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The Formulation of the Chern-Simons Action for

General Compact Lie Groups Using

Deligne Cohomology

By Kiyonori Gomi

Abstract. We formulate the Chern-Simons action for any com-
pact Lie group using Deligne cohomology. This action is defined as
a certain function on the space of smooth maps from the underly-
ing 3-manifold to the classifying space for principal bundles. If the
3-manifold is closed, the action is a C∗-valued function. If the 3-
manifold is not closed, then the action is a section of a Hermitian
line bundle associated with the Riemann surface which appears as the
boundary.

1. Introduction

For a connection A on a principal SU(2)-bundle over a compact oriented

3-manifold M , the Chern-Simons action functional (CS action) [12, 7] is

S(A) =
1

8π2

∫
M
Tr(A ∧ dA+

2

3
A ∧A ∧A).

IfM has no boundary, then e2π
√
−1S(A) is C

∗-valued, but ifM has boundary,

then e2π
√
−1S(A) takes values in the fiber of a Hermitian line bundle associ-

ated with the boundary. This description can be applied to all connected,

simply connected compact Lie groups because any principal bundle of such

a structure group is topologically trivial on a 3-manifold.

In the case of general compact Lie groups, Dijkgraaf and Witten [6]

defined an extension of the Chern-Simons action as follows. It is known

that there exists a certain connection on the universal bundle EG called

the universal connection [11]. By means of the universal connection Au we

can identify a smooth G-bundle equipped with a connection over M with

1991 Mathematics Subject Classification. Primary 81Txx; Secondary 81S10, 57D20.
The author’s research is supported by Research Fellowship of the Japan Society for

the Promotion of Science for Young Scientists.

223



224 Kiyonori Gomi

a smooth map from M to the classifying space BG. Then we introduce

differential characters [5]. A degree p differential character α ∈ Ĥp(X,R/Z)

is by definition a homomorphism from the group of p-singular cycles of X

to R/Z such that there exists a specified (p + 1)-form ω and the relation

α(∂τ) =
∫
τ ω holds modulo Z for all (p + 1)-singular chains. We define

αu ∈ Ĥ3(BG,R/Z) by the characteristic 4-form 1
8π2Tr(Fu ∧ Fu), where Fu

is the curvature form of Au. Then the CS action

S : Map(M,BG) → R/Z

is defined by S(γ) = γ∗αu(M).

In this definition M is treated as a 3-singular cycle. So this action is well

defined only if the underlying 3-manifold M has no boundary. Therefore

we need some alternative tool in order to formulate the action when M has

a boundary. The purpose of this paper is to formulate the action using

Deligne cohomology [2, 3, 4]. The Deligne cohomology Hp(X,Fq) is by

definition the hypercohomology group of the complex of sheaves Fq :

TX

1√
−1

d log

−−−−−→ A1
X

d−−−→ · · · d−−−→ Aq
X ,

where TX is the sheaf of unit circle valued functions on X and Ap
X is the

sheaf of p-forms on X. One of the reasons to introduce Deligne cohomol-

ogy is that there is a natural isomorphism between the group of differential

characters Ĥp(X,R/Z) and the Deligne cohomology group Hp(X,Fp). An-

other reason is that Gawedzki [8] defined a topological term of the Wess-

Zumino-Witten model for a general target space using Deligne cohomology.

Applying his method to the 3-dimensional case, we can formulate the CS

action as an analogy.

Using Deligne cohomology we define the CS action as follows. First we

take a Čech cocycle representation of a certain Deligne cohomology class

cu ∈ H3(BG,F3) which is uniquely determined by the characteristic 4-form

on BG. Secondly we construct an open covering {WZ} of Map(M,BG),

whereM is a compact 3-manifold. For each open set WA a T-valued function

AM ;A is defined by integrating the Čech cocycle. If M is closed, these

functions give rise to a global function which we call the CS action

AM : Map(M,BG) → T.
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If a 3-manifold is not closed, the local functions do not glue together

to form a global function. But they give rise to a section of a certain

Hermitian line bundle. For a closed Riemann surface Σ the line bundle

LΣ → Map(Σ, BG) is constructed by transition functions with respect to

an open covering. We call this line bundle the Chern-Simons line bundle.

The transition functions are defined by integrating the Čech cocycle which

represents cu. The isomorphism class of this line bundle depends only on the

Deligne cohomology class cu. In the case of a 3-manifold M with boundary,

the local function AM ;A gives rise to a global section

AM : Map(M,BG) → r∗L∂M ,

where r is the restriction map to the boundary. We also call this section

the CS action. The CS action defined here satisfies some properties that

are considered to be the axioms of “Classical Field Theory.” In particular,

it is compatible with the gluing operation of 3-manifolds.

