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Scattering Theory for a Two-Body Quantum System

in a Constant Magnetic Field

By Tadayoshi Adachi

Abstract. We study the scattering theory for a two-body quan-
tum system in a constant magnetic field. The system consists of one
neutral particle and one charged particle. We show the asymptotic com-
pleteness for this system.

§1. Introduction

In this paper, we study the scattering theory for a two-body quantum

system in a constant magnetic field. We consider the case that the system

consists of one neutral particle and one charged particle.

The scattering theory for N -body systems in a constant magnetic field

has been studied by Gérard-!Laba [G!L1,2,3]. What we should emphasize

is that they have assumed that all particles in the systems are charged,

that is, there is no neutral particle in the systems under consideration,

even if the systems consist of only two particles (see also [!L1,2]). Under

this assumption, if there is no neutral proper subsystem, one has only to

observe the behavior of all subsystems parallel to the magnetic field. Skib-

sted [Sk1,2] studied the scattering theory for N -body systems in combined

constant electric and magnetic fields, but he needed the same assumption

implicitly. Considering such circumstances, we study the scattering theory

for the system which consists of one neutral and one charged particles in a

constant magnetic field. This paper seems to be the first which deals with

such a situation.

We consider a system of two particles moving in a given constant mag-

netic field B = (0, 0, B) ∈ R3, B > 0. Let mj and qj (j = 1, 2) be the mass

and charge of the j-th particle, respectively, and let x ∈ R3 and y ∈ R3 be

the position vectors of the first and second particles, respectively. Through-

out this paper, we assume that the first particle is neutral and the second
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particle is charged, i.e. q1 = 0 and q2 = q �= 0. We suppose that these

particles interact with one another through the pair potential V (x − y).
Then the total Hamiltonian for the system is given by

(1.1) H̃ =
1

2m1
D2

x +
1

2m2
(Dy − qA(y))2 + V (x− y)

acting on L2(R3×2), where Dx = −i∇x and Dy = −i∇y are the momentum

operators of the first and second particles, respectively, and A(y) is the

vector potential. Using the Coulomb gauge, the vector potential A(y) is

given by

(1.2) A(y) =
B

2
(−y2, y1, 0), y = (y1, y2, y3).

As is well-known, the separation of the center of mass motion in the direc-

tion parallel to the field B can be done easily (see e.g. [AHS2]):

(1.3) H̃ =
1

2M
D2

Z ⊗ I + I ⊗H

on L2(R6) = L2(RZ) ⊗ L2(R5
(x⊥,y⊥,z)), where M = m1 + m2 is the total

mass,

(1.4) Z =
m1x3 +m2y3

M

is the position of the center of mass in the direction parallel to the field B,

DZ = −i∂Z ,

(1.5) µ =
m1m2

m1 +m2

is the reduced mass,

(1.6) z = x3 − y3

is the relative position in the direction parallel to the field B, Dz = −i∂z,
x⊥ = (x1, x2), y⊥ = (y1, y2), px = (−i∂x1 ,−i∂x2), py = (−i∂y1 ,−i∂y2), and

(1.7) H =
1

2µ
D2

z +
1

2m1
p2x +

1

2m2
(py − qA(y))2 + V (x− y)
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acting on L2(R5
(x⊥,y⊥,z)). Here we identified the vector potential A(y) with

the vector (B/2)(−y2, y1) ∈ R2. In this paper, we study the scattering

theory for this Hamiltonian H.

Now we state the assumptions on the potential V . Under the assump-

tions, the Hamiltonian H is self-adjoint. We write r⊥ = (r1, r2) for r =

(r1, r2, r3) ∈ R3. The dot · means the usual Euclidean metric. We use the

following convention for smooth cut-off functions F with 0 ≤ F ≤ 1, which

is often used throughout this paper. For sufficiently small η > 0, we define

F (s ≤ d) = 1 for s ≤ d− η, = 0 for s ≥ d,
F (s ≥ d) = 1 for s ≥ d+ η, = 0 for s ≤ d,

and F (d1 ≤ s ≤ d2) = F (s ≥ d1)F (s ≤ d2). The choice of η > 0 does not

matter to the argument below.

(V 1) V = V (r) ∈ L2(R3) + L∞
ε (R3) is a real-valued function.

(V 2) ∂αr⊥V (|α| = 1, 2), (r · ∇r)
lV (l = 1, 2), ∂βr⊥(r · ∇rV ) (|β| = 1) and

r⊥ · ∇r⊥(r · ∇rV ) are all −∆r-bounded. Moreover, for some µ1 > 0, as

R→ ∞, ∥∥∥∥F
( |r|
R

≥ 1

)
∇r⊥V (−∆r + 1)−1

∥∥∥∥ = O(R−µ1),∥∥∥∥F
( |r|
R

≥ 1

)
r · ∇rV (−∆r + 1)−1

∥∥∥∥ = O(R−µ1)

are satisfied.

(SR) V satisfies

∥∥∥∥F
( |r|
R

≥ 1

)
V (−∆r + 1)−1

∥∥∥∥ = O(R−µS )

as R→ ∞, with µS > 1.

(LR) V is decomposed as V = VS + VL, where a real-valued VL ∈ C∞(R3)

such that |∂αr VL(r)| ≤ Cα〈r〉−|α|−µL with µL > 1/2, and VS satisfies

∥∥∥∥F
( |r|
R

≥ 1

)
VS(−∆r + 1)−1

∥∥∥∥ = O(R−µS )
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as R→ ∞, with µS > 1.

Remark 1.1. As is seen from the above assumptions, we need a certain

regularity of the potential V , that is, the relative boundedness of some

derivatives of V on the coordinates perpendicular to the magnetic field B

with respect to −∆r. Taking account of the effects of B, it seems natural

to impose different assumptions on V with respect to the direction parallel

to the field B, and the ones perpendicular to B.

To formulate the results precisely, we introduce the usual and the mod-

ified wave operators. We denote the free Hamiltonian by

(1.8) H0 =
1

2µ
D2

z +
1

2m1
p2x +

1

2m2
(py − qA(y))2 .

The usual wave operators W± are defined by

(1.9) W± = s - lim
t→±∞

eitHe−itH0 .

Writing VL(r) = VL(r⊥, z), we define the modified wave operators W±
D by

(1.10) W±
D = s - lim

t→±∞
eitHe−itH0−i

∫ t
0 VL(spx/m1,sDz/µ) ds.

The main results of this paper are the following two theorems:

Theorem 1.1. Assume that (V 1), (V 2) and (SR) are fulfilled. Then

the usual wave operators W± exist and are asymptotically complete

L2
c(H) = RanW±.

Here L2
c(H) is the continuous spectral subspace of the Hamiltonian H.

