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Self-Similar Solutions of a Nonlinear Heat Equation

By Thierry Cazenave, Flávio Dickstein, Miguel Escobedo
and Fred B. Weissler

Abstract. In this paper, we study the asymptotic behavior of cer-
tain solutions of the nonlinear heat equation ut − ∆u + |u|αu = 0

in (0,∞) × R
N , where α > 0. We focus especially on solutions that

may change sign and that do not necessarily have a radial behavior as
|x| → ∞.

1. Introduction

Given α > 0, consider the nonlinear heat equation

(1.1) ut − ∆u + |u|αu = 0 t > 0, x ∈ R
N .

It is well known that if u0 ∈ C0(R
N ), there exists a unique, global solution

u of (1.1), u ∈ C([0,∞), C0(R
N )), satisfying the initial condition u(0) = u0.

For t > 0, u is as smooth as the regularity of the mapping u �→ |u|αu allows,

and at least u is C1 in t and C2 in x.

The asymptotic behavior of these solutions as t → ∞ has been studied

in particular by Gmira and Véron [13]; Kamin and Peletier [16]; Brezis,

Peletier and Terman [3]; Escobedo and Kavian [7, 8]; Escobedo, Kavian

and Matano [9], Mizoguchi and Yanagida [18], Herraiz [15], Kwak [17]. It

is determined by the decay of u0(x) as |x| → ∞, as well as the oscillatory

properties of u0, and its description often involves self-similar solutions

of (1.1). (We recall that a solution u of (1.1) is self-similar if it can be

expressed in terms of its profile f(x) as u(t, x) = t−
1
α f(x/

√
t).)

In this paper, we are interested in the case where the initial value u0(x)

is not necessarily asymptotically radial as |x| → ∞ and may change sign.

Nonnegative initial data of such type have been studied in [16] using a scal-

ing argument. By this, one constructs self-similar solutions, thus solutions

with homogeneous initial values. One also obtains, at the same time, the
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asymptotically self-similar behavior for a class of general solutions. Here,

we consider separately the questions of the existence of self-similar solutions

and of the convergence of general solutions. This may, in some instances,

give more flexibility in the methods one can apply, see the comments below.

Our main results are the following.

Theorem 1.1. Suppose α > 0 and let ω ∈ C(RN \ {0}) be a homoge-

neous function of degree 0. It follows that there exists a self-similar solution

uω of (1.1) with profile fω ∈ C0(R
N ) such that |x| 2

α fω(x) − ω(x) → 0 as

|x| → ∞.

Theorem 1.2. Suppose α > 0, let ω ∈ C(RN \ {0}) be a homogeneous

function of degree 0, and let uω be a self-similar solution of (1.1) with profile

fω ∈ C0(R
N ) such that |x| 2

α fω(x) − ω(x) → 0 as |x| → ∞. Given u0 ∈
C0(R

N ), let u be the solution of (1.1) with the initial condition u(0) = u0.

If α < 2/N suppose, in addition, that ω ≥ 0, ω 
≡ 0, that fω ≥ 0 and that

u0 ≥ 0. If |x| 2
αu0(x) − ω(x) → 0 as |x| → ∞, then

(1.2) sup
x∈RN

(|x|2 + t)
1
α |u(t, x) − uω(t, x)| → 0,

as t → ∞. In particular, t
1
α ‖u(t)‖L∞ → ‖fω‖L∞ as t → ∞.

Theorem 1.3. Suppose α > 2/N and let ω ∈ C(RN \ {0}) be a homo-

geneous function of degree 0. Let u0 ∈ C0(R
N ) and let u be the solution

of (1.1) with the initial condition u(0) = u0.

(i) If |x|σu0(x) − ω(x) → 0 as |x| → ∞, for some 2/α < σ < N , then

(1.3) sup
x∈RN

(|x|2 + t)
σ
2 |u(t, x) − et∆v0(x)| → 0,

as t → ∞, where v0(x) = ω(x)|x|−σ. In particular, t
σ
2 ‖u(t)‖L∞ →

C > 0 as t → ∞ if ω 
≡ 0.

(ii) If |x|Nu0(x) − ω(x) → 0 as |x| → ∞, then

(1.4) sup
x∈RN

(t + |x|2)N
2

log t
|u(t, x) − �(ω)Gt(x) log t| −→

t→∞
0,
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where Gt(x) = (4πt)−
N
2 e−

|x|2
4t is the heat kernel and �(ω) =

1
2

∫
{|ξ|=1} ω(ξ) dξ. It follows in particular that (4πt)

N
2

log t ‖u(t)‖L∞ →
|�(ω)| as t → ∞.

In the case α < 2/N , there are the restrictions ω ≥ 0 and u0 ≥ 0 in

Theorem 1.2. Even if ω > 0, the restriction u0 ≥ 0 is essential, as shown

in Kwak [17]. Indeed, there may exist many different self-similar solutions

of (1.1) with profile f ∈ C0(R
N ) such that |y| 2

α f(y)−ω(y) → 0 as |y| → ∞.

The following two results concern the cases u0 
≥ 0 and ω 
≥ 0.

Theorem 1.4. If α < 2/N , then there exists a constant γ > 0 with

the following property. Let ω ∈ C(RN \ {0}) be a homogeneous function of

degree 0 with ω ≥ γ, and let uω be a self-similar solution of (1.1) with profile

fω ∈ C0(R
N ) such that |x| 2

α fω(x)−ω(x) → 0 as |x| → ∞. Let u0 ∈ C0(R
N )

and let u be the solution of (1.1) with the initial condition u(0) = u0. If

|x| 2
αu0(x) − ω(x) → 0 as |x| → ∞, then (1.2) holds.

Theorem 1.5. Suppose α < 2/N and let ω ∈ C(RN \ {0}) be a homo-

geneous function of degree 0. Let Fω be the set of the profiles f ∈ C0(R
N )

of self-similar solutions of (1.1) such that |y| 2
α f(y)−ω(y) → 0 as |y| → ∞.

Let u0 ∈ C0(R
N ) satisfy |x| 2

αu0(x) − ω(x) → 0 as |x| → ∞ and let u be

the solution of (1.1) with the initial condition u(0) = u0. The following

properties hold.

(i) Fω has a minimal element f−
ω and a maximal element f+

ω , corre-

sponding to the self-similar solutions u±
ω (t, x) = t−

1
α f±

ω (x/
√
t).

(ii) lim sup
t→∞

(|x|2 + t)
1
α (u(t, x) − u+

ω (t, x)) ≤ 0 and lim inf
t→∞

(|x|2 +

t)
1
α (u(t, x) − u−

ω (t, x)) ≥ 0, uniformly in x ∈ R
N .

(iii) If u0(x) ≤ u−
ω (τ, x) for some τ > 0, then (1.2) holds with uω(t, x)

replaced by u−
ω (t, x).

(iv) If u0(x) ≥ u+
ω (τ, x) for some τ > 0, then (1.2) holds with uω(t, x)

replaced by u+
ω (t, x).

It follows from Theorem 1.4 that if α < 2/N and if u0 ∈ C0(R
N ) is

such that lim inf
|x|→∞

|x| 2
αu0(x) ≥ γ, then the corresponding solution u of (1.1)



504 T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler

is positive for t large. This property raises the more general question. If

lim inf
|x|→∞

|x|σu0(x) = c > 0 for some σ > 0, does u(t) become positive for t

large? Here is an answer to this question.

Theorem 1.6. Let α, σ, c > 0, let u0 ∈ C0(R
N ) and let u be the so-

lution of (1.1) with the initial condition u(0) = u0. Assume further that

lim inf
|x|→∞

|x|σu0(x) = c.

(i) Suppose α ≥ 2/N . If σ ≤ N , then u(t) > 0 for t large. If σ > N ,

then u0 can be chosen so that u(t) takes both positive and negative

values for all t > 0.

(ii) If α < 2/N , then there exists a c > 0 satisfying the following. If

σ < 2/α, or if σ = 2/α and c > c then u(t) > 0 for t large. If

σ > 2/α or if σ = 2/α and c ≤ c then u0 can be chosen so that u(t)

takes both positive and negative values for all t > 0.

Remark 1.7. Here are some comments on the above results.

(i) The case α > 2/N of Theorem 1.1 was already established in [16,

Theorem 2]. (Theorem 2 of [16] is stated for nonnegative ω, but the

proof clearly applies to the general case.)

(ii) The case α > 2/N of Theorem 1.2 was essentially obtained in [16,

Theorem 2] (see (i) above for the positivity assumption), the main

difference being the optimal convergence rate (1.2). The same ob-

servation applies to part (i) of Theorem 1.3.

(iii) In some of the cases not covered by Theorems 1.2—1.5, the as-

ymptotic behavior of solutions that change sign and that have non-

asymptotically radial initial values is already known. (See the pa-

pers cited above.) In some other cases, it can be deduced from

previous results and Theorem 1.6. For example, let u0 ∈ C0(R
N )

and let u be the corresponding solution of (1.1). If |x| 2
αu0(x) → ∞

as |x| → ∞, then it follows from Theorem 1.6 that u(t) > 0 for t

large. On the other hand, |x| 2
αu(t, x) → ∞ as |x| → ∞ by Proposi-

tion 5.5. Therefore, the asymptotic behavior of u(t) is described by

Theorem 2.1 in Gmira and Véron [13].

(iv) It seems that the case of initial values u0 satisfying |x| 2
αu0(x) ≈ ω(x)

as |x| → ∞ with |ω(x)| < ∞ in certain directions and |ω(x)| = ∞
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in other directions is open. For example, in the case N = 1, one can

construct self-similar solutions whose profile f satisfies f(x) → α− 1
α

as x → +∞ and |x| 2
α f(x) → � as x → −∞ for some finite �.

Does it describe the behavior of the solutions of (1.1) whose initial

value satisfies |x| 2
αu0(x) → +∞ as x → +∞ and |x| 2

αu0(x) → � as

x → −∞?

(v) It follows from Theorem 1.2 that the self-similar solution uω with

profile fω ∈ C0(R
N ) such that |x| 2

α fω(x) − ω(x) → 0 as |x| → ∞
is unique if α ≥ 2/N . If α < 2/N , it follows from Theorem 1.2

that it is unique if ω ≥ 0, ω 
≡ 0 and uω ≥ 0; and it follows from

Theorem 1.4 that it is unique if ω ≥ γ (without requiring uω ≥ 0).