The organization of this paper is as follows. In Section 2. we define

Deligne cohomology and summarize basic properties. In Section 3. we define

the Chern-Simons action for general compact Lie groups and the line bundle

associated with a closed oriented Riemann surface. We also observe the

fundamental properties of the action and the line bundle.

Acknowledgments. I would like to thank Prof. Kohno for useful com-

ments on this subject.

2. Deligne Cohomology

In this section we define Deligne cohomology [2, 3, 4] and observe its

important properties.

Definition 2.1. Let Ap
X be the sheaf of smooth p-forms on a smooth

manifold X, and TX the sheaf of unit circle valued functions on X. We

define a complex of sheaves Fq by

TX

1√
−1

d log

−−−−−→ A1
X

d−−−→ · · · d−−−→ Aq
X .

The hypercohomology group Hp(X,Fq) is called the Deligne cohomology

group.
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Usually we compute the Deligne cohomology by Čech cohomology.

Taking an open covering {Ui} of X, we compute the Čech cohomology

Ȟp({Ui},Fq). Then Hp(X,Fq) is obtained by the direct limit taken over

the ordered set of open coverings of X, where the order is defined by the

refinement of coverings. If we take a good covering [1], then Ȟp({Ui},Fq)

is isomorphic to Hp(X,Fq). In this paper we use D to denote the total

differential operator on the Čech double complex.

Theorem 2.2 (Brylinski [2]). The Deligne cohomology Hp(X,Fp) fits

in the following exact sequences

0 −→ Hp(X,T) −→ Hp(X,Fp)
δ1−→ Ap+1(X)0 −→ 0,

0 −→ Ap(X)/Ap(X)0 −→ Hp(X,Fp)
δ2−→ Hp+1(X,Z) −→ 0,

0 −→ Hp(X,R)/Hp(X,Z) −→ Hp(X,Fp)
(δ1,δ2)−→ Rp+1(X,Z) −→ 0,

where Ak(X)0 is the group of integral k-forms on X. Rk(X,Z) is defined

by

{(ω, u) ∈ Ak(X)0 ×Hk(X,Z)|r(u) = [ω], r : Hk(X,Z) → Hk(X,R)}.
The homomorphisms δ1, δ2 are defined as follows. Let (g, ω1, · · · , ωp) be

a Čech cocycle representation of a Deligne cohomology class. The image

under δ1 is just 1
2πdω

p glued together, and the image under δ2 is the cocycle
1√
−1

log δg, where δ is the Čech derivation.

A trivial example of Deligne cohomology is H0(X,F0). We can easily

see that H0(X,F0) ∼= H0(X,TX). In this case the Deligne cohomology

group is the group of T-valued functions on X. As another example of

Deligne cohomology, we explain the classification of Hermitian line bundles

with Hermitian connection. The set of isomorphism classes of line bundles

over X has a group structure realized by tensor products of line bundles.

It is well known that H2(X,Z) ∼= H1(X,TX) is isomorphic to the group of

isomorphism classes of line bundles over X. If we endow a connection with

a line bundle, we can classify the isomorphism classes of them in terms of

the Deligne cohomology.

Theorem 2.3 (Brylinski [2]). The group of isomorphism classes of

Hermitian line bundles with Hermitian connection over X is isomorphic

to the Deligne cohomology group H1(X,F1).
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Proof. Let (L,∇) be a Hermitian line bundle with a Hermitian con-

nection over X. We can take an open covering {Ui} such that there are

local sections {si : Ui → L|Ui}. We define the transition functions {gij :

Ui ∩ Uj → C
∗} by si = gijsj . Because L is equipped with a Hermitian

metric, gij takes values in T. By the Hermitian connection ∇ we define

the connection forms {αi} by ∇si = −
√
−1αi ⊗ si. Then we have a Čech

cochain (gij , αi) ∈ Č1({Ui},F1). This cochain is a cocycle because the

following relations are satisfied:

gijgjkgki = 1,

αi − αj =
1√
−1

d log gij .

If we take other local sections s′i, then we have the Čech cocycle (g′ij , α
′
i)

which is cohomologous to (gij , αi). This construction of the Čech cocycle

gives a homomorphism from the isomorphism classes of Hermitian line bun-

dles with Hermitian connection to H1(X,F1). If local sections {si} give

(gij , αi) whose cohomology class is trivial, then we have a global horizontal

section of L. This implies that (L,∇) is trivial and the homomorphism is

injective. If we are given a cohomology class in H1(X,F1), then we express

the class by a Čech cocycle with respect to an open covering. Obviously the

Čech cocycle gives rise to a Hermitian line bundle with a Hermitian connec-

tion. Hence the homomorphism is surjective and the theorem is proved. �

If a Hermitian line bundle with a Hermitian connection is given by a

Deligne cohomology class, the curvature form and the 1st Chern class cor-

respond to the images under −δ1, δ2 of Theorem 2.2 respectively.

