
J. Math. Sci. Univ. Tokyo
8 (2001), 541–558.

The Generating Function for Certain Cohomology

Intersection Pairings of the Moduli Space of

Flat Connections

By Takahiko Yoshida

Abstract. We consider the cohomology ring of the moduli space
of flat connections on a closed oriented surface with n marked points.
We give the generating function for certain cohomology intersection
pairings, which Weitsman considered in [11].

1. Introduction

Let Σg be a closed oriented surface of genus g with n distinct points

p1, ..., pn. For t1, ..., tn ∈ [0, 1], we consider the moduli space Mg(t1, ..., tn)

of flat SU(2) connections on Σg\{p1, ..., pn}, whose holonomies around pm

are conjugate to

(
eiπtm 0

0 e−iπtm

)
. If tm’s satisfy certain conditions, this

space is a smooth symplectic manifold with symplectic form ωg
t1,...,tn

.

On Mg(t1, ..., tn), there are n circle bundles V g
1 (t1, ..., tn), ...,

V g
n (t1, ..., tn) corresponding to each of the marked points p1, ..., pn. We de-

note by rg1, ..., rgn the Chern classes of V g
1 (t1, ..., tn), ..., V g

n (t1, ..., tn), respec-

tively. In [11], Weitsman found the Poincaré duals to rgm for m = 1, ..., n,

and use these duals to obtain the recursion relations according to the inter-

section pairings for rg1, ..., rgn, and the cohomology class [ωg
t1,...,tn

]. This is

an analog of the Witten conjecture in [13] for the recursion relations among

certain cohomology intersection pairings of the moduli space of curves.

In this paper, we study the relation with these intersection pairings and

the symplectic volume of Mg(t1, ..., tn), and give the way for calculating

the intersection pairings. The important fact in [11], is that the circle bun-

dles V g
m(t1, ..., tn) (for m = 1, . . . n) are obtained from symplectic quotients

for the Hamiltonian torus action, which is considered by Goldman [4], and

Jeffrey-Weitsman [7, 8]. This description for V g
m(t1, ..., tn) also plays an
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important role in this paper. In fact, this description allows us to use

Duistermaat-Heckman’s theorem [3], which shows that rgm is given by the

variation of the symplectic form ωg
t1,...,tn

as tm varies ([11], and see also Sec-

tion 3). Using this result, we can calculate the intersection pairings from the

symplectic volume of Mg(t1, ..., tn). The symplectic volume of Mg(t1, ..., tn)

is calculated by Donaldson [2], Jeffrey-Weitsman [8], and Witten [12]. The

following is the main result.

Theorem 1.1. For x1, ..., xn ∈ R, we have

∑
k1,...,kn≥0
k≤3g−3+n

xk1
1

k1!
· · · x

kn
n

kn!

∫
Mg(t1,...,tn)

(rg1)
k1 · · · (rgn)kn

(ωg
t1,...,tn

)3g+n−3−k

(3g − 3 + n− k)!

=
1

2g−2π2g−2+n

∞∑
m=1

n∏
j=1

sin(πm(tj + xj))

m2g−2+n
,

where k =
∑n

j=1kj. If x1, ..., xn are sufficiently close to 0, this formula also

equals to the volume of Mg(t1 + x1, ..., tn + xn).

For n = 1, the right hand side of the above equation is rewritten by

using the Bernoulli polynomials [2], [9]. Then we have the explicit formula

for intersection pairings.

Theorem 1.2. For n=1, putting rg = rg1, we have∫
Mg(t)

(rg)k
(ωg

t )
3g−2−k

(3g − 2 − k)!
= (−1)g2g−kP2g−1−k(

t

2
),

where Pλ(x) is the λth Bernoulli polynomial .

A similar formula for Mg(1) is given in [2], [10]. But we do not treat

this space in this paper.

In [11], Weitsman also used the Poincaré duals to rgm to get the analog

of Newstead conjecture, which tells, for the case n = 1, that the equality

(rg)k = 0 holds for k ≥ 2g. Using Theorem 1.2, it is easy to see that k = 2g

is the infimum.
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Corollary 1.3. For n=1, (rg)2g−1 does not vanish.