Our proof of Theorem 1.1 is based on the following elementary observa-

tion. If u(t, x) is a self-similar solution of (1.1) and has an initial value ϕ at

t = 0, then ϕ is clearly homogeneous of degree −2/α. Conversely, suppose

one can construct a solution u of (1.1) with some initial value ϕ which is ho-

mogeneous of degree −2/α. Clearly, λ
2
αu(λ2t, λx) is also a solution with the

same initial value ϕ. If, for example, u is the unique solution corresponding

to ϕ, then u(t, x) ≡ λ
2
αu(λ2t, λx), i.e. u is self-similar. The problem of

existence of self-similar solutions is then essentially reduced to the solvabil-

ity of the Cauchy problem for homogeneous initial values of degree −2/α.

Note that if α > 2/N , then ω(x)|x|− 2
α belongs to L1(RN ) + Lp(RN ) for

some p < ∞, so it is easy to solve the Cauchy problem for such initial

values (see Theorem 8.8). However, if α ≤ 2/N , then |x| 2
α 
∈ L1

loc(R
N ).

Our proof (which works in both the cases α > 2/N and α ≤ 2/N) is

based on an explicit supersolution and the maximum principle. As far as

we are aware, the idea of constructing self-similar solutions by solving the

initial value problem for homogeneous initial data was first used by Giga

and Miyakawa [12], for the Navier-Stokes equation in vorticity form. The

idea of [12] was used later by Cannone and Planchon [4], Planchon [20]

(for the Navier-Stokes equation); Angenent and Aronson [1], Ribaud [21,

22], Kwak [17], Snoussi et al. [25, 26] (for nonlinear parabolic problems);

Cazenave and Weissler [5, 6], Ribaud and Youssfi [23], Furioli [11] (for the

nonlinear Schrödinger equation); Ribaud and Youssfi [24] and Pecher [19]

(for the nonlinear wave equation).

Our proof of Theorem 1.2 in the case α > 2/N is based on simple
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estimates for the heat semigroup. When α = 2/N , we also use an explicit

supersolution of (1.1) and a uniqueness result of Brezis and Friedman [2].

For α < 2/N , we essentially use the techniques of Escobedo, Kavian and

Matano [9]. Theorem 1.3 relies only on estimates of the heat semigroup.

Theorems 1.4 and 1.5 use a uniqueness property for radially symmetric

self-similar solutions, and Theorem 1.6 relies mostly on Theorems 1.2–1.4.

The remaining of the paper is organized as follows. Section 2—7 are

devoted to the proofs of Theorems 1.1—1.6. For completeness, we collect

in the appendix (Section 8) some estimates for the linear heat equation,

and a well-posedness result for the equation (1.1) with initial conditions in

L1(RN ) + Lp(RN ).

Notation. If α < 2/N , we denote by Γ0 the profile of the positive,

radially symmetric, self-similar solution of (1.1) with exponential decay.

(See [3, 7, 8, 9, 27].) Moreover, C0(R
N ) is the space of continuous functions

on R
N converging to 0 as |x| → ∞ and S ′(RN ) is the space of tempered

distributions on R
N . Finally, L1(RN ) + Lp(RN ) is the subset of S ′(RN )

whose elements can be expressed as the sum of a function in L1(RN ) and a

function in Lp(RN ).

The authors express their appreciation to the referee for his thorough

reading of the manuscript and his pertinent remarks.

2. Construction of Self-Similar Solutions

In this section, we prove Theorem 1.1. We will use the following two

lemmas.

Lemma 2.1. Let u0 ∈ C0(R
N ) and let u be the corresponding solution

of (1.1). If |u0(x)| ≤ C|x|− 2
α , then |u(t, x)| ≤ max{C, (4(α + 1)/α2)

1
α } ·

(|x|2 + t)−
1
α .

Proof. Set w(t, x) = k(|x|2 + t)−
1
α . We have

wt − ∆w + wα+1 = k(|x|2 + t)−
α+1
α

(
− 1

α
+

2N

α
− 4(α + 1)|x|2

α2(|x|2 + t)
+ kα

)

≥ k(|x|2 + t)−
α+1
α

(
−4(α + 1)

α2
+ kα

)
.
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Therefore, if k ≥ (4(α + 1)/α2)
1
α , then w is a supersolution of (1.1). Fix

k > max{C, (4(α + 1)/α2)
1
α }. For ε sufficiently small, |u0(x)| ≤ w(ε, x).

By the maximum principle, |u(t, x)| ≤ w(t+ ε, x), and the result follows by

letting ε ↓ 0. �

Lemma 2.2. Let Ω be a smooth, bounded domain of R
N , let Ω′ ⊂⊂ Ω,

let ϕ ∈ C(Ω), let C, T > 0 and set Q = (0, T )×Ω. It follows that there exists

γ ∈ C([0, T ]) with γ(0) = 0 such that if the function u ∈ C([0, T ], L1(Ω))

is C1 in t ∈ (0, T ) and C2 in x ∈ Ω and satisfies |ut − ∆u| + |u| ≤ C in Q

and u(0, x) = ϕ(x) in Ω, then ‖u(t) − ϕ‖L∞(Ω′) ≤ γ(t) for all t ∈ [0, T ].

Proof. By the maximum principle, v− ≤ u ≤ v+, where v± is the

solution of 


∂tv± − ∆v± = ±C in Q,

v± = ±C in (0, T ) × ∂Ω,

v±(0, x) = ϕ(x) in Ω.

In particular, v− − ϕ ≤ u − ϕ ≤ v+ − ϕ, so that we need only show that

‖v± −ϕ‖L∞(Ω′) → 0 as t ↓ 0. If we denote by T(t) the heat semigroup with

Dirichlet boundary condition in Ω, then

v±(t) − ϕ = (±C − ϕ) − T(t)(±C − ϕ) ± C

∫ t

0
T(s)1 ds.

Since the integral clearly converges to 0 in L∞(Ω) as t ↓ 0, we need only

show that if ψ ∈ C(Ω), then ‖ψ − T(t)ψ‖L∞(Ω′) → 0 as t ↓ 0. To see this,

we fix a function ξ ∈ C∞
c (Ω) such that ξ = 1 in Ω′, and we set w(t) = T(t)ψ

and z(t) = ξw(t). It follows that




zt − ∆z = −w∆ξ − 2∇w · ∇ξ in Q,

z = 0 in (0, T ) × ∂Ω,

z(0, x) = ξ(x)ψ(x) in Ω,

So that

z(t) − T(t)(ξψ) = −
∫ t

0
T(t− s)(w(s)∆ξ + 2∇w(s) · ∇ξ) ds.
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Therefore,

‖z(t) − T(t)(ξψ)‖L∞(Ω) ≤ C

∫ t

0
(t− s)−

1
4 (‖w(s)‖L2N (Ω) + ‖∇w(s)‖L2N (Ω))

≤ C

∫ t

0
(t− s)−

1
4 (1 + s−

1
2 )−→

t↓0
0,

where the second inequality follows from the analyticity of T(t) in L2N (Ω).

On the other hand, ξψ ∈ C0(Ω), so that ‖ξψ−T(t)(ξψ)‖L∞(Ω) → 0 as t ↓ 0;

and so,

‖ψ − T(t)ψ‖L∞(Ω′) ≤ ‖ξψ − z(t)‖L∞(Ω) ≤ ‖ξψ − T(t)(ξψ)‖L∞(Ω)

+ ‖T(t)(ξψ) − z(t)‖L∞(Ω) −→
t↓0

0,

which completes the proof. �

Proof of Theorem 1.1. Set ψ(x) = ω(x)|x|− 2
α and, given µ, ν > 0,

set

ψµ
ν (x) = min{µ,max{−ν, ψ(x)}}, ψµ = min{µ, ψ(x)}.

Let uµν be the solution of (1.1) with the initial value ψµ
ν . It follows that uµν

is nondecreasing in µ and nonincreasing in ν. By Lemma 2.1, there exists

Cω, depending on ‖ω‖L∞ , such that

(2.1) |uµν (t, x)| ≤ Cω(|x| +
√
t)−

2
α ,

for all t ≥ 0, x ∈ R
N . Therefore, there exists a function uµ(t, x) such that

uµν (t, x) ↓ uµ(t, x) as ν → ∞. It follows from (2.1) that

(2.3) |uµ(t, x)| ≤ Cω(|x| +
√
t)−

2
α ,

for all t ≥ 0, x ∈ R
N , and that

(2.4) uµt − ∆uµ + |uµ|αuµ = 0,
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in (0,∞) × R
N . In addition, if Ω ⊂⊂ R

N \ {0}, then it follows from (2.3)

that there exists C such that |∂tuµ −∆uµ|+ |uµ| ≤ C on (0,∞)×Ω. Since

ψµ(x) = ψµ
ν (x) in Ω for ν sufficiently large, we deduce from Lemma 2.2 that

(2.5) uµ(t, x)−→
t↓0

ψµ(x) uniformly on compact subsets of R
N \ {0}.

It is clear that uµ is nondecreasing in µ. Therefore, we let µ → ∞, and we

see as above that uµ ↑ u as µ → ∞, where u satisfies

(2.6)




ut − ∆u + |u|αu = 0 t > 0, x ∈ R
N ,

|u| ≤ Cω(|x| +
√
t)−

2
α t ≥ 0, x ∈ R

N ,

u(t, x)−→
t↓0

ψ(x) uniformly on compact subsets of R
N \ {0}.

Given λ > 0, we define, for w = w(t, x), wλ(t, x) = λ
2
αw(λ2t, λx). Of

course, if w satisfies (1.1), then so does wλ. It follows that (uµν )λ is the

solution of (1.1) with the initial value

(uµν )λ(0, x) = λ
2
αψµ

ν (λx) = ψλ
2
α µ

λ
2
α ν

(x).

Therefore, (uµν )λ = uλ
2
α µ

λ
2
α ν

↓ uλ
2
α µ as ν ↑ ∞. On the other hand, it is clear

that (uµν )λ ↓ (uµ)λ, and we conclude that (uµ)λ = uλ
2
α µ for all λ > 0.

