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Boundedness of Fano Threefolds with Log-Terminal

Singularities of Given Index

By Alexandr Borisov

Abstract. We prove that all Fano threefolds with log-terminal
singularities of given index belong to finitely many families. This result
was previously obtained by the author in the case of unipolar Fano
varieties.

1. Introduction

This paper is concerned with Fano varieties with log-terminal singular-

ities. Fano varieties and log-terminal singularities play very important role

in modern birational algebraic geometry (cf. [8], [9], [12]).

The main goal of this paper is to prove the following theorem.

Theorem 1.1. For any n ∈ N the family of Fano threefolds with log-

terminal singularities of index n is bounded.

This theorem is the three-dimensional case of the following conjecture

originally proposed by V. Batyrev. It was previously obtained by the au-

thor in [4] under the additional assumptions that X is unipolar, i.e. it is

Q−factorial and the Picard number ρ(X) is equal to 1.

Conjecture 1.1 (Batyrev). For any two fixed natural numbers k, n

there are just finitely many families of Fano varieties of dimension k with

log-terminal singularities of index n.

Theorem 1.1. has several noteworthy corollaries.

Corollary 1.1. The family of Fano threefolds with rational Goren-

stein singularities is bounded.

1991 Mathematics Subject Classification. 14J45.

329



330 Alexandr Borisov

Corollary 1.2. Suppose X is a Fano threefold with log-terminal sin-

gularities. Then the algebraic fundamental group of its smooth locus is finite.

Also, combined with the recent work of Kollár, Miyaoka, Mori and Tak-

agi it implies boundedness of Fano threefolds with canonical singularities

(cf. [18]).

Through the above application and by itself, Theorem 1.1 is a step

towards proving the following stronger conjecture, proposed independently

by the author (cf. [4]) and V. Alexeev (cf. [2]).

Conjecture 1.2 (Borisov-Alexeev). For any fixed n ∈ N, ε > 0 there

are just finitely many families of n−dimensional Fano varieties with ε−log-

terminal singularities.

This conjecture is important for the so-called log Sarkisov Program (cf.

[6]). Some partial results towards it are due to Alexeev and Nikulin (in di-

mension 2), the author and L. Borisov (in the toric case), and Y. Kawamata

(cf. [10]). The boundedness of smooth Fano varieties in any given dimen-

sion was proven by Kollár, Miyaoka, and Mori (cf. [16]). Their method

(the “rational curve surgery”) was the basis of the method of [4]. Recently,

Kollár, Miyaoka, Mori and Takagi proved boundedness of three-dimensional

Fano varieties with canonical singularities (using the result of this paper).

Also recently, an entirely new approach to the boundedness of Fano varieties

was proposed by Ziv Ran (cf. [22], [23]). It is based on studying sheaves of

high order differential operators on the plurianticanonical bundles, and has

some potential to compete with the rational curve surgery.

Also, H. Tsuji recently announced the proof of Batyrev conjecture in

any dimension, under extra assumptions that X is unipolar (cf. [25]). His

methods are analytic, and are yet to be independently verified.

In this paper we employ the techniques of [4] together with some new

ideas. These new ideas include the following.

1. Using Alexeev Minimal Model program with suitable boundary to find

horizontal extremal contractions.

2. Kollár’s effective Base Point Freeness theorem.
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3. Using Kawamata’s result on the length of extremal curves with suit-

able boundary to avoid gluing curves in some cases.

The paper is organized as follows. In section 2 we consider the problem

in dimension 2. Of course, Batyrev conjecture in dimension 2 was first

proven by Nikulin in [21]. But the rational curve surgery provides a very

easy proof. Also in section 2 we discuss some reformulations of the problem

that follow from Kollár’s Effective Base Point Freeness theorem.

In section 3 we prove that, except for a bounded family, all Fano three-

folds with log-terminal singularities of given index n contain a covering

family of rational curves {l} such that l · (−KX) is bounded in terms of n,

and the rationally connected fibration associated to {l} has fibers of dimen-

sion 2.