Theorem 1.2. Assume that (V 1), (V 2) and (LR) are fulfilled. Then

the modified wave operators W±
D exist and are asymptotically complete

L2
c(H) = RanW±

D .
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Remark 1.2. In Theorem 1.2, we assumed that µL > 1/2 because

we used the so-called Dollard modifier. If one employs solutions of the

Hamilton-Jacobi equations in order to construct the modifier, the condition

can be relaxed.

Remark 1.3. We consider the problem in the space R3. But our anal-

ysis can be applied also in studying the same problem in the space R2.

The plan of this paper is as follows: In §2, we study the spectral prop-

erties of the reduced Hamiltonian Ĥ defined below by using the Mourre

theory. In §3, we show some propagation estimates which are useful for

proving the asymptotic completeness. In §4 and §5, we prove the main

results of this paper. We give the proofs in the case t→ ∞ only. The case

t→ −∞ can be proved in the same way.

Acknowledgement . I would like to express my deep gratitude to Profes-

sor Christian Gérard for his valuable discussions as well as his hospitality,

because the contents of this paper were developed during my staying at the

École Polytechnique. This work was supported by the Ministry of Educa-

tion, Science, Sports and Culture, the Government of Japan.

§2. The Mourre Estimate

In this section, we study the spectral properties of the Hamiltonian H,

by using the Mourre theory.

First we have to ‘remove’ the center of mass motion in the directions

perpendicular to the field B. In order to achieve it, we introduce the total

pseudomomentum k perpendicular to the field B (see e.g. [AHS2]):

(2.1) k = px + py + qA(y),

where we identified A(y) ∈ R3 with (B/2)(−y2, y1) ∈ R2. We note that

this operator k commutes with H. Since in this case the total charge of the

system is non-zero, the two components of the total pseudomomentum k

cannot commute with each other, but satisfy the Heisenberg commutation

relation. Then one can ‘remove’ the center of mass motion perpendicular
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to the field B by following the arguments of [AHS2], [G!L1,2,3] and [Sk1,2].

Before doing that, we introduce the relative coordinates v = (v1, v2) and

the center of mass coordinates w = (w1, w2) perpendicular to the field B:

(2.2) v = x⊥ − y⊥, w =
m1x⊥ +m2y⊥

M
.

The associated momenta are denoted by pv = (pv1 , pv2) = (−i∂v1 ,−i∂v2)

and pw = (pw1 , pw2) = (−i∂w1 ,−i∂w2). We introduce the unitary operator

U on L2(R5) as follows:

(2.3) U = e−iw·qA(y)eiqBw1w2/2eipw1pw2/(qB).

We note that w · qA(y) = −(m1q/M)w · A(v), where we identified v =

(v1, v2) ∈ R2 with (v1, v2, 0) ∈ R3 and A(v) with a vector in R2. Then the

total pseudomomentum k can be transformed by the unitary operator U as

follows:

(2.4) U∗k1U = pw1 , U∗k2U = qBw1.

And the Hamiltonian H can be transformed by the unitary operator U as

follows:

U∗HU =
1

2µ
D2

z(2.5)

+
1

2m1

{(
pv1 +

m1qB

M
w2 −

m2
1qB

2M2
v2

)2

+

(
pv2 +

m1

M
pw2 +

m2
1qB

2M2
v1

)2
}

+
1

2m2

{(
−pv1 +

m2qB

M
w2 −

m1(m1 + 2m2)qB

2M2
v2

)2

+

(
−pv2 +

m2

M
pw2 +

m1(m1 + 2m2)qB

2M2
v1

)2
}

+ V.
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This Hamiltonian U∗HU does not depend on the variable w1. Then one can

identify this operator U∗HU with an operator acting on L2(R4
(v1,v2,w2,z)

).

We denote this reduced Hamiltonian by Ĥ.

From now on we analyze the spectral properties of the Hamiltonian Ĥ.

We will introduce a conjugate operator Â for Ĥ. First we consider the

following operator Ã on L2(R5) for H:

(2.6) Ã =
1

2
{(zDz +Dzz) + (x⊥ · px + px · x⊥)}.

Then one can obtain the following commutation relation by a straightfor-

ward computation:

(2.7) i[H0, Ã] =
1

µ
D2

z +
1

m1
p2x = 2

(
H0 −

1

2m2
(py − qA(y))2

)
.

As is well-known, the spectrum of the last term consists of the Landau

levels

(2.8) τ =

{
|q|B
m2

(
n+

1

2

) ∣∣∣∣∣ n = 0, 1, 2, . . .

}
.

We will use this commutation property (2.7) in studying the spectral the-

ory for the Hamiltonian Ĥ. Then the operator U∗ÃU is a candidate for a

conjugate operator for the Hamiltonian Ĥ. However, this operator U∗ÃU
does not commute with the total pseudomomentum (pw1 , qBw1), and so

U∗ÃU cannot become a conjugate operator for Ĥ. Noting that the right-

hand side of (2.7) and H0 commute with the total pseudomomentum k, we

expect the existence of some alternative conjugate operator which satisfies

the commutation relation (2.7) and commutes with the total pseudomo-

mentum k. In order to find such an operator, we remove the dependence

on the total pseudomomentum (pw1 , qBw1) from the operator U∗ÃU . In

order to carry it out, we have only to consider the part x⊥ · px. Using the

relative coordinates v and the center of mass coordinates w, we have

x⊥ · px = w · pv +
m2

M
v · pv +

m1

M
w · pw +

m1m2

M2
v · pw.
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By a straightforward computation, we have the following equality:

U∗(x⊥ · px)U = w2pv2 −
1

qB
pw2pv1 +

m2

M
v · pv +

m1(m1 + 2m2)

2M2
v2pw2

+
m1(m1 + 2m2)qB

2M2
v1w2 +R,

where R has the dependence on the total pseudomomentum (pw1 , qBw1).

Thus we define the self-adjoint operator Â on L2(R4) as follows:

Â =
1

2

{
(zDz +Dzz) +

m2

M
(v · pv + pv · v)

}
+ w2pv2 −

1

qB
pw2pv1(2.9)

+
m1(m1 + 2m2)

2M2
v2pw2 +

m1(m1 + 2m2)qB

2M2
v1w2.

The self-adjointness of this operator Â is guaranteed by the Nelson’s com-

mutator theorem (see [RS]). This operator Â has some good properties. By

a straightforward computation, one can check that the following equality

holds:

i[Ĥ0, Â](2.10)

= 2

(
Ĥ0 −

1

2m2

{(
−pv1 +

m2qB

M
w2 −

m1(m1 + 2m2)qB

2M2
v2

)2

+

(
−pv2 +

m2

M
pw2 +

m1(m1 + 2m2)qB

2M2
v1

)2
})

,

where Ĥ0 = Ĥ − V . Now we note that

U∗
(

1

2m2
(py − qA(y))2

)
U(2.11)

=
1

2m2

{(
−pv1 +

m2qB

M
w2 −

m1(m1 + 2m2)qB

2M2
v2

)2

+

(
−pv2 +

m2

M
pw2 +

m1(m1 + 2m2)qB

2M2
v1

)2
}
.
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Using the commutation property (2.10) analogous to (2.7), we have the

following Mourre estimate.