This paper is organized as follows. In section 2, we define the moduli

spaces Mg(t1, ..., tn), Mg, and also construct circle bundles V g
1 (t1, ..., tn),

..., V g
n (t1, ..., tn) on Mg(t1, ..., tn). In section 3, we recall the torus action

on the open dense set of the moduli space, and we see how Mg(t1, ..., tn)

arises as a symplectic quotient of this torus action. Section 4 is devoted to

prove Theorem 1.1. We also prove some theorems for intersection pairings

in Section 4.

Acknowledgment . The author would like to thank Professor Toshitake

Kohno for kindly encouragements. The author also would like to thank the

referee for useful comments.

2. Moduli Spaces of Flat Connections on Surfaces

In this section, we recall the moduli spaces and circle bundles which will

be the basic objects of study in this paper.

Let G denote SU(2) and g its Lie algebra. We denote by T the subgroup

of G consisting of diagonal matrices.

2.1. The moduli space of flat connections on a closed surface

In this subsection, we recall well known facts about the moduli space of

flat connections on a closed surface. For more details, see [1], [4].

Let Σg be a closed oriented surface of genus g(≥ 2), and E → Σg be a

principal G bundle on Σg. Since G is simply connected, all G bundles on Σg

are topologically trivial. Fixing a trivialization, the space A of connections

on E is identified with the space Ω1(Σg, g) of g-valued 1-forms on Σg, and

the gauge group G is identified with the space Map(Σg, G) of maps from

Σg to G. The gauge group G acts on A, with g ∈ G taking A ∈ A to

ψg(A) = g−1Ag + g−1dg. A connection A is called flat if the curvature

FA = dA + A ∧ A of A equals to 0. We denote by AF the space of flat

connections. Since G-action on A preserves AF , we define the moduli space

Mg of flat connections on Σg by AF /G.

Associating the conjugacy class of the holonomy representation to the

class of flat connections on Mg, we may identify Mg with Hom (π1(Σ
g), G)

/G, the space of conjugacy classes of representations of π1(Σ
g) into G. In



544 Takahiko Yoshida

Mg, there is the open dense set Mg, which consists of conjugacy classes of

irreducible representations. In [6], it is well known that Mg is a (6g − 6)-

dimensional smooth manifold.

On Mg, there is a natural symplectic form ω. As in [4], we can identify

the tangent space T[ρ]Mg of Mg at [ρ] with the gAdρ-valued 1st cohomology

H1(π1(Σ
g), gAdρ) of the group π1(Σ

g). We define the symplectic form ω on

Mg by the Poincaré duality

ω : H1(π1(Σ
g), gAdρ) ×H1(π1(Σ

g), gAdρ) → H2(π1(Σ
g),R) ∼= R

which is defined by the cup product and the adjoint invariant bilinear form

〈 , 〉 on g.

2.2. The moduli space of flat connections on a surface with n

marked points

In this subsection, we define the moduli space of flat connections on a

closed oriented surface with n marked points, and n circle bundles on this

moduli space. For more details, see [8], [11].

Let Σg be a closed oriented surface of genus g as before, and p1, ..., pn ∈
Σg be n distinct points in Σg. Assume that n ≥ 1 and 3g − 3 + n > 0.

Then π1(Σ
g\{p1, ..., pn}) can be described as the quotient of the free group

with the 2g + n standard generators A1, ..., Ag, B1, ..., Bg, C1, ..., Cn by the

single relation
∏g

i=1[Ai, Bi]
∏n

j=1Cj = 1, where each of the generator Ci can

be chosen to correspond to the point pi.

Fig. 1. generators of π1(Σ
g\{p1, ..., pn}).
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Given t1, ..., tn ∈ [0, 1], we may define the moduli space of flat connec-

tions on Σg\{p1, ..., pn} by

Mg(t1, ..., tn)

= {ρ ∈ Hom(π1(Σ
g\{p1, ..., pn}), G)| Trρ(Cj) = 2cosπtj , j = 1, ..., n}/G,

where G acts by conjugation.

