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Regularity of Weak Solutions of

Semilinear Elliptic Differential Equations

By Motoo Uchida

Abstract. We consider elliptic systems of semilinear differential
equations with nonlinearity of polynomial growth. We then prove that
any locally p-integrable weak solution is smooth if p � 1. We give a
lower bound, optimal in the general setting, of the exponent p.

Introduction

Let M be an open domain in Rn. Let P (x,D) be an elliptic differential

operator with smooth coefficients. Consider a polynomial F (x, u) in u with

smooth coefficients in x defined on M and the nonlinear differential equation

(0.1) P (x,D)u + F (x, u) = 0.

If p ≥ degF and u is a locally p-integrable function, F (x, u(x)) defines a

locally integrable function, and we say that u is a weak solution to (0.1) if

the equation holds in the distribution sense. The weak solutions in this sense

are not smooth in general notwithstanding the ellipticity of the equation. It

is a basic problem to see if the weak solutions u are smooth or not, and this

is discussed in several particular situations in many papers. The literature

on singular solutions to equations of type (0.1) is huge (and the results are

deep). However, in these literatures, we can not find any regularity theorem

proved for (0.1) in a general setting. (Cf. however [T2, Chapter 14] for a

systematic discussion on methods of establishing regularity of solutions to

nonlinear elliptic equations.)

The purpose of this paper is to establish a regularity theorem in a sim-

ple, general setting (i.e., without any technical assumption) for semilinear
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elliptic equations with polynomial nonlinearity, and we prove the following

quite general result.

Let m = ordP . We always assume m ≥ 1. Let F be a continuous (resp.

smooth1) function defined on M×C. Let γ be a non-negative real number,

and assume

|F (x, u)| ≤ A|u|γ + B, with A, B ≥ 0.

We then have

Theorem 0.1. Let p ≥ max{1, γ} and assume

(0.2) p > (γ − 1)n/m.

If a function u in Lp,loc(M) satisfies

(0.3) P (x,D)u + F (x, u) = 0 in D′(M),

then u is in Lm
q for any q > 1 in M (resp. smooth in M in the case where

F is smooth).

Corollary 0.2. Let γ ≥ 1. Assume one of the following: (a) m ≥ n,

or (b) m < n and γ < n/(n−m). If u ∈ Lγ,loc(M) and satisfies (0.3), u

is in Lm
q for any q > 1 (resp. smooth) in M .

Lm
q denotes the sheaf of germs of functions u which are locally in the

Sobolev space of order m in the sense of Lq (i.e., Dαu is locally q-integrable

if |α| ≤ m).

It is immediate to extend Theorem 0.1 to overdetermined elliptic sys-

tems. See Section 1 for the precise statement. Note however that we need

a microlocal point of view in order to treat the overdetermined case.

As we shall see in Section 3, if p < (γ − 1)n/m, we can not expect

in general to establish regularity of locally p-integrable weak solutions of

equation (0.1). Hence (0.2) is the optimal bound of the exponent p (except

for the equality case).

Corollary 0.2 is a quantitative description of the well-known (but not

proved in the literature) fact that the solutions to elliptic differential equa-

tions are smooth if the nonlinearity is weak.

1In this paper, a smooth function means a function of class C∞.
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1. Main Result

Let M be an open domain in Rn.

Notation. D′ denotes the sheaf of distributions on M . For p ≥ 1, Lp,loc

denotes the sheaf of locally p-integrable functions, and Lp+0,loc the union

of Lq,loc, q > p. L∞,loc denotes the sheaf of locally bounded functions.

Let P (x,D) be an n1 × n0 matrix of differential operators on M with

smooth coefficients. In the following m denotes the order (the maximum

of the orders of matrix elements) of P . Let F (x, u) be a smooth function

(valued in Cn1) defined on M ×Cn0 .

For an n0-vector valued unknown function u in x, we consider the dif-

ferential equation

(1.1) P (x,D)u + F (x, u) = 0.