Theorem 2.1 (The Mourre estimate). Suppose that the potential V

satisfies the conditions (V 1) and (V 2). Put

d(λ) = dist(λ, τ ∩ (−∞, λ])

for λ ≥ inf τ = |q|B/(2m2). Then for any λ ≥ inf τ and any ε > 0, there

exists a δ > 0 such that for any real-valued f ∈ C∞
0 (R) supported in the

open interval (λ − δ, λ + δ), there exists a compact operator K on L2(R4)

such that

(2.12) f(Ĥ)i[Ĥ, Â]f(Ĥ) ≥ 2(d(λ) − ε)f(Ĥ)2 +K

holds.

Using the abstract Mourre theory (see e.g. [CFKS]), the following

corollary follows from Theorem 2.1 and the fact that under the condi-

tion (V 1) V is Ĥ0-compact (see [AHS2]). The latter fact implies that

σess(Ĥ) = σess(Ĥ0).

Corollary 2.2. Assume the same conditions as in Theorem 2.1.

Then eigenvalues of Ĥ can accumulate only at τ . Moreover, τ ∪ σpp(Ĥ) is

a closed countable set.

Proof of Theorem 2.1. First we consider the term i[Ĥ0, Â]. We

note that f(Ĥ) − f(Ĥ0) is compact on L2(R4). This fact follows from the

fact that

(Ĥ − ζ)−1 − (Ĥ0 − ζ)−1 = −(Ĥ − ζ)−1V (Ĥ0 − ζ)−1

is compact on L2(R4), where ζ ∈ C \ R. We also notice that i[Ĥ0, Â] is

Ĥ0-bounded by virtue of (2.10). Then we have

(2.13) f(Ĥ)i[Ĥ0, Â]f(Ĥ) = f(Ĥ0)i[Ĥ0, Â]f(Ĥ0) +K1
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for some compact operator K1 on L2(R4). Letting λ, ε, δ and f be as in

the statement of the theorem, if we take δ > 0 sufficiently small, we have

(2.14) f(Ĥ0)i[Ĥ0, Â]f(Ĥ0) ≥ 2

(
d(λ) − 1

2
ε

)
f(Ĥ0)

2,

by virtue of (2.10). By using the compactness of f(Ĥ) − f(Ĥ0) again, the

following estimate follows from (2.13) and (2.14):

(2.15) f(Ĥ)i[Ĥ0, Â]f(Ĥ) ≥ 2

(
d(λ) − 1

2
ε

)
f(Ĥ)2 +K2

for some compact operator K2 on L2(R4).

Next we consider the term i[V, Â]. By the definition of the operator Â,

we have only to consider the term

i[V, Â] = −
(
z∂zV +

m2

M
v · ∇vV + w2∂v2V − 1

qB
pw2∂v1V

)
.

Now one can rewrite the Hamiltonian Ĥ as follows (see [G!L1,2,3] and

[Sk1,2]):

Ĥ =
1

2µ

{
D2

z +

(
pv1 +

m2
1qB

2M2
v2

)2

+

(
pv2 −

m2
1qB

2M2
v1

)2
}

(2.16)

+
1

2M

{(
pw2 +

m1qB

M
v1

)2

+

(
qBw2 −

m1qB

M
v2

)2
}

+ V.

By virtue of this equality (2.16), we see that the operators

pw2 +
m1qB

M
v1, qBw2 −

m1qB

M
v2

are Ĥ-bounded. By using the fact that for any R > 0 F (|x−y|/R ≤ 1) is Ĥ-

compact (see [AHS2]), inserting 1 = F (|x− y|/R ≤ 1)+(1−F (|x− y|/R ≤
1)) and letting R sufficiently large, we have

f(Ĥ)

{
−
(
w2 −

m1

M
v2

)
∂v2V −

(
− 1

qB
pw2 −

m1

M
v1

)
∂v1V

}
f(Ĥ)(2.17)

≥ −ε
2
f(Ĥ)2 +K3
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for some compact operator K3 on L2(R4). Then we have to consider the

term

−
(
z∂zV +

m2

M
v · ∇vV +

m1

M
v2∂v2V +

m1

M
v1∂v1V

)
= −r · ∇rV (r),

where we write r = x− y. In the same way as above, we have

(2.18) f(Ĥ){−r · ∇rV }f(Ĥ) ≥ −ε
2
f(Ĥ)2 +K4

for some compact operator K4 on L2(R4). Combining (2.15) and (2.17)

with (2.18), we obtain the theorem. �

§3. Propagation Estimates

In this section, we prove some propagation estimates for the evolution

of the Hamiltonian H, not Ĥ.

First we need the Mourre estimate for the Hamiltonian H. As we have

seen in the previous section, we have the following relation between H and

Ĥ:

(3.1) U∗HU = Ĥ ⊗ I

on L2(R5) = L2(R4) ⊗ L2(R). Here I is the identity operator. As for the

Hamiltonian Ĥ, the following proposition holds, by virtue of Theorem 2.1

and Corollary 2.2:

Proposition 3.1. Suppose that the potential V satisfies the conditions

(V 1) and (V 2). Let λ ≥ inf τ be such that λ �∈ τ ∪σpp(Ĥ). Then there exist

δ > 0 and c > 0 such that for any real-valued f ∈ C∞
0 (R) supported in the

open interval (λ− δ, λ+ δ),

(3.2) f(Ĥ)i[Ĥ, Â]f(Ĥ) ≥ cf(Ĥ)2

holds.

We translate this proposition into the one for the Hamiltonian H, by

using the relation (3.1). We define the self-adjoint operator A on L2(R5)

by

(3.3) A = U(Â⊗ I)U∗.
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Then, by virtue of the relation (3.1), we obtain the following proposition

immediately.

Proposition 3.2. Suppose that the potential V satisfies the conditions

(V 1) and (V 2). Let λ ≥ inf τ be such that λ �∈ τ ∪σpp(H). Then there exist

δ > 0 and c > 0 such that for any real-valued f ∈ C∞
0 (R) supported in the

open interval (λ− δ, λ+ δ),

(3.4) f(H)i[H,A]f(H) ≥ cf(H)2

holds.

Remark 3.1. Eigenvalues of H can accumulate only at τ and that

τ ∪ σpp(H) is a closed countable set, which follows from Corollary 2.2 and

the relation (3.1).

