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The Stickelberger Elements and the Cyclotomic Units

in the Cyclotomic Zp-Extensions

By Takae Tsuji

Abstract. For an odd prime number p and a cyclotomic field K,
we will describe a relation between the Stickelberger element and the
cyclotomic unit which are defined with respect to the cyclotomic Zp-
extension over K. This is a generalization of a theorem of Iwasawa and
Coleman

1. Introduction

Let p be an odd prime number and N an integer prime to p such that

N �≡ 2 mod 4. We put Kn := Q(ζNpn+1) for all n ≥ 0 and K∞ :=
⋃
Kn.

Here ζNpn+1 denotes a primitive Npn+1-th root of unity. The Stickelberger

element θθθθθθθθN and the cyclotomic unit ηηηηηηηηN are defined with respect to the

cyclotomic Zp-extension K∞/K0 as below. Our purpose of this note is to

describe a relation between the Stickelberger element θθθθθθθθN and the cyclo-

tomic unit ηηηηηηηηN .

First we recall the definition of θθθθθθθθN and ηηηηηηηηN . The Stickelberger element

θNpn+1 ∈ Qp[Gal(Kn/Q)] is defined by

θNpn+1 :=
∑

1≤a≤Npn+1

(a,pN)=1

( a

Npn+1
− 1

2

)
σ−1
a |Kn ,

where σa denotes the element of Gal(K∞/Q) satisfying σa(ζNpn) = (ζNpn)a

for all n ≥ 0. We put

θθθθθθθθN := (θNpn+1)n≥0.

For every integer c prime to Np, it is known (cf. [W, Lemma 6.9]) that

(1− cσ−1
c ) θθθθθθθθN ∈ Zp[[Gal(K∞/Q)]] := lim←−Zp[Gal(Kn/Q)],
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where the projective limit is taken with respect to the restriction maps. For

every s ∈ N, we fix a primitive s-th root ζs of unity with the property that

ζtst = ζs. We define the cyclotomic unit

ηNpn+1 := 1− ζNζpn+1 ∈ K×
n .

We shall regard ηNpn+1 as an element of Φn, the p-adic completion of (Kn⊗
Qp)

×. We put

ηηηηηηηηN := ((ηNpn+1)Fr−n
p )n≥0 ∈ lim←−Φn,

where the projective limit is taken with respect to the relative norms and Frp
denotes the Frobenius element of p in Gal(Q(µN )/Q). Let UKn denote the p-

adic completion of (OKn⊗ZZp)
×. Put UK∞ := lim←−UKn , where the projective

limit is taken with respect to the relative norms. Then ηηηηηηηηN ∈ UK∞ if N �= 1,

and ηηηηηηηη1−σ
1 ∈ UK∞ for any σ ∈ Gal(K∞/Q).

In [Iw], Iwasawa proved a beautiful theorem which describes a relation

between the Stickelberger element θθθθθθθθ1 and the cyclotomic unit ηηηηηηηη1. After

that, in [C1] and [C2], Coleman gave a simpler proof of the above theorem

by defining a Zp-homomorphism

Ψ : UQ(ζp∞ ) −→ Zp[[Gal(Q(ζp∞)/Q)]],

which is almost isomorphism. Here Q(ζp∞) =
⋃

Q(ζpn). The above men-

tioned theorem is stated as follows.

Theorem 1.1 (Iwasawa, Coleman [C2, Proposition 6]). For every in-

teger c prime to p, we have

Ψ( ηηηηηηηη1−σc
1 ) = (1− cσc) θθθθθθθθ∗1,

where θ �→ θ∗ is the involution of Zp[[Gal(Q(ζp∞)/Q)]] induced by σ �→ σ−1

for any σ ∈ Gal(Q(ζp∞)/Q).

We shall extend this result for θθθθθθθθN and ηηηηηηηηN (N > 1). Similarly to

Theorem 1.1, our main theorem (Theorem 2.1) is also stated using the

homomorphism Ψ, which is also defined for UQ(ζNp∞ ). We give two different

proofs. The first one (in §2) is a modification of Coleman’s method, and

is direct one in the sense that we use only some properties of Ψ (and the

definitions of θθθθθθθθN and ηηηηηηηηN ). On the other hand, both θθθθθθθθN and ηηηηηηηηN are related

to the Kubota-Leopoldt p-adic L-functions. We see in §4 that Theorem 2.1

is also induced from these classical relations.
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2. The Results

