let M be a coherent DX-module on X. Suppose that

M satisfies the conditions :

(i) M is partially elliptic along V on N ×L Ṫ
∗
LX,

(ii) M is non-microcharacteristic for Y along V on N ×L Ṫ
∗
LX,

(iii) T ∗
MX ∩ char(M) ⊂ T ∗

LX.

Then we have :

Hj(Rθ!RHomDX
(M, CN |X))(4.2)

	 Hj(µNRHomDX
(M,BM )⊗ orN |M )

for any j < d.

We need some results to prove this theorem.

Definition 4.4 (Takeuchi [16]). We define the sheaf CNM on

T ∗
NM ×M T ∗

MX as :

CNM := Hn(µNM (OX))⊗ orN .

We have the injection ι : T ∗
NM ×L T

∗
LX → T ∗

NM ×M T ∗
MX and the

projection ρ : T ∗
NL×L T

∗
LX → T ∗

NM ×L T
∗
LX.
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Proposition 4.5 (Takeuchi [16]). Let q ∈ T ∗
NM ×L T

∗
LX and p ∈

N ×L T
∗
LX ⊂ Λ be its base point. Suppose that M is partially elliptic along

V at p. Then we have a natural isomorphism at q :

RHomDX
(M, CNM ) ∼→ ι∗Rρ∗RHomDX

(M, CNL).

We have the projection πN : T ∗
NM ×L T

∗
LX → N ×L T

∗
LX.

Lemma 4.6. Let p ∈ N ×L Ṫ
∗
LX ⊂ Λ ⊂ V and let M be a coherent

DX-module on X. Suppose that M satisfies the following conditions :

(i) M is partially elliptic along V on p,

(ii) M is non-microcharacteristic for Y along V on p.

Then, we have

Hj(RHomDX
(M, CNM )) = 0(4.3)

for j < d on πN
−1(p).

Proof. Apply Theorem 4.1 and Proposition 4.5. �

We have the projection π̇M : T ∗
NM ×M Ṫ ∗

MX → T ∗
NM .

Proposition 4.7 (Takeuchi [17]). There exists a distinguished trian-

gle :

Rθ!RHomDX
(M, CN |X) −→ µNRHomDX

(M,BM )⊗ orN |M −→(4.4)

Rπ̇M ∗RHomDX
(M, CNM ) −→ +1

in Db(T ∗
NM).

We shall prove Theorem 4.3.

Proof. By applying Lemma 4.6, we get (4.3) for j < d on πN
−1(N×L

Ṫ ∗
LX). Hence, the isomorphism (4.2) follows from the condition of Theorem

4.3 (iii) and the distinguished triangle (4.4). �
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Remark 4.8. To prove the isomorphism (4.2), Takeuchi [17] assumed

that f is non-characteristic forM (see Definition 4.10). However, our proof

did not use the assumption.

The projection T ∗
MX →M induces the natural injection

T ∗
MX ×M T ∗M

κ−−−−−→T ∗(T ∗
MX) 	 T(T ∗

MX)(T
∗X).

Definition 4.9. Let M be a coherent DX -module and let p ∈ Ṫ ∗M .

We say thatM is hyperbolic in the direction p ifM satisfies

κ(T ∗
MX ×M {q}) ∩ CT ∗

MX(char(M)) = ∅.

Definition 4.10. LetM be a coherent DX -module.

(i) We say thatM is elliptic ifM satisfies Ṫ ∗
MX ∩ char(M) = ∅.

(ii) We say that f is non-characteristic forM ifM satisfies

Ṫ ∗
YX ∩ fπ−1(char(M)) = ∅.

We assume that d ≥ 2 and that p ∈ Ṫ ∗
NM is a fixed covector. Then, by

some well-known results and Theorem 4.3, we obtain the following results.

Theorem 4.11. Let M be a coherent DX-module and let

char(M) =
r⋃

j=1

Vj

be the irreducible decomposition of the characteristic variety of M. We

assume that each Vj satisfies one of conditions below.

(i) The hypothesis of Theorem 4.3 holds for Vj.

(ii) Vj is hyperbolic in a direction p and satisfies Vj ∩N ×L T
∗
LX ⊂ T ∗

XX.

(iii) Vj is elliptic, and f is non-characteristic for Vj.
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Then, we obtain

Hj(µNRHomDX
(M,BM ))p = 0

for any j < d.

Note that (ii) is the result of Kashiwara-Schapira [8] and that (iii) follows

from Kashiwara-Kawai [6].

Corollary 4.12 (Local Bochner type extension theorem). Let M
be as in the above theorem. Then, there exists an open convex cone

Ω0 ⊂ M with the edge N such that the polar set of CN (Ω0) ⊂ TNM con-

tains p in its interior, and every hyperfunction (real analytic) solution u ∈
ΓΩHomDX

(M,BM ) on Ω := M\Ω0 automatically extends to an open neigh-

borhood of N as a hyperfunction solution (real analytic) solution to M.

Example 4.13. Put X := C
5 and suppose that z = (z1, · · · , z5) is a

coordinate of X. Moreover, we set Y := {z1 = z2 = 0} ⊂ X. We write the

real parts of z as x = (x1, · · · , x5). Then, we can represent the coordinate

of M and N as M = {(x1, · · · , x5)} ⊃ N = {x1 = x2 = 0}. We write the

coordinate of T ∗X by (z; ζdz), where ζ = (ζ1, · · · , ζ5) ∈ C
5. We define two

differential operators by

P1 := (∂2
1 − ∂2

5)(∂1 + i∂3)

P2 := (∂2
1 − ∂2

5)(∂2 + i∂4).

Let us consider the following systemM :

P1u = 0 , P2u = 0.

By easy calculation, we get the irreducible decomposition of the character-

istic variety ofM :

char(M) = {ζ1 + ζ5 = 0} ∪ {ζ1 − ζ5 = 0} ∪ {ζ1 + iζ3 = ζ2 + iζ4 = 0}.

Note that f is not non-characteristic forM. If we put p := (0; dx1) ∈ Ṫ ∗
NM ,

then the system M satisfies the condition of Theorem 4.11. This example

cannot be treated by Takeuchi [16], [17].
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