Then we have the following propagation estimate associated with the

observable A, by following the standard argument in the N -body scattering

theory originated with the works of Sigal-Soffer (see e.g. [SS1,2]).

Proposition 3.3. Assume the same condition as in Proposition 3.2.

Let λ, δ, c and f be also as in Proposition 3.2. Then for any real-valued

g ∈ C∞
0 (R) supported in (−∞, c), there exists C > 0 such that

(3.5)

∫ ∞

1

∥∥∥∥g
(
A

t

)
f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2

for any ψ ∈ L2(R5).

Proof. The proof is done in exactly the same way as in [SS2]. We

sketch the proof (see also [G!L3]).

Let G be defined by

G(s) =

∫ s

−∞
g(u)2 du,

so that G′(s) = g(s)2 ∈ C∞
0 (R) with g being real-valued. We use

Φ1(t) = G

(
A

t

)
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as a propagation observable. We note that Φ1(t) is uniformly bounded in

t ≥ 1. The Heisenberg derivative of this observable is calculated as

(3.6) DH(Φ1(t)) = ∂tΦ1(t) + i[H,Φ1(t)].

If we take f1 ∈ C∞
0 (R) such that f1 = 1 on the support of f , then

f(H)i[H,Φ1(t)]f(H) = f(H)i[f1(H)H,Φ1(t)]f(H).

By using the almost analytic extension method due to Helffer-Sjöstrand

[HeSj] in order to calculate several commutators (see also [G]), we have

f(H)i[H,Φ1(t)]f(H) = g

(
A

t

)
f(H)i

[
H,
A

t

]
f(H)g

(
A

t

)
+O(t−2).

Here we note that [(H + i)−1, A] and [[(H + i)−1, A], A] are bounded on

L2(R5) by assumption. Hence it follows from (3.4) that

f(H)i[H,Φ1(t)]f(H) ≥ c

t
g

(
A

t

)
f(H)2g

(
A

t

)
+O(t−2)

≥ c

t
f(H)g

(
A

t

)2

f(H) +O(t−2)

On the other hand, the first term on the right-hand side of (3.6) is estimated

as

f(H)∂tΦ1(t)f(H) ≥ −c0
t
f(H)g

(
A

t

)2

f(H)

for some c0 such that 0 < c0 < c, which depends on the support of g. Thus

we obtain

f(H)DH(Φ1(t))f(H) ≥ c− c0
t

f(H)g

(
A

t

)2

f(H) +O(t−2).

This proves the proposition. �

Next we consider the observable Ξ = (x⊥, z) instead of the observable

A. Then we need the localization of the total pseudomomentum k as well

as the localization of the energy. Following the argument of [AHS2], we
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introduce the creation operator a∗ by using the total pseudomomentum k

as follows:

(3.7) a∗ =
1√

2|q|B

(
q

|q|k2 − ik1

)
.

Here we used the relation (2.4). Thus we use the localization of the number

operator N = a∗a in addition to the localization of the energy. Then we

obtain the following lemma.

Lemma 3.4. Assume the same condition as in Proposition 3.2. Let λ,

δ, c and f be also as in Proposition 3.2. Let c0 be such that 0 < c0 < c.

Then for any real-valued h ∈ C∞
0 (R), there exists ε0 > 0 such that∥∥∥∥F

( |A|
t

≥ c0
)
F

( |Ξ|
t

≤ ε0
)
h(N)f(H)

∥∥∥∥ = O(t−1)

as t→ ∞.

Proof. First of all, we note that the following equality holds, which

can be checked by a straightforward computation.

Ã−A =
1

2

{(
m1

2M
w1 −

m2
1

2M2
v1 −

1

qB
pv2

)
(3.8)

×
(
pw1 −

qB

2
w2 +

m1qB

2M
v2

)

+

(
pw1 −

qB

2
w2 +

m1qB

2M
v2

)

×
(
m1

2M
w1 −

m2
1

2M2
v1 −

1

qB
pv2

)}

+
1

2

{(
m1

2M
w2 −

m2
1

2M2
v2 +

1

qB
pv1

)

×
(
pw2 +

qB

2
w1 −

m1qB

2M
v1

)

+

(
pw2 +

qB

2
w1 −

m1qB

2M
v1

)

×
(
m1

2M
w2 −

m2
1

2M2
v2 +

1

qB
pv1

)}
,
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where Ã was defined in (2.6). We also notice that

(3.9) k1 = pw1 −
qB

2
w2 +

m1qB

2M
v2, k2 = pw2 +

qB

2
w1 −

m1qB

2M
v1,

by virtue of y⊥ = w− (m1/M)v. On the other hand, one can rewrite H as

follows:

(3.10) H =
1

2µ

{
D2

z +
(
pv +

m1q

M
A(y)

)2
}

+
1

2M
(pw − qA(y))2 + V.

Thus the operators

pv1 −
m1qB

2M
y2 = pv1 +

m2
1qB

2M2
v2 −

m1qB

2M
w2,

pv2 +
m1qB

2M
y1 = pv2 −

m2
1qB

2M2
v1 +

m1qB

2M
w1

are H-bounded. Noting that

m1

2M
w1 −

m2
1

2M2
v1 −

1

qB
pv2 = − 1

qB

(
pv2 −

m2
1qB

2M2
v1 +

m1qB

2M
w1

)

+
m1

M
w1 −

m2
1

M2
v1

= − 1

qB

(
pv2 −

m2
1qB

2M2
v1 +

m1qB

2M
w1

)
+
m1

M
y1,

m1

2M
w2 −

m2
1

2M2
v2 +

1

qB
pv1 =

1

qB

(
pv1 +

m2
1qB

2M2
v2 −

m1qB

2M
w2

)

+
m1

M
w2 −

m2
1

M2
v2

=
1

qB

(
pv1 +

m2
1qB

2M2
v2 −

m1qB

2M
w2

)
+
m1

M
y2,

if we will obtain the boundedness of yjh(N)f(H) (j = 1, 2), we will see (Ã−
A)h(N)f(H) is bounded on L2(R5). Taking account of the boundedness

of the operators kh(N), pxf(H) and (py − qA(y))f(H), and the relation

k− px− (py − qA(y)) = 2qA(y), we see that A(y)h(N)f(H) is bounded on

L2(R5), which implies the boundedness of yjh(N)f(H) (j = 1, 2).
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We set FA(t) = F (|A|/t ≥ c0) and FΞ(t) = F (|Ξ|/t ≤ ε0). And for

u1 ∈ L2(R5), we put u = FA(t)FΞ(t)h(N)f(H)u1. Since (Ã−A)h(N)f(H)

is bounded on L2(R5), controlling some commutators, we have

(3.11) ‖|A|u‖ ≤ C1(‖|Ã|u‖ + ‖u1‖)

with some C1 > 0 independent of t ≥ 1. On the other hand, introducing

GΞ(t) = F (|Ξ| ≤ 2ε0) such that GΞ(t)FΞ(t) = FΞ(t), taking account of the

definition of the operator Ã, and controlling some commutators, we obtain

‖|A|u‖ ≥ c0‖FA(t)FΞ(t)h(N)f(H)u1‖ − C2‖u1‖,
‖|Ã|u‖ ≤ C3ε0t‖FA(t)FΞ(t)h(N)f(H)u1‖ + C4‖u1‖

with some Cj > 0 (j = 2, 3, 4) independent of t ≥ 1. Hence, combining

these inequalities with (3.11), if we take ε0 > 0 so small that C1C3ε0 < c0,

we obtain the lemma. �

Combining Proposition 3.3 with Lemma 3.4, we obtain the following

propagation estimate immediately.

