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Irrationality of Fast Converging Series of

Rational Numbers

By Daniel Duverney

Abstract. We say that the series of general term un �= 0 is fast
converging if log |un| ≤ c2n for some c < 0. We prove irrationality
results and compute irrationality measures for some fast converging se-
ries of rational numbers, by using Mahler’s transcendence method in
the form introduced by Loxton and Van der Poorten. With very weak
assumptions on sequence un, this method allows to obtain only irra-
tionality results.

1. Introduction

Let (un) be a sequence of complex numbers. We say that
∑+∞

n=0 un is a

fast converging series if

(1.1) |un| ≤ Ch2n

for some constants C ∈]0,+∞[ and h ∈]0, 1[.

In this paper, we will be interested in the irrationality properties of fast

converging series of rational numbers of the form

(1.2) S =
+∞∑
n=0

an
bnun

,

with an ∈ Z � {0}, bn ∈ Z � {0}, un ∈ N � {0} and satisfying

(1.3)




lim
n→+∞

un = +∞

cu2
n ≤ un+1 ≤ c′ u2

n for some positive constants c and c′

an = O(uαn) for some constant α ∈]0, 1[

bn = O(uεn) for every ε > 0.
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It is well-known since Liouville [15] that one can prove irrationality and

transcendence results by approximating real numbers by sequences of ra-

tionals with good convergence properties. More precisely, the basic (and

elementary) result in diophantine approximation theory, with respect to

irrationality problems, is the following

Theorem 1.1. Let α ∈ R. Suppose that there exists a sequence Pn/Qn

of rational numbers satisfying

0 <

∣∣∣∣α− Pn
Qn

∣∣∣∣ ≤ ε(n)

Qn

with lim
n→+∞

ε(n) = 0. Then α is irrational.

For a proof, see for example [5, Theorem 1.5].

In some elementary cases, Theorem 1.1 allows to prove the irrationality

of α when α is a series of rational numbers and Pn/Qn is the partial sum of

order n. The most classical proofs of irrationality using this method date

back to Fourier [10], who gave the now standard elementary proof of the

irrationality of e, and to Liouville himself [15], who proved the irrationality

of

(1.4) θ =
+∞∑
n=0

1

mn2 , m ∈ N � {0, 1}.

However, these two proofs rely heavily on two facts :

- First, the numerators in the series are all equal to 1.

- Second, every denominator in the series divides the following one : n!

divides (n+ 1)!, and mn2
divides m(n+1)2 .

Hence, these two series are Engel series ([5, Chapter 2], [22, Chapter

4], for example), for which theorem 1.1 allows to obtain an irrationality

criterion.

However, it seems impossible to obtain a general criterion for series

converging so slowly. On the contrary, conditions (1.3), which rest only on

the speed of convergence of the series (and not on the arithmetical properties

of its terms), allow to obtain such a criterion (Theorem 3.1 below).

The scope of the paper is as follows. In section 2, we will present a

brief review of the history of fast converging series and their irrationality
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properties. As in this paper we are not interested in their transcendence

properties, we will only mention Mahler’s method [20] when it works. In

section 3, we will present our new results, including irrationality statements

and computation of irrationality measures. Section 4 will be devoted to the

proof of our main irrationality statement (Theorem 3.1.). In section 5, we

will prove corollaries to Theorem 3.1. Finally, in section 6, we will prove

theorem 3.2, which gives irrationality measures for fast converging series.

2. A Brief History of Fast Converging Series

2.1. Sylvester and Lucas

The oldest result on the irrationality of fast converging series seems to

be due to Sylvester [24], who proved in 1880

Theorem 2.1. Let α ∈]0, 1]. Then α can be expanded, in a unique

way, in a series of the form

(2.1) α =
+∞∑
n=0

1

un
,

with un ∈ N � {0, 1} and un+1 ≥ u2
n − un + 1 for every n ∈ N. Moreover, α

is rational if and only if ,

(2.2) un+1 = u2
n − un + 1

for every n ≥ N0.

For a proof of Theorem 2.1, see [24], [22, Chapter 4], [11, Chapter 1], [5,

Exercice 2.9]. As a matter of fact, it is very easy to verify that α in (2.1) is

rational when (2.2) is satisfied ; indeed

un+1 = u2
n + un + 1 ⇔ 1

un+1 − 1
=

1

un − 1
− 1

un
,

so that, in this case,

+∞∑
n=N0

1

un
=

+∞∑
n=N0

(
1

un − 1
− 1

un+1 − 1

)
=

1

uN0 − 1
∈ Q.
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Sylvester’s theorem 2.1 shows that fast converging series of rational num-

bers can achieve rational values. Another example can be obtained from a

formula given by Lucas in 1878 ([17], [18, p. 184]) :

(2.3)
+∞∑
n=0

x2n

1 − x2n+1 =
x

1 − x (|x| < 1).

In the formula (2.3) as in Sylvester’s theorem, the terms of the series

cancel each other, because

x2n

1 − x2n+1 =
x2n

1 − x2n
− x2n+1

1 − x2n+1 ,

which proves (2.3).

For x = a/b, with a ∈ Z, b ∈ N � {0} and |a| < b, we obtain a fast

converging series whose sum is rational :

(2.4)
+∞∑
n=0

a2
n
b2

n

b2n+1 − a2n+1 =
a

b− a.

It is interesting to observe, following Lucas, that (2.3) also gives a fast

converging series whose sum is an irrational quadratic number ; indeed, if

we take x = 1/Φ, where

(2.5) Φ =
1 +

√
5

2

is the golden number, we obtain

(2.6)
+∞∑
n=0

1

F2n
=

7 −
√

5

2
,

where Fn is Fibonacci sequence, defined by

(2.7) F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n ≥ 1).

Naturally, in (2.6) sequence Fn can be replaced by any Lucas sequence

[23, p. 41].
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2.2. Golomb, Erdös and Strauss

Now we have to jump over more than 80 years, exactly until 1963. At

this time, Golomb [12] proved the irrationality of the sum of the reciprocals

of the Fermat numbers

(2.8) S1 =
+∞∑
n=0

1

22n + 1
.

The proof is very complicated for such a result (in fact, S1 is transcen-

dental by Mahler’s theorem ([19], [20, p.5], [5, Exercice 12.13]), but contains

some interesting remarks. It rests on the formula

(2.9)
+∞∑
n=0

x2n

1 + x2n
+

+∞∑
n=0

x2n

1 − x2n
=

2x

1 − x (|x| < 1),

which is a direct consequence of (2.3). Taking x =
1

2
in (2.9), Golomb

obtains

(2.10) S1 = 2 − S2, S2 =
+∞∑
n=0

1

22n − 1
.

He then proves that the expansion of S2 in base 2 is not periodic, which

proves that S2, and therefore S1, is irrational. However, this part of the

proof is too complicated, because the partial sums of the series giving S2

are sufficient to prove its irrationality as indicated in section 1 .

Golomb’s paper motivated an important work of Erdös and Strauss [7] ;

these authors studied irrationality of fast converging series of the form

(2.11) S3 =
+∞∑
n=0

1

un
,

where un ∈ N � {0}. They called such series Ahmes series (Ahmes was

the aegyptian mathematician who wrote the Rhindt papyrus more than

3000 years ago). They didn’t completely succeeded in giving a criterion

of irrationality without arithmetical conditions on the un’s. For example,

they proved
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Theorem 2.2. Let un be an increasing sequence of positive integers

satisfying

(2.12) lim sup
un+1

u2
n

≥ 1

(2.13) LCM(u0, u1, . . . , un)/un+1 is bounded.

Then the series S3 is rational if and only if un+1 = u2
n − un + 1 for all

n ≥ n0.

As an application, Erdös and Strauss obtained the following remarkable

generalization of Golomb’s result.