There exists a natural isomorphism between the differential character

group of Cheeger-Simons and the Deligne cohomology.

Definition 2.4 (Cheeger-Simons [5]). Let X be a smooth manifold

and Sq(X) the group of smooth q-singular cycles of X. A differential charac-

ter α of degree p is defined as a homomorphism α : Sp(X) → R/Z such that

there exists a specific (p+ 1)-form ω satisfying α(∂τ) =
∫
τ ω modulo Z for

all (p+1)-singular chains of X. The group of such homomorphisms is called

the degree p differential character group and is denoted by Ĥp(X,R/Z).
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Theorem 2.5 (Brylinski-McLaughlin [3]). There exists a natural iso-

morphism

Ĥp(X,R/Z) ∼= Hp(X,Fp).

3. The CS Action for a General Compact Lie Group

In this section we observe the formulation of the Chern-Simons action

functional using Deligne cohomology. Roughly speaking, (the exponential of

2π
√
−1 times) the CS action is a C

∗-valued function on the set of principal

bundles with connection. So we have to choose a bundle with connection

before we define the action. Firstly we fix a compact Lie group G. It is

well known that any smooth G-bundle E over a manifold M can be realized

as the pull back of the universal bundle EG by a smooth map γ from M

to the classifying space BG. More generally, it is known by Narashimahn

and Ramanan [11] that there exists the so-called universal connection Au

on EG for any compact Lie group G, and any connection A on E can

also be realized as the pull back of Au by the smooth map from E to EG

covering γ : M → BG. This enables us to identify a smooth map from M

to BG with a G-bundle equipped with a connection. We denote the space

of smooth maps from M to BG by Map(M,BG). The map space has the

compact-open topology.

We choose a Deligne cohomology class in H3(BG,F3). On EG we have

the universal connection Au which we fix throughout this paper. The

standard argument of the characteristic classes implies that the 4-form
1

8π2Tr(Fu ∧ Fu) is an integral 4-form on BG, where Fu is the curvature

form of Au. It is well known that the odd cohomology groups of BG van-

ish. By the help of Theorem 2.2, we can uniquely choose a Deligne co-

homology class cu that corresponds to the integral 4-form above. If we

take a good covering {Uα} of BG, then we can express cu by a Čech co-

cycle (gα0α1α2α3 , ω
1
α0α1α2

, ω2
α0α1

, ω3
α) ∈ Č3({Uα},F3) such that 1

2πdω
3
α =

1
8π2Tr(Fu∧Fu)|Uα . The explicit formula of this cocycle is known by Brylin-

ski and McLaughlin [3].

Definition 3.1. Let {Uα}α∈I be an open covering of BG and K =

{σ0, σ1, σ2, σ3} a triangulation of a compact oriented smooth 3-manifold M ,

where σp denotes a p-simplex. For the covering and the triangulation, we
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choose a map φ : K → I. We denote the image of σ by φσ. For a pair

A = {K,φ}, we define an open set of Map(M,BG) by

WA = {γ ∈ Map(M,BG)|γ(σp) ⊂ Uφσp
(p = 0, 1, 2, 3)}.

All choices of A = {K,φ} give the covering {WA} of Map(M,BG).

Lemma 3.2. (1) Let WA be an open set with A = {K,φ}, and K ′ a

subdivision of the triangulation K. We define an induced map φ′ : K ′ → I

as follows. For each simplex σ′ ∈ K ′ there exists a unique simplex σ ∈ K

including σ′ whose dimension is the lowest. The map is defined by φ′σ′ = φσ.

For A′ = {K ′, φ′} we have WA = WA′ as sets of maps.

(2) Let WA0 ,WA1 be open sets with A0 = {K0, φ
0}, A1 = {K1, φ

1}. We

take a common subdivision K̃ of K0,K1. To the subdivision we induce maps

φ̃0, φ̃1 from φ0, φ1 respectively. We put Ã0 = {K̃, φ̃0}, Ã1 = {K̃, φ̃1}. If we

define the intersection of WA0 and WA1 by

WA0 ∩WA1 := WÃ0
∩WÃ1

= {γ ∈ Map(M,BG)|γ(σp) ⊂ Uφ̃0
σp

∩ Uφ̃1
σp

(p = 0, 1, 2, 3)},

then the intersection is independent of the choice of the subdivisions.