Proposition 3.5 (The minimal velocity estimate). Assume the same

condition as in Proposition 3.2. Let λ, δ, c and f be also as in Proposition

3.2. Then for any real-valued h ∈ C∞
0 (R), there exists ε0 > 0 such that

(3.12)

∫ ∞

1

∥∥∥∥F
( |Ξ|
t

≤ ε0
)
h(N)f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2

for any ψ ∈ L2(R5), with C > 0 independent of ψ.

By virtue of the above minimal velocity estimate, we conclude the fol-

lowing propagation property.

Proposition 3.6. Assume the same condition as in Proposition 3.2.

Let λ, δ, c and f be also as in Proposition 3.2. Then for any real-valued

h ∈ C∞
0 (R), there exists ε > 0 such that

s - lim
t→∞

F

( |Ξ|
t

≤ ε
)
h(N)f(H)e−itH = 0.
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Proof. First we claim that the following strong limit exists:

(3.13) s - lim
t→∞

eitHF

( |Ξ|
t

≤ ε
)
h(N)f(H)e−itH

with ε = ε0/2, where ε0 > 0 is as in Proposition 3.5. In fact, taking

f1 ∈ C∞
0 (R) such that f1f = f with the same properties as f and h1 ∈

C∞
0 (R) such that h1h = h with the same properties as h, and noting that

[F (|Ξ|/t ≤ ε), f1(H)] = O(t−1) and [F (|Ξ|/t ≤ ε), h1(N)] = O(t−1) it

suffices to show the existence of the strong limit of

W̃ (t) = eitHf1(H)h1(N)F

( |Ξ|
t

≤ ε
)
h(N)f(H)e−itH

as t→ ∞. By Proposition 3.5, we have

|(ϕ, W̃ (s1)ψ) − (ϕ, W̃ (s2)ψ)| = o(1)‖ϕ‖, s1, s2 → ∞,

for ϕ, ψ ∈ L2(R5), by virtue of the Cook-Kuroda method. This implies

that
{
W̃ (t)ψ

}
t≥1

is a Cauchy sequence and hence the existence of (3.13) is

proved. By using Proposition 3.5 again, we see that for ψ ∈ L2(R5), there

exists a subsequence
{
tn
}
n∈N with tn → ∞ as n→ ∞ such that

(3.14) lim
n→∞

F

( |Ξ|
tn

≤ ε
)
h(N)f(H)e−itnHψ = 0,

where the choice of subsequence
{
tn
}
n∈N depends on ψ. By the existence

of (3.13) and (3.14), we have for ψ ∈ L2(R5),

lim
t→∞

F

( |Ξ|
t

≤ ε
)
h(N)f(H)e−itHψ = 0.

Thus the proposition is obtained. �

Next we consider the observable r = x− y = (x⊥ − y⊥, z) instead of the

observable Ξ. First we need the following lemma.
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Lemma 3.7. Assume the same condition as in Proposition 3.2. Let f ,

h ∈ C∞
0 (R). Then for any ε > 0, we have

∥∥∥∥F
( |y⊥|
t

≥ ε
)
h(N)f(H)

∥∥∥∥ = O(t−1)

as t→ ∞.

Proof. First we recall that |y⊥|h(N)f(H) is bounded on L2(R5),

which was seen in the proof of Lemma 3.4.

For u1 ∈ L2(R5), we put u = F (|y⊥|/t ≥ ε)h(N)f(H)u1. Then we have

εt‖u‖ ≤ ‖|y⊥|u‖ ≤ C‖u1‖

with some C > 0 independent of t ≥ 1. This implies the lemma. �

Noting that |Ξ| ≤ |Ξ − (y⊥, 0)| + |(y⊥, 0)|, the following proposition

follows from Proposition 3.5 and Lemma 3.7 immediately.

Proposition 3.8 (The minimal velocity estimate). Assume the same

condition as in Proposition 3.2. Let λ, δ, c and f be also as in Proposition

3.2. Then for any real-valued h ∈ C∞
0 (R), there exists ε0 > 0 such that

(3.15)

∫ ∞

1

∥∥∥∥F
( |r|
t

≤ ε0
)
h(N)f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2

for any ψ ∈ L2(R5), with C > 0 independent of ψ.

By virtue of the above minimal velocity estimate, we conclude the fol-

lowing propagation property. Since it can be proved in the same way as in

the proof of Proposition 3.6, we omit the proof.

Proposition 3.9. Assume the same condition as in Proposition 3.2.

Let λ, δ, c and f be also as in Proposition 3.2. Then for any real-valued

h ∈ C∞
0 (R), there exists ε > 0 such that

s - lim
t→∞

F

( |r|
t

≤ ε
)
h(N)f(H)e−itH = 0.
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Now, for simplicity of computation, we introduce another metric 〈 , 〉 on

R3
Ξ as follows:

(3.16) 〈Ξ,Ξ′〉 = m1(x1x
′
1 + x2x

′
2) + µzz′, |Ξ|1 =

√
〈Ξ,Ξ〉

for Ξ = (x1, x2, z) and Ξ′ = (x′1, x
′
2, z

′). We note that the norm | · |1 is

equivalent with the Euclidean norm | · |. We denote pΞ by

(3.17) pΞ =

(−i∂x1

m1
,
−i∂x2

m1
,
−i∂z
µ

)
,

which should be called the velocity operator associated with Ξ. This con-

vention has been often used in the N -body scattering theory.

Next we need the maximal velocity estimate, which will be used in the

study of long-range scattering.

