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The Generating Function for Certain Cohomology
Intersection Pairings of the Moduli Space of

Flat Connections

By Takahiko YOSHIDA

Abstract. We consider the cohomology ring of the moduli space
of flat connections on a closed oriented surface with n marked points.
We give the generating function for certain cohomology intersection
pairings, which Weitsman considered in [11].

1. Introduction

Let 39 be a closed oriented surface of genus g with n distinct points
D1y ooy Pn- For ti,...,t, € [0,1], we consider the moduli space Mg(t1,...,t5)

of flat SU(2) connections on ¥X9\{p1, ..., pn}, whose holonomies around p,,
it
m 0

are conjugate to ( > If t,,’s satisfy certain conditions, this

0 e—iwtm
space is a smooth symplectic manifold with symplectic form wfh...,tn'

On My(ty,...,tn), there are n circle bundles V{(t1,....t,), ...,
V,J(t1, ..., t,) corresponding to each of the marked points py, ..., p,. We de-
note by r{, ..., rj the Chern classes of V(t1,....t5), ..., Vi (t1, ..., t,), respec-
tively. In [11], Weitsman found the Poincaré duals to 7§, for m = 1, ..., n,
and use these duals to obtain the recursion relations according to the inter-
section pairings for r{, ..., 7%, and the cohomology class [thl,...,tn]- This is
an analog of the Witten conjecture in [13] for the recursion relations among
certain cohomology intersection pairings of the moduli space of curves.

In this paper, we study the relation with these intersection pairings and
the symplectic volume of Mg(t1,...,t,), and give the way for calculating
the intersection pairings. The important fact in [11], is that the circle bun-
dles Vip(t1, ..., tn) (for m = 1,...n) are obtained from symplectic quotients
for the Hamiltonian torus action, which is considered by Goldman [4], and
Jeffrey-Weitsman [7, 8]. This description for Vi (t1,...,t,) also plays an
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important role in this paper. In fact, this description allows us to use
Duistermaat-Heckman’s theorem [3], which shows that rj, is given by the
variation of the symplectic form w, , as t,, varies ([11], and see also Sec-
tion 3). Using this result, we can calculate the intersection pairings from the
symplectic volume of M(t1, ..., t,). The symplectic volume of Mg(t1, ..., ,)
is calculated by Donaldson [2], Jeffrey-Weitsman [8], and Witten [12]. The
following is the main result.

THEOREM 1.1. For xq,...,z, € R, we have

k g 3g+n—3—k
Z ”T_ll ce xﬁn / (,,,.g)kl . (Tg)kn (wth---,tn) g
1 n
kl,m,anO kl' kn' Mg(t17"'7t7L) (39 - 3 + n— k)'
k<3g—3+n

sin(mm(t; + z;))

1 >

_ j=1
T 99-2729—2+n Z m29—2+n )
m=1
where k = Z?Zlkj. If x4, ...,z are sufficiently close to 0, this formula also
equals to the volume of My(t1 + x1, ..., tn + y).

For n = 1, the right hand side of the above equation is rewritten by
using the Bernoulli polynomials [2], [9]. Then we have the explicit formula
for intersection pairings.

THEOREM 1.2. For n=1, putting r9 = r{, we have

t

/ (TQ)RM — (_1)929—kP -
M) Bg—2-k)! 29-1-k(5)5

where Py(x) is the \th Bernoulli polynomial.

A similar formula for Mg(1) is given in [2], [10]. But we do not treat
this space in this paper.

In [11], Weitsman also used the Poincaré duals to ry, to get the analog
of Newstead conjecture, which tells, for the case n = 1, that the equality
(r9)* = 0 holds for k > 2g. Using Theorem 1.2, it is easy to see that k = 2g
is the infimum.
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COROLLARY 1.3.  For n=1, (r9)29~1 does not vanish.

This paper is organized as follows. In section 2, we define the moduli
spaces My(t1, ..., tn), ﬂg, and also construct circle bundles VI(t1, ..., ),
ey Vi (t1, oy ty) on My(t1, ..., t,). In section 3, we recall the torus action
on the open dense set of the moduli space, and we see how Mg(t1,...,ty)
arises as a symplectic quotient of this torus action. Section 4 is devoted to
prove Theorem 1.1. We also prove some theorems for intersection pairings
in Section 4.