Letting µ → ∞, we deduce that (uµ)λ ↑ u. Moreover, it is also clear that

(uµ)λ ↑ uλ as µ → ∞, and we conclude that uλ = u for all λ > 0, i.e.

u is self-similar. If f is the profile of u, i.e. u(t, x) = t−
1
α f(x/

√
t), then

we deduce from the last condition in (2.6) that |x| 2
α f(x) − ω(x) → 0 as

|x| → ∞. �

Remark 2.3. We note the following two properties of the self-similar

solutions constructed in the proof of Theorem 1.1.

(i) If ω ≥ ω′, then uω ≥ uω′ .

(ii) If ω(x) ≡ c ∈ R, then uω is radially symmetric.
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3. Proof of Theorem 1.2

We note first that it suffices to prove Theorem 1.2 where uω is the self-

similar solution constructed in the proof of Theorem 1.1. To see this, we

apply (1.2) where u(t, x) is the solution of (1.1) whose initial value is the

profile of a self-similar solution with the stated properties. We begin with

the following lemma, which is an application of Kato’s inequality.

Lemma 3.1. Let u, v be two solutions of (1.1) with the initial conditions

u(0) = u0 and v(0) = v0, u0, v0 ∈ C0(R
N ). It follows that |u − v| ≤ 2w,

where w is the solution of (1.1) with the initial condition w(0) = |u0−v0|/2.
In particular, |u(t) − v(t)| ≤ et∆|u0 − v0|.

Proof. Set z = |u−v|, so that zt−∆z+ | |u|αu−|v|αv| ≤ 0, by Kato’s

parabolic inequality. Since | |u|αu− |v|αv| ≥ 2−α|u− v|α+1, we deduce that

zt − ∆z + 2−αzα+1 ≤ 0. Setting z̃ = z/2, we have z̃t − ∆z̃ + z̃α+1 ≤ 0 and

z̃(0) = w(0), so that z̃ ≤ w. Hence the result. �

We now consider separately the cases α > 2/N , α = 2/N and α < 2/N .

The case α > 2/N . Let w0 = |u0 − fω|, so that |x| 2
αw0(x) → 0 as

|x| → ∞. It follows from Lemma 3.1 that |u(t) − uω(t + 1)| ≤ et∆w0, so

that by Corollary 8.4,

(3.1) sup
x∈RN

(|x|2 + t)
1
α |u(t, x) − uω(t + 1, x)| → 0,

as t → ∞. Note that we may apply the estimate (3.1) with u0 = uω(2), i.e.

u(t) = uω(t + 2). Changing t to t− 1, we deduce that

(3.2) sup
x∈RN

(|x|2 + t)
1
α |uω(t, x) − uω(t + 1, x)| → 0,

(1.2) now follows from (3.1) and (3.2).

The case α = 2/N . We will use the following two lemmas. The

first one is elementary and the second one is an application of Brezis and

Friedman [2].
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Lemma 3.2. Let K be a compact metric space and let (ϕn)n≥0 ⊂
C(K,R). If ϕn(x) ↓ 0 as n → ∞ for all x ∈ K, then sup

x∈K
ϕn(x) ↓ 0 as

n → ∞.

Proof. Supppose by contradiction that there exist δ > 0 and

(xn)n≥0 ⊂ K such that ϕn(xn) ≥ δ. Without loss of generality, we may

assume that xn → x ∈ K as n → ∞. Given n ≥ m ≥ 0, we have

ϕn(xn) ≤ ϕm(xn) → ϕm(x) as n → ∞. Therefore, lim sup
n→∞

ϕn(xn) ≤ ϕm(x).

We obtain a contradiction by letting m → ∞. �

Lemma 3.3. Suppose α = 2/N . Given ε ≥ 0, let uε be the self-similar

solution of (1.1) constructed in the proof of Theorem 1.1 with ω(x) ≡ ε, and

let fε be its profile. It follows that sup
x∈RN

(1 + |x|2)N
2 fε(x) → 0 as ε ↓ 0.

Proof. It follows from Remark 2.3 that uε is nondecreasing in ε. In

particular, uε ≥ u0 = 0. We first claim that uε(t, x) ↓ 0 as ε ↓ 0, for all

t > 0, x ∈ R
N . Indeed, let u ≥ 0 be the limit of uε as ε ↓ 0. We see that u

satisfies (1.1) in (0,∞) × R
N . Also, if Ω ⊂⊂ R

N \ {0} and ε > 0,

lim sup
t↓0

‖u(t)‖L∞(Ω) ≤ lim sup
t↓0

‖uε(t)‖L∞(Ω) = ε sup
x∈Ω

|x|−N .

Letting ε ↓ 0, we see that ‖u(t)‖L∞(Ω) → 0 as t ↓ 0. By Theorem 2 of [2],

we conclude that u = 0, which proves the claim. In particular, we see that

fε(x) ↓ 0 as ε ↓ 0. Applying Lemma 3.2, we deduce that fε(x) ↓ 0 uniformly

on compact sets of R
N . Fix now δ > 0. Since (1 + |x|2)N

2 fε(x) → ε as

|x| → ∞, we see that if K is sufficiently large and if 0 < ε ≤ δ/2, then

sup
|x|>K

(1 + |x|2)N
2 fε(x) ≤ sup

|x|>K
(1 + |x|2)N

2 f δ
2
(x) ≤ δ.

On the other hand, it follows from what precedes that if ε is sufficiently

small, then

sup
|x|<K

(1 + |x|2)N
2 fε(x) ≤ δ.

Since δ > 0 is arbitrary, this completes the proof. �
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Proposition 3.4. Suppose α = 2/N . Let u0, v0 ∈ C0(R
N ) and let

u, v be the corresponding solutions of (1.1). If |x|N |u0(x) − v0(x)| → 0 as

|x| → ∞, then

sup
x∈RN

(|x|2 + t)
N
2 |u(t, x) − v(t, x)| −→

t→∞
0.

Proof. Let w0 = |u0 − v0|/2, so that

(3.3) |x|Nw0(x) −→
|x|→∞

0.

If w is the corresponding solution of (1.1), then it follows from

Lemma 3.1 that |u− v| ≤ 2w, so that we need only show that sup
x∈RN

(|x|2 +

t)
N
2 w(t, x) −→

t→∞
0.

Fix ε > 0. Given R > 0, let z0 = w01{|x|<R} and let z be the cor-

responding solution of (1.1). It follows from (3.3) that if R is sufficiently

large, then 0 ≤ w0 − z0 ≤ fε/2, where fε is as in Lemma 3.3. We deduce

from Lemma 3.1 that

lim sup
t→∞

sup
x∈RN

(|x|2 + t)
N
2 |w(t, x) − z(t, x)|(3.4)

≤ 2 lim sup
t→∞

sup
x∈RN

(|x|2 + t)
N
2 uε(t, x) = 2 sup

x∈RN

(|x|2 + 1)
N
2 fε(x).

Given t0 ≥ e4 and A ≥ (Ne4)
N
2 , set

Z(t, x) =
A

[(t0 + t) log(t0 + t)]
N
2

e
− |x|2

4(t0+t)

(
1− 1

log(t0+t)

)
.

It follows from a straightforward calculation that, setting τ = t + t0 and

ρ = |x|2/τ ,

Zt − ∆Z + Zα+1 =
Z

τ log τ

[
−N +

ρ

8

(
2 − 4

log τ

)
+ A

2
N e

− ρ
2N

(
1− 1

log τ

)]

≥ Z

τ log τ

[
−N +

ρ

8

(
2 − 4

log t0

)
+ A

2
N e−

ρ
2N

]
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≥ Z

τ log τ

[
−N +

ρ

8
+ A

2
N e−

ρ
2N

]
≥ 0.

Therefore, choosing A large enough so that Z(0) ≥ z0, we deduce that

z(t) ≤ Z(t). Therefore, (|x|2 + t)
N
2 z(t, x) ≤ C[log(t + t0)]

−N
2 . Applying

now (3.4), we conclude that

lim sup
t→∞

sup
x∈RN

(|x|2 + t)
N
2 w(t, x) ≤ 2 sup

x∈RN

(|x|2 + 1)
N
2 fε(x).

The result follows by letting ε ↓ 0 and applying Lemma 3.3. �

We now can prove (1.2) in the case α = 2/N . It follows from Proposi-

tion 3.4 that

sup
x∈RN

(|x|2 + t)
N
2 |u(t, x) − uω(t + 1, x)| −→

t→∞
0,

and one concludes as in the case α > 2/N .

The case α < 2/N . It is convenient to introduce the self-similar vari-

ables. We recall that u(t, x) satisfies (1.1) if and only if v(s, y) = e
s
αu(t, x)

with s = log(1 + t) and y = x/
√

1 + t satisfies

(3.5) vs − ∆v − 1

2
y · ∇v − 1

α
v + |v|αv = 0.

Also, f ∈ C0(R
N ) is the profile of a self-similar solution of (1.1) iff

(3.6) −∆f − 1

2
y · ∇f − 1

α
f + |f |αf = 0.

The following lemma is an essential tool in our proof. (See the proof of

Lemma 2.6 in [9].)

Lemma 3.5. Let v1,0, v2,0, v3,0 ∈ C0(R
N ) such that

0 ≤ v1,0, v2,0 ≤ v3,0 ≤ v1,0 + v2,0,
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and let v1, v2, v3 be the solutions of (3.5) with the initial values v1,0, v2,0 and

v3,0, respectively. It follows that

v1(s) + v2(s) − v3(s) ≥ ξ(s)

for all s > 0, where ξ it the solution of (3.5) with the initial value ξ(0) =

v1,0 + v2,0 − v3,0.

Proof. By the maximum principle, 0 ≤ v1(s), v2(s) ≤ v3(s) for all

s > 0. We now claim that v3(s) ≤ v1(s) + v2(s). Indeed, z = v1 + v2

satisfies z(0) ≥ v3,0 and

zs − ∆z − 1

2
y · ∇z − 1

α
z + |z|αz = (v1 + v2)

α+1 − vα+1
1 − vα+1

2 ≥ 0,

so that by the maximum principle z ≥ v3, which proves the claim. We next

observe that, since 0 ≤ v1, v2 ≤ v3 ≤ v1 + v2,

(v1 + v2 − v3)
α+1 ≥ vα+1

1 + vα+1
2 − vα+1

3 .