Proposition 3.10 (The maximal velocity estimate). Suppose that the

potential V satisfies the conditions (V 1) and (V 2). Then for any real-valued

f ∈ C∞
0 (R) there exists M > 0 such that for any M2 > M1 ≥M ,

(3.18)

∫ ∞

1

∥∥∥∥F
(
M1 ≤ |Ξ|1

t
≤M2

)
f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2

for any ψ ∈ L2(R5), with C > 0 independent of ψ. Moreover, for any

ψ ∈ L2(R5) such that (1 + |Ξ|1)1/2ψ ∈ L2(R5)

(3.19)

∫ ∞

1

∥∥∥∥F
( |Ξ|1
t

≥M1

)
f(H)e−itHψ

∥∥∥∥
2 dt

t
<∞.

Proof. The proof is done in the way similar to the one in [SS2] (see

also [D], [DG], [Gr]). We sketch the proof.

Let G1 be defined by

G1(s) =

∫ s

−∞
g1(u)

2 du,
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with real-valued g1 ∈ C∞
0 (R) supported in [M0,∞) such that g1 = 1 on

[M1,M2]. We use

Φ1(t) = −G1

( |Ξ|1
t

)

as a propagation observable. We note that Φ1(t) is uniformly bounded in

t ≥ 1. The Heisenberg derivative of this observable is calculated as follows:

DH(Φ1(t)) =
|Ξ|1
t2
g1

( |Ξ|1
t

)2

− 1

2t

{
g1

( |Ξ|1
t

)2〈 Ξ

|Ξ|1
, pΞ

〉
+

〈
pΞ,

Ξ

|Ξ|1

〉
g1

( |Ξ|1
t

)2
}
.

By virtue of the boundedness of pΞf(H), we have

f(H)DH(Φ1(t))f(H) ≥ M0 − C
t

f(H)g

( |Ξ|1
t

)2

f(H) +O(t−2)

for some C > 0 which depends on f . Then if we take M0 > 0 so large that

M0 > C, we obtain the estimate (3.18).

Next we put

G2(s) =

∫ s

−∞
g2(u)

2 du

with real-valued g2 ∈ C∞
0 (R) which is supported in [M0,M0+1] and satisfies∫∞

−∞ g2(u)
2 du = 1. We use

Φ2(t) = −
( |Ξ|1
t

−M0

)
G2

( |Ξ|1
t

)

as a propagation observable. We note that (1 + |Ξ|1)−1/2eitHf(H)Φ2(t) ·
f(H)e−itH(1 + |Ξ|1)−1/2 is uniformly bounded in t ≥ 1. In the same way

as above, we have

f(H)DH(Φ2(t))f(H)

≥f(H)

{
M0 − C1

t
G2

( |Ξ|1
t

)
− C2

t
g2

( |Ξ|1
t

)2

+O(t−2)

}
f(H).
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Thus if we take M0 so large that M0 > C1 and (3.18) holds, we obtain the

estimate (3.19). �

Noting that |Ξ|1 ≥
∣∣|Ξ − (y⊥, 0)|1 − |(y⊥, 0)|1

∣∣, we obtain the following

proposition immediately, by virtue of Lemma 3.7.

Proposition 3.11 (The maximal velocity estimate). Suppose that the

potential V satisfies the conditions (V 1) and (V 2). Then for any real-valued

f , h ∈ C∞
0 (R) there exists M > 0 such that for any M2 > M1 ≥M ,

(3.20)

∫ ∞

1

∥∥∥∥F
(
M1 ≤ |r|1

t
≤M2

)
h(N)f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2

for any ψ ∈ L2(R5), with C > 0 independent of ψ. Moreover, for any

ψ ∈ L2(R5) such that (1 + |Ξ|1)1/2ψ ∈ L2(R5)

(3.21)

∫ ∞

1

∥∥∥∥F
( |r|1
t

≥M1

)
h(N)f(H)e−itHψ

∥∥∥∥
2 dt

t
<∞.

These two propositions imply the following corollary. Since the proof is

similar to the one of Proposition 3.6, we omit the proof.

Corollary 3.12. Assume the same condition as in Proposition 3.10.

Then for any real-valued f , h ∈ C∞
0 (R), there exists M > 0 such that

s - lim
t→∞

F

( |Ξ|1
t

≥M
)
f(H)e−itH = 0,

s - lim
t→∞

F

( |r|1
t

≥M
)
h(N)f(H)e−itH = 0.

The next propagation estimate is analogue to the one derived by Graf

[Gr] (see also [D], [DG]).
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Proposition 3.13. Assume the same condition as in Proposition 3.2.

Let λ, δ, c and f be also as in Proposition 3.2. Then for any real-valued

h ∈ C∞
0 (R), there exist c1 > 0 and c2 > 0 such that

∫ ∞

1

∥∥∥∥
∣∣∣∣Ξt − pΞ

∣∣∣∣
1

F

(
c1 ≤ |r|1

t
≤ c2

)
h(N)f(H)e−itHψ

∥∥∥∥
2 dt

t
(3.22)

≤ C‖ψ‖2

for any ψ ∈ L2(R5), with C > 0 independent of ψ.

Proof. Following the idea of Dereziński [D], we put

(3.23) Φ(t) = −|Ξ|21
t2

+
〈Ξ, pΞ〉 + 〈pΞ,Ξ〉

t
.

By a straightforward computation, we see that

(3.24) DH0(Φ(t)) =
2

t

∣∣∣∣pΞ − Ξ

t

∣∣∣∣
2

1

.

We use

Φ1(t) = Fr(t)Φ(t)Fr(t)

as a propagation observable, where

Fr(t) = F

(
c1 ≤ |r|1

t
≤ c2

)
.

We take c1 > 0 so small that for any ψ ∈ L2(R5)

∫ ∞

1

∥∥∥∥F
( |r|1
t

≤ 2c1

)
h(N)f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2

holds, by virtue of Proposition 3.8. We also take c2 > 0 so large that for

any ψ ∈ L2(R5)

∫ ∞

1

∥∥∥∥F
(
c2 − 1 ≤ |r|1

t
≤ c2 + 1

)
f(H)e−itHψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2
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holds, by virtue of Proposition 3.11.

We compute the Heisenberg derivative of Φ1(t):

DH(Φ1(t)) = DH(Fr(t))Φ(t)Fr(t) + Fr(t)DH(Φ(t))Fr(t)(3.25)

+ Fr(t)Φ(t)DH(Fr(t)).

Noting that ‖Φ(t)Fr(t)(H + i)−1‖ = O(1) and ‖DH(Fr(t))(H + i)−1‖ =

O(t−1), and taking account of the support of F ′
r(t), one can apply Propo-

sitions 3.8 and 3.11 to the first and last terms in (3.23). Thus we have

only to consider the second term in (3.23). Noting that (3.22) holds, we

have to consider the term Fr(t)i[V,Φ(t)]Fr(t). We note that i[V,Φ(t)] is

decomposed as

(3.26) i[V,Φ(t)] = −2

t
{(r · ∇rV ) + (y⊥ · ∇r⊥V )}.