For m = 1, ..., n, we also define the space V g
m(t1, ..., tn) by

V g
m(t1, ..., tn)

= {ρ ∈ Hom(π1(Σ
g\{p1, ..., pn}), G)| ρ(Cm) = eiπtm ,

Trρ(Cj) = 2cosπtj for j},

where eiπtm =

(
eiπtm 0

0 e−iπtm

)
.

We study the smoothness of Mg(t1, ..., tn), V g
1 (t1, ..., tn), ..., and

V g
n (t1, ..., tn). Define the map f : G2g+n → G by

f(A1, B1, ..., Ag, Bg, C1, ..., Cn) =

g∏
j=1

[Aj , Bj ]

n∏
l=1

Cl
−1e−iπtlCl

for (A1, B1, ..., Ag, Bg, C1, ..., Cn) ∈ G2g+n, and put Ug(t1, ..., tn) = f−1(I).

Proposition 2.1. If f has I ∈ G as a critical value, there exists J ⊂
{1, ..., n} such that

∑
j∈J tj −

∑
j /∈J tj ∈ Z.

Proof. We differentiate f(Aj , Bj , Cl) =
∏g

j=1[Aj , Bj ] ·∏n
l=1Cl

−1e−iπtlCl at (Aj , Bj , Cl) ∈ f−1(I),

df =

g∑
m=1

Ad(
m−1∏
j=1

[Aj , Bj ])

× (Ad(AmBm)((B−1
m δAmBm − δAm) + (δBm −A−1

m δBmAm)))

−
n∑

k=1

Ad((
∏
l>k

Cl
−1e−iπtlCl)

−1)((Ad(Ck
−1e−iπtkCk) − 1)δCk)

where δAm := Am
−1dAm etc.
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We first consider the case g = 0. In this case,

df = −
n∑

k=1

Ad((
∏
l≥k

Cl
−1e−iπtlCl)

−1)δCk +
n∑

k=1

Ad((
∏
l>k

Cl
−1e−iπtlCl)

−1)δCk

= −
n−1∑
k=1

Ad((
∏
l>k

Cl
−1e−iπtlCl)

−1)(δCk+1 − δCk) + δCn − δC1

=

n−1∑
k=1

(1 − Ad((
∏
l>k

Cl
−1e−iπtlCl)

−1))(δCk+1 − δCk).

We put Xl := Cl
−1e−iπtlCl. The argument in [6] tells that if df is not

surjective, Xn, XnXn−1, ... , and X1 · · ·Xn commute each other. Then X1,

..., Xn are simultaneously diagonalized. So there exists g ∈ G such that

I = gX1 · · ·Xng
−1

= gX1g
−1 · · · gXng

−1

= e±iπt1 · · · e±iπtn .

Then we put J = {j ∈ {1, ..., n}| gXjg
−1 = e+iπtj}.

When g > 1, from the existence of the term (Bm
−1δAmBm − δAm)

+(δBm −Am
−1δBmAm) in df , if df is not surjective, by the same argument

as above, Am and Bm commute each other. This brings us back to the case

g = 0. �

Definition 2.2. We call (t1, ..., tn) admissible if
∑n

j=1 εjtj /∈ Z for

any εj ∈ {−1, 0, 1} except for (ε1, · · · , εn) = (0, · · · , 0).

The space Ug(t1, ..., tn) is equipped with a natural action of G × T1 ×
· · · × Tn, where Tj

∼= T . Namely G× T1 × · · · × Tn acts on Ug(t1, ..., tn) by

(g, ξ1, ..., ξn) · (Aj , Bj , Cl) = (gAjg
−1, gBjg

−1, ξlClg
−1)

for (g, ξ1, ..., ξn) ∈ G×T1×· · ·×Tn and (Aj , Bj , Cl) ∈ Ug(t1, · · · , tn). When

(t1, · · · , tn) is admissible, this action has the global stabilizer Z2. In this

case, we have

V g
m(t1, ..., tn) = Ug(t1, ..., tn)/(G× T1 × · · · × T̂m × · · · × Tn),

Mg(t1, ..., tn) = Ug(t1, ..., tn)/(G× T1 × · · · × Tn),
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and T = Tm acts on V g
m(t1, ..., tn) by conjugation.