Theorem 2.3. Let a ∈ N � {0, 1}, and let bn ∈ Z, such that the series∑∣∣bna−2n
∣∣ is convergent and a2

n
+ bn �= 0 for every n ≥ 0. Then

(2.14) S4 =
+∞∑
n=0

1

a2n + bn

is irrational.

Erdös’ works on this subject led him to set the following question ([8, p.

64], [9, p. 105]) :

(2.15) Is it true that if
un+1

u2
n

−→ 1 then
+∞∑
n=0

1

un
is irrational unless un+1 =

u2
n − un + 1 for n ≥ n0 ?

We will give a partial answer to this question in Corollary 3.2.

2.3. Recent results

In 1993 Badea [2] generalized Sylvester’s results and proved the following

Theorem 2.4. Let an, un be sequences of positive integers such that

the series

S5 =
+∞∑
n=0

an
un

is convergent. Suppose that

(2.16) un+1 ≥ an+1

an
(u2

n − un) + 1.
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Then S5 is a rational number if and only if

(2.17) un+1 =
an+1

an
(u2

n − un) + 1

for every n ≥ N .

In fact, in [2] Theorem 1.5 appeared as a corollary of a more general

result whose proof is based on the fact that any non increasing sequence

kn+1 ≤ kn of positive integers must be constant for n ≥ N ; this proof is

similar to the proof of Sylvester’s theorem 1.2, althought it is more compli-

cated.

Motivated by Badea’s work, Hančl gave in 1996 another criterion of

irrationality for fast converging series of rational numbers [13]. As an ap-

plication, he obtained

Theorem 2.5. Let k be a positive integer, and let un be a sequence of

positive integers such that u1 > 2 and

(2.18) ku2
n−1 − (3k − 1)un−1 < un < ku

2
n−1 − kun−1

for every n ≥ n0. Then the number

S6 =
+∞∑
n=1

kn

un

is irrational.

It should be noted that, for the first time, Badea considered fast converg-

ing series of rational numbers with numerators different from 1. However,

in Badea’s as well as in Hančl’s results, the numerators must be positive.

Recently, I proved in [6] the following

Theorem 2.6. Let an ∈ Z � {0}, bn ∈ Z � {0}, un ∈ N � {0} satisfy

(2.19)




lim
n−→+∞

un = +∞

un+1 = βu2
n +O(uγn), β ∈ Q∗

+, 0 ≤ γ < 2

log |an| = o(2n), log |bn| = o(2n).
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Then S7 =
∑+∞

n=0

an
bnun

is rational if and only if

(2.20) un+1 = βu2
n − an+1bn

anbn+1
un +

an+2bn+1

βan+1bn+2

for n ≥ n0.

It is clear that Theorem 2.5 is a direct consequence of Theorem 2.6.

The method used for proving theorem 2.6 is quite different from the one

used by Badea and Hančl. It comes directly from Mahler’s transcendence

method in the form of Loxton and Van der Poorten [16], and turns out to be

rather similar to the method of Erdös and Strauss. Mahler’s transcendence

method allows to obtain irrationality results in some cases, as it has been

recently observed (see [3], [4], [1]).

The new results presented in section 3 are extensions of Theorem 2.6,

basically obtained by following the same ideas.

2.4. More fast converging series with rational sums

Let us give some other amusing examples of fast converging series of

rational numbers with rational sums. We will use Theorem 2.6. Suppose

that an, bn and un in series S7 satisfy (2.20) for n ≥ 1 and for some β ∈ Q∗
+.

Then, by arguing the same way as for Sylvester series, we have

un+1 −
an+2bn+1

βan+1bn+2
= βun

(
un − an+1bn

βanbn+1

)
.

Hence

an+1

bn+1

1

un+1 −
an+2bn+1

βan+1bn+2

=
an
bn


 1

un − an+1bn
βanbn+1

− 1

un


 .

Therefore

+∞∑
n=1

an
bnun

=
+∞∑
n=1


anbn

1

un − an+1bn
βanbn+1

− an+1

bn+1

1

un+1 −
an+2bn+1

βan+1bn+2


 ,
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and we obtain

(2.21)
+∞∑
n=1

an
bnun

=
a1
b1

1

u1 −
a2b1
βa1b2

.

Example 2.1. Let β = 1, an = 2n, bn = 1, un = α2n + 1, where α ∈
N � {0, 1}. It is easy to check that un+1 = u2

n − 2un + 2. Therefore, (2.20)

is satisfied and we get, by using (2.21),

(2.22) σ1(α) =
+∞∑
n=1

2n

α2n + 1
=

2

α2 − 1
(α ∈ N � {0, 1}).

Example 2.2. Let α ∈ Z�{0}, and consider polynomial P (X) = X2 −
αX − 1. Let ω > 1 be a root of P . Then the other root is −1/ω. Define

the general Lucas sequence Vn [22, p. 41] by

(2.23) Vn = ωn +

(
− 1

ω

)n

.

Note that Vn ∈ N and that V2 =

(
ω − 1

ω

)2

+2 = α2 +2. In the case where

α = 1, ω is the golden number Φ and Vn is the classical Lucas sequence

(2.24) Ln = Φn +

(
− 1

Φ

)n

.

Let β = 1, an = 4n, bn = 1, un = V2n +2. One checks easily that, for n ≥ 1,

u2
n − 4un + 4 = (ω2n + ω−2n + 2)2 − 4(ω2n + ω−2n + 2) + 4

= ω2n+1
+ ω−2n+1

+ 2 = un+1.

Hence (2.21) applies and we get

(2.25) σ2(α) =
+∞∑
n=1

4n

V2n + 2
=

4

V2 − 2
=

4

α2
.
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Example 2.3. With the notations of example 2.2, let β = 1, an =

(−2)n, bn = 1, un = V2n − 1. Then

u2
n + 2un − 2 = (ω2n + ω−2n − 1)2 + 2(ω2n + ω−2n − 1) − 2

= ω2n+1
+ ω−2n+1 − 1 = un+1.

Therefore, by using (2.21), we have

(2.26) σ3(α) =
+∞∑
n=1

(−2)n

V2n − 1
=

−2

V2 + 1
=

−2

α2 + 3
.

Remark 2.1. Formulas (2.22) and (2.25) are well-known (see for ex-

ample [21, p.140] and [14, Theorem 3]. Very likely, it is the same for the

formula (2.26), but I don’t know any reference. Series σ1, σ2 and σ3 will

appear naturally in Corollary 3.5 below.

It is interesting remarking that formulas (2.22), (2.25), and (2.26) come

from sums of rational fractions.

Theorem 2.7. For every x ∈ C, with |x| < 1,

+∞∑
n=1

2nx2n

1 + x2n
=

2x2

1 − x2
.(2.27)

+∞∑
n=1

4nx2n

(1 + x2n)2
=

4x2

(1 − x2)2
.(2.28)

+∞∑
n=1

(−2)nx2n

x2n+1 − x2n + 1
=

−2x2

x4 + x2 + 1
.(2.29)

Proof. For proving (2.27), observe that the function

f(x) =
+∞∑
n=1

2nx2n

1 + x2n

is analytic in D = {x ∈ C/ |x| < 1}. As (2.27) holds for every x = 1/α with

α ∈ N � {0, 1} by (2.22), (2.27) holds in D by analytic continuation.
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The proof of (2.28) and (2.29) is the same ; observe that (2.28) and

(2.29) hold for every x =
−1

ω
=

1

2
(α −

√
α2 + 4) when α ∈ N � {0} by

(2.25) and (2.26). When α −→ +∞, x −→ 0, which proves (2.28) and

(2.29) by analytic continuation. �

Remark 2.2. One can obtain other formulas from (2.27), (2.28), (2.29)

by term-by-term derivation. For example, by deriving (2.27) we obtain

(2.28). But (2.29) seems of a different nature. If we differentiate it term-

by-term, we get

(2.30)
+∞∑
n=1

(−4)nx2n(1 − x2n+1
)

(x2n+1 − x2n + 1)2
=

2x2(x2 − 1)

(x4 + x2 + 1)2
.