Remark 1. For triangulationsK1 andK2 such that |K1| = |K2|, there

exists a common subdivision of them [10].

Proof. We can directly verify (1) by the definition of the induced map

φ′ : K ′ → I. Using (1) we can prove (2). �

For a triangulation K = {σ0, . . . , σd} of a d-dimensional manifold X, we

define the set of flags of simplices of K by

FK(p) = {(σp, σp+1, . . . , σd)|σi ∈ K,σi ⊂ ∂σi+1, i = p, . . . , d− 1}.

If X is oriented, σd has the orientation which is compatible with that of

X. If a flag (σp, . . . , σd) is given, then the orientation of σp is induced from

that of σd. We perform the integration over a simplex along the induced

orientation.
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Definition 3.3. Let M be a compact oriented smooth 3-manifold,

{Uα} a good covering of BG, and (g, ω1, ω2, ω3) a Čech cocycle representa-

tion of cu. From the covering of BG we induce the open covering {WA} of

Map(M,BG). For each open set WA �= ∅ we define a function

AM ;A : WA → T

by the following

AM ;A(γ) = exp
√
−1




∑
FK(3)

∫
σ3

γ∗ω3
φσ3

−
∑
FK(2)

∫
σ2

γ∗ω2
φσ2

φσ3

−
∑
FK(1)

∫
σ1

γ∗ω1
φσ1

φσ2
φσ3


×

∏
FK(0)

gφσ0
φσ1

φσ2
φσ3

(γ(σ0)).

Lemma 3.4. Let WA be an open set of Map(M,BG) with A = {K,φ}.
For a subdivision K ′ of K, we induce the map φ′ : K ′ → I and put A′ =

{K ′, φ′}. On WA = WA′ we have

AM ;A(γ) = AM ;A′(γ).

Proof. By the construction of φ′ we have

∑
FK′ (3)

∫
σ′
3

γ∗ω3
φ′
σ′
3

=
∑
σ3

∑
σ′
3

σ′
3⊂σ3

∫
σ′
3

γ∗ω3
φ′
σ′
3

=
∑
σ3

∑
σ′
3

σ′
3⊂σ3

∫
σ′
3

γ∗ω3
φσ3

=
∑
FK(3)

∫
σ3

γ∗ω3
φσ3
.

We can calculate the other terms using the property of the Čech cocycle,

i.e. ω...α...α... = 0. So the lemma is proved. �

Lemma 3.5. Over the intersection WA0 ∩WA1 �= ∅ we have

AM ;A1(γ)AM ;A0(γ)
−1
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= exp
√
−1




∑
F∂K(2)

∫
σ2

γ∗(ω2
φ0
σ2

φ1
σ2

)

+
∑

F∂K(1)

∫
σ1

γ∗(ω1
φ0
σ1

φ0
σ2

φ1
σ2

− ω1
φ0
σ1

φ1
σ1

φ1
σ2

)




×
∏

F∂K(0)

(
g−1
φ0
σ0

φ0
σ1

φ0
σ2

φ1
σ2

gφ0
σ0

φ0
σ1

φ1
σ1

φ1
σ2
g−1
φ0
σ0

φ1
σ0

φ1
σ1

φ1
σ2

)
(γ(σ0)).

Remark 2. We omit the tilde for brevity.

Proof. This is shown by direct computation using the cocycle condi-

tion of the Čech cocycle and Stokes’ theorem. �

Lemma 3.6. Let µ = (g, ω1, ω2, ω3), µ′ = (g′, ω′1, ω′2, ω′3) be Čech co-

cycle representations of cu. We have µ′ − µ = Dν, where ν = (ξ, π1, π2) is

a Čech 2-cochain. When we define AM ;A using the cocycle representation

µ, we write AM,µ;A. The following formula holds.

AM,µ+Dν;A(γ)AM,µ;A(γ)−1

= exp
√
−1




∑
F∂K(2)

∫
σ2

γ∗π2
φσ2

−
∑

F∂K(1)

∫
σ1

γ∗π1
φσ1

φσ2




×
∏

F∂K(0)

ξφσ0
φσ1

φσ2
(γ(σ0)).

Proof. The calculation of AM,Dν;A using Stokes’ theorem gives the

formula. �

Theorem 3.7. LetM be a compact oriented 3-manifold without bound-

ary. We define a map

AM (γ) : Map(M,BG) → T

by AM |WA
= AM ;A . This map is well-defined and depends only on the

Deligne cohomology class cu.
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Proof. The well-definedness of AM is proved by Lemma 3.5. If we fix

an open covering of BG, we can prove that AM is independent of the cocycle

representation by Lemma 3.6. In order to prove that AM is independent

of the choice of open covering of BG, we consider a refinement of an open

covering. In this case we can take the induced covering of Map(M,BG) and

cocycle representation of cu that does not change the value of AM . So this

proposition is proved. �

We call AM the CS action. The action satisfies the properties which are

considered to be the axioms of “Classical Field Theory.” For the original

action refer to [7].

