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Stable-homotopy Seiberg-Witten Invariants for

Rational Cohomology K3#K3’s

By M. Furuta, Y. Kametani and N. Minami

Abstract. We show that if X is a closed spin 4-manifold which
has the same rational cohomology ring as K3#K3, then the stable-
homotopy Seiberg-Witten invariant is non-trivial for every spin struc-
ture on X. As an application we obtain a generalized adjunction in-
equality for such manifolds.

1. Introduction and Statement

The Seiberg-Witten invariant is usually a subtle invariant of smooth 4-

manifolds. There exist, however, some 4-manifolds for which some parts of

their Seiberg-Witten invariants are determined only by their cohomology

rings: J. W. Morgan and Z. Szabó showed that if X is a closed spin mani-

fold which has the same rational cohomology ring as a K3 surface, then the

Seiberg-Witten invariant is odd for every spin structure on X [7]. D. Ru-

berman and S. Strle showed a similar result for 4-manifolds which has the

same rational homology groups as T 4 [8].

Our aim is to give some more examples. S. Bauer and the first author

independently introduced the stable-homotopy version of Seiberg-Witten

invariant [1] [2]. We shall consider this version of Seiberg-Witten invariant.

Theorem 1 (See Theorem 19). If X is a closed spin 4-manifold which

has the same rational cohomology ring as K3#K3, then the stable-homotopy

Seiberg-Witten invariant is non-trivial for every spin structure on X.

As an application we obtain a generalized adjunction inequality (Theo-

rem 22).

H. Matsue pointed out to the authors that the generalized adjunc-

tion inequality implies the non-existence of a spin closed 4-manifold with

signature= −32 and b2 < 44 [3].
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We shall discuss some generalizations in [4].

Acknowledgement . The authors thank H. Matsue for pointing out some

mistakes in the preprint version of this paper.

2. Some Stable Homotopy Sets

In this section we prepare some notations and lemmas to formulate and

prove our main theorem.

2.1. A geometric construction

In this subsection we use the following notation. Fix an integer n ≥ 1.

1. Let V0 and V1 be two finite dimensional complex vector spaces satis-

fying

dimC V0 − dimC V1 = 2n.

We regard them as S1-spaces with the standard S1-action.

2. Let W0 and W1 be two finite dimensional real vector spaces satisfying

dimRW0 − dimRW1 = 2 − 4n.

We regard them as S1-spaces with the trivial S1-action.

3. Let Map(S(V0 ⊕ W0), S(V1 ⊕ W1))
S1

be the set of S1-equivariant

smooth maps from the sphere S(V0 ⊕W0) to the sphere S(V1 ⊕W1).

4. Let [S(V0 ⊕W0), S(V1 ⊕W1)]
S1

be the quotient of Map(S(V0 ⊕W0),

S(V1 ⊕W1))
S1

divided by the equivalence relation defined by the S1-

equivariant smooth homotopy.

We shall construct a map

δ : [S(V0 ⊕W0), S(V1 ⊕W1)]
S1 × [S(V0 ⊕W0), S(V1 ⊕W1)]

S1 → Z2

which satisfies the cocycle condition

δ(f0, f1) + δ(f1, f2) = δ(f0, f2).(1)
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For two elements f0 and f1 of Map(S(V0 ⊕ W0), S(V1 ⊕ W1))
S1

, let

F (f0, f1) be the set of smooth S1-equivariant maps

f̃ : S(V0 ⊕W0) × [0, 1] → V1 ⊕W1

which satisfy the following three conditions.

1. f̃(p, 0) = f0(p) and f̃(p, 1) = f1(p).

2. The restriction of f̃ on S(0 ⊕W0) × [0, 1] does not vanish.

3. The map f̃ is transverse to the zero section.

Lemma 2. The set F (f0, f1) is not empty.

Proof. This lemma follows from a standard transversality argument.

Since we shall use a similar argument later, we write down the argument

in some details. Obviously we have f̃ which satisfies the first of the three

conditions. Let M be the zero set f̃−1(0), which is a compact set contained

in S(V0 ⊕W0) × (0, 1). Note that

dim(S(0 ⊕W0) × [0, 1]) − dimW1 = 2 − 4n < 0.

It implies that we can S1-equivariantly perturb f̃ so that

1. the support of the perturbation is contained in a small neighborhood

of M ∩ (S(0 ⊕W0) × [0, 1]), and

2. the perturbed map f̃ ′ does not vanish on S(0 ⊕W0).