Corollary 2.3. If (t1, ..., tn) is admissible, πm : V g
m(t1, ..., tn) →

Mg(t1, ..., tn) is a smooth circle bundle.

From now on, we assume (t1, ..., tn) is admissible, and we denote the

Chern class of V g
m(t1, ..., tn) by rgm(t1, ..., tn) ∈ H2(Mg(t1, ..., tn)) or simply

rgm, where there is no confusion.

Then Mg(t1, ..., tn) is a (6g − 6 + 2n)-dimensional smooth manifold.

Jeffrey-Weitsman proved in [8] that Mg(t1, ..., tn) has a symplectic structure

which we denote by ωg
t1,...,tn

.

3. Torus Actions on Moduli Spaces

In [5], Goldman finds a Hamiltonian torus action on the moduli space

of flat connections on a surface. We recall this torus action in Section 3.1,

and how Mg(t1, ..., tn) appears as the symplectic quotient of this action in

Section 3.2. For more details, see [5], [7], and [8].

3.1. Hamiltonian circle actions associated with simple closed

curves

Let C be an oriented simple closed curve in a closed oriented surface Σg.

For C, let us define a function fC : Mg → [0, 1] as follows. We mark a point

in C. By choosing an arc joining the marked point in C and a base point

of π1(Σ
g), we obtain the element [C] ∈ π1(Σ

g). Then we define a function

f̃C : Hom(π1(Σ
g), G) −→ [0, 1] by

f̃C(ρ) =
1

π
cos−1 1

2
Trρ([C])

for each ρ ∈ Hom(π1(Σ
g), G). Since f̃C is invariant under the conjugation

action, f̃C descends to give the function fC on Mg. Note that fC is smooth

only on UC = f−1
C ((0 1)). In [5], Goldman showed

Proposition 3.1 ([5]). If C and C ′ are disjoint oriented simple closed

curves in Σg, the Poisson bracket {fC fC′} vanishes.

We consider the Hamiltonian flow of fC on UC . To define the flow, we

need the following preliminaries. For t ∈ R and ρ ∈ ŨC = f̃−1
C ((0 1)), we
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define ζCt (ρ) by the element of the centralizer Z(ρ([C])) of ρ([C]), which is

conjugate to

(
e−2πit 0

0 e2πit

)
. Note that Z(ρ([C])) ∼= T , since ρ([C]) �=

±I.

Now we define the Hamiltonian flow. When C is a nonseparating curve

in Σg i.e Σg\C is connected, there exists another oriented simple closed

curve B ⊂ Σg which intersects once transverse to C. the fundamental group

π1(Σ
g) is generated by the two subgroups π1(Σ

g\C) and 〈[B]〉 with relation

[B]A+[B]−1A− = 1, where A+ and A− are the elements of π1(Σ
g\C) whose

image in π1(Σ
g) are [C] and [B][C]−1[B]−1 respectively. For t ∈ R and

ρ ∈ ŨC , we define a flow Φ̃C
t : ŨC → ŨC by

Φ̃C
t (ρ)(α) =

{
ρ(α) α ∈ π1(Σ

g\C)

ρ(α)ζCt (ρ) α ∈ 〈[B]〉 .

If C is a separating curve; let Σ1,Σ2 be the two components of Σg\C.

The fundamental group π1(Σ
g) is then generated by π1(Σ1) and π1(Σ2),

amalgamated over the subgroup generated by [C]. For t ∈ R and ρ ∈ ŨC ,

we define a flow Φ̃C
t : ŨC → ŨC by

Φ̃C
t (ρ)(α) =

{
ρ(α) α ∈ π1(Σ1)

ζCt (ρ)ρ(α)ζCt (ρ)
−1

α ∈ π1(Σ2) .

Fig. 2. separating curve and nonseparating curve.