Proposition 3.8. Let M be a compact oriented 3-manifold without

boundary. The CS action AM satisfies the following properties.

(a)(Functoriality) Let Φ∗ : Map(M,BG) → Map(M ′, BG) be the map

induced from a diffeomorphism Φ : M ′ → M . For γ ∈ Map(M,BG), we

have

AM ′(Φ∗γ) = AM (γ).

(b)(Orientation) We denote the manifold with opposite orientation to

M by −M . Then we have

A−M (γ) = AM (γ),

where the bar denotes complex conjugation.

(c)(Additivity) If M = M1 �M2 (disjoint union), then we denote the

restriction of γ to M1,M2 by γ1, γ2 respectively. We have

AM1�M2(γ) = AM1(γ1)AM2(γ2).

Proof. These properties are the consequences of the local sum defini-

tion of the action. For (a), we construct a triangulation K ′ of M ′ and a map

φ′ by pulling back K and φ of M . Then the functoriality of the integration

shows (a). If one reverses the orientation of M , then the integration over

the oriented simplex changes sign. Thus (b) is proved. The formula in (c)

is obtained by separating the summation of the simplices. �
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Proposition 3.9. Let M̃ be a compact oriented 4-manifold bounding

M . If we have γ : M → BG by restricting γ̃ : M̃ → BG, then we have

AM (γ) = exp

√
−1

4π

∫
M̃
γ̃∗Tr(Fu ∧ Fu).

Proof. If (g, ω1, ω2, ω3) is a cocycle representation of cu, then we have
1
2πdω

3
α = 1

8π2Tr(Fu ∧ Fu)|Uα by definition. We triangulate M̃ by K̃ =

{σ̃0, . . . , σ̃4} and chose a map φ̃ : K̃ → I. We compute the right hand side

of the formula as follows.
√
−1

4π

∫
M̃
γ̃∗Tr(Fu ∧ Fu) =

√
−1

∑
σ̃4

∫
σ̃4

γ̃∗dω3
φ̃σ̃4

=
√
−1

∑
FK̃(3)

∫
σ̃3

γ̃∗ω3
φ̃σ̃4

.

Applying Stokes’ theorem and the cocycle conditions, and canceling the

summation over the simplices in the interior of M̃ , we obtain the left hand

side of the formula. �

The original Chern-Simons action is also computed by integrating over

a bounding 4-manifold. This implies that our definition of the action for a

general compact Lie group is an extension of the original one.

As stated in the introduction, Dijkgraaf and Witten [6] formulated the

CS action for general compact Lie groups using the differential characters

of Cheeger-Simons. We chose the differential character αu ∈ Ĥ3(BG,R/Z)

specified by the characteristic 4-form 1
8π2Tr(Fu ∧ Fu), where Fu is the

curvature form of the universal connection. In this case the action SM :

Map(M,BG) → R/Z is defined by SM (γ) = γ∗αu(M). The isomorphism

of Theorem 2.5 and H3(BG) = 0 imply the exact correspondence between

αu and cu. This establishes the next result.

Theorem 3.10. For an arbitrary closed oriented 3-manifold, the for-

mulation of the Chern-Simons action in this paper coincides with that of

Dijkgraaf and Witten, i.e. exp 2π
√
−1SM (γ) = AM (γ).

Next we formulate the CS action in the case that the underlying 3-

manifold has boundary. For the purpose we describe a certain line bundle

associated with a Riemann surface Σ using Deligne cohomology. Let K be
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a triangulation of Σ and φ : K → I a map, where I is the index set of

an open covering of BG. Putting A = {K,φ} we have an open set UA of

Map(Σ, BG). The collection {UA} gives an open covering of Map(Σ, BG)

(see Definition 3.1).