Therefore, z = v1 + v2 − v3 satisfies z(0) = v1,0 + v2,0 − v3,0 and

zt−∆z− 1

2
y ·∇z− 1

α
z+ |z|αz = (v1 +v2−v3)

α+1−vα+1
1 −vα+1

2 +vα+1
3 ≥ 0,

so that by the maximum principle z ≥ ξ. �

Lemma 3.6. Let w0, z0 ∈ C0(R
N ), w0, z0 ≥ 0, w0 
≡ 0, z0 
≡ 0 satisfy

|y| 2
α (w0(y) + z0(y)) → 0 as |y| → ∞, and let w and z be the corresponding

solutions of (3.5). It follows that sup
y∈RN

(1 + |y| 2
α )|w(s, y) − z(s, y)| → 0 as

s → ∞.

Proof. Fix ε > 0. Let fε be as in the proof of Theorem 1.1 with

ω(x) ≡ ε. For M > 0 sufficiently large, we have w01{|y|>M} ≤ fε. If

w1(s) is the solution of (3.5) with the initial value w01{|y|>M}, we de-

duce that w1(s) ≤ fε. On the other hand, there exists c ≥ 1 such that

w01{|y|<M} ≤ cΓ0. Since cΓ0 is a supersolution of (3.5) for all c ≥ 1, we de-

duce that w2(s) ≤ cΓ0, where w2 is the solution of (3.5) with the initial value
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w01{|y|<M}. Since |w(s) − w1(s)| ≤ 2w2(s) by Lemma 3.1, we obtain that

w(s) ≤ fε + 2cΓ0. As well, z(s) ≤ fε + 2cΓ0, by possibly choosing c larger.

It follows that for R > 0 sufficiently large, (1 + |y| 2
α )|w(s, y)− z(s, y)| ≤ 2ε

for |y| ≥ R. Next, w(s) → Γ0 and z(s) → Γ0 uniformly as s → ∞ by

Theorem 1.2 of [9]; and so, (1 + |y| 2
α )|w(s, y)− z(s, y)| ≤ ε for s sufficiently

large and all |y| ≤ R. It follows that

sup
y∈RN

(1 + |y| 2
α )|w(s, y) − z(s, y)| ≤ 2ε,

for s sufficiently large. Hence the result, since ε is arbitrary. �

Corollary 3.7. Let w̃0, z̃0 ∈ C0(R
N ) and let w̃(s) and z̃(s) be the

corresponding solutions of (3.5). If w̃0 ≥ 0, w̃0 
≡ 0 and

(3.7) lim sup
|y|→∞

|y| 2
α (z̃0(y) − w̃0(y)) ≤ 0,

then

(3.8) lim sup
s→∞

sup
y∈RN

(1 + |y| 2
α )(z̃(s, y) − w̃(s, y)) ≤ 0.

In particular, if w̃0, z̃0 ≥ 0, w̃0, z̃0 
≡ 0 and |y| 2
α |w̃0(y)− z̃0(y)| −→

|y|→∞
0, then

sup
y∈RN

(1 + |y| 2
α )|w̃(s, y) − z̃(s, y)| −→

s→∞
0.

Proof. Let z0 = max{w̃0, z̃0} and let z(s) be the corresponding solu-

tion of (3.5). Since z(s) ≥ z̃(s), we need only show that

(3.9) lim sup
s→∞

sup
y∈RN

(1 + |y| 2
α )(z(s, y) − w̃(s, y)) ≤ 0.

We claim that

(3.10) lim sup
|y|→∞

|y| 2
α (z0(y) − w̃0(y)) ≤ 0.
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Indeed, consider |yn| → ∞ such that |yn|
2
α (z0(yn)−w̃0(yn)) = σ. If z0(yn) =

z̃0(yn) for n large then σ ≤ 0 by (3.7). Otherwise, σ = 0. This shows the

claim. Let now ϕ0 ∈ C∞
c (RN ), ϕ0 ≥ 0, ϕ0 
≡ 0, ϕ0 ≤ w̃0, and let ϕ(s) be

the corresponding solution of (3.5). Finally, let

(3.11) z0 = z0 − w̃0 + ϕ0 ≤ z0,

and let z(s) be the corresponding solution of (3.5). Note that z0 ≥ ϕ0 
≡ 0

and that |y| 2
α z0(y) → 0 as |y| → ∞ by (3.10). Since 0 ≤ w̃0, z0 ≤ z0 ≤

w̃0+z0 by (3.11), we deduce from Lemma 3.5 that w̃(s)+z(s)−z(s) ≥ ϕ(s).

Therefore, z(s)−w̃(s) ≤ z(s)−ϕ(s) and (3.9) follows by applying Lemma 3.6

to the right-hand side. �

We now can prove (1.2) in the case α < 2/N . We need to show that if

v0 ≥ 0 satisfies |y| 2
α v0(y)−ω(y) → 0 as |y| → ∞ and if v is the corresponding

solution of (3.5), then

sup
y∈RN

(1 + |y| 2
α )|v(s, y) − fω(y)| −→

s→∞
0.

This follows from Corollary 3.7, by letting w̃0 = v0 and z̃0 = fω.

4. Proof of Theorem 1.3

Proof of property (i). We have |u(t)| ≤ et∆|u0|, thus |u(t, x)| ≤
C(1 + t + |x|2)−σ

2 by Corollary 8.3. Fix

0 < ε < min{N − σ, ασ − 2}.

We deduce that

| |u|αu|(s, x) ≤ C(1 + s + |x|2)−
σ(α+1)

2 ≤ C(1 + s)−
ασ−ε

2 (1 + s + |x|2)−σ+ε
2 ;

and so, by using again Corollary 8.3,

|e(t−s)∆|u(s)|αu(s)| ≤ C(1 + s)−
ασ−ε

2 (1 + s + (t− s) + |x|2)−σ+ε
2

= C(1 + s)−
ασ−ε

2 (1 + t + |x|2)−σ+ε
2 .
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Therefore,

∣∣∣∫ t

0
e(t−s)∆|u(s)|αu(s) ds

∣∣∣ ≤ C(t + |x|2)−σ+ε
2

∫ t

0
(1 + s)−

ασ−ε
2 ds(4.1)

≤ C(t + |x|2)−σ+ε
2 .

We deduce that

(t + |x|2)σ
2 |u(t, x) − et∆v0(x)|

≤ (t + |x|2)σ
2 (|u(t, x) − et∆u0(x)| + |et∆(u0 − v0)(x)|)

≤ C(t + |x|2)− ε
2 + (t + |x|2)σ

2 |et∆(u0 − v0)(x)| −→
t→∞

0,

uniformly in x ∈ R
N , by using (4.1) and Corollary 8.4. �

Proof of property (ii). We have

u(t) − et∆u0 = −
∫ t

0
e(t−s)∆|u(s)|αu(s) ds.

Since |u(s)| ≤ es∆|u0|, it follows from Lemma 8.5 that |u(s)| ≤ C(1 + s +

|x|2)−N
2 log(2+s). Applying Lemma 8.7, we deduce that e(t−s)∆|u(s)|α+1 ≤

C(1 + t + |x|2)−N
2 (1 + s)−

Nα
2 (log(2 + s))α+1. Therefore,

sup
x∈RN

(t + |x|2)N
2

log t
|u(t, x) − et∆u0(x)|

≤ C
1

log t

∫ t

0
(1 + s)−

Nα
2 (log(2 + s))α+1 ds −→

t→∞
0,

and the result follows from Lemma 8.6. �

5. Proof of Theorem 1.4

Throughout this section, we assume that α < 2/N . Given ω ∈ C(RN \
{0}) a homogeneous function of degree 0, we denote by Fω the set of the

profiles f ∈ C0(R
N ) of self-similar solutions of (1.1) such that |y| 2

α f(y) −
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ω(y) → 0 as |y| → ∞. We begin with the following result, inspired by

Lemma 2.5 of [9].

Lemma 5.1. Let f ∈ Fω and k ≥ 2. Let v0 = f+kΓ0 and w0 = f−kΓ0,

and let v and w be the corresponding solutions of (3.5). It follows that v(s)

is nonincreasing in s and w(s) is nondecreasing in s.

Proof. Note that

(5.1) |x + y|α(x + y) − |x|αx ≥ 2−αyα+1,

for all x ∈ R and y ≥ 0. We have

−∆v0 −
1

2
y · ∇v0 −

1

α
v0 + |v0|αv0 = |f + kΓ0|α(f + kΓ0) − |f |αf − kΓα+1

0

≥ (kα2−α − 1)kΓα+1
0 ≥ 0,

by (5.1). Therefore, v0 is a supersolution of (3.6); and so, v(s) is nonin-

creasing. The other statement is proved in the same way. �

The next ingredient we need concerns the solutions of the problem

(5.2)


u′′ +

(N − 1

r
+

r

2

)
u′ +

1

α
u− |u|αu = 0, r > 0,

u(0) = θ, u′(0) = 0,

where θ > 0. If θ = ±α− 1
α , then u is constant. If |θ| > α− 1

α , then it

is not difficult to see that u blows up in finite time. If |θ| < α− 1
α , then

one can easily adapt the techniques of [3] to show there exists c = c(θ)

such that r
2
αu(r) → c as r → ∞. It is clear that c is odd, and it is well-

known that there exists 0 < θ∗ < α− 1
α such that c(θ∗) = 0 and c(θ) > 0

for θ∗ < θ < α− 1
α . In addition, u > 0 if θ∗ ≤ θ < α− 1

α while u changes

sign if 0 < θ < θ∗. Moreover, c is increasing and convex on [θ∗, α− 1
α ) and

c(θ) → ∞ as θ → α− 1
α . (For all these properties, see [9]). In particular, c is

continuous on [θ∗, α− 1
α ). The same property holds on [0, θ∗], as shows the

following result. (See [14] for the analogous result for the equation with the

other sign.)
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Lemma 5.2. The mapping θ �→ c(θ) is continuous (−α− 1
α , α− 1

α ) → R.