Example 2.4. If we replace, in (2.28), (2.29), and (2.30), x by 1/α with

α ∈ N � {0, 1}, we obtain other fast converging series of rational numbers

with rational sums. However, these series do not satisfy the assumptions of

theorem 3.1 below, contrary to (2.22), (2.25), and (2.26) : the numerators

an are too large.

3. Presentation of the results

Our main result will be the following

Theorem 3.1. Let an ∈ Z � {0}, bn ∈ Z � {0}, un ∈ N � {0} be

sequences satisfying conditions (1.3) with α <
1

7
. Let

(3.1) S =
+∞∑
n=0

an
bnun

.

Then, if S is rational, there exist sequences pn ∈ N � {0}, qn ∈ N � {0},
depending only on un (and not on an and bn), such that

(3.2) un+1 =
pn
qn
u2
n − an+1bn

anbn+1
un +

an+2bn+1qn+1

an+1bn+2pn+1
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for every n ≥ N(α) and, for every µ ∈]3α, 1 − 4α[,

(3.3)



pn = O(uµ−2

n un+1), qn = O(uµn)∣∣∣∣un+1

u2
n

− pn
qn

∣∣∣∣ ≤ 1

qnu
µ
n
.

As for Sylvesters’, Erdös and Strauss, and Badea’s results, there is re-

ciprocal to this theorem. Indeed, if (3.2) is satisfied, then

un+1 −
an+2bn+1qn+1

an+1bn+2pn+1
=
pn
qn
un

(
un − an+1bnqn

anbn+1pn

)
.

Hence

an+1

bn+1
· 1

un+1 −
an+2bn+1qn+1

an+1bn+2pn+1

=
an
bn


 1

un − an+1bnqn
anbn+1pn

− 1

un


 .

Therefore
an
bnun

can be written as a difference of consecutive terms of

the same sequence, and we have, with N = N(α),

+∞∑
n=N

an
bnun

=
+∞∑
n=N


anbn

1

un − an+1bnqn
anbn+1pn

− an+1

bn+1

1

un+1 −
an+2bn+1qn+1

an+1bn+2pn+1




=
aN
bN

1

uN − aN+1bNqN
aNbN+1pN

∈ Q.

Proving theorem 3.1 will be more difficult. This will be done in section

5.

In Theorem 3.1, unfortunately, the sequence pn/qn is not explicitely

known. However, this restriction can be overcome in some cases. For ex-

ample, consider the entire function

(3.4) f(x) =
+∞∑
n=0

xn

un
,
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with un ∈ N � {0} and

(3.5)

{
lim

n−→+∞
un = +∞

cu2
n ≤ un+1 ≤ c′u2

n for some constants c > 0 and c′ > 0.

Then almost all values of f(x) at rational points are irrational ; more pre-

cisely we have

Corollary 3.1. Let (un) ∈ N � {0} satisfy (3.5), and let f(x) be

defined by (3.4). Then f(r) is irrational for every r ∈ Q∗, except perhaps

for one value of r.

As a second example, we can give a partial answer to question (2.15).

Corollary 3.2. Let un ∈ N � {0} satisfy lim
n−→+∞

un = +∞ and

(3.6)

+∞∑
n=0

(
un+1

u2
n

− 1

)
<∞.

Suppose that an ∈ {−1, 1} for every n ∈ N. Then
∑+∞

n=0

an
un

∈ Q if and only

if

un+1 = u2
n − an+1

an
un +

an+2

an+1

for every n ≥ N .

This contains, as a special case, Theorem 2.3 of Erdös and Strauss, as

well as its alternate case, namely

Corollary 3.3. Let a ∈ N�{0, 1}, and let bn ∈ Z such that the series∑
|bn| a−2n is convergent and a2

n
+ bn �= 0 for every n ≥ 0. Let ε = ±1.

Then

S8 =
+∞∑
n=0

εn

a2n + bn
/∈ Q.

Theorem 3.1 also allows us to generalize Theorem 2.6 to the case where

β /∈ Q :
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Corollary 3.4. Let an ∈ Z � {0}, bn ∈ Z � {0}, un ∈ N � {0} satisfy

(3.8)




lim
n−→+∞

un = +∞,

un+1 = βu2
n +O(uγn), β ∈ R∗

+, 0 ≤ γ < 2,

log |an| = o(2n), log |bn| = o(2n).

Then S9 =
∑+∞

n=0

an
bnun

is rational if and only if β is rational and

(3.9) un+1 = βu2
n − an+1bn

anbn+1
un +

an+2bn+1

βan+1bn+2
.

As a special case of corollary 3.4, we obtain irrationality results on series

containing linear recurring sequences with subscripts in geometric progres-

sion.

Corollary 3.5. Suppose that d ∈ N�{0}, an ∈ Z�{0}, bn ∈ Z, with

(3.10) log |an| = o(2n) , log |bn| = o(2n) if bn �= 0.

Suppose that vn ∈ N is a linear recurring sequence satisfing

(3.11)

{
vn+d =

∑d
h=1 αhvn+d−h,

vn =
∑d

h=1Ahω
n
h ,

with αh ∈ Z, Ah ∈ R∗, ωh ∈ R∗ for h = 1, . . . , d, αd �= 0, and

(3.12) |ω1| > |ω2| > · · · > |ωd| , |ω1| > 1.

Assume that v2n + bn �= 0 for every n ∈ N � {0}. Then

S10 =
+∞∑
n=1

an
v2n + bn

,

is irrational, except if there exist rational numbers p and q, a rational integer

α, and i ∈ {1, 2, 3}, such that S10 = p+qσi(α) ; in these cases S10 is rational

by (2.22), (2.25) and (2.26).
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Example 3.1. Let α ∈ N � {0, 1}. For vn = αn, we obtain under

hypothesis (3.10)

S11 =

+∞∑
n=1

an
α2n + bn

/∈ Q,

except if an = k2n and bn = 1 for every n ≥ N , where k is a non zero

constant natural number.

This generalizes corollary 3.3, under a slightly stronger hypothesis on

bn.

Example 3.2. If we consider Fibonacci sequence, which satisfies

(3.13) Fn =
1√
5

(
Φn −

(
− 1

Φ

)n)
,

where Φ is the golden number, we obtain, under hypothesis (3.10) :

S12 =
+∞∑
n=1

an
F2n + bn

/∈ Q.

Note that transcendence and algebraic independance results on series like

S12 can be obtained by Mahler’s method, but with very strong regularity

hypothesis on an and bn ([20, pp. 13 and 99], [21], [25]).

As a last corollary of Theorem 3.1, we can give precise results on the

irrationality of f(r) when un satisfies (3.8) (compare to Corollary 3.1).

Corollary 3.6. Suppose that un ∈ N � {0} satisfies

(3.14)

{
lim

n→+∞
un = +∞

un+1 = βu2
n +O(uγn), β ∈ R∗

+, γ ∈]0, 2[.

Let f be the entire function defined by

(3.15) f(x) =

+∞∑
n=0

xn

un
.
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Then f(r) is irrational for every r ∈ Q∗, except when r ∈ Z and when there

exist η ∈ N � {0}, δ ∈ N � {0} such that, for every large n,

(3.16)



η|r
un = δvn, with vn ∈ N

vn+1 = ηv2n − rvn +
r

η
.

Corollaries 3.1 to 3.6 will be proved in section 5.

Now it it natural to ask if irrationality measures can be given for fast

converging series, that is, if one can prove some of them are not Liouville

numbers. We will give a positive answer under the hypothesis of corollary

3.4. However, for technical reasons which will appear in the proof, we will

have to suppose that β in (3.8) is not a Liouville number.