Definition 3.11. Let Σ be a Riemann surface, {Uα} an open covering

of BG, and (g, ω1, ω2, ω3) a Čech cochain in Č3({Uα},F3). We define a Čech

cochain (GA0A1 ,ΩA) ∈ Č1({UA},F1) by the following

GA0A1(γ) = exp
√
−1




∑
FK(2)

∫
σ2

γ∗(−ω2
φ0
σ2

φ1
σ2

)

−
∑
FK(1)

∫
σ1

γ∗(ω1
φ0
σ1

φ0
σ2

φ1
σ2

− ω1
φ0
σ1

φ1
σ1

φ1
σ2

)




×
∏

FK(0)

{
gφ0

σ0
φ0
σ1

φ0
σ2

φ1
σ2
g−1
φ0
σ0

φ0
σ1

φ1
σ1

φ1
σ2

gφ0
σ0

φ1
σ0

φ1
σ1

φ1
σ2

}
(γ(σ0)),

(ιXΩA) (γ) = −
∑
FK(2)

∫
σ2

γ∗ιX(ω3
φσ2

) −
∑
FK(1)

∫
σ1

γ∗ιX(ω2
φσ1

φσ2
)

+
∑
FK(0)

ιX(ω1
φσ0

φσ1
φσ2

)(γ(σ0)),

where X is a section of γ∗T (BG) → Σ which is thought of as a tangent

vector at γ ∈ Map(Σ, BG), and ιXω is the inner product of a tangent

vector X and a differential form ω.

Lemma 3.12. If a Riemann surface Σ is closed and (g, ω1, ω2, ω3) is a

cocycle, then the cochain (GA0A1 ,ΩA) defined in Definition 3.11 is a cocycle.

Proof. We prove D(GA0A1 ,ΩA) = 0. By using the cocycle condition

of (g, ω1, ω2, ω3) and Stokes’ theorem, we have

(δG)A0A1A2(γ) = (GA1A2G
−1
A0A2

GA0A1)(γ)

= exp
√
−1




∑
F∂K(1)

∫
σ1

γ∗(ω1
φ0
σ1

φ1
σ1

φ2
σ1

)



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×
∏

F∂K(0)

(
g−1
φ0
σ0

φ0
σ1

φ1
σ1

φ2
σ1

gφ0
σ0

φ1
σ0

φ1
σ1

φ2
σ1
g−1
φ0
σ0

φ1
σ0

φ2
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Because ∂Σ = ∅, the cocycle condition holds. �

Note that if a Riemann surface has boundary then the cochain (GA0A1 ,

ΩA) is not necessarily a cocycle.

Corollary 3.13. If we define a homomorphism

ψ : Č3({Uα},F3) −→ Č1({UA},F1)

by ψ
(
(g, ω1, ω2, ω3)

)
= (G,Ω) using Definition 3.11, then we have

ψ
(
Ž3({Uα},F3)

)
⊂ Ž1({UA},F1).

Definition 3.14. Let Σ be a Riemann surface without boundary. Fix

a good covering of BG and a Čech cocycle representation of cu. We have the

open covering {UA} of Map(Σ, BG) and a cocycle (GA0A1 ,ΩA). We define

a Hermitian line bundle

LΣ −→ Map(Σ, BG)

by

LΣ =
∐

{UA × C} / ∼,

where the equivalence relation is given by

(γ, z0) ∼ (γ, z1) ⇔ z0 = GA0A1(γ)z1
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for (γ, zi) ∈ UAi × C. A Hermitian metric on LΣ is defined by the usual

metric on C. We also define a Hermitian connection ∇ by the 1-forms {ΩA}.

We call LΣ the Chern-Simons line bundle.

Proposition 3.15. Let Σ be a Riemann surface without boundary.

The isomorphism class of the CS line bundle with the connection (LΣ,∇)

depends only on the Deligne cohomology class cu.

In order to prove this proposition we use the following theorem.

Theorem 3.16. The homomorphism of Corollary 3.13 induces the ho-

momorphism of Deligne cohomologies

Ψ : H3(BG,F3) −→ H1(Map(Σ, BG),F1).

Proof. First we fix an open covering {Uα} and show that ψ induces

ψ̌ : Ȟ3({Uα},F3) −→ Ȟ1({UA},F1).

For (ξ, π1, π2) ∈ Č2({Uα},F3) we define (KA) ∈ Č0({UA},F1) as follows.

KA(γ) = exp
√
−1


−

∑
FK(2)

∫
σ2

γ∗π2
φσ2

+
∑
FK(1)

∫
σ1

γ∗π1
φσ1

φσ2




×
∏

FK(0)

ξ−1
φσ0

φσ1
φσ2

(γ(σ0)).

We can verify ψ
(
D(ξ, π1, π2)

)
= D(KA) by direct computation using

Stokes’ theorem. This implies that

ψ
(
B̌3({Uα},F3)

)
⊂ B̌1({UA},F1).

Hence ψ induces the homomorphism ψ̌ of Čech cohomologies.