Let M ′ be the zero set f̃
′−1(0), which is a compact set contained in (S(V0⊕

W0) \ S(0 ⊕W0)) × (0, 1). Since the S1-action is free on the neighborhood

of M ′, we can S1-equivariantly perturb f̃ ′ further so that

1. the support of the perturbation is contained in a small neighborhood

of M ′, and

2. the perturbed map f̃ ′′ is transverse to the zero section.
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Then the perturbed map f̃ ′′ is an element of F (f0, f1). �

We denote by B the space (S(V0 ⊕W0) \ S(0 ⊕W0)) × (0, 1), which is

S1-equivariantly diffeomorphic to S(V0)×W0 × (0, 1). Let f̃ be an element

of F (f0, f1), and M the zero set f̃−1(0), which is a 2-dimensional smooth

closed submanifold of B. The S1-action on B is free. Let B̄ denote the

quotient space B/S1, which is diffeomorphic to B̄ ∼= P (V0) ×W0 × (0, 1),

and M̄ the quotient space M/S1, which is a 1-dimensional smooth closed

submanifold of B̄. Let E denote the vector bundle over B̄ defined to be

E := B ×S1 (V1 ⊕W1). The map f̃ descends to a section f̄ of E. The zero

set of f̄ is M̄ .

Let ν(M̄) be the normal bundle of M̄ in B̄. Since f̄ is transverse to the

zero section, we have a bundle isomorphism αf̄ : ν(M̄) → E|M̄.

Since H1(B̄,Z) = 0, there exists an immersion iD : D → B̄ from a

compact orientable surface D with boundary to B̄ such that the image of

the boundary ∂D is equal to M̄ . (Since B̄ is a simply connected manifold

with dimension larger than 2n, we could take D as an embedded surface

which is diffeomorphic to a disjoint union of 2-disks.) We identify ∂D with

M̄ . Let ν(D) be the normal bundle of D. Note that the restriction of

ν(D)⊕R over M̄ is canonically isomorphic to ν(B̄), and hence isomorphic

to E|M̄ via αf̄ .

We write E|D for the pullback i∗DE for simplicity. We denote by [ν(D)⊕
R, E|D,αf̄ ] the element of the relativeKO-groupKO(D, M̄) defined by this

triple. We define δ(f0, f1, f̃ , D) ∈ Z2 by

δ(f0, f1, f̃ , D) := 〈w2([ν(D) ⊕ R, E|D,αf̄ ]), [D, M̄ ]〉.

We show that δ(f0, f1, f̃ , D) does not depend on the choice of f̃ nor D.

Suppose that f̃ ′ is another element of F (f0, f1). Let M ′ be the zero

set f̃
′−1(0), and M̄ ′ the quotient space M ′/S1. Let ıD′ : D′ → B̄ be an

immersed compact orientable surface with boundary ∂D′ = M̄ ′.

Lemma 3. δ(f0, f1, f̃ , D) = δ(f0, f1, f̃
′, D′)

Proof. We use a homotopy connecting f̃ and f̃ ′. By using an argu-

ment parallel to the proof of Lemma 2, we can find a smooth S1-equivariant

map

f̂ : S(V0 ⊕W0) × [0, 1] × [0, 1] → V1 ⊕W1
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which satisfies the following three conditions.

1. f̂(p, t, 0) = f̃(p, t) and f̂(p, t, 1) = f̃ ′(p, t).

2. The restriction of f̂ on S(0 ⊕W0) × [0, 1] × [0, 1] does not vanish.

3. The map f̂ is transverse to the zero section.

Noticing

dim(S(0 ⊕W0) × [0, 1] × [0, 1]) − dimW1 = 3 − 4n < 0,

we may find such f̂ as in the proof of Lemma 2. Let N denote the zero set

f̃−1(0), and N̄ the quotientN/S1. Then N̄ satisfies the following properties.

1. N̄ is a compact 2-dimensional submanifold of B̄× [0, 1] with boundary

M̄ × {0}∐ M̄ ′ × {1}.

2. There is a canonical bundle isomorphism αN̄ : ν(N̄) → Ê|N̄ over N̄ ,

where Ê is the pull-back of E.

Since the fiber and the base space of Ê are both orientable, N̄ is an orientable

compact surface with boundary.