We use the same notation as in the Introduction. Put G∞ :=

Gal(Q(ζp∞)/Q) and ∆ := Gal(Q(ζN )/Q). Then Gal(K∞/Q) ∼= G∞ × ∆

since N is prime to p. We write Ô := Z[ζN ] ⊗Z Zp, the p-adic comple-

tion of the integer ring of Q(ζN ). Coleman proved that there exists a

Zp-homomorphism

Ψ : UK∞ −→ Ô[[G∞]],

with the property that Ψ(uσ) = κ(σ)σΨ(u) for all u ∈ UK∞ and all σ ∈
Gal(K∞/Q), where κ : Gal(K∞/Q) −→ Z×

p is the p-cyclotomic character

(cf. [C1], [C2] and [G, §2]). To compare (1 − cσ−1
c ) θθθθθθθθN ∈ Zp[∆][[G∞]]

and ηηηηηηηηN ∈ UK∞ by using Ψ, we need to determine a Zp[∆]-isomorphism

Ô ∼→ Zp[∆], that is, to fix a generator of Ô as Zp[∆]-module. For such

a generator, we can take Leopoldt’s “Basiszahl” defined as follows: For a

positive integer m, we put

Dm :=
{
d ∈ N

∣∣ d | m, s(m) | d
}
,

where s(m) denotes the product of all distinct prime divisors of m. We

define an element zN of Ô by

zN :=
∑
d∈DN

ζd.

By using zN , Leopoldt [Leo] (see also [Let]) described the structure of Z[ζN ]

as Z[∆]-module. (Actually, in [Leo] and [Let], the Galois module structure

of the ring of integers of an abelian number field is described by using

“Basiszahl”.) Using this result, we see that zN generates the Zp[∆]-module

Ô (see also Lemma 3.1). Our main theorem is to describe the relation

between (1− cσ−1
c ) θθθθθθθθN and ηηηηηηηηN using Ψ and zN .

To state our result, we need some notation. We define the Stickelberger

element θθθθθθθθd and the cyclotomic unit ηηηηηηηηd, for d | N , as in the case where

d = N . For an integer c prime to p, let γc denote the element of G∞
satisfying γc(ζpn) = ζcpn for all n ≥ 0. For a prime number l, let δl denote a

Frobenius element of l in ∆. If d is a divisor of N , we denote by CorN,d the
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corestriction map from Zp[Gal(Q(ζd)/Q)][[G∞]] to Zp[∆][[G∞]] induced by,

for all τ ∈ Gal(Q(ζd)/Q),

τ �→
∑

δ|Q(ζd)=τ

δ,

where δ runs over automorphisms in ∆ whose restriction to Q(ζd) is τ . Let

µ denote the Möbius µ-function.

Definition. We define SN by

SN := γ−1
N

∑
d|N
γd(

∏
l|N,l�d

(1− l)δ−1
l )

∑
d′∈Dd

µ(d/d′)

[Q(ζN ) : Q(ζd′)]
CorN,d′( θθθθθθθθd′),

where d runs over all divisors of N and l over all prime divisors of N which

do not divide d, and HN by

HN :=
∏

d∈DN

∏
d′|d

( ηηηηηηηηd/d′)
µ(d′)γd′

d′ ,

where d′ runs over all divisors of d and we regard 1/d′ as an element of Zp.

Since δ−1
l CorN,d′( θθθθθθθθd′) = CorN,d′(δ

−1
l |Q(ζd′ )

θθθθθθθθd′), SN does not depend on

the choice of δl. We note that H
1−γc
N ∈ UK∞ and (1−cγ−1

c ) θθθθθθθθN ∈ Zp[∆][[G∞]]

for all c prime to p.

If N is square-free, the above definitions are just as

SN =
∑
d|N
µ(d)σ−1

d CorN,N/d( θθθθθθθθN/d), HN =
∏
d|N

( ηηηηηηηηN/d)
µ(d)γd

d ,

where σd denotes an element of Gal(K∞/Q) satisfying σd(ζ(N/d)pn+1) =

(ζ(N/d)pn+1)d.

The main result of this note is the following.

Theorem 2.1. For every integer c prime to p, we have the following

equations in Ô[[G∞]]:

Ψ(H1−γc
N ) = (1− cγc) θθθθθθθθ∗NzN ,
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and

Ψ( ηηηηηηηηN ) = S
∗
NzN .

Here θ �→ θ∗ is the involution of Zp[∆][[G∞]] induced by σ �→ σ−1 for any

σ ∈ ∆×G∞.