Proof. Fix θ0 ∈ (−α− 1
α , α− 1

α ) and let u0 be the corresponding solu-

tion of (5.2). Let θ ∈ (−α− 1
α , α− 1

α ) and let u be the corresponding solution

of (5.2). Set c0 = c(θ0) and c = c(θ). Next, let v0(r) = r
1
αu0(r) and

v(r) = r
1
αu(r). It follows that v0(r) → c0 and v(r) → c as r → ∞, and that

v0 and v are solutions of the equation

(5.3) v′′ +
(r

2
+

N − 1

r
− 4

αr

)
v′ +

( 4

α2
− 2(N − 2)

α
− |v|α

) v

r2
= 0.

By continuous dependence, v → v0 in C1([0, R]) as θ → θ0 for every R > 0.

Finally, let

φ(r) =
r

2
+

N − 1

r
− 4

αr
, Φ(r) =

∫ r

0
φ(s) ds.

It follows from (5.3) that

(eΦ(r)v′(r))′ = −eΦ(r)
( 4

α2
− 2(N − 2)

α
− |v|α

) v

r2
.

Integrating between r > 0 and r > r, we deduce that

|v′(r)| ≤ e−Φ(r)+Φ(r)|v′(r)| +
∫ r

r

e−Φ(r)+Φ(s)

s2

∣∣∣ 4

α2
− 2(N − 2)

α
− |v|α

∣∣∣ |v| ds.
Integrating again,

|v(r)| ≤ |v(r)| + |v′(r)|
∫ r

r
e−Φ(s)+Φ(r) ds

+
[
sup
[r,r]

∣∣∣ 4

α2
− 2(N − 2)

α
− |v|α

∣∣∣ |v|] ∫ r

r

∫ s

r

e−Φ(s)+Φ(σ)

σ2
dσ ds.

Note that∫ r

r
e−Φ(s)+Φ(r) ds ≤

∫ ∞

r
e−Φ(s)+Φ(r) ds =

∫ ∞

0
e−

∫ r+s
r φ(σ) dσ ds −→

r→∞
0,
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by dominated convergence. Also,

∫ r

r

∫ s

r

e−Φ(s)+Φ(σ)

σ2
dσ ds =

∫ r

r

∫ s

r

e−
∫ s
σ φ(τ) dτ

σ2
dσ ds.

By L’Hôpital’s rule,

∫ s

1

e−
∫ s
σ φ(τ) dτ

σ2
dσ = O(s−3),

as s → ∞, so that

∫ ∞

1

∫ s

1

e−
∫ s
σ φ(τ) dτ

σ2
dσ ds < ∞.

Therefore, ∫ r

r

∫ s

r

e−Φ(s)+Φ(σ)

σ2
dσ ds −→

r→∞
0,

uniformly in r ≥ r. It follows that

(5.4) |v(r)| ≤ |v(r)| + |v′(r)|ε(r) +
[
sup
[r,r]

∣∣∣ 4

α2
− 2(N − 2)

α
− |v|α

∣∣∣ |v|]ε(r),
for r ≥ r, with ε(r) → 0 as r → ∞. We now fix r such that

(5.5)
2ε(r) ≤ c0, 6c0

( 4

α2
+

2|N − 2|
α

+ (6c0)
α
)
ε(r) ≤ c0,

|v0(r)| ≤ 2c0, |v′0(r)| ≤ 1.

For |θ − θ0| sufficiently small, we have in particular

(5.6) |v(r)| ≤ 3c0, |v′(r)| ≤ 2.

We claim that |v(r)| < 6c0 for all r ≥ r. Indeed, assume by contradiction

that there exists R > r such that |v(r)| ≤ 6c0 for all r ≤ r ≤ R and

|v(R)| = 6c0. It follows from (5.4), (5.5) and (5.6) that |v(R)| ≤ 5c0, which

is absurd. Consider now r > r. We obtain as above that

(5.7) |v(r) − v0(r)| ≤ |v(r) − v0(r)| + |v′(r) − v′0(r)|ε(r) + Cε(r),
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for all r ≥ r. Given δ > 0, fix r large enough so that (C +1+ |v′0(r)|)ε(r) ≤
δ/2 and suppose |θ − θ0| is small enough so that |v(r) − v0(r)| ≤ δ/2 and

|v′(r)−v′0(r)| ≤ 1+ |v′0(r)|. It then follows from (5.7) that |v(r)−v0(r)| ≤ δ

for all r ≥ r. Letting r → ∞, we obtain |c− c0| ≤ δ. Hence the result. �

The following result is then an immediate consequence of Lemma 5.2.

Corollary 5.3. Let c = sup{|c(θ)|; 0 ≤ θ < θ∗}. If K > c, then the

radially symmetric self-similar solution of (1.1) with profile f ∈ C0(R
N )

such that r
2
α f(r) → K as r → ∞ is unique and positive. If 0 < K ≤ c,

then there exists a radially symmetric self-similar solution of (1.1) with

profile f ∈ C0(R
N ) such that r

2
α f(r) → K as r → ∞ and f changes sign.

Proposition 5.4. Suppose α < 2/N and let c = sup{|c(θ)|; 0 ≤ θ <

θ∗}. Let u0 ∈ C0(R
N ) and let u be the corresponding solution of (1.1). If

lim inf
|x|→∞

|x| 2
αu0(x) > c, then u(t) > 0 for t sufficiently large.

Proof. Let v be the solution of (3.5) with initial value u0. We need to

show that v(s) > 0 for s large. Let K > K ′ > c. Note that by Corollary 5.3

and Remark 2.3 (ii), the profile of the (unique) radially symmetric self-

similar solution of (1.1) which behaves like K ′r−
2
α as r → ∞ is fK′ . Next,

we observe that there exists k ≥ 2 such that u0 ≥ w0 with w0 = fK′ − kΓ0.

If we denote by w the solution of (3.5) with initial value w0, it follows from

Lemma 5.1 that w(s) is nondecreasing. Since w(s) ≤ fK′ by the maximum

principle, we see that w(s) has a limit w∞ as s → ∞. Since w0 is radially,

symmetric, so is w∞. Also, since |w0−fK′ | ≤ kΓ0 and kΓ0 is a supersolution

of (3.5), we deduce from Lemma 3.1 that |w(s) − fK′ | ≤ 2kΓ0, so that

(5.8) fK′ − 2kΓ0 ≤ w(s) ≤ fK′ .

Clearly w∞ is a solution of (3.6), so it follows from (5.8) that w∞ ∈ FK′ .

Since w∞ is radially symmetric, we have w∞ = fK′ by Corollary 5.3. Apply-

ing (5.8), we see that there exists R such that w(s, y) ≥ fK′(y)/2 for |y| ≥ R

and all s > 0. We now deduce from Lemma 3.2 that w(s, y) ≥ fK′(y)/2 for

|y| ≤ R and s sufficiently large. It follows that w(s, y) ≥ fK′(y)/2 > 0 for

s sufficiently large and all y ∈ R
N . The result follows, since v(s) ≥ w(s). �
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Theorem 1.4 now follows from Proposition 5.4, Theorem 1.2 and the

following result.

Proposition 5.5. Let σ > 0 and let ω ∈ C(RN \ {0}) be homoge-

neous of degree 0. Let u0 ∈ C0(R
N ) and let u be the corresponding solution

of (1.1). If |x|σu0(x) − ω(x) → 0 as |x| → ∞, then for every T > 0,

|x|σu(t, x) − ω(x) → 0 as |x| → ∞, uniformly in t ∈ [0, T ].

Proof. Fix T > 0. We observe that |u(t)| ≤ et∆|u0|, and we deduce

from Lemma 8.1 that there exists M such that u(t, x) ≤ M(1 + |x|)−σ for

all 0 ≤ t ≤ T . Applying again Lemma 8.1, we obtain that, by possibly

choosing M larger,

(5.9) |e(t−s)∆|u(s)|αu(s)| ≤ M(1 + |x|)−(α+1)σ,

for all 0 ≤ s ≤ t ≤ T . Next, since

u(t) − et∆u0 = −
∫ t

0
e(t−s)∆|u(s)|αu(s) ds,

we deduce from (5.9) that

(5.10) |u(t) − et∆u0| ≤ C(1 + |x|)−(α+1)σ,

for all 0 ≤ t ≤ T . Finally,

| |x|σu(t) − ω(x)| ≤ | |x|σet∆u0 − ω(x)| + |x|σ|u(t) − et∆u0|.

The result follows by applying Lemma 8.1 to the first term on the right-hand

side and (5.10) to the second term. �

6. Proof of Theorem 1.5

Throughout this section, we assume that α < 2/N . We begin with the

following lemma.

Lemma 6.1. Let ω1, ω2 ∈ C(RN \{0}) be homogeneous of degree 0, and

let f ∈ Fω1 g ∈ Fω2. If ω1 ≥ ω2, then there exist h ∈ Fω1 and k ∈ Fω2 such

that k ≤ f, g ≤ h.
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Proof. Let v0 = max{f, g} and let v be the corresponding solution

of (3.5). Since v0 is a subsolution of (3.6), we see that v(s) is nondecreasing

and we denote by v∞ its limit. Let w0 = |f − v0|/2 and let w be the

solution of (3.5) with the initial value w0. It follows from Lemma 3.1 that

|v(s) − f | ≤ 2w(s), so that

max{f, g} ≤ v(s) ≤ f + 2w(s).

Note that |y| 2
αw0(y) → 0 as |y| → ∞, so that w(s) → Γ0 as s → ∞ by

Theorem 1.2 of [9]; and so,

(6.1) max{f, g} ≤ v∞ ≤ f + 2Γ0.

Since v∞ is clearly a solution of (3.6), we deduce from (6.1) that v∞ ∈ Fω1 .

The first statement follows with h = v∞ and the second statement is proved

in the same way. �

Corollary 6.2. Fω has a minimal element f−
ω and a maximal ele-

ment f+
ω , i.e. f−

ω ≤ f ≤ f+
ω for every f ∈ Fω.

Proof. We first claim that if f, g ∈ Fω, then

(6.2) |f − g| ≤ 2Γ0.