Theorem 3.2 ([5]). The flow Φ̃C
t on ŨC covers the Hamiltonian flow

ΦC
t on UC associated with the function fC : Mg → [0, 1].
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Remark 3.3. It is apparent from the definition of ζCt (ρ) that the

Hamiltonian flow associated with fC has the period 1 if C is a nonsepa-

rating curve, and the period 1
2 if C is a separating curve. Moreover from

Proposition 3.1, if {Cj} j = 1, ..., l are disjoint oriented simple closed curves

in Σg, the Hamiltonian flows of fCj j = 1, ..., l commute each other. Then

these flows define the Hamiltonian l-dimensional torus action.

3.2. Symplectic quotient description of Mg(t1, ..., tn)

In this subsection, we see that Mg(t1, ..., tn) appears as a symplectic quo-

tient of the torus action defined in the previous section, as Jeffrey-Weitsman

pointed out in [8].

Let Σg+n be a closed surface which is formed by attaching one-holed tori

Nj , j = 1, ..., n to the boundary circles Cj of Σg
n = Σg\

∐n
j=1Dj , where Dj is

the small disc centered at pj . Let us also assume that Nj is equipped with a

distinguished nonseparating oriented simple closed curve, which we denote

by Cn+j , so that Nj\Cn+j is a trinion or a sphere S2 with three holes.

Fig. 3. attaching one holed tori to Σg\{p1, ..., pn}.

From the Remark 3.3, the Hamiltonian flows of the functions fCj , j =

1, ..., 2n are defined on U ′ =
⋂2n

j=1f
−1
Cj

((0, 1)) ⊂ Mg+n. As in Remark 3.3,

these flows define a torus T 2n = T1×· · ·×T2n action with the moment map

µ = (fC1 , ..., fC2n), where Tj is the circle corresponding to the flow of fCj .

As Jeffrey-Weitsman pointed out, we have the following.

Lemma 3.4 ([8], [11]). If x = (t1, ..., tn, xn+1, ..., x2n) satisfies the fol-

lowing inequalities

0 < tj < min{2xn+j , 2 − 2xn+j}
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for any j, the circle bundle

µ−1(x)/T1 × · · · T̂m × · · · × T2n −→ µ−1(x)/T 2n

is equal to

V g
m(t1, ..., tn) −→ Mg(t1, ..., tn)

for m = 1, ..., n, and is equal to

Mg(t1, ..., tn) × S1 −→ Mg(t1, ..., tn)

for m = n + 1, ..., 2n.

Since there is no proof in [8], [11], we give a proof of this lemma. In order

to this, we give another description of the moment map µ. Restricting each

representation ρ ∈ Hom(π1(Σ
g+n), G) to the fundamental groups π1(Σ

g
n),

π1(N1), ..., and π1(Nn) of Σg
n and one-hole tori N1, ..., Nn respectively, we

obtain the map

α1 : U ′ →
⋃

t1,...,tn∈(0 1)
Mg(t1, ..., tn) ×M1(t1) × · · · ×M1(tn)

where M1(tj) is the moduli space of flat connections on Nj . Each one-holed

torus Nj is obtained by gluing two boundary components Dj1 and Dj2 of

the trinion Pj = Nj\Cn+j . We also denote the other boundary component

of the trinion Pj by Dj3 .

Then π1(Pj) is generated by three generators induced from the three

boundary components, which we denote by Dj1 , Dj2 and Dj3 again, with

the relation Dj1Dj2Dj3 = 1. The natural map ı : Pj ↪→ Nj induces the

homomorphism ı∗ : π1(Pj) → π1(Nj) which associates [Cn+j ], [Cj ] and

[B][Cn+j ]
−1[B]−1 to Dj1 , Dj3 and Dj2 respectively, where B is the oriented

simple closed curve which intersects Cn+j once transversely and [B] is the

element of π1(Nj) represented by B. Then π1(Nj) is generated by the image

ı∗π1(Pj) and 〈[B]〉 with relation [B]ı∗Dj1 [B]−1ı∗Dj2 = 1. Then the map ı∗
induces the map βj from M1(tj) to the moduli space M(Pj) of flat con-

nections on the trinion ; βj : M1(tj) → M(Pj). The moduli space M(Pj)

is studied by Jeffrey-Weitsman [7]. They investigated the function fDjk
for

k = 1, ..., 3 on M(Pj) defined before and obtained the following result.
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Fig. 4.