Remark. The description of θθθθθθθθ∗N (resp. Ψ( ηηηηηηηηN )) by Ψ( ηηηηηηηηd) (resp. θθθθθθθθ∗d)
with d | N and zN is not unique. Indeed, there are relations between θθθθθθθθdl
and θθθθθθθθd (resp. ηηηηηηηηdl and ηηηηηηηηd), for a prime number l, as follows:

(2.1) θθθθθθθθdl|Q(ζdp∞ ) =

{
θθθθθθθθd l | d
(1− γ−1

l δ
−1
l ) θθθθθθθθd l � d

and

(2.2) Ndl,d( ηηηηηηηηdl) =

{
ηηηηηηηηγld l | d

ηηηηηηηη
(γl−δ−1

l )

d l � d,

where Ndl,d denotes the norm map from Q(ζdlp∞) to Q(ζdp∞).

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1 by using the properties of Ψ :

UK∞ −→ Ô[[G∞]]. We need the following lemma. Although this follows

from Leopoldt’s Theorem and the facts which are used in his proof ([Leo],

see also [Let]), we give a proof for the convenience of the readers.

Lemma 3.1. The element zN =
∑

d∈DN
ζd generates the additive

Zp[∆]-module Ô which is free of rank one. Furthermore, for a positive

divisor m of N , we have

(3.1) TrQ(ζN )/Q(ζm)(zN ) = [Q(ζN ) : Q(ζm)]
( ∏
l|N,l�m

δ−1
l

1− l
)
(zm)

and

(3.2) ζm = (
∏

l|N,l�m

(1− l)δl)
∑
d∈Dm

µ(m/d)

[Q(ζN ) : Q(ζd)]
TrQ(ζN )/Q(ζd)(zN ).



216 Takae Tsuji

Proof. The additive Zp[∆]-module Ô is generated by ζm with m | N .

Therefore the first assertion follows from (3.2).

For the equation (3.1), it suffices to verify the case where m = N/q

with a prime divisor q of N . Let d be a divisor of N . When d � N/q, the

minimal polynomial of ζd over Q(ζd/q) is (Xq − ζd/q)/(X − δq−1(ζd/q)) =∑q−1
j=0X

q−1−i(δq
−1(ζd/q))

i (resp. Xq − ζd/q) if q2 � d (resp. q2 | d). Then we

have the following:

TrN,N/q(ζd) =


−δq−1(ζd/q) d � N/q, q2 � d,

0 d � N/q, q2 | d,
[Q(ζN ) : Q(ζN/q)]ζd d | N/q,

where TrN,N/q = TrQ(ζN )/Q(ζN/q). If we assume q2 � N , we have DN/q =

{d/q | d ∈ DN} and, for any d ∈ DN , d � N/q and q2 � d. On the other

hand, if we assume q2 | N , we have DN/q = {d ∈ DN | d | (N/q)} and q2 | d
for any d ∈ DN with d � N/q. Hence we obtain

TrN,N/q(zN ) =

{ −δq−1(zN/q) q2 � N,

[Q(ζN ) : Q(ζN/q)]zN/q q2 | N.

This proves the equation (3.1) for m = N/q.

The equation (3.2) follows from the equation (3.1) and the following

equality:

ζm =
∑

d′∈Dm

( ∑
d′′|(m/d′)

µ(d′′)
)
ζd′

=
∑

d′∈Dm

( ∑
d|m, d′|d

µ
(m
d

))
ζd′

=
∑
d∈Dm

µ
(m
d

) ∑
d′∈Dd

ζd′

=
∑
d∈Dm

µ
(m
d

)
zd.

We complete the proof. �
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Proof of Theorem 2.1. First, we briefly recall the definition of the

map Ψ : UK∞ −→ Ô[[G∞]]. For details, see [C1], [C2] and [G, §2]. Let

u = (un) be an element of UK∞ . There exists a unique power series fu(X)

in Ô[[X]] satisfying

(3.3) fu(ζpn+1 − 1) = u
Frnp
n .

Let ϕ be an endomorphism of Ô[[X]] defined by

(ϕf)(X) = fFrp((1 +X)p − 1),

where Frp acts on f(X) via the coefficients. Let D be the derivation (1 +

X) d
dX of Ô[[X]]. Then there is a unique element Ψ(u) of Ô[[G∞]] satisfying

(1− ϕ)D log fu(X)|X=ζpn+1−1 = Ψ(u)ζpn+1

for all n ≥ 0, which is the definition of Ψ : UK∞ −→ Ô[[G∞]].

Put

fN (X) := 1− ζN (1 +X)

and

f̃N (X) :=
∏

d∈DN

∏
d′|d

(1− (ζd(1 +X))d
′
)
µ(d′)
d′ .