In section 4 we complete the proof of Batyrev conjecture in dimension

three.

Notations. We utilize the notations of [4]. That is, we will usually

identify curves on different birationally equivalent varieties if they coincide

in their general points. The identified curves will be usually denoted by the

same symbol. The same convention will be used for the two-dimensional

subvarieties. If it is necessary to point out that, say, a prime divisor S is

considered on a variety X it will be denoted by SX . Another convention is

that {l} will denote the family of curves with a general element l and {H}
will denote the LINEAR system of Weil divisors with a general element

H. Whenever we have a family of curves, a general element is reduced and

irreducible unless the opposite is explicitly specified. It will be clear in every

particular case why these conventions agree with each other.

Additionally, by a constant c or c(n) we will mean some positive constant

that only depends on n. The value of c can be different in different parts of

the proof.
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2. Two-Dimensional Case and Some Easy Equivalences

We begin with the following theorem, which is the two-dimensional case

of the conjecture of Batyrev, mentioned above.

Theorem 2.1. For any n ∈ N the family of log del Pezzo surfaces of

index n is bounded.

Proof. Suppose X is a log del Pezzo surface of index n. By the result

of Miyaoka and Mori (cf. [19]), there exists a covering family {l} of rational

curves on X such that l · (−KX) ≤ 4. If a general l passes through some

singularity of X then by Lemma 2.2 of [4], (−KX)2 is bounded. This is

because in dimension 2 for any log-terminal singularity x0 ∈ X mult(x0) ≤
2 · index(x0).

If a general l is contained inX\Sing(X), consider the minimal resolution

(or terminal modification) π : Y → X. There are two cases.

1) Two general points of Y can be connected by a chain of at most two

curves from {l}.
2) Two general curves from {l} do not intersect each other. In this case

l2 = 0, −KX · l = −KY · l = 2.

In the first case (−KX)2 ≤ 2!(2 · 4)2 = 128. (cf., e.g., [17]).

In the second case, because all log del Pezzo surfaces are rational, there

exists a rational curve L on Y such that L·l > 0. Applying Mori’s bend-and-

break procedure to it, we can find a new rational curve L
′
, such that L

′ ·l > 0

and L
′

does not admit a non-trivial deformation with two fixed points.

This means, in particular, that L
′ · (−KY ) ≤ 3. Also, L

′ ·KY ≤ L
′ ·KX . So

L
′ ·KY ≤ −1. By one of the gluing lemmas of Kollár-Miyaoka-Mori (cf. [16])

we can glue together L
′

and at most 2 copies of l to obtain a new family

of rational curves l
′
, which connects two general points of Y . Therefore

(−KX)2 ≤ (3 + 2 · 2)2 = 49.

So in all cases (−KX)2 is bounded. The family of such log del Pezzo

surfaces is bounded by the results of Kollár (cf. [13]). �
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Remark. Instead of applying the gluing lemma above, one can use

a simple Riemann-Roch argument. We chose the above proof only for its

similarity with our proof of the three-dimensional case.

The following theorem is a corollary of the results of Kollár.

Theorem 2.2. Suppose X is a Fano variety of dimension k with log-

terminal singularities of index n. Then we have the following.

1. For some natural number N that only depends on k, the Cartier divisor

−N · n ·KX is very ample. For k = 3 one can choose N = 4320.

2. For every k the following two statements are equivalent.

a) The family of such varieties is bounded.

b) The “degree” (−KX)k is bounded.

Proof. The first assertion is a direct corollary of the Effective Base

Point Freeness theorem of Kollár (cf. [13], 1.1, 1.2). For the second asser-

tion we only need to prove that (b) implies (a). If (b) is satisfied then by

the result of Kollár and Matsusaka (cf. [15]) all coefficients of the Hilbert

polynomial of (−nKX) are bounded. Together with the first assertion this

implies the result. �

The following theorem shows that instead of bounding (−KX)k one can

also bound the dimension of the space of global sections of big enough

multiple of (−nKX).