Proposition 3.5 ([7]). The map f := (fDj1
, fDj2

, fDJ3
) : M(Pj) →

[0, 1]3 sends M(Pj) bijectively to the set of (t1, t2, t3) ∈ [0, 1]3 satisfying the

inequalities

|t2 − t3| ≤ t1 ≤ min{t2 + t3, 2 − (t2 + t3)}.

Now the following is clear.

Proposition 3.6. The map µ is decomposed into the maps α1, α2 and

α3

µ : U ′ α1−→
⋃

t1,...,tn∈(0,1)
Mg(t1, ..., tn) ×M1(t1) × · · · ×M1(tn)

α2−→
⋃

t1,...,tn∈(0,1)
Mg(t1, ..., tn) ×M(P1) × · · · ×M(Pn)

α3−→ [0, 1]2n,

where the maps α2 and α3 are defined as follows

α2 = id× β1 × · · · × βn
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:
⋃

t1,...,tn∈(0,1)
Mg(t1, ..., tn) ×M1(t1) × · · · ×M1(tn)

−→
⋃

t1,...,tn∈(0,1)
Mg(t1, ..., tn) ×M(P1) × · · · ×M(Pn)

α3 = (fD13
, ..., fDn3

, fD11
, ..., fDn1

)

:
⋃

t1,...,tn∈(0,1)
Mg(t1, ..., tn) ×M(P1) × · · · ×M(Pn)

−→ [0, 1]2n.

We use this description of µ to prove Lemma 3.4.

Proof of Lemma 3.4. For m = n + 1, ..., 2n, it is easy calculation

from the definition of the action. For m = 1, ..., n, we consider the case

n = 1 first. For simplicity, we omit the index j and denote the one-holed

torus by N , the trinion by P etc. For (t1, t2) ∈ Imµ, which is included in the

interior of the set in Proposition 3.5, we identify the level set µ−1(t1, t2) =

α−1
1 (α−1

2 (α−1
3 (t1, t2))). From proposition 3.5, for (t1, t2) ∈ Imµ, we can

easily see that there only exists ρ ∈ Hom(π1(P ), G) such that

Imα2 ∩ α−1
3 (t1, t2) = Mg(t1) × {[ρ]}.

If necessary, replacing the representative, we can take the representative

ρ ∈ Hom(π1(P ), G) which satisfies Trρ(Dk) = 2cosπt2 for k = 1, 2 and

ρ(D3) = eiπt1 . The condition of (t1, t2) implies that the representation ρ is

irreducible.

Next we identify α−1
2 (α−1

3 (t1, t2)). Since it is easy to see

α−1
2 (α−1

3 (t1, t2)) = Mg(t1) × β−1([ρ]), we see the inverse image of β :

M1(t) → M(P ). First we choose an arbitrary element [ρ1] ∈ β−1([ρ]) such

that the representative of this class satisfies ρ1 ◦ ı∗ = ρ i.e.

ρ1([C2]) = ρ(D1), ρ1([C1]) = ρ(D3) = eiπt1 and

ρ1([B][C2]
−1[B]−1) = ρ(D2),(1)

and we fix this class. If the class [ρ2] is in β−1([ρ]), if necessary, replacing

the representative, we can assume ρ2 satisfies the condition (1). By the first

two equations, there exists an element H in the centralizer Z(ρ1([C2])) of

ρ1([C2]) such that ρ2([B]) = ρ1([B])H. Conversely, it is easy to see that
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the conjugacy classes of representations which satisfy the condition (1) are

included in β−1([ρ]). Moreover if two representatives ρ′ and ρ′′ satisfy the

condition (1), then because of the irreducibility of ρ, the class [ρ′] and [ρ′′]
in M1(t1) are equal if only if ρ′ and ρ′′ are equal. Then we identify

β−1([ρ]) = {φ ∈ Hom(π1(N), G)| there exists H ∈ Z(ρ([C2]))

such that φ(γ) =

{
ρ1(γ) γ ∈ π1(P )

ρ1(γ)H γ ∈ 〈[B]〉 }

Then it is clear that β−1([ρ]) is the orbit of the Hamiltonian flow of the

function fC2 trough ρ1.