Theorem 3.2. Let an ∈ Z � {0}, bn ∈ Z � {0}, un ∈ N � {0} satisfy

(3.17)




lim
n−→+∞

un = +∞

un+1 = βu2
n +O(uγn), β ∈ R∗

+, 0 ≤ γ < 2

log |an| = o(2n), log |bn| = o(2n).

Assume that β is not a Liouville number, which means that there exist

K > 0 and λ ≥ 2 such that, for every rational A/B �= β,

(3.18)

∣∣∣∣β − A
B

∣∣∣∣ ≥ K

|B|λ
.

Assume moreover that, if β ∈ Q,

(3.19) un+1 �= βu2
n − an+1bn

anbn+1
un +

an+2bn+1

βan+1bn+2

for every n ≥ N . Then, for every ε > 0, there exists q0 = q0(ε) ∈ N such

that, for every rational p/q satisfying |q| ≥ q0,

(3.20)

∣∣∣∣∣
+∞∑
n=0

an
bnun

− p
q

∣∣∣∣∣ ≥ 1

|q|τ+ε ,
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with τ = 4
2λ+ ω

ω
, ω = inf(2 − γ, 1).

Remark 3.1. In the case where β ∈ Q, we can take K = 1 and λ = 2

in (3.18). Hence

τ = 4
4 + ω

ω
.

So theorem 2 of [6] gives a better irrationality measure (for example 9

instead of 20 when ω = 1). This is due to the fact that the general con-

struction used to prove Theorem 3.2 is not so well suited to the case β ∈ Q

than the one used in [6]. In particular, for rational β, one could use λ = 1

in (3.18). As it will appear in the proof, the condition λ ≥ 2 in Theorem

3.2 will only make the proof simpler, and is not necessary.

Example 3.3. Theorem 3.2 applies to the general series S10 of Corollary

3.5, because here β = ωk is an algebraic number and we can take λ = 2+ε by

Roth’s Theorem. For instance, in the special case of series S12 in Example

3.2, we have β =
√

5 (whence λ = 2) and γ = 0 by (3.13). Therefore, ω = 1

and τ = 20.

4. Proof of Theorem 3.1

4.1. Lemmas

In what follows, sequences an, bn and un, satisfy the hypothesis of Theo-

rem 3.1. However, note that the upper bound un+1 ≤ c′u2
n is not necessary

in Lemmas 4.1 to 4.5.

Lemma 4.1. There exists A > 0 such that

u0u1 . . . un−1 ≤ Anun, (n ≥ 1).

Proof. Put A = max(u0/u1, 1/c). Then Lemma 4.1 follows by induc-

tion, because un+1 ≥ cu2
n. �

Lemma 4.2. There exists θ > 1 and B > 0 such that

un ≥ Bθ2n (n ≥ 0).
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Proof. Put vn = cun. Then vn+1 ≥ v2n for every n ∈ N. As

lim
n−→+∞

vn = +∞, we can choose N such that vN > 1 ; by induction,

one sees that vn ≥ (vN )2
n−N

for n ≥ N , which is Lemma 4.2 with θ =

(vN )2
−N
> 1. �

Lemma 4.3.

+∞∑
k=n+1

ak
bkuk

= O(u2(α−1)
n ).

Proof. Let M ∈ N such that un ≥ c−2 for every n ≥ M . Induction

on j shows that un+j ≥ cuj+1
n for every n ≥ M and j ≥ 1 (note that

ujn ≥ un ≥ c−2). As an = O(uαn), there exists a constant D > 0 such that∣∣∣∣∣
+∞∑

k=n+1

ak
bkuk

∣∣∣∣∣ ≤
+∞∑

k=n+1

|ak|
uk

≤ D
+∞∑

k=n+1

1

u1−α
k

≤ Dcα−1
+∞∑
m=2

1

u
(1−α)m
n

= Dcα−1 1

u
2(1−α)
n

1

1 − 1

u1−α
n

.

As lim
n−→+∞

un = +∞, Lemma 4.3 is proved.

The following lemma is similar to Dirichlet’s Theorem on diophantine

approximation ([5, Theorem 1.6], for example). �

Lemma 4.4. Let µ ∈]0, 1[. For every n ≥ N0(µ) there exists (pn, qn) ∈
N2, qn �= 0, pn �= 0, such that∣∣∣∣un+1

u2
n

− pn
qn

∣∣∣∣ ≤ 1

qnu
µ
n

(4.1)

qn = O(uµn)(4.2)

pn = O(uµ−2
n un+1).(4.3)

Proof. Denote, as usual, by [x] the integral part of x. Put Qn =

[uµn] + 1, and consider the numbers

(4.4) αi = i
un+1

u2
n

−
[
i
un+1

u2
n

]
, i = 0, 1, . . . , Qn.
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Two cases can occur.

First case : There exist i < j such that αi = αj . Then

un+1

u2
n

=
pn
qn
,

with qn = j − i and pn =

[
j
un+1

u2
n

]
−
[
i
un+1

u2
n

]
. Clearly qn ≤ Qn ≤ 2uµn for

large n ; thus (4.1) and (4.2) are fulfiled. Moreover

pn = qn
un+1

u2
n

≤ 2uµn
un+1

u2
n

,

which proves (4.3).

Second case : The numbers αi are all distinct for i = 0, 1, . . . , Qn.

Let us divide the interval [0, 1] into Qn intervals with length 1/Qn. By the

pigeon-hole principle, at least one of these intervals contains two distinct

αi’s. Therefore there exist i < j such that |αi − αj | ≤ 1/Qn. If we put, as

before,

qn = j − i and pn =

[
j
un+1

u2
n

]
−
[
i
un+1

u2
n

]
,

we see that ∣∣∣∣qnun+1

u2
n

− pn
∣∣∣∣ ≤ 1

Qn
≤ 1

uµn
,

and Lemma 4.4 is proved. Observe that pn �= 0 for large n because of (4.1)

and the fact that un+1 ≥ cu2
n. �

Lemma 4.5. Let µ ∈]0, 1[, and let pn and qn be defined by Lemma 4.4.

Then
pnun
un+1

− qn
un

= O(u−1−µ
n ).

Proof. By (4.1), we have

qnun+1 = pnu
2
n +O(u2−µ

n ).
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Therefore

pnun
un+1

− qn
un

= qn

(
pnun

pnu2
n +O(u2−µ

n )
− 1

un

)

=
qnO(u2−µ

n )

pnu3
n +O(u3−µ

n )
∼ qn
pn
O(u−1−µ

n )

As un+1 ≥ cu2
n, we have by (4.1)

pn
qn

≥ c

2
for large n.

This proves Lemma 4.5. �

4.2. Proof of Theorem 3.1

Suppose that an, bn, un satisfy the hypothesis of Theorem 3.1. Let S be

defined by (3.1).

Let µ ∈]0, 1[, and let pn and qn be defined by Lemma 4.4 (we will choose

the value of µ later).

We put

(4.5) An =
(
pnbnbn+1anun − an+1qnb

2
n

)(+∞∑
k=n

ak
bkuk

)
− pnbn+1a

2
n.

An easy computation shows that

(4.6)




An = anan+1bn

(
pnun
un+1

− qn
un

)
+Rn − Sn,

Rn = pnbnbn+1anun
∑+∞

k=n+2

ak
bkuk

,

Sn = an+1qnb
2
n

∑+∞
k=n+1

ak
bkuk

.

By Lemmas 4.3 and 4.4, we have for every ε ∈]0, 1[

Sn = O(uαn+1)O(uµn)O(u2ε
n )O(u2(α−1)

n ).
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As un = O(u
1/2
n+1), we get, by keeping one u−1

n in the last factor,

(4.7) Sn = O(u
2α+(µ/2)+ε−(1/2)
n+1 u−1

n ).

Similarly :

Rn = O(uµ−2
n un+1)O(uεn)O(uεn+1)O(uαn)unO(u

2(α−1)
n+1 )

(4.8) Rn = O(u
(5α/2)+(µ/2)+(3ε/2)−1
n+1 u−1

n ).