Acknowledgment. The author would like to thank Professor Toshitake
Kohno for kindly encouragements. The author also would like to thank the
referee for useful comments.

2. Moduli Spaces of Flat Connections on Surfaces

In this section, we recall the moduli spaces and circle bundles which will
be the basic objects of study in this paper.

Let G denote SU(2) and g its Lie algebra. We denote by T" the subgroup
of G consisting of diagonal matrices.

2.1. The moduli space of flat connections on a closed surface
In this subsection, we recall well known facts about the moduli space of
flat connections on a closed surface. For more details, see [1], [4].

Let X9 be a closed oriented surface of genus g(> 2), and E — X9 be a
principal G bundle on 9. Since G is simply connected, all G bundles on 39
are topologically trivial. Fixing a trivialization, the space A of connections
on E is identified with the space Q2(X9,g) of g-valued 1-forms on 9, and
the gauge group G is identified with the space Map(X9, G) of maps from
Y9 to GG. The gauge group G acts on A, with ¢ € G taking A € A to
Yy(A) = g tAg + g~'dg. A connection A is called flat if the curvature
Fr=dA+ AN A of Aequals to 0. We denote by Ap the space of flat
connections. Since G-action on A preserves Ap, we define the moduli space
ﬂg of flat connections on 39 by Ap/G.

Associating the conjugacy class of the holonomy representation to the
class of flat connections on M, we may identify M, with Hom (m(39), G)
/G, the space of conjugacy classes of representations of 71(29) into G. In
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Mg, there is the open dense set My, which consists of conjugacy classes of
irreducible representations. In [6], it is well known that M, is a (6g — 6)-
dimensional smooth manifold.

On My, there is a natural symplectic form w. As in [4], we can identify
the tangent space T, M, of My at [p] with the gaq,-valued 1st cohomology
H(m1(%9), gadp) of the group m1(39). We define the symplectic form w on
M, by the Poincaré duality

W Hl(ﬂ-l(zg)’gAdp) X Hl(ﬂ-l(zg)agAdp) - H2(7T1(29),]R) =R

which is defined by the cup product and the adjoint invariant bilinear form
(,)ong.

2.2. The moduli space of flat connections on a surface with n
marked points
In this subsection, we define the moduli space of flat connections on a
closed oriented surface with n marked points, and n circle bundles on this
moduli space. For more details, see [8], [11].

Let X9 be a closed oriented surface of genus g as before, and p1, ..., p, €
39 be n distinct points in 9. Assume that n > 1 and 3g — 3 +n > 0.
Then 71 (X9\{p1, ...,pn}) can be described as the quotient of the free group
with the 2g + n standard generators Ay, ..., Ay, Bi,..., By, C1,...,C, by the
single relation []Y_,[A;, Bi][[;-,Cj = 1, where each of the generator C; can
be chosen to correspond to the point p;.

Fig. 1. generators of m1 (X9\{p1, ..., Dn})-
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Given t1,...,t, € [0,1], we may define the moduli space of flat connec-
tions on X9\{p1,...,pn} by

My(t, ..., tn)
= {p € Hom(m (X\{p1, ....pn}), G)| Trp(C;) = 2cosnt;, j =1,...,n}/G,

where G acts by conjugation.
For m = 1,...,n, we also define the space Vi3 (t1, ..., t,) by

Vf(r]L(tla ...,tn)

= {p € Hom(m (Z\{p1, .... pn}). G)| p(C) = €™,
Trp(C;) = 2cosnt; for j},

it
where ei™m = ( e O )

0 e*’Lﬂ'tm
We study the smoothness of Mgy(t1,....tn), Vi(t1,...,tn), ..., and
Vil (t1, ..., ts). Define the map f : G*9t" — G by

g n
f(AhBla '-'7Ag7Bgv Ch, ;Cn) = H[Aj’ B]] Hcl_le_lﬂtlol
J=1 =1
for (Ay, By, ""AQ’BQ701’ -, Cn) € G29+na and put Ug(th o tn) = f_l(I).