Theorem 2.3. Suppose X, n, k are as above. Then there is a constant

A that only depends on k with the following property.

For all l ≥ 2k, (−nKX)k ≤ A · h0(l · (−nKX))

Proof. By the Kawamata-Viehweg vanishing theorem (cf. [12]), for

all i ≥ 0 h0(−inKX) = χ(−inKX).

So f(i) = h0(−inKX) is a polynomial of degree k for i ≥ 0. It obviously

has the following five properties.

1. f(0) = 1

2. f(l) = h0(l · (−nKX))
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3. f(i) ≥ 0 for all i ≥ 0

4. If for some i ≤ l, f(l − i) > 0, then f(i) ≤ f(l)

5. The highest degree term of f is (−nKX)k

k! xk

Because f is not identically zero, it has at most k integer roots. So for

any fixed l ≥ 2k one can find a sequence of k integers 1 ≤ i1 < i2 < ... <

ik ≤ 2k such that for all j, f(l − ij) > 0. By the property (4) this implies

that f(ij) ≤ f(l). Also f(0) = 1 ≤ f(l), because otherwise f would vanish

at points ij and l. The only way it could happen without getting (k + 1)

zeroes is if ik = 2k = l. But in this case f(k) = 0 and f vanishes for at least

half of the (2k− 2) numbers 1, 2, ..., (k− 1), (k+ 1), ..., (2k− 2), (2k− 1). So

we get (k + 1) zeroes anyway.

There are just finitely many possibilities for the sequence {ij}. For each

of them, f(x) is determined by its values at 0 and ij , j = 1, 2, ...k. And

we can use the above inequalities and Lagrange interpolation formula at

the above points to estimate the highest coefficient of f(x) above by some

multiple of f(l). Combining these estimates with the property (5) proves

the theorem. �

Remark. The constant 2k in the above theorem can probably be im-

proved. See, in particular, [4], Lemma 2.1. It would be more important,

however, to drop the dependence on n. The problem is, of course, that this

would require some Riemann-Roch theorem for Weil divisors, and h0(−iKX)

is in general not a polynomial for i ≥ 0.

By the above theorems, to prove the Batyrev conjecture in dimension

3 it is enough to obtain a bound on the self-intersection or the dimension

of the space of global sections of the very ample divisor H = −4320nKX .

This is going to be our goal. Many of our constructions will be carried out

under the assumption that h0(H) or H3 is sufficiently large.

3. Enlarging the Miyaoka-Mori Family

In the remainder of the paper we will use the notion of rationally con-

nected fibration associated to a covering family of rational curves. We refer

to [7] for the construction (cf. also [16]).
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Theorem 3.1. Suppose X is a 3-dimensional Fano variety with log-

terminal singularities of fixed index n. Then for some constant c either

(−KX)3 ≤ c or there exists a covering family of rational curves {l} on X

with the following properties.

1) The degree l ·H ≤ c

2) The rationally connected fibration associated to {l} has fibers of di-

mension 2.

Proof. Suppose X is as above. By Miyaoka-Mori theorem (cf. [19])

there is a covering family {l} of rational curves onX such that l·(−KX) ≤ 6.

Consider the associated rationally connected fibration. If its image is a

point, (−KX)3 is bounded (cf., e.g. [4]). If its image is a curve then we are

done. So we just need to consider the case when the associated rationally

connected fibration has image of dimension 2. In this case the family {l} is

the family of fibers. If a general l passes through the singularities of X, one

can use the methods of [4], sections 5,6, to construct a new family whose

rationally connected fibration has fibers of dimension at least 2, and degree

is bounded in terms of n. So we can assume that {l} doesn’t pass through

Sing(X).