Let T ∗M denote the cotangent bundle of M , π : T ∗M → M the pro-

jection. In order to make a precise definition of the ellipticity of P , let us

set E = M × Cn0 and E′ = M × Cn1 , and consider them (trivial) vector

bundles on M .

Definition 1.1. We say that a matrix of differential operators P of

order m is elliptic if its m-symbol σm(P ) yields an injective bundle map

π∗E → π∗E′ outside the zero section of T ∗M .

The following theorem is then well known.

Theorem 1.2. Let P be an elliptic matrix of differential operators of

order m in the sense of Definition 1.1. Let F (x, u) be a smooth (resp.

continuous) function in x and u. Let u be a locally bounded function which

satisfies equation (1.1). Then u is smooth (resp. in Lm
q for any q > 1) in

M .

We now assume that there exist a non-negative number γ, A ∈
L∞,loc(M) and B ∈ Ln+0,loc(M) such that

(1.2) |F (x, u)| ≤ A(x)|u|γ + B(x).
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Here | · | denotes an hermitian norm of Cn1 (resp. of Cn0) in the left-hand

(resp. right-hand) side.

If p ≥ max{1, γ}, F (x, u) defines a locally integrable section of Cn1 for

any locally p-integrable function u. The principal result of this paper is

Theorem 1.3. Let P be an elliptic matrix of differential operators of

order m in the sense of Definition 1.1. Let F (x, u) be a smooth (resp.

continuous) function in x and u satisfying (1.2). Let p ≥ max{1, γ} and

assume

p > (γ − 1)n/m.

Let u be a locally p-integrable function which satisfies equation (1.1). Then

u is smooth (resp. in Lm
q for any q > 1) in M .

2. Proof

For p ≥ 1 and s ∈ R, let Ls
p denote the sheaf of germs of distributions

which are locally in the Sobolev space of order s in the sense of Lp. L0
p is

denoted simply by Lp.

Let us first recall the following theorem of Meyer.

Lemma 2.1 [M, Theorem 1]. Let p > 1 (p �= ∞), and s ∈ R. Let M

be a smooth real manifold of dimension n. Let F (x, y) be a smooth function

in (x, y) ∈ M × CN . Let u ∈ Ls
p(M)⊕N . If s > n/p, then F (x, u) is in

Ls
p(M).

For the later use of Theorem 1.2, we recall its proof.

Proof of Theorem 1.2. Let u be a locally bounded Cn0-valued func-

tion. Then F (x, u) is locally in L∞ and in particular in Lp, and it follows

from the ellipticity of P that u is a section of Lm
p for any p > 1 (by Lp

boundedness of the left microlocal parametrix of P [T1, Chapter XI, The-

orem 2.5]). Assume F to be smooth. By Lemma 2.1, F (x, u) is in Lm
p if

p > n/m. It then follows again from the ellipticity of P that u is in L2m
p

for p > n/m. Repeating this argument, we see that

u ∈
⋂

k∈Z
Γ(M,Lk

p(E)) = Γ(M,E)(= the space of smooth sections of E). �
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We now prove Theorem 1.3.

Let us recall the following classical fact. We give a simple proof to it.

Lemma 2.2. Let M be a domain of dimension n. Then L1,loc(M) is

contained in Ls
p(M) if s + n(1 − 1/p) < 0 and p > 1.

Proof. This follows from the identity f = f ∗ δ(x) for f ∈ D′(Rn)

and the fact that the delta function belongs to Ls
p(R

n) if s+n(1−1/p) < 0

and p > 1. �

Proof of Theorem 1.3. We may assume γ ≥ 1.

Case I: p > γ. We may assume in (1.2) that B ∈ Ln′(M) with n′ > n.