Secondly, we show that the homomorphism of Deligne cohomologies in-

duced from ψ̌ is well-defined. An open covering {U ′
α′} is a refinement of

{Uα} if there exists a map of indices ρ : {α′} → {α} such that U ′
α′ ⊂ Uρ(α′).
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The refinement of the open covering of BG induces a refinement of the cov-

erings of the map space as follows. If a triangulation K of Σ and a map

φ′ : K → {α′} are given, then we have an open set

U ′
A′ = {γ ∈ Map(Σ, BG)|γ(σp) ⊂ U ′

φ′
σp

(p = 0, 1, 2)},

where A′ = {K,φ′}. We can define a map R : {A′} → {A} of indices of the

coverings of the map space by R(A′) = {K, ρ ◦ φ′}. It is easy to see that

U ′
A′ ⊂ UR(A′). So we have a refinement {U ′

A′} of {UA}. These refinements

induce homomorphisms of Čech cohomologies ρ̌, Ř which commute with ψ̌

as follows.

Ȟ3({Uα},F3)
ρ̌−−−→ Ȟ3({U ′

α′},F3)

ψ̌

�
�ψ̌

Ȟ1({UA},F1)
Ř−−−→ Ȟ1({U ′

A′},F1)

Taking the direct limit, we obtain the well-defined homomorphism

Ψ : H3(BG,F3) −→ H1(Map(Σ, BG),F1),

which is induced from ψ̌. �

Remark 3. The general formula of Theorem 3.16 is known [9].

Proof of Proposition 3.15. By Theorem 2.3 an isomorphism class

of a line bundle with a connection corresponds uniquely to a Deligne co-

homology class. The Deligne cohomology class that corresponds to the

isomorphism class of (LΣ,∇) is expressed by Ψ(cu). So the isomorphism

class is uniquely determined by cu. �

Proposition 3.17. The curvature form of (LΣ,∇) is

1

4π

∫
Σ
ev∗Tr(Fu ∧ Fu),

where ev : Map(Σ, BG)×Σ → BG is the evaluation map and
∫
Σ is the fiber

integration along Σ.
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Proof. Let (g, ω1, ω2, ω3) be a cocycle representation of cu. Note

that 1
2πdω

3
α = 1

8π2Tr(Fu ∧ Fu)|Uα . We obtain the curvature form by the

computation of −dΩA using the following formula

ιXk
· · · ιX0d

∫
σp

γ∗ωk+p =

∫
σp

γ∗(ιXk
· · · ιX0d+ (−1)kdιXk

· · · ιX0)ω
k+p. �

For a 3-manifold M with boundary Σ we denote the restriction map by

r : Map(M,BG) → Map(Σ, BG).

The pull back r∗LΣ is by definition r∗LΣ =
∐
{r−1UA×C}/ ∼. It is easy to

see that r−1UA =
⋃

WÃ, where the open set WÃ with Ã = {K̃, φ̃} is defined

by the triangulation K̃ of M such that ∂K̃ = K, and the map φ̃ : K̃ → I

such that φ̃|∂K̃ = φ. When A = {K,φ} and Ã = {K̃, φ̃} satisfy the above

relation, we write ∂Ã = A for short.

Theorem 3.18. Let M be a compact oriented 3-manifold with ∂M =

Σ, and fix a cocycle representation of cu. We define a section

AM : Map(M,BG) → r∗LΣ

by AM |r−1UA
(γ) = (γ,AM ;Ã(γ)), where ∂Ã = A. This section is well-defined

and takes its values in the unit norm.

Proof. Let WÃ0
,WÃ1

be two open sets such that ∂Ã0 = ∂Ã1 = A.

By Lemma 3.5 we have AM ;Ã0
= AM ;Ã1

. So AM |r−1UA
is well-defined.

Let UA0 ,UA1 be open sets of Map(Σ, BG). On the non-empty intersection

r−1UA0∩r−1UA1 we have AM |r−1UA0
= GA0A1AM |r−1UA1

using again Lemma

3.5. This shows that AM is indeed the section of r∗LΣ. By definition AM ;Ã

takes its values in the unit norm. �

We also call AM the CS action.

Proposition 3.19. Let M be a compact oriented 3-manifold with

boundary Σ, and µ, µ′ cocycle representations of cu. When we use the co-

cycle representation µ to define the CS action and the CS line bundle, we

write AM,µ and LΣ,µ,. The CS action satisfies the following formula

φ∗(AM,µ) = AM,µ′ ,
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where φ∗ is the linear map on the space of sections induced from the bundle

isomorphism φ : LΣ,µ → LΣ,µ′.