In this case {l} is a free family on X \ Sing(X) in the terminology of

Nadel ([20]). Consider the associated rationally connected fibration on the

terminal modification π : Y → X. That is, we have a Zariski open subset

U of Y and a proper morphism ϕ : U → Z. Take a “general” curve C on

Z. Consider the divisor D which is a Zariski closure of ϕ−1(C). By the

definition of Y , D is Q−Cartier, k ·D is Cartier for some k ∈ N. Consider

an ample Q−Cartier divisor M on Y which is obtained by subtracting some

exceptional divisors of π from π∗(−KX).

By construction D · l = 0 and (KX + M) · l = 0. For big enough and

divisible enoughm, mM−kD is very ample. Let’s denote it by F . Then one

can apply the Alexeev Minimal Model Program (cf. [1]) to (Y,KY + 1
m |F |).

Let us denote the end result of this program by Y1. From the construc-

tion there exists a one-dimensional Zariski closed subset S of Y1 such that

the restriction of (πYY1
)−1 to U = Y1 \ S is an isomorphism.

We have several possibilities for Y1. Suppose first that Y1 is a minimal

model. Then KY1 + 1
m |F |Y1 is numerically effective on Y1. By intersecting

two general hyperplane sections we can choose a covering family of (not

necessarily rational) curves {C} such that C ⊂ U and CY ·D > 0. Then we
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get a contradiction as follows.

0 ≤ (KY1 +
1

m
|F |Y1) · C = (KY +

1

m
|F |) · CY ≤ − 1

m
(kD) · CY < 0

So the Y1 is not a minimal model, and thus we have a Mori fibration Y1 → Z.

If dimZ = 0 then we can immediately bound (−KX)3. Indeed, for any

positive divisible enough p we have the following inequalities.

h0(−pKX) ≤ h0(−pKY ) ≤ h0(−pKY1)

By the Kawamata-Vieweg vanishing and Riemann-Roch, h0(−pKY1) grows

like 1
3!(−KY1)

3 · p3 and h0(−pKX) grows like 1
3!(−KX)3 · p3. By the result

of Kawamata [10] (cf. also [18]) (−KY1)
3 is bounded. Thus (−KX)3 is

bounded.

If dimZ = 1 then the fibers are smooth del Pezzo surfaces. Because they

are rational and form a bounded family, we can choose a covering family of

curves {L} on Y1 such that a general L belongs to a general fiber, connects

two general points of the fiber, and has bounded intersection with the anti-

canonical class. We can then pull it back to Y and down to X. This family

would obviously satisfy our requirements. Note also that this would be a

coextremal ray on Y in the terminology of Batyrev [3].

If dimZ = 2 then we claim that the family of fibers of the fibration is

not {l}. Suppose it is {l}. If at any step of the program we contract a prime

divisor intersecting {l} then {l} would cease to be free and would never

become free again. Thus no such contraction ever occured. But this means

that

(KY1 +
1

m
FY1) · l = (KY +

1

m
FY ) · l

The left hand side of the above equality is negative, while the right hand

side is zero by the definition of F and because l doesn’t pass through the

singularities of X.

So the family of fibers {L} is not {l}. It is a free family on Y1 and

−KY1 · L = 2. By pulling it back to Y we get a free family on Y with the

same intersection with −KY . We can then glue it with {l} (see [17]) to get

the desired covering family of rational curves. �
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4. Completion of the Proof

First of all, let’s define some numberM = M(n) which will play a crucial

role in the proof of the main theorem.

Lemma 4.1. For every n there exists some constant M ≥ 4320n such

that for any del Pezzo surface with log-terminal singularities of index divid-

ing n, and any divisor D ∈ |−4320nKS |, the pair (S, 1
MD) is a log-terminal

pair.