Let

q = max{n/m, 1}.
Let u be a locally p-integrable Cn0-valued function satisfying (1.1). We may

assume p/γ ≤ n′, by making p smaller if necessary. If p > γ, F (x, u(x))

is locally p/γ-integrable, and it follows from the ellipticity of P that u is

in Lm
p/γ . We now prove that, if p > γ and p > (γ − 1)q (which is the

hypothesis of Theorem 1.3), u is locally in Lm
q′ for some q′ > q. If p/γ > q,

this is trivial. Suppose p/γ ≤ q. Let us take δ > 0 so that

(γ − p/q)(1 + δ) < 1 and (1 + δ)q < n′.

By the Sobolev embedding theorem, if p/γ < q, we have

Lm
p/γ ⊂ Lp/(γ−p/q) ⊂ L(1+δ)p.

If p/γ = q, Lm
p/γ is a subsheaf of Lr for any r > 1; therefore, in particular,

Lm
p/γ ⊂ L(1+δ)p.

Thus u is locally (1+δ)p-integrable on M , and F (x, u) is locally (1+δ)p/γ-

integrable. It then follows again from the ellipticity of P that

u ∈ Lm
(1+δ)p/γ(M,E).

We can repeat this argument as long as (1 + δ)Np/γ ≤ q (by replacing p by

(1 + δ)Np), and we have the claim above.
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By the Sobolev embedding theorem, u is then continuous.

Thus we can assume that u is a continuous function and satisfies (1.1). It

then follows from Theorem 1.2 that u is in Lm
q for any q > 1 and is smooth

in the case where F is smooth.

Case II: p = γ. Let u be a locally γ-integrable function on M and satisfy

(1.1). Since F (x, u(x)) is a locally integrable function on M , it follows from

Lemma 2.2 and Lp boundedness of the left microlocal parametrix of P that

u is in Lq,loc(M) if n(1 − 1/q) < m. Hence u is locally q-integrable for

any q > 1 if m ≥ n, and for any q < n/(n − m) if m < n. If we assume

γ < n/(n − m) in the case m < n, we are reduced to establishing the

regularity of u in the case I. �

Remark. By the proof above, it is sufficient to assume that the non-

linear term F satisfies (1.2) with B ∈ Lq+0,loc(M), where

q = max{n/m, 1}.

3. An Example

Let U be an open ball in Rn with centre at 0. Let m be a positive even

integer, and γ > 1. Let � = D2
1 + · · · + D2

n, Di = ∂/∂xi, and consider the

differential equation

(3.1) �ku = uγ ,

with k = m/2, on U . If

(n− 2j)(γ − 1) �= m for j = 1, . . . , k,

this equation has a spherically symmetric solution on U \ {0} of the form

(3.2) u = C‖x‖−m/(γ−1)

with C ∈ C, C �= 0. For any p < (γ − 1)n/m, u is p-integrable on U \ {0}.
If (n−m)γ > n, since γ < (γ − 1)n/m, uγ is integrable on U \ {0}.
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Suppose now (n−m)γ > n. Let us denote by the same u the Lγ,loc

function on U given by extending u to the whole U . If we can find p > 1

so that

(3.3) p < (γ − 1)n/m and p ≥ n/(n−m),

since u is p-integrable and the right-hand side uγ is integrable, it follows

from a theorem of Bochner [B] that u satisfies (3.1) in D′(U). Since (3.3)

is possible if (and only if) (n−m)γ > n, we always get a non-trivial spher-

ically symmetric solution u on the whole U from (3.2).

Since this u has a singularity of ‖x‖−α at x = 0, we have

Proposition 3.1. If (n−m)γ > n, we have a discontinuous Lγ,loc

solution of the differential equation (3.1) which is locally p-integrable for

any p < (γ − 1)n/m.

Compare this with Theorem 0.1, from which it follows that a weak so-

lution of (3.1) is of class Cm−ε for any ε > 0 (and smooth if γ is an integer)

if it is locally p-integrable for any p > (γ − 1)n/m.
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