One can easily verify that fN (X) (resp. f̃N (X)) satisfies (3.3) with respect

to ηηηηηηηηN (resp. to HN ). It suffices to show the following two equations

(1− ϕ)D log fN (X)|X=ζpn+1−1 = S
∗
NzNζpn+1 ,(3.4)

(1− ϕ)D log f̃N (X)|X=ζpn+1−1 = θθθθθθθθ∗NzNζpn+1 .(3.5)

As in the proof of Theorem 1.1 given in [C2], we use the following.

Lemma 3.2 (cf. [C2, Proposition 5], [G, Lemma 2.15]). For m ≥ 1 and

n ≥ 1, we have

ζmζpn+1

ζmζpn+1 − 1
− ζpmζpn

ζpmζpn − 1
=

∑
1≤a≤mpn+1

(a,p)=1

a

mpn+1
(ζmζpn+1)a.
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We first prove the equation (3.4). By Lemma 3.2, we have

(1− ϕ)D log fN (X)|X=ζpn+1−1 =
ζNζpn+1

ζNζpn+1 − 1
− ζpNζpn

ζpNζpn − 1

=
∑

1≤a≤Npn+1

(a,p)=1

a

Npn+1
(ζNζpn+1)a

=
∑
d|N

∑
1≤b≤dpn+1

(b,pd)=1

b

dpn+1
(ζdζ

N
d

pn+1)
b

= γN
∑
d|N
γ−1
d θ

∗
dpn+1ζdζpn+1 .

By the equation (3.2), we have

θ∗dpn+1ζdζpn+1 = (
∏

l|N,l�d

(1− l)δl)
∑
d′∈Dd

µ(d/d′)

[Q(ζN ) : Q(ζd′)]
θ∗dpn+1TrN,d′(zN )ζpn+1 ,

where TrN,d′ = TrQ(ζN )/Q(ζd′ )
. Since every prime divisor of d is a divisor of

d′ in Dd, by the equation (2.1), we obtain

θ∗dpn+1TrN,d′(zN )ζpn+1 = θ∗d′pn+1TrN,d′(zN )ζpn+1

= CorN,d′(θ
∗
d′pn+1)zNζpn+1 .

Combining the above equalities, we obtain the equation (3.4).

For the equation (3.5), by Lemma 3.2, we have

(1− ϕ)D log
(∏
d′|d

(1− (ζd(1 +X))d
′
)
µ(d′)
d′

)∣∣
X=ζpn+1−1

=
∑
d′|d
µ(d′)

( (ζdζpn+1)d
′

(ζdζpn+1)d
′ − 1

− (ζpdζpn)d
′

(ζpdζpn)d′ − 1

)
=

∑
d′|d
µ(d′)

∑
1≤a≤(d/d′)pn+1

(a,p)=1

ad′

dpn+1
(ζdζpn+1)ad

′
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=
∑

1≤b≤dpn+1

(b,p)=1

( ∑
d′|(b,d)

µ(d′)
) b

dpn+1
(ζdζpn+1)b

=
∑

1≤b≤dpn+1

(b,dp)=1

b

dpn+1
(ζdζpn+1)b

= θ∗dpn+1ζdζpn+1 .

Therefore, by using the equation (2.1), we obtain

D(1− ϕ) log(f̃N (X))|X=ζpn+1−1 =
∑
d∈DN

θ∗dpn+1ζdζpn+1

=
∑
d∈DN

θ∗Npn+1ζdζpn+1

= θ∗Npn+1zNζpn+1 .

This completes the proof. �

4. p-Adic L-Function

In this section, we review how to connect the Stickelberger element θθθθθθθθN
and the cyclotomic unit ηηηηηηηηN with the values of the Dirichlet L-function at

negative integer respectively. Then we see that Theorem 2.1 is also induced

by using the above connection.

Let χ be a primitive Dirichlet character with values in Q
×
p , whose con-

ductor divides N . We shall regard χ as a character of ∆ = Gal(Q(ζN )/Q).

Let Zp[χ] be the ring generated by the values of χ over Zp. We also denote

by χ a natural map

(4.1) Zp[∆][[G∞]] −→ Zp[χ][[G∞]]

induced by χ. Let κ : G∞ −→ Z×
p denote the p-cyclotomic character. For

every integer r ≥ 0, one can extend the character κr of G∞ to a homomor-

phism

Zp[χ][[G∞]] −→ Zp[χ].
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Let c > 1 be an integer prime to p. We put

κrχ( θθθθθθθθ∗N ) = (1− c1+r)−1κrχ((1− cγc) θθθθθθθθ∗N ),

which is independent of c. The following theorem is well known.