Finally we identify µ−1(t1, t2) = α1
−1(α2

−1(α3
−1(t1, t2))). From the

above argument, we could identify α2
−1(α3

−1(t1, t2)) = Mg(t1) × β−1([ρ]).

Then it is clear that

α1
−1(α2

−1(α3
−1(t1, t2)))

= {[ϕ] ∈ U ′| ϕ|π1(Σg
1) ∈ V g(t1) and ϕ|π1(N) ∈ β−1([ρ])}.

If [ρ] and [ρ′] ∈ α1
−1(α2

−1(α3
−1(t1, t2))) are equal, where the representa-

tives ρ and ρ′ satisfy the condition ρ|π1(Σg
1), ρ

′|π1(Σg
1) ∈ V g(t1) and ρ|π1(N),

ρ|π1(N) ∈ β−1([ρ]). Then there exists g ∈ G such that gρg−1 = ρ′. So

gρ|π1(N)g
−1 = ρ′|π1(N). But the above argument implies g = ±I. Then we

identify

µ−1(t1, t2) = α1
−1(α2

−1(α3
−1(t1, t2))) = V g(t1) × β−1([ρ]).

As we describe above, β−1([ρ]) is the orbit of the Hamiltonian flow of the

function fC2 , and by the definition of a Hamiltonian flow, the Hamiltonian

flow of the function fC1 is defined for each t ∈ R and τ ∈ µ−1(t1, t2) by

ΦC1
t (τ)(γ) =

{
τ(γ) γ ∈ π1(N)

e−2iπtτ(γ)e2iπt γ ∈ π1(Σ
g
1).

Then

µ−1(t1, t2)/T2 = V g(t1) and µ′−1
(t1, t2)/T1 × T2 = Mg(t1),

where T1 and T2 actions are induced from the Hamiltonian flows of fC1 and

fC2 , respectively.
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For the case n > 1, we first perform the above reduction for the curves

C1, Cn+1 in N1. Since each Tj actions commute each other, remaining ac-

tions descend to the quotient µ−1(t1, tn+1)/T1 × Tn+1 = Mg+n−1(t1). Next

we perform the reduction for the curves C2, Cn+2 in N2 on Mg+n−1(t1),

then we can obtain Mg+n−2(t1, t2). Repeating the above operation, we can

obtain the above result. �

We can apply the Duistermaat-Heckman theorem to this situation.

Corollary 3.7 ([11]). Suppose (t1, ..., tn) and (t′1, ..., t
′
n) are suffi-

ciently close. Then Mg(t1, ..., tn) and Mg(t
′
1, ..., t

′
n) are diffeomorphic;

q : Mg(t1, ..., tn) ∼= Mg(t
′
1, ..., t

′
n)

and for symplectic forms ωg
t1,...,tn

and ωg
t′1,...,t

′
n
,

q∗ωg
t′1,...,t

′
n

= ωg
t1,...,tn

+

n∑
j=1

(t′j − tj)r
g
j (t1, ..., tn) ∈ H2(Mg(t1, ..., tn)).

4. The Generating Function for Intersection Pairings

In this section, we give the way for calculating the intersection pairings∫
Mg(t1,...,tn) (rg1)

k1 · · · (rgn)kn(ωg
t1,...,tn

)3g−3+n−k. On Mg(t1, ..., tn), there is a

natural orientation induced by the symplectic volume (ωg
t1,...,tn

)3g−3+n/(3g−
3 + n)! such that

∫
Mg(t1,...,tn) (ωg

t1,...,tn
)3g−3+n/(3g − 3 + n)! > 0.

Theorem 4.1. For x1, ..., xn ∈ R, we have∑
k1,...,kn≥0
k≤3g−3+n

xk1
1

k1!
· · · x

kn
n

kn!