Since |y⊥|1h(N)f(H) is bounded, it follows from the condition (V 2) that

‖f(H)h(N)Fr(t)i[V,Φ(t)]Fr(t)h(N)f(H)‖ = O(t−1−µ1).

Therefore the proposition is obtained. �

§4. Short-Range Case

In this section, we prove the asymptotic completeness of the system

under the short-range assumption (SR).

Proof of Theorem 1.1. We prove the existence of the following

limit:

(4.1) s - lim
t→∞

eitH0e−itHPc(H),

where Pc(H) is the spectral projection onto the continuous spectral sub-

space L2
c(H) of the Hamiltonian H. Since the existence of the wave opera-

tor W+ can be proved quite similarly, if we will see that the above strong

limit exists, then we will obtain the theorem by a standard argument in the

scattering theory.
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We note that N commutes with H. Then, by a density argument, for

ψ ∈ L2
c(H) such that

ψ = h(N)ψ, ψ = f(H)ψ

with h ∈ C∞
0 (R) and f ∈ C∞

0 (R) which is as in Proposition 3.2, we have

only to show the existence of the limit

(4.2) lim
t→∞

eitH0e−itHψ.

Here we used the fact mentioned in Remark 3.1 (see also Corollary 2.2). By

virtue of Proposition 3.9, it suffices to prove that

(4.3) lim
t→∞

eitH0F

( |r|
t

≥ ε
)
e−itHψ

exists, where ε > 0 is sufficiently small as in Proposition 3.9. Now taking

f1 ∈ C∞
0 (R) such that f1f = f with the same properties as f , and h1 ∈

C∞
0 (R) such that h1h = h, as in the proof of Proposition 3.6, we have only

to show the existence of the limit

(4.4) lim
t→∞

eitH0f1(H0)h1(N)F

( |r|
t

≥ ε
)
e−itHψ.

Here we note that

f1(H0)F

( |r|
t

≥ ε
)
− F

( |r|
t

≥ ε
)
f1(H) = O(tmax(−µS ,−1)) = O(t−1).

We also notice that both H and H0 have the same total pseudomomentum.

Since ‖V (r)F (|r|/t ≥ ε)(−∆r + 1)−1‖ = O(t−µS ) is integrable in t ≥ 1

by virtue of µS > 1, one can prove the existence of the limit (4.4) in the

way quite similar to the one in the proof of Proposition 3.6, by virtue of

Proposition 3.8 and the same propagation property of the free evolution

e−itH0 . Thus we obtain the theorem. �
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§5. Long-Range Case

In this section, we prove the asymptotic completeness of the system

under the long-range assumption (LR).

Proof of Theorem 1.2. First of all, we note that in the same way

as in the proof of Theorem 1.1, one can prove the following statement:

Defining the Hamiltonian HL acting on L2(R5) by

(5.1) HL =
1

2µ
D2

z +
1

2m1
p2x +

1

2m2
(py − eA(y))2 + VL(x− y),

and the wave operator Ω+ by

(5.2) Ω+ = s - lim
t→∞

eitHe−itHLPc(HL),

where Pc(HL) is the spectral projection onto the continuous spectral sub-

space L2
c(HL) of the Hamiltonian HL, the wave operator Ω+ exists and

RanΩ+ = L2
c(H).

By virtue of the above statement, we have only to prove the existence

of the following limit:

(5.3) s - lim
t→∞

UD(t)∗e−itHLPc(HL),

where

UD(t) = e−itH0−i
∫ t
0 VL(spΞ) ds.

We note that the existence of the wave operator W+
D can be proved in the

same way as below. By a density argument, for ψ ∈ L2
c(HL) such that

ψ = h(N)ψ, ψ = f(HL)ψ

with h ∈ C∞
0 (R) and f ∈ C∞

0 (R) which is as in Proposition 3.2, we have

only to show the existence of the limit

(5.4) lim
t→∞

UD(t)∗e−itHLψ.

Before doing that, we need the following propagation property due to

Proposition 3.13.
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Proposition 5.1. Assume the same condition as in Theorem 1.2. Let

λ, δ, c and f be also as in Proposition 3.2. Then for any real-valued h ∈
C∞

0 (R), there exist c1 > 0 and c2 > 0 such that

s - lim
t→∞

∣∣∣∣Ξt − pΞ
∣∣∣∣
1

F

(
c1 ≤ |r|1

t
≤ c2

)
h(N)f(HL)e−itHL = 0.

Proof. Following the idea of [DG], we use

Φ(t) = −Fr(t)
∣∣∣∣Ξt − pΞ

∣∣∣∣
2

1

Fr(t)

as a propagation observable, where Fr(t) is as in the proof of Proposition

3.13. We note that

(5.5) DH0

(∣∣∣∣Ξt − pΞ
∣∣∣∣
2

1

)
= −2

t

∣∣∣∣Ξt − pΞ
∣∣∣∣
2

1

.

We compute the Heisenberg derivative of Φ(t):

DHL
(Φ(t)) = − DHL

(Fr(t))

∣∣∣∣Ξt − pΞ
∣∣∣∣
2

1

Fr(t)(5.6)

− Fr(t)DHL

(∣∣∣∣Ξt − pΞ
∣∣∣∣
2

1

)
Fr(t)

− Fr(t)
∣∣∣∣Ξt − pΞ

∣∣∣∣
2

1

DHL
(Fr(t)).

Noting that ‖|Ξ/t − pΞ|21Fr(t)(HL + i)−1‖ = O(1) and ‖DHL
(Fr(t))(HL +

i)−1‖ = O(t−1), and taking account of the support of F ′
r(t), one can apply

Propositions 3.8 and 3.11 to the first and last terms in (5.6). Thus we have

only to consider the second term in (5.6). Noting that (5.5) holds, one can

apply Proposition 3.13 to the term in which DH0(|Ξ/t−pΞ|21) appears. Thus

we have to consider the term Fr(t)i[VL, |Ξ/t− pΞ|21]Fr(t). By the condition

(LR) and Proposition 3.13, we see that for ψ ∈ L2(R5)∣∣∣∣∣
(
e−itHLψ, f(HL)h(N)Fr(t)i