By using (4.7), (4.8), and Lemma 4.5, we obtain

(4.9) An = O(u
(3α/2)−(µ/2)+(ε/2)
n+1 u−1

n ) +O(u
(5α/2)+(µ/2)+(3ε/2)−1
n+1 u−1

n )

+O(u
2α+(µ/2)+ε−(1/2)
n+1 u−1

n ).

We will choose µ in such a way that each of the three numbers
3α

2
− µ

2
,

5α

2
+
µ

2
− 1, 2α+

µ

2
− 1

2
is negative. Put µ = tα ; then we must have

t > 3, (t+ 5)α < 2, (t+ 4)α < 1.

The third condition implies the second one. Hence we have to find t such

that

3 < t <
1

α
− 4,

which is possible only if α < 1/7, and is equivalent to find µ satisfying

(4.10) µ ∈]3α, 1 − 4α[.

By (4.10), the three numbers
3α

2
− µ

2
,

5α

2
+
µ

2
−1, 2α+

µ

2
− 1

2
are negative.

Now if we choose ε small enough, each of the three numbers
3α

2
− µ

2
+
ε

2
,

5α

2
+
µ

2
+

3ε

2
− 1, 2α+

µ

2
+ ε− 1

2
is negative. Therefore, by putting

(4.11) δ = max

(
3α

2
− µ

2
+
ε

2
,
5α

2
+
µ

2
+

3ε

2
− 1, 2α+

µ

2
+ ε− 1

2

)
,
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we have by (4.9)

(4.12) An = O(uδn+1u
−1
n ), with δ < 0 for ε < ε0(α, µ).

Now we observe that

(4.13)
+∞∑
k=n

ak
bkuk

= S −
n−1∑
k=0

ak
bkuk

.

Define the following rational integers :

(4.14)



Kn = b0b1 . . . bn−1u0u1 . . . un−1

Bn = Kn(pnbnbn+1anun − an+1qnb
2
n)

Cn = Knpnbn+1a
2
n +Bn

∑n−1
k=0

ak
bkuk

.

Multiply An by Kn in (4.5) ; by using (4.12), (4.13) and (4.14), we obtain

(4.15) BnS − Cn = KnO(uδn+1u
−1
n ).

But by using Lemma 4.1 we can obtain an upper bound forKn ; for ε ∈]0, 1[,

there exists ν = ν(ε) > 0 such that

|Kn| ≤ νnu1+ε
0 . . . u1+ε

n−1 ≤ νnA2nu1+ε
n ≤ νnA2nu1+ε

n .

Hence

(4.16) Kn = O((νA2)nunu
ε/2
n+1).

Therefore (4.15) can be written as

(4.17) BnS − Cn = O((νA2)nu
δ+(ε/2)
n+1 ).

For ε < ε1(α, µ), we have δ +
ε

2
< 0. If we choose such an ε and fix it,

we obtain, by using Lemma 4.2,

lim
n→+∞

(BnS − Cn) = 0.
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Assume that S is rational ; as Bn, Cn are integers, this implies

(4.18) BnS − Cn = 0 for n ≥ N(α).

Now consider the determinant

(4.19) ∆n =

∣∣∣∣ Bn −Cn

Bn+1 −Cn+1

∣∣∣∣ .
By (4.18) we have ∆n = 0 for n ≥ N(α). But if we multiply the first

column of ∆n by
∑n−1

k=0

ak
bkuk

and add it to the second one, we obtain by

using (4.14)

∆n =

∣∣∣∣∣
Bn −Knpnbn+1a

2
n

Bn+1 −Kn+1pn+1bn+2a
2
n+1 −Bn+1

an
bnun

∣∣∣∣∣ .
We replace Bn and Bn+1 by using the second equality in (4.14), and develop

∆n. We get

∆n = KnKn+1
an+1bn
un

(
−anan+1bn+1bn+2pnpn+1u

2
n

+ a2n+1bnbn+2pn+1qnun + anan+1bn+1bn+2pn+1qnun+1

−anan+2bnb
2
n+1qnqn+1

)
.

The term in the brackets is zero for n ≥ N(α) ; if we divide it by

anan+1bn+1bn+2pn+1qn, we obtain (3.2), and Theorem 3.1 is proved.

Remark 4.1. The method used for proving Theorem 3.1 is a weak

form of Mahler’s transcendence method in the form introduced by Loxton

and Van der Poorten. This will be apparent in the special case where

(4.20) un+1 = βu2
n + τn, β ∈ Q∗

+,

first studied in [6].

If we introduce

(4.21)



fn(x) = β + τnx

2

ϕn(x) =
∑+∞

k=n

akx
2k−n

bk(fk ◦ fk−1 ◦ · · · ◦ fn+1)(x)
,
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we easily see that

(4.22)
+∞∑
k=n

ak
bkuk

= ϕn

(
1

un

)
.

Now we can compute explicitly the [1/1] Padé-approximants to ϕn, namely

find µn, νn, ρn satisfying

(4.23) (µnx+ νn)ϕn − ρnx = O(x3).

By (4.21) we see that

(4.24) ϕn(x) =
an
bn
x+

an+1

bn+1β
x2 +O(x4),

so that (4.23) is equivalent to

(4.25)



µn
an
bn

+ νn
an+1

bn+1β
= 0

νn
an
bn

− ρn = 0.

If we put β = η/δ and look for integers µn, νn, ρn we can take

(4.25)



µn = −an+1δb

2
n

νn = ηbnbn+1an

ρn = ηbn+1a
2
n.

This explains the number An defined in [6], formula (10). In the present

paper, we have only modified the definition of An be replacing η by pn and

δ by qn in order to obtain more general results (see formula (4.5)).

5. Proof of Corollaries 3.1 to 3.6

5.1. Proof of Corollary 3.1

Suppose that f(r) ∈ Q and f(r′) ∈ Q, with r = a/b, r′ = a′/b′,
a, a′, b, b′ ∈ Z � {0}, r �= r′. By Theorem 3.1 we have for n ≥ N

(5.1) un+1 =
pn
qn
u2
n − a

b
un +

a

b

qn+1

pn+1
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(5.2) un+1 =
pn
qn
u2
n − a

′

b′
un +

a′

b′
qn+1

pn+1
.

Substracting (5.2) to (5.1), we obtain

(5.3) un =
qn+1

pn+1
.

Therefore, if we replace in (5.1) qn+1/pn+1 by un and qn/pn by un−1, we

get for n ≥ N + 1

(5.4) un+1 =
u2
n

un−1
.

Hence limn→+∞
un+1

u2
n

= 0, contrary to the assumption.

5.2. Proof of Corollary 3.2

Suppose that
∑+∞

n=0

an
un

∈ Q, an ∈ {−1, 1}. By Theorem 3.1 we can

write for large n

un+1 =
pn
qn
u2
n − an+1

an
un +

an+2

an+1

qn+1

pn+1
.

For every n, put
pn
qn

=
p′n
q′n

where p′n and q′n are prime to each other. Then

we have

(5.5) un+1 =
p′n
q′n
u2
n − an+1

an
un +

an+2

an+1

q′n+1

p′n+1

.

As
an+1

an
∈ {−1, 1} and un ∈ N, p′n+1 must divide q′n. This implies p′n+1 ≤ q′n

for n ≥ N , that is

(5.6) p′n+1 ≤ q′n
p′n
p′n for n ≥ N.

Therefore, by induction we have

(5.7) p′n ≤ p′N
n−1∏
k=N

q′k
p′k

for n ≥ N.
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But we have by (3.3), for every µ ∈]0, 1[,

un+1

u2
n

− p
′
n

q′n
= O(u−µ

n ).

Hence

1 − p
′
n

q′n
=

(
1 − un+1

u2
n

)
+O(u−µ

n ).