Proof. It follows essentially from the boundedness of del Pezzo sur-

faces of given index. First of all, the multiplicity of any of the irreducible

components of D can not be too big because H ·D is bounded for some very

ample H on X (which can be actually chosen to be some fixed multiple

of (−nKS)). So for big enough M, (S, 1
MD) is a log pair, i.e. 1

MD is a

boundary. Moreover, on the minimal resolution π : Y → S the exceptional

divisors have simple normal crossings. For every such exceptional divisor E

there is a covering family of curves {L} on Y that intersect E, such that

L · (−KS) is bounded. This implies that for every divisor D as above, the

coefficient of E in π∗D is bounded. So for each Y we have only finitely

many possibilities for the linear system that the strict preimage D′ of D

belongs to. Altogether we have a bounded family of pairs (Y, π∗D). For

each pair there exists the minimal number M(Y, π∗D) such that the pair

(S, 1
MD) is log-terminal. This M can be found by successive blow-ups of Y .

Clearly, it is Zariski semi-continuous as a function of the pair (Y, π∗D), so

it is uniformly bounded. �

Remark. The bound in the above lemma is not explicit. It would be

very interesting to find an explicit bound for M in terms of n.

In the remainder of this section we consider the Fano threefolds X with

log-terminal singularities of index n, which are equipped with the family

of rational curves {l} from the statement of Theorem 3.1. Let us denote

the family of fibers of its rationally connected fibration by {S}. This is a

LINEAR system of divisors (cf. [4]).

We have the following easy proposition.
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Proposition 4.1. In the above situation and notations, there exist

constants c1 and c2 depending only on the degree H · l such that for a gen-

eral S

(H|S )2 ≤ c1, and h0(H|S ) ≤ c2.

Proof. Possibly gluing {l} with itself once, we may assume that two

general points of S are connected by some curve l. Suppose l ·H = m. By

Lemma 2.2 of [4], (H|S )2 ≤ m2. To bound h0(H|S ), consider (m+ 1) curves

l and (m + 1) points on each of them. If a section of H0(H|S ) vanishes at

all these points, it has to vanish at all these curves. This implies that it is

identically zero on S, by intersecting with a general l, because l · l ≥ 1. So

h0(H|S ) ≤ (m+ 1)2.

Theorem 4.1. In the above situation and notations, suppose that the

base locus of |SX | contains a curve. Then H3 is bounded.

Proof. The divisor H is very ample on X. Consider the family of

(probably not rational) curves {C} = H|S . By the above proposition, C ·H
is bounded. Because X has log-terminal singularities of index n, and the

base locus of |SX | contains a curve, we can find a point x0 in this base

locus, with multiplicity of the local ring bounded by 2n. Then the curves

C passing through this point are not contained in any closed subvariety of

X. So H3 is bounded (cf., e.g. [4], Lemma 2.2.) �

Remark. If X is Q−factorial, and ρ(X) = 1, the conditions of the

above theorem are always satisfied. So in this case one can use the above

theorem instead of the argument of [4], section 4, to get a bound for (−KX)3,

which is polynomial in n.

For the remainder of this section we will assume that the base locus of

SX contains no curves. If X is Q−factorial, this implies that it is empty,

because it is equal to the intersection of two general elements of the one-

dimensional linear system SX . In general, it could consist of finitely many

points.

By the Log Minimal Model Program (cf., e.g. [14], 6.16; also [24]) there

exists a small partial resolution of singularities π : Y → X such that Y is

Q−factorial, and S is π−nef. (If X is Q−factorial then Y = X). Because

SY is π−nef, the base locus of SY contains no exceptional curves of π, so
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it is empty. Therefore, |SY | is a free linear system, two general SY do not

intersect. The variety Y has log-terminal singularities of index n. The anti-

canonical class −KY = π∗(−KX). So by trivial adjunction a general SY is

a del Pezzo surface with log-terminal singularities of index dividing n.

By the Cone Theorem on Y , we have at least one of the following.