Note thatD andD′ can be regarded as immersed submanifolds in B̄×{0}
and B̄×{1} respectively. ThenD∪N̄∪D′ is a 2-dimensional closed manifold

with corner M̄×{0}∐ M̄ ′×{1}. We can deformD andD′ to some immersed

submanifolds D̂ and D̂′ of B̄ × (−1, 0] and B̄ × [1, 2) respectively so that

N̂ := D̂∪N̄ ∪D̂′ is a 2-dimensional smooth closed immersed submanifold in

B̄ × (−1, 2) (To get D̂, push the interior of D down in the last coordinate.

To get D̂′, push the interior of D′ up.) Since N̄ is orientable, N̂ is also

orientable.

From the definitions of δ := δ(f0, f1, f̃ , D) and δ′ := δ(f0, f1, f̃
′, D′), we

have

δ − δ′ = 〈w2(ν(N̂)), [N̂ ]〉 − 〈w2(Ê), [N̂ ]〉.
Let a be the generator of

H2(B̄ × (−1, 2),Z2) = H2(P (V0),Z2) ∼= Z2.

Then the second term is expressed in terms of a:

〈w2(Ê), [N̂ ]〉 = (dimC V1)〈a, [N̂ ]〉
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The first term is calculated as follows. The orientability of the closed surface

N̂ implies 〈w2(TN̂), [N̂ ]〉 = 0. Hence we have

〈w2(ν(N̂)), [N̂ ]〉 = 〈w2(TN̂ ⊕ ν(N̂)), [N̂ ]〉
= 〈w2(T (B̄ × (−1, 2))), [N̂ ]〉
= (dimC V0)〈a, [N̂ ]〉

Since dimC V0 − dimC V1 = 2n, we obtain

δ − δ′ = (dimC V0 − dimC V1)〈a, [N̂ ]〉 = 0 ∈ Z2. �

Proposition 4. δ(f0, f1, f̃ , D) depends only on the S1-equivariant ho-

motopy classes [f0] and [f1].

Proof. From the previous lemma, δ(f0, f1, f̃ , D) depends only on f0
and f1. We write δ(f0, f1) for δ(f0, f1, f̃ , D). From the definition of δ(f0, f1),

we have the cocycle condition (1). Hence, to prove the proposition, it suffices

to show δ(f0, f1) = 0 for f0 and f1 satisfying [f0] = [f1]. When [f0] = [f1],

there exists f̃ in F (f0, f1) which does not vanish everywhere. It implies

δ(f0, f1) = 0. �

From the above proposition, δ descends to the map

δ : [S(V0 ⊕W0), S(V1 ⊕W1)]
S1 × [S(V0 ⊕W0), S(V1 ⊕W1)]

S1 → Z2

which satisfies the cocycle condition (1).

2.2. {S(C2n), S(R4n−2)}S1

Let C(C2n,R4n−2)S
1

be the category defined as follows.

1. An object of C(C2n,R4n−2)S
1

is (V0, V1,W0,W1, o) which satisfies the

following conditions.

(a) V0 and V1 are two finite dimensional complex vector spaces sat-

isfying dimC V0 − dimC V1 = 2n.

(b) W0 andW1 are two finite dimensional real vector spaces satisfying

dimRW0 − dimRW1 = 2 − 4n.
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(c) o is one of the two orientations of W0 ⊕W1.

2. A morphism from (V0, V1,W0,W1, o) to (V ′
0 , V

′
1 ,W

′
0,W

′
1, o

′) is (V, λ0,

λ1,W, µ0, µ1), which satisfies the following conditions.

(a) V is a finite dimensional complex vector space.

(b) W is a finite dimensional real vector space.

(c) λi : Vi ⊕ V → V ′
i (i = 0, 1) is an isomorphism as complex vector

space.

(d) µi : Wi ⊕W → W ′
i (i = 0, 1) is an isomorphism as real vector

space.

(e) o′ is the orientation on

W ′
0 ⊕W ′

1
∼= (W0 ⊕W1) ⊕ (W ⊕W )

that comes from the orientation o onW0⊕W1 and the orientation

of the complex structure on W ⊕W ∼= W ⊗ C.

Remark 5. The definition would make sense only when we fix an ori-

entation of the direct sum explicitly. We, however, do not do this because

we shall actually deal with only the mod 2 version of the construction.

We define a functor ι from C(C2n,R4n−2)S
1

to the category of set as

follows.

1. ι : (V0, V1,W0,W1, o) �−→ [S(V0 ⊕W0), S(V1 ⊕W1)]
S1
.