By (3.6), this implies that the series
∑(

1 − p
′
n

q′n

)
is convergent : therefore

limn→+∞
p′n
q′n

= 1 and the infinite product
∏ p′n
q′n

is convergent, so that p′n is

bounded by (5.7). As limn→+∞
p′n
q′n

= 1, q′n is also bounded, which implies

(5.8)
p′n
q′n

= 1 for n ≥ N1,

and completes the proof of Corollary 3.2.

5.3. Proof of Corollary 3.3

We apply Corollary 3.2. Here

(5.9)

{
un = a2

n
+ bn

an = εn.

As the series
∑
bna

−2n is convergent, we have

(5.10) un∼a2
n
, bn = o(a2

n
).

Moreover

(5.11)
un+1

u2
n

− 1 = −2bna
2n

u2
n

+
bn+1

u2
n

− b2n
u2
n

.

By (5.10), each of the three series in the right hand side of (5.11) is conver-

gent. Hence
∑(

un+1

u2
n

− 1

)
is convergent. By Corollary 3.2, we have for

n ≥ N1

(5.12) un+1 = u2
n − εun + ε.
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Multiply (5.11) by u2
n, and substract it from (5.12), we obtain

un = a2
n

+ bn = ε(2bna
2n − bn+1 + b2n) + 1.

Hence

(5.13) εbn+1 − εb2n = a2
n
(2εbn − 1) + 1 − bn.

Following [7], observe that (5.13) implies

bn+1 = a2
n
(bn(2 + bna

−2n) − ε− εbna−2n + εa−2n).

As bn = o(a−2n), for every n ≥ N2 ≥ N1 satisfying bn �= 0, we therefore

have

(5.14) |bn+1| ≥ a2
n |bn| .

But bn = 0 ⇒ bn+1 = ε(1− a2n) �= 0, so that (5.14) holds for every n ≥ N3,

with N3 = N2 or N3 = N2 + 1. By induction, we get for every k ≥ 0

|bN3+k| ≥ |bN3 | a2
N3+k−2N3

.

Therefore limk→+∞ |bN3+k| a−2N3+k �= 0, and this contradiction proves

Corollary 3.3.

5.4. Proof of Corollary 3.4

By lemma 4.2, we have for every α > 0

(5.15) an = O(uαn), bn = O(uαn).

Suppose that S9 ∈ Q ; then, by Theorem 3.1,

(5.16) un+1 =
pn
qn
u2
n − an+1bn

anbn+1
un +

an+2bn+1qn+1

an+1bn+2pn+1

for n ≥ N(α). But by hypothesis

(5.17) un+1 = βu2
n +O(uγn), with 0 ≤ γ < 2.
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Substracting (5.17) to (5.16), we obtain

(5.18) qnβ − pn = qnO(uγ−2
n ) − an+1bn

anbn+1

qn
un

+
an+2bn+1qn+1

anbn+2pn+1

qn
u2
n

.

In (4.10), we choose

µ = (1 − α)3α+ α(1 − 4α) = 4α− 7α2.

By (3.3), we have

(5.19) qn = O(u4α−7α2

n ).

Therefore (5.18) implies, by using un+1 = O(u2
n),

(5.20) qnβ − pn = O(uγ−2+4α−7α2

n ) +O(u7α−7α2−1
n ) +O(u18α−21α2−2

n ).

Hence, by multiplying (5.20) by qn+1, we obtain

(5.21) qnqn+1β − pnqn+1 = O(uγ−2+12α−21α2

n ) +O(u15α−21α2−1
n )

+O(u26α−35α2−2
n ).

Similarly, replace n by n+ 1 in (5.20), and multiply by qn ; we get

(5.22) qnqn+1β − pn+1qn = O(u2γ−4+12α−21α2

n ) +O(u18α−21α2−2
n )

+O(u40α−49α2−4
n ).

Now we choose α so small that each of the numbers γ− 2 + 12α− 21α2,

15α − 21α2 − 1, 26α − 35α2 − 2, 2γ − 4 + 12α − 21α2, 18α − 21α2 − 2,

40α−49α2−4 is negative. With such a choice of α, (5.21) and (5.22) imply

lim
n→+∞

(qnqn+1β − pnqn+1) = lim
n→+∞

(qnqn+1β − pn+1qn) = 0

Therefore

(5.23)

{
β = limn→+∞ pn/qn

limn→+∞(pnqn+1 − pn+1qn) = 0.

As pn, qn, pn+1, qn+1 are integers, this means that pnqn+1 − pn+1qn = 0

for n large enough. Hence, for n ≥ N1(α)

(5.24)
pn
qn

=
pn+1

qn+1
= lim

n→+∞
pn
qn

= β.

So β ∈ Q, and Corollary 3.4 is proved by using (5.24) and (5.16).
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5.5. Proof of Corollary 3.5

Put un = v2n + bn = A1ω
2n
1 +

∑d
h=2Ahω

2n

h + bn. We then have

(5.25)



un = A1ω

2n

1 + tn

tn =
d∑

h=2

Ahω
2n

h + bn.

Observe that, by (3.10) and (3.12),

(5.26)

{
tn ∼ A2ω

2n
2 if d ≥ 2 and |ω2| > 1

tn = O(|ω1|ε2
n

) (for every ε > 0) otherwise.

We see immediatly that

(5.27) un+1 −
1

A1
u2
n = tn+1 − 2tnω

2n

1 − 1

A1
t2n.

As un ∼ A1ω
2n
1 , we see, by using (5.26), that there exists γ ∈]0, 2[ such

that un+1 −
1

A1
u2
n = O(uγn). Hence Corollary 3.4 applies ; so, if S10 ∈ Q,

we have A1 ∈ Q and, for every n ≥ N0,

un+1 =
1

A1
u2
n − an+1

an
un +A1

an+2

an+1
.

Comparing this equality to (5.27) yields

(5.28) tn+1 − 2tnω
2n

1 − 1

A1
t2n = −an+1

an
(A1ω

2n

1 + tn) +A1
an+2

an+1
.

Now we distinguish four cases.

First case : d ≥ 2 and |ω2| > 1. By taking the equivalents in (5.28), we

obtain in virtue of (5.26)

−2A2ω
2n

2 ω
2n

1 ∼ −an+1

an
A1ω

2n

1 .

Therefore ω2n
2 ∼ an+1

an

A1

2A2
.
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This is impossible because |ω2| > 1 and log |an| = o(2n).

Second case : d = 1. In this case tn = bn ∈ Z. We write (5.28) in the

following form :

(5.29) ω2n

1

(
A1
an+1

an
− 2tn

)
=

1

A1
t2n − tn+1 −

an+1

an
tn +A1

an+2

an+1
.

Suppose that the rational number A1
an+1

an
− 2tn is different from 0 ; in this

case, denoting by δ > 0 the denominator of A1, we have

∣∣∣∣A1
an+1

an
− 2tn

∣∣∣∣ ≥ 1

δ |an|
,

which implies by (5.29) :

ω2n

1 ≤ δ |an|
∣∣∣∣ 1

A1
t2n − tn+1 −

an+1

an
tn +A1

an+2

an+1

∣∣∣∣ .
By using (5.26), we get ω2n

1 = O(|ω1|ε2
n

) for every ε > 0, a contradiction.

Hence (5.29) implies, for every n ≥ N ≥ N0,

(5.30)



A1
an+1

an
= 2tn

1

A1
t2n − tn+1 −

an+1

an
tn +A1

an+2

an+1
= 0.

Replacing tn and tn+1 from the first equality into the second yields

1

2

an+2

an+1
=

(
1

2

an+1

an

)2

.

Therefore, for every n ≥ N ,

(5.31)
1

2

an+1

an
=

(
1

2

aN+1

aN

)2n−N

=

((
1

2

aN+1

aN

)2−N
)2n

.
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So, as log |an| = o(2n),

∣∣∣∣12 aN+1

aN

∣∣∣∣ > 1 is impossible. Taking the inverses in

(5.31), we see that

∣∣∣∣12 aN+1

aN

∣∣∣∣ < 1 is also impossible. Therefore
1

2

∣∣∣∣aN+1

aN

∣∣∣∣ = 1.