ProrosiTiON 2.1. If f has I € G as a critical value, there exists J C
{1,....,n} such that 3_;c;t; — > ¢, t; € Z.

Proor. We differentiate  f(4;, Bj, C)) = H}C-’:l[Aj,Bj]
H?:lCl_le_i“thl at (Aj,Bj,Cl) € f_l(f),

y= 3 nalT,
X (Ad(A Byn) (B, 8Am By — 6Am) + (8B — A 6B Arn))

- Z Ad((JT e ™ C) ™) (Ad(Cr e ™ Cy) — 1)6Ck)
k=1 >k

where §A,, := A,, 'dA,, etc.
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We first consider the case g = 0. In this case,

df ==Y _Ad((J]c e ™C) )6Ck + Y _Ad((J] ¢ e ™ Cr))sCy,
k=1

>k k=1 I>k

n—1

==Y Ad((JJC e ™ C) ) (8Ck41 — 8Ck) + 8Cy — 6Cy
k=1 1>k

1

(1= Ad(([] G tem 10y ™)) (6Ck 1 — 6C).

1 >k

3
|

>
Il

We put X; := C; le™™ (). The argument in [6] tells that if df is not
surjective, Xy, XpnXn—1, ... , and Xj - - - X, commute each other. Then X,
..., X, are simultaneously diagonalized. So there exists g € GG such that

I=gX1-Xng™"

=gX197" - gXng~
_ e:l:i7rt1 . e:‘:iﬂ'tn‘

1

Then we put J = {j € {1,...,n}| gX,;g ! = e},

When ¢g > 1, from the existence of the term (Bm_léAmBm — 6An)
+(6By, — A 16B,, Ay in df, if df is not surjective, by the same argument
as above, A,, and B, commute each other. This brings us back to the case
g=0.0

DEFINITION 2.2. We call (t1,...,t,) admissible if ' €;t; ¢ Z for
any €; € {—1,0,1} except for (€1, - ,€,) = (0,---,0).

The space Ug(t1, ..., tn) is equipped with a natural action of G x T} x
-+ x Ty, where T; 2 T. Namely G x Ty x --- x T}, acts on Uy(t1, ..., t,) by
(9,61, 6n) - (45, B;,C1) = (9A;97 ", 9Bjg . &Cig ™)

for (g,&1,...,&n) € Gx Ty x---xT, and (A, B;,C)) € Uy(t1,--- ,tn). When
(t1,--+ ,ty) is admissible, this action has the global stabilizer Zy. In this
case, we have

VI (b1 oo tn) = Uty oo ) /(G X Ty X - X Ty 5 -+ X T),
Mg(ti,.tn) = Ug(ti, ... tn) /(G x Ty x -+ x Tp,),
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and T = T, acts on V;3(ty, ..., t,) by conjugation.

COROLLARY 2.3. If (t1,....tn) is admissible, Tm : Vi(t1,....tn) —
Mg(t1, ..., tn) is a smooth circle bundle.

From now on, we assume (t1,...,t,) is admissible, and we denote the
Chern class of Vi§(t1, ..., tn) by i (t1, ..., tn) € HX(My(t1, ..., t,)) or simply
ry,, where there is no confusion.

Then Mg(t1,...,t,) is a (6g — 6 + 2n)-dimensional smooth manifold.
Jeffrey-Weitsman proved in [8] that M, (¢, ..., t,) has a symplectic structure
which we denote by wtgl,...,tn'

3. Torus Actions on Moduli Spaces

In [5], Goldman finds a Hamiltonian torus action on the moduli space
of flat connections on a surface. We recall this torus action in Section 3.1,
and how M(t1, ..., t,) appears as the symplectic quotient of this action in
Section 3.2. For more details, see [5], [7], and [8].