Indeed, |y| 2
α |f−g| → 0 as |y| → ∞, so that by Lemma 3.1 and Theorem 1.2

of [9], |f − g| ≤ 2v(s) with v(s) → Γ0 as s → ∞. Hence (6.2). Let now

m = inf
f∈Fω

f(0),

so that here exists (fn)n≥0 ⊂ Fω such that fn(0) → m. It follows easily

from (6.2) and a local compactness argument that there exist a subsequence

nk and a solution f of (3.6) such that fnk
→ f uniformly on bounded

subsets of R
N . Applying again (6.2), we see that f ∈ Fω. We claim that

f is minimal. Otherwise, there exist g ∈ Fω and x0 ∈ R
N such that

g(x0) < f(x0). By Lemma 6.1, there exists h ∈ Fω such that h ≤ f and

h 
≡ f . By the strong maximum principle, h(0) < f(0) = m, which is

absurd. The maximal element is constructed in the same way. �
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Corollary 6.3. With the notation of Corollary 6.2, the following

properties hold.

(i) If ω1, ω2 ∈ C(RN \ {0}) are homogeneous of degree 0 and ω1 ≥ ω2,

then f+
ω1

≥ f+
ω2

and f−
ω1

≥ f−
ω2

.

(ii) If ω ∈ C(RN \ {0}) is homogeneous of degree 0, then sup
y∈RN

(1 +

|y|2) 1
α |f+

ω+ε − f+
ω | −→

ε↓0
0 and sup

y∈RN

(1 + |y|2) 1
α |f−

ω − f−
ω−ε| −→

ε↓0
0.

Proof. (i) By Lemma 6.1, there exists g ∈ Fω1 such that g ≥ f+
ω1

and g ≥ f+
ω2

. By maximality, g = f+
ω1

, so that f+
ω1

≥ f+
ω2

. The second

statement is proved in the same way.

(ii) Here also, we only prove the first statement. By (i), f+
ω+ε is non-

decreasing in ε. Therefore, f+
ω+ε has a limit f as ε ↓ 0, and

(6.3) f+
ω+ε ≥ f ≥ f+

ω .

It is clear that f is a solution of (3.6), and it follows from (6.3) that f ∈
Fω. Using again (6.3), we deduce by maximality that f = f+

ω . Therefore,

(1 + |y|2) 1
α f+

ω+ε ↓ (1 + |y|2) 1
α f+

ω as ε ↓ 0. Using Lemma 3.2, we conclude

that the convergence is uniform. �

We are now in a position to prove Theorem 1.5. Property (i) is simply

Corollary 6.2. To prove property (ii), we need only show (using the self-

similar variables) that if v0 ∈ C0(R
N ) satisfies |y| 2

α v0(y) − ω(y) → 0 as

|y| → ∞, then

(1 + |y|2) 1
α f−

ω (y) ≤ lim inf
s→∞

(1 + |y|2) 1
α v(s, y)(6.4)

≤ lim sup
s→∞

(1 + |y|2) 1
α v(s, y) ≤ (1 + |y|2) 1

α f+
ω (y).

Given any ε > 0, there exists k ≥ 2 such that v0 ≤ w0 with w0 = f+
ω+ε+kΓ0.

If w denotes the solution of (3.5) with the initial value w0, then on one

hand v(s) ≤ w(s), and on the other hand, it follows from Lemma 5.1 that

w(s) is nonincreasing. Therefore, w(s) ↓ w∞ as s → ∞, and it follows

easily that w∞ is a solution of (3.6). Since |w0 − f+
ω+ε| ≤ kΓ0 and kΓ0 is a

supersolution of (3.5), we deduce from Lemma 3.1 that |w(s)−f+
ω+ε| ≤ 2kΓ0.
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Therefore, |w∞−f+
ω+ε| ≤ 2kΓ0 and it follows that w∞ ∈ Fω+ε; and so, since

w(s) ≥ f+
ω+ε, w∞ = f+

ω+ε. Therefore, (1+ |y|2) 1
αw(s) ↓ (1+ |y|2) 1

α f+
ω+ε and,

by Lemma 3.2, the convergence is uniform. We deduce that

lim sup
s→∞

(1 + |y|2) 1
α v(s, y) ≤ lim sup

s→∞
(1 + |y|2) 1

αw(s, y) ≤ (1 + |y|2) 1
α f+

ω+ε(y),

uniformly in y ∈ R
N . By letting ε ↓ 0 and applying Corollary 6.3, we

deduce the right-hand side estimate of (6.4). The left-hand side estimate is

proved similarly. Finally, properties (iii) and (iv) follow easily from (6.4).

Indeed, if v0 ≥ f+
ω (respectively, v0 ≤ f−

ω ), then v(s) ≥ f+
ω (respectively,

v(s) ≤ f−
ω ).

7. Proof of Theorem 1.6

We first prove the positive part of properties (i) and (ii), i.e. that u(t) >

0 for t large. We consider separately the cases α < 2/N , α = 2/N and

α ≥ 2/N .

The case α < 2/N . The property follows from Proposition 5.4.

The case α = 2/N . Without loss of generality, we may assume that

|x|Nu0(x) → c as |x| → ∞. Letting ω(x) ≡ c, we deduce from Theorem 1.2

that (1.2) holds. Note that

inf
x∈RN

(|x|2 + t)
1
αu(t, x) ≥ inf

x∈RN
(|x|2 + t)

1
αuω(t, x)

− sup
x∈RN

(|x|2 + t)
1
α |u(t, x) − uω(t, x)|.

Using (1.2), we deduce that

inf
x∈RN

(|x|2 + t)
1
αu(t, x) ≥ inf

y∈RN
(|y|2 + 1)

1
α fω(y) − ε(t),

with ε(t) → 0 as t → ∞. Since inf
y∈RN

(|y|2 + 1)
1
α fω(y) > 0, we see that

u(t) > 0 for t large. This proves the part of (i) corresponding to the case

α = 2/N .
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The case α > 2/N . We need only prove that if lim inf
|x|→∞

|x|Nu0(x) > 0,

then u(t) > 0 for t large. Without loss of generality, we may assume that

|x|Nu0(x) → c > 0 as |x| → ∞, that u0(x) is radially symmetric and that

there exists r > 0 such that u0(r) < 0 for 0 ≤ r < r and u0(r) > 0 for r > r.

We then apply Theorem 1.3, and we deduce from (1.4) that u(t, 0) > 0 for t

large, say for t ≥ t0. On the other hand, it follows from Proposition 5.5 that

there exists R > 0 such that u(t, x) > 0 for 0 ≤ t ≤ t0 and |x| ≥ R. Since

u0(r) has only one zero on the interval 0 ≤ r ≤ R, we deduce that u(t0, r)

has at most one zero on the interval 0 ≤ r ≤ R (apply e.g. Lemma 2.2

of [10]). Since u(t0, 0), u(t0, R) > 0, it follows that u(t0) > 0 on {|x| ≤ R}.
Thus u(t0) > 0, so u(t) > 0 for t ≥ t0.

We now prove the negative part of properties (i) and (ii). We consider

u0 ∈ C0(R
N ) such that |x|σu0(x) → c > 0 as |x| → ∞. It follows from

Proposition 5.5 that, given any t > 0, u(t, x) > 0 for |x| large. Therefore,

we need only construct u0 as above such that u(t) takes negative values for

all t > 0. We consider separately the cases α < 2/N and α ≥ 2/N .

The case α < 2/N . It follows from Corollary 5.3 that given 0 <

c ≤ c there exists a changing sign self-similar solution uc of (1.1) satisfying

|x|2/αuc(t, x) → c as |x| → ∞ for all t > 0. Suppose now that σ > 2/α,

d > 0 and let u0(x) = min{uc(0, x), d|x|−σ}. We have |x|σu0(x) → d as

|x| → ∞. On the other hand, u(t) ≤ uc(t), so that u(t) takes negative

values for every t > 0.

The case α ≥ 2/N . We will use the following lemma.

Lemma 7.1. Suppose α ≥ 2/N . Given σ′ > N , there exist ũ0 ∈
C0(R

N ) and c′ > 0 such that |x|σ′
ũ0(x) → c′ as |x| → ∞ and such that

the corresponding solution ũ of (1.1) satisfies ũ(t, 0) < 0 for all t ≥ 0.

Proof. We need only show that the solution v of (3.5) with the initial

condition v(0) = ũ0 satisfies v(s, 0) < 0 for all s ≥ 0. Let h ∈ C∞(RN ),
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h ≥ 0 satisfy h(y) = |y|−σ′
for |y| > 1. Set

k =
N + σ′

4
− 1

α
> 0(7.1)

ρ = max
{

1,
4σ′(σ′ −N + 2)

σ′ −N

}
(7.2)

a = max
{

2h(0),
8

σ′ −N
e

ρ
4

∥∥∥∆h +
1

2
y · ∇h +

1 + kα

α
h
∥∥∥
L∞({|y|2<ρ})

}
(7.3)

c′ =
(σ′ −N

8

) 1
α
(‖h‖L∞ + a)−1(7.4)

Let w(s, y) = c′e−ks(h(y) − ae−
|y|2
4 ), so that by (7.1),

ws−∆w−1

2
y·∇w− 1

α
w = c′e−ks

[
−∆h−1

2
y·∇h−1 + kα

α
h+a

σ′ −N

4
e−

|y|2
4

]
.

Note that |w|α ≤ c′α(‖h‖L∞ + a)α ≤ (σ′ −N)/8 by (7.4); and so, |w|αw ≥
−c′e−ksae−

|y|2
4 (σ′ −N)/8. It follows that

ws − ∆w − 1

2
y · ∇w − 1

α
w + |w|αw(7.5)

≥ c′e−ks
[
−∆h− 1

2
y · ∇h− 1 + kα

α
h + a

σ′ −N

8
e−

|y|2
4

]
.

For |y|2 ≥ ρ, we have

|y|σ′
(
−∆h− 1

2
y · ∇h− 1 + kα

α
h
)

=
σ′ −N

4
− σ′(σ′ −N + 2)|y|−2

≥
(σ′ −N

4
− σ′(σ′ −N + 2)

ρ

)
≥ 0,

by (7.1) and (7.2). For |y|2 < ρ,

−∆h− 1

2
y · ∇h− 1 + kα

α
h + a

σ′ −N

8
e−

|y|2
4 ≥ 0,

by (7.3). Therefore, we deduce from (7.5) that w is a supersolution of (3.5).