By (5.31), this implies

(5.32)
an+1

an
= 2 for every n ≥ N + 1.

Thus tn = A1 for every n ≥ N + 1 by using (5.30), which means that

un = A1(ω
2n
1 + 1). As A1 ∈ Q and un ∈ Z, ω1 ∈ Z ; as |ω1| > 1, then

ω1 ∈ Z � {−1, 0, 1}, and

(5.33) S10 =
N∑

n=1

an
A1ω2n

1 + bn
+
aN
A1

+∞∑
n=1

2n

(ω2N
1 )2n + 1

Third case : d ≥ 2 and |ω2| = 1. Let P (X) = Xd −
∑d

h=1 αhX
d−h be

the characteristic polynomial of vn, defined in (3.11). As ω2 = ±1 is a root

of P , we have

(5.34) P (X) = (X − ω2)Q(X), Q ∈ Z(X),

and ω1, ω3, . . . , ωd are the roots of Q. But A1, A2, . . . , Ad are the roots of

the system 


v0 = A1 +A2 + · · · +Ad

v1 = A1ω1 +A2ω2 + · · · +Adωd
...

vd−1 = A1ω
d−1
1 +A2ω

d−1
2 + · · · +Adω

d−1
d .

Hence, by Cramer’s formula,

(5.35) A2 =

∣∣∣∣∣∣∣∣
1 v0 1 · · · 1

ω1 v1 ω3 · · · ωd
...

...
...

...
...

ωd−1
1 vd−1 ωd−1

3 · · · ωd−1
d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1 · · · 1

ω1 ω2 ω3 · · · ωd
...

...
...

...
...

ωd−1
1 ωd−1

2 ωd−1
3 · · · ωd−1

d

∣∣∣∣∣∣∣∣

.
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So A2 is a symmetric rational fraction in ω1, ω3, . . . , ωd with integer coef-

ficients. Therefore A2 ∈ Q. Write A2 = r/s, r, s ∈ Z, s �= 0. We then

have

S10 =
+∞∑
n=1

san
sA1ω2n

1 + sA3ω2n
3 + · · · + sAdω

2n
d + r + sbn

.

Hence, if d = 2 we are led back to the second case. If d ≥ 3, as |ω3| <
|ω2| = 1, we are led to the fourth case.

Fourth case : d ≥ 2 and |ω2| < 1. As ω1ω2 . . . ωd = −αd ∈ Z � {0}
and 1 > |ω2| > |ω3| > · · · > |ωd|, we cannot have |ω1ω2| < 1. Therefore

|ω1ω2| ≥ 1. We have by (5.29), for every ε > 0,

(5.36) A1an+1 − 2tnan = O(|ω1|(−1+ε)2n).

Put t′n = tn − bn ; then t′n ∼ A2ω
2n
2 by (5.35), and (5.36) yields

(5.37) A1an+1 − 2anbn − 2t′nan = O(|ω1|(−1+ε)2n).

As A1 ∈ Q and |ω2| < 1, this implies

(5.38) A1an+1 − 2anbn = 0.

for every large n, whence

(5.39) −2an = O(|ω2|−2n)O(|ω1|(−1+ε)2n).

Suppose that |ω1ω2| > 1. By choosing ε small enough, (5.39) implies

an = 0 for every large n, a contradiction. Hence |ω1ω2| = 1. This implies

that d = 2, otherwise |ω1ω2 . . . ωd| would be less than 1. Therefore the

characteristic polynomial of sequence vn is of the form

P (X) = X2 + eX ± 1, e ∈ Z.

As |ω1| > 1, P has no rational root. Let σ �= Id be the morphism of

conjugaison in quadratic field K = Q(ω1). As σ(ω1) = ω2, vn ∈ Z, and

A1 ∈ Q, we have

vn = A1ω
n
1 +A2ω

n
2 ⇒ vn = A1ω

n
2 + σ(A2)ω

n
1 .
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Therefore A2 = A1 and

(5.40) tn = A1ω
2n

2 + bn.

Replace in (5.29) and use (5.38) ; we get, as |ω1ω2| = 1,

−2A1 =
1

A1
(A1ω

2n

2 +bn)2−(A1ω
2n+1

2 +bn+1)−
an+1

an
(A1ω

2n

2 +bn)+A1
an+2

an+1
.

As A1 ∈ Q and |ω2| < 1, this implies

(5.41) −2A1 =
1

A1
b2n − bn+1 −

an+1

an
bn +A1

an+2

an+1
.

By (5.38), we have
an+1

an
=

2bn

A1
. Replacing in (5.41), we get

(5.42) bn+1 =
1

A1
b2n − 2A1.

Put bn = A1cn ; (5.42) becomes

(5.43) cn+1 = c2n − 2 = f(cn); f(x) = x2 − 2.

It is easy to see that f(x) > x for every x > 2. Therefore, if c0 > 2, then

cn is increasing ; if cn has a limit ;, then ; = ;2 − 2, which is impossible

because c0 > 2. Hence limn→+∞ cn = +∞ and for large n we have, by

(5.43), cn+1 ≥ 1

2
c2n. By Lemma 4.2, bn = A1cn ≥ A1C

′θ2
n

with θ > 1, a

contradiction. Therefore c0 ≤ 2. If c0 < −2, then c1 > 2 and we can argue

the same way and get a contradiction, whence

(5.44) c0 ∈ [−2, 2].

As f(x) ∈ [−2, 2] for every x ∈ [−2, 2], we have

(5.45) cn ∈ [−2, 2], ∀n ∈ N.
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But cn = bn/A1 and bn ∈ Z. So (5.45) implies that cn takes only a finite

number of values. Therefore there exist N ∈ N and k ∈ N � {0} such that

cN+k = cN . By using (5.43), we immediately get by induction

(5.46) cn+k = cn = fk(cn) for every n ≥ N.

But fk is clearly a monic polynomial with integer coefficients and degree 2k.

Moreover f1(0) = −2 ; f2(0) = f(f(0)) = f(−2) = 2 ; f3(0) = f(f2(0)) =

f(2) = 2 . . . . Hence

(5.47) fk(x) = x2k + · · · ± 2; ∀k ∈ N � {0}.

By (5.46), we see that cn is a rational root of an equation with integer

coefficients of the form

(5.48) x2k + · · · ± 2 = 0.

Therefore we have only four possibilities :

(5.49) cn = −2, cn = 1, cn = −1, cn = 2.

But if cn = −2, then cn+1 = 2, and if cn = 1, then cn+1 = −1. Therefore

cn = −1 or cn = 2 for every n ≥ N + 1, and

(5.50) bn = −A1 or bn = 2A1 for every n ≥ N + 1.

In the first case, we have an+1 = −2an by (5.38), so that

(5.51) S10 =
N∑

n=1

an

A1(ω2n
1 + ω−2n

1 ) + bn
+
aN
A1

+∞∑
n=1

(−2)n

(ω2N
1 )2n + (ω−2N

1 )2n − 1
.

In the second case, we have an+1 = 4an by (5.38), and we get

(5.52) S10 =
N∑

n=1

an

A1(ω2n
1 + ω−2n

1 ) + bn
+
aN
A1

+∞∑
n=1

4n

(ω2N
1 )2n + (ω−2N

1 )2n + 2
.

The proof of Corollary 3.5 is complete.
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5.6. Proof of Corollary 3.6

Let a ∈ Z�{0}, b ∈ Z�{0}. By Corollary 3.4, f(
a

b
) /∈ Q if β ∈ R∗

+ �Q.

So, if f(
a

b
) ∈ Q, by (3.9) there exist (η, δ) ∈ N2 such that, for n ≥ N ,

(5.53) un+1 =
η

δ
u2
n − a

b
un +

δ

η

a

b
.