∫
Mg(t1,...,tn)

(rg1)
k1 · · · (rgn)kn

(ωg
t1,...,tn

)3g+n−3−k

(3g − 3 + n− k)!

=
1

2g−2π2g−2+n

∞∑
m=1

n∏
j=1

sin(πm(tj + xj))

m2g−2+n
,

where k =
∑n

j=1kj. If x1, ..., xn are sufficiently close to 0, this formula also

equals to the volume of Mg(t1 + x1, ..., tn + xn).
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Proof. By integrating n-th wedge product of the equation in Corol-

lary 3.7, we see that the polynomial in Theorem 4.1 equals to the volume

of Mg(t1 + x1, ..., tn + xn). The symplectic volume of Mg(t1, ..., tn) is first

calculated by Witten [12], and Jeffrey-Weitsman take in [8], an another ap-

proach by using the torus action in the previous section. They give the

following volume formula

Vol(Mg(t1, ..., tn)) =
1

2g−2π2g−2+n

∞∑
m=1

∏n
j=1sin(πmtj)

m2g−2+n
.

The equality in this theorem is obtained from this formula. �

In the case n = 1, we have the explicit formula for intersection pairings.

Corollary 4.2. For n = 1, putting rg = rg1, we have

1

(3g − 2 − k)!

∫
Mg(t)

(rg)k(ωg
t )

3g−2−k = (−1)g2g−kP2g−1−k(
t

2
),

where Pλ(x) is the λth Bernoulli polynomial, a polynomial of degree λ

characterized the following properties

1)
d

dx
Pλ(x) = Pλ−1(x),

2)

∫ 1

0
Pλ(x)dx = 0

for each λ ≥ 1, and

3) P0(x) = 1.

Proof. For n = 1, by Donaldson [2], and Jeffrey-Weitsman [9], the

above volume formula is rewritten by using the Bernoulli polynomials as

follows. For t �= 0, 1,

Vol(Mg(t)) =
1

2g−2π2g−1

∞∑
m=1

sin(πmt)

m2g−1

= (−1)g2gP2g−1(
t

2
).
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From the volume formula and the properties of the Beroulli polynomial, we

can easily prove the above equality. �

Remark 4.3. Donaldson and Thaddeus find similar formulae for in-

tersection pairings of Mg(1) (for more details, see [2], [10]). But this space

is not in our case, because t = 1 is not admissible.

Using Theorem 4.1, we can give another, directly proof of Weitsman’s

recursion relation.

Theorem 4.4 (Weitsman’s recursion relation [11]). Suppose k1, ...,

kn ∈ Z≥0 and kn = 2r < 2g is even. Then,∫
Mg(t1,...,tn)

(rg1)
k1 · · · (rgn)kn(ωg

t1,...,tn
)3g+n−3−k

= (−1)r2−rr!

(
3g + n− k − 3

r

)
×

∫
Mg−r(t1,...,tn)

(rg−r
1 )k1 · · · (rg−r

n−1)
kn−1(ωg−r

t1,...,tn
)3(g−r)+n−3−(k−2r).

Proof. From Theorem 4.1, it is clear that

1

(3g − 3 + n− k)!

∫
Mg(t1,...,tn)

(rg1)
k1 · · · (rgn)kn(ωg

t1,...,tn
)3g−3+n−k

=
∂k1

∂t′1
k1

∣∣∣∣
t′1=t1

· · · ∂kn

∂t′n
kn

∣∣∣∣
t′n=tn

Vol(Mg(t
′
1, ..., t

′
n)).

Then calculating and comparing both side of the equation of the Theorem,

we obtain the above fact. �

In [11], Weitsman obtain the following result as an analog of Newstead

conjecture.

Theorem 4.5 (The analog of Newstead conjecture[11]). Let rgi be the

Chern classes of the circle bundle V g
i , and k1, ..., kn ∈ Z≥0. Then,

(rg1)
k1 · · · (rgn)kn = 0 if k ≥ 2g + n− 1.
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From Corollary 4.5 and the properties of Bernoulli polynomials, it is

easy to see that k = 2g is the infimum.

Corollary 4.6. For n = 1, (rg)2g−1 does not vanish.
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