3.1. Hamiltonian circle actions associated with simple closed
curves
Let C be an oriented simple closed curve in a closed oriented surface 9.
For C, let us define a function f¢ : Wg — [0, 1] as follows. We mark a point
in C. By choosing an arc joining the marked point in C' and a base point
of m1(39), we obtain the element [C] € m1(X9). Then we define a function
fo s Hom(mi (29), G) — [0,1] by

Felp) = ~cos™ S Tep([C))

2
for each p € Hom(m(39), G). Since fc is invariant under the conjugation
action, fo descends to give the function fo on ﬂg. Note that fo is smooth
only on Ue = f5'((0 1)). In [5], Goldman showed

PropoOSITION 3.1 ([5]). IfC and C' are disjoint oriented simple closed
curves in X9, the Poisson bracket {fo for} vanishes.

We consider the Hamiltonian flow of fo on Ug. To deﬁng the flow, we
need the following preliminaries. For t € R and p € Uc = f5'((0 1)), we
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define ¢ (p) by the element of the centralizer Z(p([C])) of p([C]), which is

e—QWﬁ 0
0 G2t ) Note that Z(p([C])) = T, since p([C]) #

conjugate to <
+1.

Now we define the Hamiltonian flow. When C' is a nonseparating curve
in 39 i.e ¥9\C is connected, there exists another oriented simple closed
curve B C X9 which intersects once transverse to C. the fundamental group
71(29) is generated by the two subgroups 71 (29\C') and ([B]) with relation
[BJAL[B]7'A_ =1, where A, and A_ are the elements of 7 (X9\C) whose
image in m1(X9) are [C] and [B ][C’]_l[B]_ respectively. For ¢ € R and
pE UC, we define a flow <I>C Uc — Ue by

~ B p(a) [eAS WI(ZQ\C)
@7 (p) () = { p(a)CC(p) ac{([B]) .

If C is a separating curve; let X1, 39 be the two components of 39\C.
The fundamental group m1(X9) is then generated by m(X1) and 71 (29),
amalgamated over the subgroup generated by [C]. Fort € R and p € ﬁc,
we define a flow <I>C UC — UC by

3 — ] P a € m (1)
i (p)(e) = { CClp)p(a)CC(p) " aem(Ss) .

non separating separating curve
curve

Fig. 2. separating curve and nonseparating curve.

THEOREM 3.2 ([5]). The flow ®F on Ug covers the Hamiltonian flow
®f on Uc associated with the function fo : My — [0,1].



Cohomology Intersection Pairings of the Moduli of Flat Connections 549

REMARK 3.3. It is apparent from the definition of ¢ (p) that the
Hamiltonian flow associated with fo has the period 1 if C' is a nonsepa-
rating curve, and the period % if C is a separating curve. Moreover from
Proposition 3.1, if {C;} j = 1, ..., are disjoint oriented simple closed curves
in 39, the Hamiltonian flows of fo; j = 1,...,] commute each other. Then
these flows define the Hamiltonian /-dimensional torus action.

3.2. Symplectic quotient description of M(ty,...,ty)

In this subsection, we see that M (t1, ..., t,) appears as a symplectic quo-
tient of the torus action defined in the previous section, as Jeffrey-Weitsman
pointed out in [8].

Let 391" be a closed surface which is formed by attaching one-holed tori
N;, j =1,...,n to the boundary circles C; of 3f, = Zg\]_[?lej, where Dj is
the small disc centered at p;. Let us also assume that V; is equipped with a
distinguished nonseparating oriented simple closed curve, which we denote
by Cp+;, so that Nj\Cy,; is a trinion or a sphere 2 with three holes.

Fig. 3. attaching one holed tori to ¥\ {p1, ..., pn }.

From the Remark 3.3, the Hamiltonian flows of the functions fc,, j =
1,...,,2n are defined on U’ = ﬂ?zlfgjl((O, 1)) C Mgin. As in Remark 3.3,
these flows define a torus 72" = T} x - - - X Ty, action with the moment map
w = (for, - fc,,), where Tj is the circle corresponding to the flow of fc,.
As Jeffrey-Weitsman pointed out, we have the following.