We can suppose

(5.54) GCD(η, δ) = 1 ; GCD(a, b) = 1.

Let d = GCD(a, η), η = dη′, a = da′. Then (5.53) becomes

(5.55) bun+1 =
ηb

δ
u2
n − aun +

δa′

η′
.

The fraction δa′/η′ is irreducible ; therefore η′|δ by (5.55). But

GCD(η′, δ) = 1 ; hence η′ = 1, η = d, a = a′η, so that we can write

(5.55) in the form

(5.56) bun+1 =
ηb

δ
u2
n − a′ηun + δa′.

Let p be any prime divisor of δ ; by (5.56), p|un for every n ≥ N . Put

δ = pδ′, un = pu′n, and replace in (5.56) ; we obtain

(5.57) bu′n+1 =
ηb

δ′
u′2n − a′ηu′n + δ′a′.

Hence we see by induction that δ|un. Put

(5.58) un = δvn,

and replace in (5.56). We get

(5.59) bvn+1 = ηbv2n − a′ηvn + a′.
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As GCD(a′, b) = 1 by (5.54), (5.59) implies that b|(ηvn − 1). Put

(5.60) ηvn − 1 = bkn for n ≥ N.

Now multiply (5.59) by η, and replace ηvn by using (5.60). We obtain

(5.61) bkn+1 = (b2 + 2b− a′η)kn.

By (5.60), b and η are prime to each other, as well as b and a′ by (5.54).

Therefore

(5.62) GCD(b2 + 2b− a′η, b) = 1.

Suppose that b > 1 ; let p be a prime divisor of b. By (5.61) and (5.62),

p|kn for every n ≥ N . More precisely, by putting

(5.63)



kn = k′np

α(n), b = pαb′

p 	 k′n, p 	 b′

α(n) ≥ 1, α ≥ 1

we have by (5.61) and (5.62)

(5.64) α+ α(n+ 1) = α(n),

which is impossible because α(n) ≥ 1.

Therefore b = 1 and (5.59) becomes

(5.65) vn+1 = ηv2n − a′ηvn + a′,

which proves Corollary 3.6.
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6. Proof of Theorem 3.2

6.1. A lemma on irrationality measures

We give a complete proof of a classical lemma allowing to compute irra-

tionality measures.

Lemma 6.1. Let α ∈ R. Suppose that there exist constants a > 0,

b > 0, h ≥ 1, a function g : N −→ R∗
+, increasing for n ≥ N and satisfying

lim g(n)n→+∞ = +∞, and a sequence Cn/Bn of rational numbers such that

|BnCn+1 −Bn+1Cn| �= 0 for every n ≥ N(6.1)

|Bn| = O(g(n)a)(6.2)

|Bnα− Cn| = O(g(n)−1)(6.3)

g(n+ 1) ≤ b(g(n))h for every n ≥ N.(6.4)

Then, for every ε > 0, there exists q0 = q0(ε) ∈ N such that, for every

rational p/q satisfying |q| ≥ q0

(6.5)

∣∣∣∣α− p
q

∣∣∣∣ ≥ 1

|q|m+ε ,

where m = ah2 + 1.

See [5, Theorem 9.7] for an effective version of lemma 6.1 (there is a

misprint in this book ; the condition ”b ≤ 1” should be replaced by ”b > 0”).

Proof of lemma 6.1. By (6.2) and (6.3), there exist k > 0 and ; > 0

such that, for every n ≥ N

(6.6)

{ |Bn| ≤ k(g(n))a

|Bnα− Cn| ≤ ;/g(n)

Choose q1 such that

(6.7)
q1;

g(N)
≥ 1

2
.
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Now let (p, q) ∈ Z×Z, with |q| ≥ q1. Let ν be the least integer satisfying

(6.8)
|q| ;
g(ν)

<
1

2
.

It is possible to find such a ν because limn→+∞ g(n) = +∞. By (6.7),

we have ν ≥ N + 1. As ν is the least integer satisfying (6.8), we have

g(ν − 1) ≤ 2 |q| ;, which implies, by (6.4), g(ν) ≤ b(2 |q| ;)h. Using (6.4)

again, we get

(6.9) g(ν) < g(ν + 1) ≤ bh+1(2 |q| ;)h2
.

Now we consider the determinant

∆ν =

∣∣∣∣ Bν Cν

Bν+1 Cν+1

∣∣∣∣ ,
which is not zero by (6.1) ; this means that the vectors (Bν , Cν) and

(Bν+1, Cν+1) form a basis of R2. Therefore, one of the two determinants∣∣∣∣Bν Cν

q p

∣∣∣∣ or

∣∣∣∣Bν+1 Cν+1

q p

∣∣∣∣
is not zero. Put s = ν or ν + 1, such that

δs =

∣∣∣∣Bs Cs

q p

∣∣∣∣ �= 0.

As δs ∈ Z, |δs| ≥ 1, that is |pBs − qCs| ≥ 1. Therefore 1 ≤ |q(Bsα−Cs)−
Bs(qα− p)|, which implies

1 ≤ |q| |Bsα− Cs| + |Bs| |qα− p| .

By using (6.6), we get

1 ≤ |q| ;
g(s)

+ kg(s)a |qα− p| .

Hence, by (6.8),
1

2
< kg(s)a |qα− p|.

Using (6.9), we finally get

|qα− p| > 1

2kba(h+1)(2 |q| ;)ah2 ,

which proves lemma 6.1 by choosing q0 = q0(ε) such that 2ah
2
kba(h+1);ah

2 ≤
qε0. �
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6.2. Proof of Theorem 3.2

By (5.15), we have an = O(uαn) and bn = O(uαn) for every α > 0. Put

(6.10)

{
ωα = inf(2 − γ, 1 − 3α)

µ =
ωα
λ

− α.

As λ ≥ 2 we see that, for α small enough

(6.11) 3α < 7α < µ <
1

2
< 1 − 4α,

so that (4.10) is fulfiled.

Now we follow the proof of Theorem 3.1 until (4.7).As µ <
1

2
, we see

that (4.11) becomes, for α small enough, and ε = α,

(6.12) δ = −µ
2

+ 2α,

so that (4.17) can be written as, because un+1 = O(u2
n) and ε = α,

(6.13) BnS − Cn = O(u−µ+6α
n ).

Similarly we have by (4.16), with ε replaced by α,

(6.14) Kn = O(u1+2α
n ).

Now we have to find an upper bound for Bn. By (4.14) and (3.3) we have

|Bn| ≤ |Kn|O(u4α
n )O(uµn)un.

Hence, by (6.14),

(6.15) Bn = O(u2+µ+6α
n ).

In Lemma 6.1, we therefore choose

(6.16)




g(n) = uµ−6α
n

a =
2 + µ+ 6α

µ− 6α

h = 2

b = (2β)µ−6α.
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It remains to prove that (6.1) holds. Assume that there exist infinitely

many n such as BnCn+1 − Bn+1Cn = 0. Then a look at (4.19) shows that

(5.16), and hence (5.18), hold for infinitely many n. Therefore we have for

infinitely many n, as pn+1/qn+1 → β,

β − pn
qn

= O(uγ−2
n ) +O(u−1+3α

n ) +O(u−2+6α
n ).

So, for α small enough, we get

(6.17) β − pn
qn

= O(u−ωα
n ).

By (3.18) this implies, if pn/qn �= β, K/qλn = O(u−ωα
n ), whence K =

O(u−ωα+λµ
n ) = O(u−α

n ). Therefore K = 0, which is impossible, and pn/qn =

β for infinitely many n ; this means that β ∈ Q. So (6.1) holds by (3.19).

By lemma 6.1 and (6.16), we get (6.5) with m = 4(2 + µ + 6α)/(µ − 6α),

which proves Theorem 3.2 by choosing α small enough.
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