Note that |y|σ′
v(0, y) → c′ > 0 and that w(s, 0) = c′e−ks(h(0) − a) < 0
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by (7.3). Consider now ũ0(x) = w(0, x). We have v(s, 0) ≤ w(s, 0) < 0,

which completes the proof. �

Let now σ > N and c > 0. Fix N < σ′ < σ and let ũ0 be given by

Lemma 7.1. Set u0(x) = min{ũ0(x), c|x|−σ}. We have |x|σu0(x) → c as

|x| → ∞. On the other hand, u(t) ≤ ũ(t), so that u(t) takes negative values

for every t > 0.

8. Appendix

We study here the asymptotic behavior as |x| → ∞ and as t → ∞ of

solutions of the linear heat equation. We also present an existence and

uniqueness result for the nonlinear heat equation (1.1) with initial data

u0 ∈ L1(RN ) + Lp(RN ), p < ∞.

Lemma 8.1. Let ω ∈ C(RN \ {0}) be homogeneous of degree 0 and

σ > 0. If u0 ∈ C0(R
N ) satisfies |x|σu0(x) − ω(x) → 0 as |x| → ∞, then

|x|σet∆u0(x) − ω(x) −→
|x|→∞

0,

uniformly in t ∈ [0, T ], for every T < ∞.

Proof. We have

(8.1) (4πt)
N
2 (|x|σet∆u0(x) − ω(x)) =

∫
RN

e−
|x−y|2

4t (|x|σu0(y) − ω(x)) dy.

We first consider the case u0(x) = ω(x)|x|−σ1{|x|>R}, where R > 0. We

deduce from (8.1) that

(4πt)
N
2 | |x|σet∆u0(x) − ω(x)| ≤

∫
{|y|>R}

e−
|x−y|2

4t | |x|σ|y|−σω(y) − ω(x)| dy.

Let B > 0. Given |x| > 2 min{B,R}, we break the integral I on the

right-hand side of the above inequality in three parts,

I ≤ I1 + I2 + I3 =

∫
{R<|y|<|x|/2}

+

∫
{|y|>|x|/2}∩{|x−y|>B}
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+

∫
{|y|>|x|/2}∩{|x−y|<B}

.

Since |x− y| ≥ |x|/2 on {|y| < |x|/2},

I1 ≤ e−
|x|2
16t

∫
{R<|y|<|x|/2}

| |x|σ|y|−σω(y) − ω(x)| dy ≤ C|x|N+σe−
|x|2
16t ;

and since | |x|σ|y|−σω(y) − ω(x)| ≤ K < ∞ when |y| > |x|/2, we see that

I2 ≤ Ke−
B2

8t

∫
RN

e−
|z|2
8t dz ≤ Ct

N
2 e−

B2

8t .

Finally,

I3 ≤
(∫

RN

e−
|z|2
4t dz

)
sup

{|x−y|<B}
| |x|σ|y|−σω(y) − ω(x)|

≤ Ct
N
2 sup

{|x−y|<B}
| |x|σ|y|−σω(y) − ω(x)|.

Set ρ(a) = sup
|z|=1

sup
|w|≤a

|ω(z + w) − ω(z)|, so that ρ(a) → 0 as a ↓ 0. Since

| |x|σ|y|−σω(y) − ω(x)| = |(|y|/|x|)−σω(y/|x|) − ω(x/|x|)|
≤ |(|y|/|x|)−σ − 1| ‖ω‖L∞ + |ω(y/|x|) − ω(x/|x|)|,

we deduce that for |x| > 2B and |x− y| < B,

| |x|σ|y|−σω(y) − ω(x)| ≤ C
B

|x| + ρ
( B

|x|
)
.

Therefore,

I3 ≤ Ct
N
2

( B

|x| + ρ
( B

|x|
))

;

and so,

| |x|σet∆u0(x) − ω(x)| ≤ C|x|N+σt−
N
2 e−

|x|2
16t + Ce−

B2

8t + C
B

|x| + Cρ
( B

|x|
)
,
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where C is independent of B. Setting B =
√
x, we then see that, given any

T > 0,

(8.2) | |x|σet∆u0(x) − ω(x)| ≤ εω(t, |x|),

where

εω(t, |x|) → 0,

as |x| → ∞, uniformly in t ∈ [0, T ], for every T < ∞.

We now consider the general case. Given R > 0, we write u0 = uR+vR+

wR, where uR = 1{|x|<R}u0, vR = 1{|x|≥R}|x|−σω, and wR = 1{|x|≥R}(u0 −
|x|−σω). By assumption, |wR| ≤ δ(R)1{|x|≥R}|x|−σ with δ(R) → 0 as R →
∞. Therefore,

| |x|σet∆u0 − ω| ≤ |x|σ|et∆uR| + | |x|σet∆vR − ω|
+ δ(R)| |x|σet∆(1{|x|≥R}|x|−σ) − 1| + δ(R).

Since uR has compact support, it is clear that

|et∆uR| ≤ Ct−
N
2 e−

|x|2
8t .

Using (8.2) twice, we deduce that

| |x|σet∆u0(x) − ω(x)| ≤ C|x|σt−N
2 e−

|x|2
8t + εω(t, |x|) + ε1(t, |x|) + δ(R),

and the result follows. �

Lemma 8.2. Let ω ∈ C(RN \ {0}) be homogeneous of degree 0, let

0 < σ < N and set ψ(x) = ω(x)|x|−σ. It follows that

(8.3) et∆ψ(x) = t−
σ
2 g

( x√
t

)
,

where g ∈ C∞(RN ) and |x|σg(x) − ω(x) → 0 as |x| → ∞.

Proof. Given λ > 0, we define the dilation operators dλ and Dλ by

dλϕ(x) ≡ λσϕ(λx) and Dλu(t, x) ≡ λσu(λ2t, λx) for all ϕ ∈ S(RN ) and all

u ∈ C([0,∞),S(RN )). These operators are extended by duality to S ′(RN )
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and C([0,∞),S ′(RN )), respectively. Since clearly et∆(dλϕ) = Dλ(e
t∆ϕ) for

all ϕ ∈ S(RN ), the same relation holds by duality for all ϕ ∈ S ′(RN ). Since

ψ ∈ S ′(RN ) satisfies dλψ = ψ, it follows that v(t) = et∆ψ satisfies Dλv = v

for all λ > 0. Moreover, ψ ∈ Lp(RN ) + Lq(RN ) for 1 ≤ p < N/σ < q ≤ ∞,

so that v ∈ C∞((0,∞)×R
N ) by the smoothing effect of the heat equation.

It follows that λσv(λ2t, λx) = v(t, x) for all λ > 0, i.e. v is a self-similar

solution of the heat equation. In particular, setting g = v(1) ∈ C∞(RN )

and letting λ = t−
1
2 , we obtain the formula (8.3). In addition, one verifies

easily that v(t, x) → ψ(x) as t → 0 uniformly on {|x| > ε}, for every ε > 0.

This implies that

t−
σ
2 g

( x√
t

)
−→
t↓0

ω(x),

for |x| = 1; and so, |x|σg(x) − ω(x) → 0 as |x| → ∞. �

Corollary 8.3. Given 0 < σ < N and A ≥ 0, there exists C such

that if u0 ∈ L1
loc(R

N ) satisfies |u0(x)| ≤ A(τ + |x|2)−σ
2 for some τ ≥ 0, then

|et∆u0| ≤ C(τ + t + |x|2)−σ
2 ,

for all t > 0 and all x ∈ R
N .

Proof. Let ψ(x) = |x|−σ and g = e∆ψ. It follows from Lemma 8.2

that there exists C such that g(x) ≤ C(1 + |x|2)−σ
2 , so that by (8.3),

[et∆ψ](x) ≤ C(t + |x|2)−σ
2 . Therefore,

et∆[(1 + |x|2)−σ
2 ] ≤ C(1 + t + |x|2)−σ

2 .

By scaling, et∆[(τ + |x|2)−σ
2 ] ≤ C(τ + t + |x|2)−σ

2 and the result follows. �

Corollary 8.4. If u0 ∈ L1
loc(R

N ) satisfies |x|σu0(x) → 0 as |x| → ∞
for some 0 < σ < N , then

sup
x∈RN

(t + |x|2)σ
2 |et∆u0(x)| −→

t→∞
0.

Proof. Given R > 0, let ϕR = |u0|1{|x|<R} and ϕR = |u0|1{|x|>R}. It

is clear that |et∆u0| ≤ et∆ϕR + et∆ϕR. Furthermore, ϕR ∈ L1(RN ) and
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ϕR ≤ ε(R)|x|−σ with ε(R) → 0 as R → ∞. It follows from Corollary 8.3

that

(8.4) et∆ϕR(x) ≤ ε(R)C(t + |x|2)−σ
2 ,

for all t > 0 and all x ∈ R
N . We now estimate et∆ϕR. We have

(4πt)
N
2 et∆ϕR(x) =

∫
{|y|<R}

e−
|x−y|2

4t |u0(y)| dy

≤ e−
|x|2
4t

∫
{|y|<R}

e
x·y
2t |u0(y)| dy

≤ e−
|x|2
8t

∫
{|y|<R}

e
|y|2
2t |u0(y)| dy

≤ e−
|x|2
8t e

R2

2t ‖u0‖L1({|x|<R});

and so,

(t + |x|2)σ
2 et∆ϕR(x) ≤ C(R)t−

N−σ
2 e−

|x|2
8t

(
1 +

|x|2
t

)σ
2
.

Since the function s �→ e−
s2

8 (1 + s2)
σ
2 is bounded, we deduce that

(8.5) (t + |x|2)σ
2 et∆ϕR(x) ≤ C(R)t−

N−σ
2 .

The result follows from (8.4) and (8.5) by letting t → ∞ then R → ∞. �

In the case of initial values that behave like |x|−N as |x| → ∞, there are

the following results.