1. One of the extremal curves of π, say L, intersects SY .

2. There is an extremal contraction on Y whose fibers intersect SY .

In the second case we could have a fibration, a divisorial contraction, or

a small contraction. In the fibration case, we can get a covering family of

curves on the fibers with bounded intersection with −KY , whose rationally

connected fibration is different from |S|. So we can glue together this family

and {l} to get a new family, which connects two general points of X and

has bounded intersection with H. This implies boundedness of H3, so we

are left with the following three possibilities.

1. There is a divisorial contraction on Y whose fibers intersect S.

2. There is an exceptional curve L on Y , such that L ·KY < 0, and L

intersects S.

3. One of the extremal curves of π, say L, intersects SY . In this case

L ·KY = 0.

The first case is the simplest. It is treated in the following proposition.

Proposition 4.2. Suppose X and Y are as above, and we have a di-

visorial contraction on Y . Then h0(H) is bounded.

Proof. Suppose E is the exceptional divisor of the contraction. As

in [4], section 6, we can find a covering family {L} on Y such that −3 ≤
KY1 · L ≤ 0 and −E · L ≤ 3. (The variety Y in our case has log-terminal

singularities rather than terminal, but the Subadjunction still works).

This implies that L ·H is bounded. Suppose L ·H = d. By Proposition

4.1, h0(H|S ) is bounded. Suppose it is equal to e. Also fix a constant M

from Lemma 4.1. Then h0(H)−h0(HY − (3M +d+1)SY ) ≤ (3M +d+1)e.

If h0(H) is big enough, then there exists some D ∈ |HY − (3M +d+1)SY )|.
Let us write D = a · E + F, where E /∈ SuppF. By Lemma 4.1 (S, 1

MD|S )
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is a log pair. This means that 1
MD|S is a boundary. Therefore a ≤M. The

following chain of inequalities provides a contradiction.

d = L ·H = (3M + d+ 1)L · S + L ·D ≥ (3M + d+ 1)L · S + aL · E ≥

≥ (3M + d+ 1)L · S − 3M ≥ (d+ 1) �

Note that in this case we did not use the full strength of Lemma 4.1. In

particular in this case we could actually choose M to be polynomial in n.

We will however need the full strength of the lemma for the remaining two

cases. We will treat them together in the following proposition.

Proposition 4.3. Suppose X and Y are as above, and we have a small

contraction on Y with some fiber L intersecting S. Then h0(H) is bounded.

Proof. Suppose L is as above. Recall again a numberM from Lemma

4.1. By Proposition 4.1, if h0(HX) = h0(HY ) is big enough then h0(HY −
(3M)SY ) > 0. Take some F ∈ |HY − (3M)SY | and consider the divisor D

which consists of all the components of F containing L.

By the definition of M the log pair (Y, 1
MD) is log-terminal in the neigh-

borhood of the general point of L. Consider the log-terminal modification

(Y1, B1) of (Y,B), where B = 1
MD (cf. [14], 6.16, d=1). The log adjunction

formula for the morphism πY1
Y is the following.

KY1 +B1 = (πY1
Y )∗(KY +B) +

∑
αiAi,

where Ai are exceptional divisors of πY1
Y and all αi ≤ 0 because KY1 +B1 is

relatively nef.

Because (Y, 1
MD) is log-terminal in the neighborhood of the general point

of L, none of the divisors Ai lies above L. So we can consider the curve

L1 on Y1 which is the closure of the pullback of the general point of L.

Obviously, L1 is an extremal curve on Y1, and L1 ·(KY1 +B1) ≤ L·(KY +B).

By Kawamata’s theorem on the length of an extremal curve (cf. [11]),

−2 ≤ L1 · (KY1 +B1).

So we have the following chain of inequalities.

−2 ≤ L1 · (KY1 +B1) ≤ L · (KY +B) ≤ L · (KY +
1

M
F ) =
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= L · (KY +
1

M
(HY − 3M · S)) = L ·KY · (1 − 4320n

M
) − 3L · S ≤ −3

The above contradiction completes the proof. �
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