Theorem 4.1 (Iwasawa cf. [W, Theorem 7.10]). For every r ≥ 0, we

have

κrχ( θθθθθθθθ∗N ) =
∏
l|Np

(1− χ(l)lr)L(−r, χ),

where l runs over all prime divisors of Np and L(∗, χ) denotes the Dirichlet

L-function.

By Lemma 3.1, the correspondence zN �→ 1 induces an isomorphism

Ô ∼→ Zp[∆]. Let

χzN : Ô[[G∞]] −→ Zp[χ][[G∞]]

be the map by composing the above isomorphism Ô ∼→ Zp[∆] with the

map (4.1). Since ηηηηηηηη1 is not in UK∞ , we write κrχzN (Ψ( ηηηηηηηη1)) for (1 −
cr+1)−1κrχzN (Ψ( ηηηηηηηη1−γc

1 )), which is independent of c. Let fχ denote the

conductor of χ and put fχ,N = fχ
∏′

l l, where l runs over all prime divi-

sors of N such that l � fχ. The following theorem is known (cf. e.g. [G,

Theorem 2.13], [P, Proposition 3.1.4] and [T, Theorem 4.3 and §7]).

Theorem 4.2. For every r ≥ 0, we have

κrχzN (Ψ( ηηηηηηηηN )) =
( N
fχ,N

)r ∏
l|N

(1− χ(l)lr+1)(1− χ(p)pr)L(−r, χ),

where l runs over all prime divisors of N .

Let θ and θ′ be two elements of Zp[χ][[G∞]]. If κr(θ) = κr(θ′) for all

r ≥ 0, we have θ = θ′. Thus, combining the above two theorems, we obtain

the following.

Proposition 4.3. For any character χ of ∆ and any integer c prime

to p, we have

χ((1− cγc) θθθθθθθθ∗N ) =
∏
l|N

(1− χ(l)γl)χzfχ (Ψ( ηηηηηηηη1−γc
fχ

)),
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and

χzN (Ψ( ηηηηηηηη1−γc
N )) =

γN
γfχ,N

∏
l|N

(1− χ(l)lγl)χ((1− cγc) θθθθθθθθ∗fχ).

We will see that the above proposition gives the same relation as Theo-

rem 2.1. We have

χ(S∗
N ) = χ(S∗

N |Q(ζfχp∞ ))

and

χzN (Ψ(H1−γc
N )) =

∏
l|N,l�fχ

χ(l)(1− l)
[Q(ζN ) : Q(ζfχ)]

χzfχ (Ψ(NN,fχ(H1−γc
N ))).

Here the second equation follows from Lemma 3.1 and the property that

Ψ(NN,fχ(u)) = TrN,fχ(Ψ(u)) for any u ∈ UK∞ . By using the relations (2.1)

and (2.2), we have

Sdl|Q(ζdp∞ ) =

{
γ−1
l Sd l | d

(1− lγ−1
l δ

−1
l )Sd l � d

and

Ndl,d(Hdl) =

{
Hl
d l | d

H
(l−1γl−δ−1

l )

d l � d

for a prime number l. One can see that χ((1 − cγc)Corfχ,d( θθθθθθθθ
∗
d)) = 0 and

χzfχ (Ψ( ηηηηηηηη1−γc
d ) = 0 for a proper divisor d of fχ. Then, we obtain χ((1 −

cγc)S
∗
fχ

) = χ((1− cγc) θθθθθθθθ∗fχ) and χzfχ (Ψ(H1−γc
fχ

)) = χzfχ (Ψ( ηηηηηηηη1−γc
fχ

)), by the

definition of SN and HN . Therefore, we obtain

χ((1− cγc)S∗
N ) =

γN
γfχ,N

∏
l|N

(1− χ(l)lγl)χ((1− cγc) θθθθθθθθ∗fχ),

and

χzN (Ψ(H1−γc
N )) =

∏
l|N

(1− χ(l)γl)χzfχ (Ψ( ηηηηηηηη1−γc
fχ

)).

Hence the above proposition states that χ((1 − cγc) θθθθθθθθ∗N ) = χzN (Ψ(H1−γc
N ))

and χzN (Ψ( ηηηηηηηη1−γc
N )) = χ((1 − cγc)S∗

N ) hold, for all character χ of ∆.
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These relations show Theorem 2.1, that is (1 − cγc) θθθθθθθθ∗NzN = Ψ(H1−γc
N )

and Ψ( ηηηηηηηηN ) = S∗
NzN .
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