Lemma 8.5. There exists C such that if ϕ(x) = (1 + |x|2)−N
2 , then

et∆ϕ(x) ≤ C log(2 + t)(1 + t)−
N
2 e−

|x|2
4t + C(1 + t + |x|2)−N

2 ,

for all t > 0, x ∈ R
N .
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Proof. Setting u(t) = et∆ϕ and v(s, y) = e
Ns
2 u(t, x) with s = log(1 +

t) and y = x/
√

1 + t, we need only show that v(s, y) ≤ C(se−
|y|2
4 + (1 +

|y|2)−N
2 ). Note that

(8.6) vs − ∆v − 1

2
y · ∇v − N

2
v = 0,

and, setting f(s, y) = se−
|y|2
4 , fs − ∆f − 1

2y · ∇f − N
2 f = e−

|y|2
4 . Consider

now φ ∈ C∞(RN ) such that φ(y) = |y|−N + |y|−N−1 for |y| > 1. It follows

that

−∆φ− 1

2
y · ∇φ− N

2
φ = −1

2
|y|−N−1 − 2N |y|−N−2 − 3(N + 1)|y|−N−3 ≥ 0,

for |y| > r0 sufficiently large. On the other hand, for |y| < r0, −∆φ− 1
2y ·

∇φ − N
2 φ ≥ −Me−

|y|2
4 if M is large enough; and so, Mf(s, y) + φ(y) is a

supersolution of (8.6). The result follows easily. �

Lemma 8.6. Let ω ∈ C(RN \ {0}) be homogeneous of degree 0. If

u0 ∈ C0(R
N ) satisfies |x|Nu0(x) − ω(x) → 0 as |x| → ∞, then

sup
x∈RN

(t + |x|2)N
2

log t
|et∆u0(x) − �(ω)Gt(x) log t| −→

t→∞
0,

where Gt(x) = (4πt)−
N
2 e−

|x|2
4t is the heat kernel and �(ω) =

1

2

∫
{|ξ|=1}

ω(ξ) dξ.

Proof. Set A(t, x) = |et∆u0(x) − �(ω)Gt(x) log t|. It follows from

Lemma 8.5 that, given K > 0,

sup
{|x|2>Kt}

(t + |x|2)N
2

log t
A(t, x) ≤ C

log t
+ C sup

{|y|2>K}
(1 + |y|2)e−

|y|2
4 ;

and so,

lim sup
t→∞

sup
{|x|2>Kt}

(t + |x|2)N
2

log t
A(t, x) ≤ C sup

{|y|>K}
(1 + |y|2)e−

|y|2
4 −→

K→∞
0.
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Therefore, we need only consider the set {|x|2 < Kt}; and so, it suffices to

show that

(8.7) sup
x∈RN

t
N
2

log t
A(t, x) −→

t→∞
0.

We show (8.7) in two steps.

Step 1. Consider first M > 0 and u0(x) = |x|−Nω(x)1{|x|>M}. By

scaling, we need only consider the case M = 1. Setting v(t) = et∆u0, we

have

(4πt)
N
2 v(t,

√
tx) =

∫
{|y|>t−

1
2 }

e−
|x−y|2

4 |y|−Nω(y) dy = I1 + I2,

where I1 =
∫
{|y|>δ} and I2 =

∫
{δ>|y|>t−

1
2 }

. First,

I1 ≤ ‖ω‖L∞δ−N

∫
RN

e−
|y|2
4 dy = (4π)

N
2 ‖ω‖L∞δ−N .

Next, we observe that

∫
{δ>|y|>t−

1
2 }

|y|−Nω(y) dy =

∫ δ

t−
1
2

dr

r

(∫
{|ξ|=1}

ω(ξ) dξ
)

= 2�(ω) log(δ
√
t).

Therefore,

|I2 − �(ω)e−
|x|2
4 log t| ≤ 2e−

|x|2
4 |�(ω) log δ|

+ ‖ω‖L∞

∫
{δ>|y|>t−

1
2 }

|e−
|x−y|2

4 − e−
|x|2
4 | |y|−N dy

≤ 2|�(ω) log δ|

+ C log(δ
√
t)‖ω‖L∞ sup

{δ>|y|>t−
1
2 }

|e−
|x−y|2

4 − e−
|x|2
4 |.

It follows from the above estimates that

∣∣∣(4πt)N
2

log t
v(t,

√
tx) − �(ω)e−

|x|2
4

∣∣∣
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≤ (4π)
N
2 ‖ω‖L∞δ−N + 2|�(ω) log δ|

log t

+ C
(1

2
+

| log δ|
log t

)
‖ω‖L∞ sup

{δ>|y|>t−
1
2 }

|e−
|x−y|2

4 − e−
|x|2
4 |.

Given ε > 0, we first fix δ > 0 small enough so that C‖ω‖L∞ sup
x∈RN

sup
{δ>|y|}

·

|e−
|x−y|2

4 − e−
|x|2
4 | ≤ ε. We then see that

lim sup
t→∞

sup
x∈RN

∣∣∣(4πt)N
2

log t
v(t,

√
tx) − �(ω)e−

|x|2
4

∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, (8.7) follows.

Step 2. Conclusion. Given M ≥ 1, let u0 = u1 + u2 with u1 =

u01{|x|<M}. Setting ϕω,M = |x|−Nω(x)1{|x|>M}, we have |u2 − ϕω,M | ≤
δ(M)ϕ1,1 with δ(M) → 0 as M → ∞ and u1 ∈ L1(RN ). Set

B =
t
N
2

log t
‖et∆u0 − �(ω)e−

|x|2
4 log t‖L∞ .

Since u0 = u1 + ϕω,M + (u2 − ϕω,M ), we have

B ≤ 1

log t
‖u1‖L1 +

t
N
2

log t
‖et∆ϕω,M − �(ω)e−

|x|2
4 log t‖L∞

+ δ(M)
t
N
2

log t
‖et∆ϕ1,1‖L∞ = B1 + B2 + B3.

Given ε > 0, we first fix M large enough so that B3 ≤ ε/3 for t large, which

is possible by Lemma 8.5. Next, it follows from Step 1 that for t large

enough B2 ≤ ε/3. Thus B ≤ ε for t sufficiently large. Hence (8.7), since

ε > 0 is arbitrary. �

We finally consider initial values that behave like |x|−σ as |x| → ∞, for

σ > N .
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Lemma 8.7. Suppose σ > N . There exists C > 0 such that if a > 0

and u0(x) = (a + |x|2)−σ
2 , then

(8.8) (a + t + |x|2)N
2 et∆u0(x) ≤ Ca−

σ−N
2 ,

for all x ∈ R
N , t ≥ 0.

Proof. By scaling, we need only consider the case a = 1. Since u0 ∈
L1(RN )∩L∞(RN ), we have the elementary estimate et∆u0(x) ≤ C(1+t)−

N
2 .

This proves (8.8) for |x|2 ≤ 1 + t. Next, we have that

(1 + t + |x|2)N
2 et∆u0(x)(8.9)

=
(1 + t + |x|2

4πt

)N
2

∫
RN

e−
|x−y|2

4t (1 + |y|2)−σ
2 dy.

We estimate∫
{|y|<|x|/2}

e−
|x−y|2

4t (1 + |y|2)−σ
2 dy ≤ e−

|x|2
16t

∫
RN

(1 + |y|2)−σ
2 dy(8.10)

≤ Ct
N
2 |x|−N ,

and, ∫
{|y|>|x|/2}

e−
|x−y|2

4t (1 + |y|2)−σ
2 dy ≤ C(1 + |x|2)−N

2

∫
RN

e−
|x−y|2

4t dy(8.11)

≤ Ct
N
2 |x|−N .

We deduce from (8.9), (8.10) and (8.11) that

(1 + t + |x|2)N
2 et∆u0(x) ≤ C(1 + t + |x|2)N

2 |x|−N ≤ C,

for |x|2 ≥ 1 + t. This completes the proof. �

Our last result concerns the initial value problem for the equation (1.1)

for initial values u0 ∈ L1(RN ) + Lp(RN ), p < ∞.

Theorem 8.8. Suppose u0 ∈ L1(RN ) + Lp(RN ) for some p < ∞. It

follows that there exists a unique solution u ∈ C((0,∞), C0(R
N )) of (1.1)
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such that |u(t) − u0| → 0 in S ′(RN ) as t ↓ 0. Moreover, u = v + w with

v ∈ C([0,∞), L1(RN )) and w ∈ C([0,∞), Lp(RN )).

Proof. Given n ∈ N, let u0,n = min{n,max{u0(x),−n}}. It fol-

lows that u0,n ∈ Lp(RN ), so that there exists a unique solution un ∈
C([0,∞), Lp(RN )) ∩ C((0,∞), C0(R

N )) of (1.1) with the initial condition

un(0) = u0,n. We deduce from Lemma 3.1 that, given n, � ∈ N,

(8.12) |un(t) − u((t)| ≤ et∆|u0,n − u0,(|.

Now, we observe that (even though possibly u0 
∈ L1(RN )) u0,n − u0,( ∈
L1(RN ) and ‖u0,n − u0,(‖L1 → 0 as n, � → ∞. Indeed, if u0 = ϕ + ψ with

ϕ ∈ L1(RN ), ψ ∈ Lp(RN ) and ϕψ = 0 then, assuming n < �,

∫
RN

|u0,n − u0,(| ≤
∫
{|u0|>n}

|u0| ≤
∫
{|ϕ|>n}

|ϕ| +
∫
{|ψ|>n}

|ψ| −→
n→∞

0.

Applying (8.12), we deduce in particular that un(t) − u((t) ∈ L1(RN ) ∩
L∞(RN ) for all t > 0 and that

(8.13) ‖un(t) − u((t)‖L1 + t
N
2 ‖un(t) − u((t)‖L∞ ≤ ‖u0,n − u0,(‖L1 → 0,

as n, � → ∞. It follows from the second inequality in (8.13) that there exists

a function u ∈ C((0,∞), C0(R
N )) such that un → u in L∞((ε,∞)×R

N ) for

every ε > 0. One sees easily that u satisfies the equation (1.1). Next, using

the first inequality in (8.13), we deduce that un−u1 is a Cauchy sequence in

C([0,∞), L1(RN )). Therefore, u − u1 ∈ C([0,∞), L1(RN )). The existence

part follows, with v = u− u1 and w = u1.

We now prove uniqueness. Let u and v be two solutions as stated. It

follows from Lemma 3.1 that

|u(t)− v(t)| ≤ e(t−s)∆|u(s)− v(s)| ≤ e(t−s)∆|u(s)− u0|+ e(t−s)∆|v(s)− u0|,

for all t > s > 0. Letting s ↓ 0, we deduce that u(t) = v(t). �
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B.C. 187, Université Pierre et Marie Curie

4, place Jussieu

75252 Paris Cedex 05, France

E-mail: cazenave@ccr.jussieu.fr

Flávio Dickstein

Instituto de Matemática
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