[
V,

∣∣∣∣Ξt − pΞ
∣∣∣∣
2

1

]
Fr(t)h(N)f(HL)e−itHLψ

)∣∣∣∣∣
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is integrable in t ≥ 1. Thus there exists the limit

lim
t→∞

∥∥∥∥
∣∣∣∣Ξt − pΞ

∣∣∣∣
1

Fr(t)h(N)f(HL)e−itHLψ

∥∥∥∥
2

for ψ ∈ L2(R5). But, by Proposition 3.13, the limit equals zero. This

implies the proposition. �

Continuation of the proof of Theorem 1.2. By Proposition 3.6,

we have

(5.7) lim
t→∞

F

( |Ξ|
t

≤ ε
)
F

(
c1 ≤ |r|

t
≤ c2

)
e−itHLψ = 0,

for some ε > 0, with any c2 > c1 > 0. One can take ε > 0 so small that

(5.8) lim
t→∞

F

( |r|
t

≤ ε
)
e−itHLψ = 0

holds. By virtue of Proposition 5.1 and the Baker-Campbell-Hausdorff

formula (see e.g. [DG]), that is, putting G(Ξ) = F (|Ξ| ≤ ε),

F (|pΞ| ≤ ε) − F
( |Ξ|
t

≤ ε
)

=

∫ 1

0
(∇G)

(
spΞ + (1 − s)Ξ

t

)
·
(
pΞ − Ξ

t

)
ds

+
i

2t

∫ 1

0
(∆G)

(
spΞ + (1 − s)Ξ

t

)
ds,

it follows from (5.7) that

(5.9) lim
t→∞

F (|pΞ| ≤ ε)F
(
c1 ≤ |r|

t
≤ c2

)
e−itHLψ = 0,

where c1 > 0 is sufficiently small and c2 > 0 is sufficiently large. Using

Proposition 3.9 and Corollary 3.12, we see that

(5.10) lim
t→∞

F (|pΞ| ≤ ε)e−itHLψ = 0
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by (5.9). Thus it suffices to prove the existence of the limit

(5.11) lim
t→∞

UD(t)∗F̄ (|pΞ| ≥ ε)e−itHLψ,

where F̄ (s ≥ ε) = 1 − F (s ≤ ε).
Now we introduce a time-dependent potential:

(5.12) V (t, r) = VL(r)F

( |r|
t

≥ ε

2

)
.

V (t, r) satisfies

(5.13) |∂αr V (t, r)| ≤ Cα(t+ 〈r〉)−|α|−µL

for t ≥ 1. Then we define two time-dependent Hamiltonians:

H(t) = H0 + V (t,Ξ),

H0(t) = H0 + V (t, tpΞ).

H(t) and H0(t) generate the propagators U(t) and U0(t), respectively. Not-

ing that

(H0 + V (tpΞ))F̄ (|pΞ| ≥ ε) − F̄ (|pΞ| ≥ ε)H0(t) = 0,

we see that the strong limit

(5.14) s - lim
t→∞

UD(t)∗F̄ (|pΞ| ≥ ε)U0(t)

exists.

By the way, by virtue of the scattering theory for time-dependent Hamil-

tonians (see e.g. [D] and [DG]), we know that the strong limit

(5.15) s - lim
t→∞

U0(t)
∗U(t)

exists under the condition µL > 1/2. We used (5.13) and the fact that U(t)

and U0(t) are represented by

U(t) = Û(t) ⊗ e−itH2 , U0(t) = Û0(t) ⊗ e−itH2
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on L2(R5) = L2(R3
Ξ) ⊗ L2(R2

y⊥), where

H2 =
1

2m2
(py − qA(y))2

acting on L2(R2
y⊥), and Û(t) and Û0(t) are the propagators generated by

the time-dependent Hamiltonians

Ĥ(t) =
1

2µ
D2

z +
1

2m1
p2x + V (t,Ξ), Ĥ0(t) =

1

2µ
D2

z +
1

2m1
p2x + V (t, tpΞ),

respectively. We sketch the proof. We have only to show the existence of

the strong limit

s - lim
t→∞

Û∗
0 (t)Û(t).

Since ‖DĤ(t)(tpΞ − Ξ)‖ = O(t−µL), we have

‖(tpΞ − Ξ)Û(t)φ‖ = O(t1−µL)

for φ ∈ C∞
0 (R3). Here we assumed 1/2 < µL < 1 for simplicity. In order to

prove the above limit, we have to deal with V (t, tpΞ) − V (t,Ξ). By using

the Baker-Campbell-Hausdorff formula and the above estimate, we have for

φ ∈ C∞
0 (R3) ∥∥∥∥ ddt(Û0(t)

∗Û(t)φ)

∥∥∥∥ = O(t−2µL).

Since µL > 1/2, this is integrable in t ≥ 1. This implies the existence of

the above strong limit by virtue of the Cook-Kuroda method.

Since (5.14) and (5.15) exist, we have only to show the existence of the

limit

(5.16) lim
t→∞

U(t)∗F̄

( |r|
t

≥ ε
)
e−itHLψ.

In order to show that (5.16) exists, we notice that for the propagator U(t)

the statement similar to the one of Proposition 3.5 holds. In fact,

∫ ∞

1

∥∥∥∥F
( |Ξ|
t

≤ ε0
)
f(H0)U(t)ψ

∥∥∥∥
2 dt

t
≤ C‖ψ‖2
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holds, where ε0 > 0 and f are as in Proposition 3.5. The proof is similar

to the one of Proposition 3.5. Then, as in §4, we have only to show the

existence of the limit

(5.17) lim
t→∞

U(t)∗f1(H0)F̄

( |r|
t

≥ ε
)
e−itHLψ,

where f1 ∈ C∞
0 (R) such that f1f = f which has the same properties as f .

Now we have to deal with

f1(H0)∂t

{
F̄

( |r|
t

≥ ε
)}

+ iH(t)f1(H0)F̄

( |r|
t

≥ ε
)

(5.18)

− f1(H0)F̄

( |r|
t

≥ ε
)
iHL.

As for the first term in (5.18), taking account of the support of F̄ ′(|r|/t ≥ ε)
and Lemma 3.7, one can apply Proposition 3.8 and the minimal velocity

estimate for the propagator U(t) mentioned above to it. As for the re-

mainder term in (5.18), noting that ‖[V (t,Ξ), f1(H0)]‖ = O(t−1−µL) which

is integrable in t ≥ 1 and that the term concerned with [H0, F̄ (|r|/t ≥
ε)] can be controlled as the first term, we have to deal with the term

f(H0)(V (t,Ξ) − VL(r))F̄ (|r|/t ≥ ε). Here we notice that

VL(r)F̄

( |r|
t

≥ ε
)

= V (t, r)F̄

( |r|
t

≥ ε
)
.

Thus, taking account of

V (t,Ξ) − V (t, r) =

∫ 1

0
∇r⊥V (t, sΞ + (1 − s)r) ds · y⊥,

and noting that (5.13) holds and that |y⊥|h(N)f(H) is bounded, the term

concerned with f(H0)(V (t,Ξ) − VL(r))F̄ (|r|/t ≥ ε) is also integrable in

t ≥ 1. Therefore by the Cook-Kuroda method, we see that (5.14) exists.

This implies the theorem. �
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