LEMMA 3.4 ([8], [11]). If X = (t1, .., tn, Tpi1, - Tan) Satisfies the fol-
lowing inequalities

0<t; <min{2xnij, 2—2xpqj}
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for any j, the circle bundle
X Ty X Ty X+ X oy — N (x) /T
1$ equal to
VI (t, . tn) — Mg(t, ... tn)
form=1,...,n, and is equal to
Myt o tn) x ST — My(t1, . tn)
form=n+1,..2n.

Since there is no proof in [8], [11], we give a proof of this lemma. In order
to this, we give another description of the moment map u. Restricting each
representation p € Hom(m;(X91"), G) to the fundamental groups m1(X7),
m1(Ny), ..., and 7 (N,) of X7 and one-hole tori Ny, ..., N,, respectively, we
obtain the map

ap: U — Utl,...,tne(o 1)Mg(t1, oy tn) X Ma(tr) X - X Ma(tn)

where M (¢;) is the moduli space of flat connections on N;. Each one-holed
torus N; is obtained by gluing two boundary components D;, and D;, of
the trinion P; = N;\Cp;. We also denote the other boundary component
of the trinion P; by Dj,.

Then 71 (Pj) is generated by three generators induced from the three
boundary components, which we denote by Dj,, D;, and D;, again, with
the relation Dj D;,D;, = 1. The natural map ¢ : P; — N; induces the
homomorphism 2, : 7 (FP;) — m1(IN;) which associates [Cy4;j], [C;] and
[B][Cpsi] 7 B]™! to Dj,, Dj, and Dj, respectively, where B is the oriented
simple closed curve which intersects Cy; once transversely and [B] is the
element of 1 (NN;) represented by B. Then m1(N;) is generated by the image
1.1 (P;) and ([B]) with relation [Blw.D;,[B]"'1Dj, = 1. Then the map
induces the map [3; from M;(¢;) to the moduli space M(P;) of flat con-
nections on the trinion ; 8; : My (¢;) — M(P;). The moduli space M(P;)
is studied by Jeffrey-Weitsman [7]. They investigated the function ijk for
k=1,...,3 on M(P;) defined before and obtained the following result.
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Di2

Dit

ProrosiTION 3.5 ([7]). The map f := (ijl’fo2’fDJ§)  M(Pj) —
[0,1]3 sends M(P;) bijectively to the set of (t1,t2,t3) € [0,1]% satisfying the
nequalities

|t2 — t3| <t < min{tg + t3, 2 — (tg + tg)}.

Now the following is clear.

PROPOSITION 3.6. The map u is decomposed into the maps oy, as and
a3

Crnooa
,LL . U — Uth...,tne(o’l)

- Utl,...,tne(o,1)Mg(t17 vy tn) X M(Py) X -+« x M(P,)

Mg(tl, vy tn) X My(t1) X -+ x Mq(ty)

ﬂ) [07 1]277,7
where the maps as and ag are defined as follows

o =1d X 31 X -+ X B
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: Utl,...,tne(o,l)Mg(tlv v tn) XM (t1) X - x My (ty)
- Utl,...,tne(o,l)Mg(tl’ oy tn) X M(P1) X - X M(Pp)

a3 = (fDls’ “'7fDn3’fD117"'7fDn1)
: Ut17.._7tne(0’1)M9(t17 7tn) X M(Pl) X -+ X M(Pn)

— [0,1)*".

We use this description of u to prove Lemma 3.4.

ProoF OF LEMMA 3.4. For m = n + 1,...,2n, it is easy calculation
from the definition of the action. For m = 1,...,n, we consider the case
n = 1 first. For simplicity, we omit the index j and denote the one-holed
torus by N, the trinion by P etc. For (¢1,t2) € Impu, which is included in the
interior of the set in Proposition 3.5, we identify the level set u=!(t,t2) =
oy (ay (gt (t1, t2))). From proposition 3.5, for (t1, t2) € Imyu, we can
easily see that there only exists p € Hom(7;(P), G) such that

Imas N Oégl(tl, tQ) = Mg(tl) X {[p]}

If necessary, replacing the representative, we can take the representative
p € Hom(m(P),G) which satisfies Trp(Dy) = 2cosmty for k = 1, 2 and
p(D3) = ™1, The condition of (¢1, t2) implies that the representation p is
irreducible.