Proof. If two cocycle representations µ, µ′ are given, then we have

µ′ − µ = Dν, where ν = (ξ, π1, π2) . By Proposition 3.15, the line bundles

LΣ,µ and LΣ,µ′ are isomorphic. The bundle isomorphism φ is defined by

(γ, z) �→ (γ, zKA(γ)),

where (γ, z) ∈ UA×C andKA is the function defined in the proof of Theorem

3.16. By Lemma 3.6 we have φ∗(AM,µ|r−1UA
) = AM,µ′ |r−1UA

. This implies

the formula in the proposition. �

For γ ∈ Map(M,BG) we canonically identify the fiber r∗L∂M |γ with

L∂M |∂γ , where ∂γ = r(γ). So the CS action takes its values in the fiber of

the CS line bundle AM (γ) ∈ L∂M |∂γ .

Proposition 3.20. Let M be a compact oriented 3-manifold with non-

empty boundary ∂M = Σ. The value of the CS action and the CS line bundle

LΣ satisfy the following properties.

(a)(Functoriality) Let φ∗ : Map(Σ, BG) → Map(Σ′, BG) be the map

induced from a diffeomorphism φ : Σ′ → Σ. For γ ∈ Map(M,BG) there is

a natural isometry

φ∗ : LΣ|∂γ
∼→ LΣ′ |φ∗(∂γ).

Moreover, if φ : Σ′ → Σ is the restriction of Φ : M ′ →M , then we have

AM ′(Φ∗(γ)) = φ∗(AM (γ)).

(b)(Orientation) Concerning the orientations of manifolds, the following

holds.

L−Σ|∂γ ∼= LΣ
∗|∂γ ,

A−M (γ) = AM (γ).

(c)(Additivity) If Σ = Σ1 � Σ2, then we have

LΣ1�Σ2 |∂γ1�∂γ2
∼= LΣ1 |∂γ1

⊗ LΣ2 |∂γ2
.
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Moreover if M = M1 �M2, with ∂Mi = Σi, then we have

AM1�M2(γ1 � γ2) = AM1(γ1) ⊗AM2(γ2)

under the isometry.

(d)(Gluing) Suppose that a closed Riemann surface Σ is embedded in

M . If we cut M along Σ, we have a new manifold Mcut with ∂Mcut =

∂M �Σ�−Σ. Let γcut be the map induced from γ by restricting M to Mcut,

and ξ the map induced from γ by restricting M to Σ. Then there is the

contraction

Trξ : L∂Mcut |∂γcut ∼= L∂M |∂γ ⊗ LΣ|ξ ⊗ L∗
Σ|ξ → L∂M |∂γ ,

and we have

Trξ(AMcut(γcut)) = AM (γ).

Proof. Note that the CS action and the transition functions of the

line bundle are expressed by summations of local terms. So the properties

(a), (b), (c), (d) are verified in the proof of Proposition 3.8. �

Proposition 3.21. Let Σ be a Riemann surface without boundary and

I the unit interval. We identify a map Γ : Σ × I → BG with a path

γ : I → Map(Σ, BG). Then the value of the CS action

A−1
Σ×I(Γ) ∈ L∗

Σ|γ0
⊗ LΣ|γ1

coincides with the parallel transport along γ determined by the connection

∇.

Sketch of the proof. We should verify that the CS action of Γ

satisfies the differential equation of the parallel transport determined by

the connection ∇. For this purpose we construct a path in UA by endowing

Σ× I with a specific triangulation that is induced from the triangulation of

Σ. Then explicit calculation of the action with respect to this triangulation

shows the following

d

dt

(
1√
−1

logAΣ×[0,t](Γ|Σ×[0,t])

)
= −ιγ̇ΩA.
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This will complete the proof. �

Proposition 3.22. A map γ : M → BG is a stationary point of the

action AM if and only if it induces a flat bundle.

Proof. First we take a map γ0 : M → BG. We can make a path

of connections on γ∗0EG by setting At = γ∗0Au + tα, where α is a g-valued

1-form on γ∗0EG and α|∂M = 0 if ∂M �= ∅. This is also a connection on the

bundle over M × I, so we take γt : M × I → BG correspondingly. Using

Proposition 3.9 we have

AM (γt)AM (γ0)
−1 = A∂M×[0,t](γt|∂M )−1 exp

√
−1

4π

∫
M×[0,t]

γt
∗Tr(Fu ∧ Fu)

and A∂M (γt|∂M ) is independent of t. We denote the curvature of At on the

bundle over M × {t} by Ft. The curvature of At on the bundle over M × I

is Ft + dt ∧ α. Finally we have

γt
∗Tr(Fu ∧ Fu) = 2dt ∧ Tr(α ∧ Ft).

Hence the connection A0 induced by γ0 is a stationary point of AM if and

only if F0 = 0. �
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