Next we identify ay'(az'(ty, t2)). Since it is easy to see
ayt(azt(ty, t2)) = My(t1) x B7([p]), we see the inverse image of 3 :
M (t) — M(P). First we choose an arbitrary element [p;] € 87([p]) such
that the representative of this class satisfies p; o2, = p i.e.

p1([Ca]) = p(D1), pi([Ch]) = p(D3) = ™ and
(1) p1([Bl[Co] 71 [B] ™) = p(D2),

and we fix this class. If the class [ps] is in 371([p]), if necessary, replacing
the representative, we can assume py satisfies the condition (1). By the first
two equations, there exists an element H in the centralizer Z(p;([C2])) of
p1([C2]) such that po([B]) = p1([B])H. Conversely, it is easy to see that
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the conjugacy classes of representations which satisfy the condition (1) are
included in 871([p]). Moreover if two representatives p’ and p” satisfy the
condition (1), then because of the irreducibility of p, the class [p] and [p”]
in M (t1) are equal if only if p’ and p” are equal. Then we identify

B71([p]) = {¢ € Hom(m(N), G)| there exists H € Z(p([C3]))

p(y)  vem(P)
sttt o) = { 00y T C ) )
Then it is clear that 37!([p]) is the orbit of the Hamiltonian flow of the
function fc, trough p;.

Finally we identify p=1'(t1,t2) = a1 (as H(as!(t1,t2))). From the
above argument, we could identify as™!(as™1(t1,t2)) = My(t1) x 871([p]).
Then it is clear that

a1 (a2 ez (t, 12)))
= {le] € U'| ¢lryw9) € VI(t1) and ¢l vy € 871 ([0])}-
If [p] and [p] € a1 (a2 (a3 L(t1,t2))) are equal, where the representa-
tives p and p’ satisfy the condition Plri(z9)s p’|m(2slz) € V9(t1) and plr ()
Plr(n) € B Y([p]). Then there exists ¢ € G such that gpg~' = p’. So
gp]m(N)g*1 = p'|z,(n)- But the above argument implies g = 1. Then we
identify
Pt k) = en " Hao T Has Tt t2) = V(1) x B ([p)).

As we describe above, 371([p]) is the orbit of the Hamiltonian flow of the
function fc,, and by the definition of a Hamiltonian flow, the Hamiltonian
flow of the function fc, is defined for each t € R and 7 € pu~'(t1,t2) by

o _J () v € m(N)
P (1)(v) = { e—2i7rt7_(,y)62i7rt = 7T1(E§I)-

Then
p (b te) /Ty = VO(ty) and '~ (t, 1) /T1 x Ty = My(t),

where 77 and 75 actions are induced from the Hamiltonian flows of fc, and
fc,, respectively.
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For the case n > 1, we first perform the above reduction for the curves
C1, Cp41 in Ny. Since each T} actions commute each other, remaining ac-
tions descend to the quotient p='(t1, tny1)/T1 X Tpy1 = Mgyn_1(t1). Next
we perform the reduction for the curves Cy, Cpio in Ny on Mgiqp—1(t1),
then we can obtain My4,—2(t1,t2). Repeating the above operation, we can
obtain the above result. [

We can apply the Duistermaat-Heckman theorem to this situation.

COROLLARY 3.7 ([11]). Suppose (t1,...,tn) and (t,....t)) are suffi-
ciently close. Then Mg(t1,...,tn) and My(t},....t)) are diffeomorphic;

q: M (tlv" )_M (tla' 7tn)

and for symplectic forms wfhm’tn and w?,

!
thesth?

17 in

n
Wl =W+ Z(t; — tj)rjg.(tl, oy tn) € A2 (M (t1, o tn)).
j=1

4. The Generating Function for Intersection Pairings

In this section, we give the way for calculating the intersection pairings
fM (t1,mit) (7”1)]’Cl '--(r%)k”(wfh__.,tn)‘gg_s*'”_k. On My(tq, ..., t,), there is a

natural orientation induced by the symplectic volume (w7, )*73%"/(3g—

3+ n)! such that f/\/tg(tl,...,tn) (Wi 02973 /(3g — 3+ n)! > 0.

THEOREM 4.1. For xq,...,z, € R, we have

k kn g 3g+n—3—k
E :E_ll o / (T{)kl o (,r,g)k;n (wtlw"vtn) o
n
b mezo B Rl M) (39 —3+n—k)!
k<39—3+n

H sin(mm(t; + z;))

. 1 j=1
T 99-2,729-24n Z m29—2+n ’
m=1

where k = Z?zlkj. If 1, ..., xy are sufficiently close to 0, this formula also
equals to the volume of My(t1 + x1, ..., tn + T4).
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PRrOOF. By integrating n-th wedge product of the equation in Corol-
lary 3.7, we see that the polynomial in Theorem 4.1 equals to the volume
of My(t1 + x1,...,tn + x). The symplectic volume of Mg(t1, ...,t,) is first
calculated by Witten [12], and Jeffrey-Weitsman take in [8], an another ap-
proach by using the torus action in the previous section. They give the
following volume formula

L & T sinrmty)
29—2729—2+n Z m29—2+n '
m=1

Vol(Mg(t1,....tn)) =

The equality in this theorem is obtained from this formula. [J

In the case n = 1, we have the explicit formula for intersection pairings.

COROLLARY 4.2. Forn =1, putting r9 = r{, we have

(39 — 12 - k)!/Mg(t)(rg)k(wg)3g2k (-1)727 Py (;)’

where Py(x) is the Ath Bernoulli polynomial, a polynomial of degree \
characterized the following properties

1) S P(a) = Pya(a),

1
2) / Py(z)dz =0

0
for each A > 1, and

3) Po(z) =1.

PrROOF. For n = 1, by Donaldson [2], and Jeffrey-Weitsman [9], the
above volume formula is rewritten by using the Bernoulli polynomials as
follows. For ¢t # 0, 1,

sm 7Tmt

VOI(MQ(t)) 29—2 2g 1 Z m29—1

= (=1)929 Py (

| =~

2)'
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From the volume formula and the properties of the Beroulli polynomial, we
can easily prove the above equality. [

REMARK 4.3. Donaldson and Thaddeus find similar formulae for in-
tersection pairings of Mg(1) (for more details, see [2], [10]). But this space
is not in our case, because ¢t = 1 is not admissible.

Using Theorem 4.1, we can give another, directly proof of Weitsman’s
recursion relation.

THEOREM 4.4 (Weitsman’s recursion relation [11]). Suppose ki, ...,
kn € Z>o and ky, = 2r < 2g is even. Then,

/ (7“51})161 . (Tg)kn (th . )3g+n—3—k
Mg (t1,.tn) n 1yeenstn

3g+n—k—3
r

= (~1)"27"7! (

X / (Tfl]_r)lﬁ A (rg:q)kn—l(wtg—T . )3(g—r)+n—3—(k:—27‘).
Mg—r(t1,.itn) 1rentn

ProoF. From Theorem 4.1, it is clear that

1 / k k 3g—3+n—k
(r{)™ e () (Wi )
(B9 —=3+n—k)J Mytr,tn) ! Hotn
ok ok
= Vol(My(t), ...sth)).
875’1’“ th=t1 8t%k” t =ty ( g( ! ))

Then calculating and comparing both side of the equation of the Theorem,
we obtain the above fact. [J

In [11], Weitsman obtain the following result as an analog of Newstead
conjecture.

THEOREM 4.5 (The analog of Newstead conjecture[11]). Let r{ be the
Chern classes of the circle bundle VY, and ky, ..., ky, € Z>o. Then,

(r{)fr- (k=0 if k>2g4+n—1.
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From Corollary 4.5 and the properties of Bernoulli polynomials, it is

easy to see that k = 2¢ is the infimum.

COROLLARY 4.6. Forn =1, (r9)%9~1 does not vanish.
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