2. ι : (V, λ0, λ1,W, µ0, µ1) �−→ ([f ] �→ [f ∗ idS(V⊕W )]).

A word of explanation for the right-hand side of the latter: Suppose that φ =

(V, λ0, λ1,W, µ0, µ1) is a morphism from (V0, V1,W0,W1, o) to (V ′
0 , V

′
1 ,W

′
0,

W ′
1, o

′). The map

ιφ : [S(V0 ⊕W0), S(V1 ⊕W1)]
S1 → [S(V ′

0 ⊕W ′
0), S(V ′

1 ⊕W ′
1)]

S1

is defined as follows. Note that S(V ′
i ⊕W ′

i ) is S1-equivariantly diffeomorphic

to the join of S(Vi ⊕Wi) and S(V ⊕W ). The diffeomorphism is induced

from (the inverse of) λi and µi. By using this diffeomorphism, we identify
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each other. We now define the map ιφ by the join with the identity map on

S(V ⊕W ): ιφ([f ]) = [f ∗ idS(V⊕W )].

Since join satisfies the association relation, ι becomes a functor.

It is easy to see that (C(C2n,R4n−2)S
1
, ι) is an inductive system and we

can define its inductive limit.

Definition 6.

{S(C2n), S(R4n−2)}S1
:= lim

−→
[S(V0 ⊕W0), S(V1 ⊕W1)]

S1

Lemma 7. Suppose that φ = (V, λ0, λ1,W, µ0, µ1) is a morphism from

(V0, V1,W0,W1) to (V ′
0 , V

′
1 ,W

′
0,W

′
1). Let [f0] and [f1] be two elements of

[S(V0 ⊕W0), S(V0 ⊕W1)]
S1

. Then we have

δ(ιφ[f0], ιφ[f1]) = δ([f0], [f1]) ∈ Z2.

Proof. Let f̃ be an element of F (f0, f1) by which δ([f0], [f1]) can

be calculated. Then we can use the join f̃ ∗ idS(V⊕W ) to calculate

δ(ιφ[f0], ιφ[f1]). From this construction the lemma immediately follows. �

From this lemma we have a well-defined map

δ : {S(C2n), S(R4n−2)}S1 × {S(C2n), S(R4n−2)}S1 → Z2,

which satisfies the cocycle condition.

Since S(W1) is connected, the constant maps from S(V0⊕W0) to S(W1)

are homotopic to each other. Note that any morphism preserves the class

of constant maps.

Definition 8. We denote by

0 ∈ [S(V0 ⊕W0), S(V1 ⊕W1)]
S1

the homotopy class of the constant maps from S(V0 ⊕W0) to S(W0). We

also denote their inductive limit by the same notation 0.
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Definition 9. We define

δ : {S(C2n), S(R4n−2)}S1 → Z2

to be δ([f ]) = δ([f ], 0).

To identify the element 0 we can use the following lemma.

Lemma 10. Let f be an element of Map(S(V0 ⊕W0), S(V1 ⊕W1))
S1

.

We denote by D(V0 ⊕W0) the disk in V0 ⊕W0 such that ∂D(V0 ⊕W0) =

S(V0 ⊕W0). Suppose that there is an S1-equivariant smooth map

f̂ : D(V0 ⊕W0) → (V1 ⊕W1) \ {0}

such that the composition

S(V0 ⊕W0) → D(V0 ⊕W0)

f̂→ (V1 ⊕W1) \ {0} → S(V1 ⊕W1)

is equal to f . Then we have [f ] = 0.

Proof. By restricting f̂ on the spheres with various radius, we can

construct an S1-equivariant smooth homotopy from f to a constant path. �

Remark 11.

1. It is known that {S(C2n), S(R4n−2)}S1
has a natural group structure.

The element 0 is the unit with respect to this group structure.

2. By a similar construction we can define {S(Cm), S(Rn)}S1
for any

non-negative integers m and n.

We show that δ is bijective.

Lemma 12. For n ≥ 2 the map

δ : {S(C2n), S(R4n−2)}S1 → Z2

is bijective.
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Proof. It is known that there is a natural bijection Z2 →
{S(C2n), S(R4n−2)}S1

[1]. This bijection is given by the composition

π1(SO)
J→ πS1

= lim
−→

[S4n−2 ∗ S(W0), S(W1)]

c∗→ lim
−→

[CP2n−1 ∗ S(W0), S(W1)]

= lim
−→

[S(C2n ⊕W0), S(W1)]
S1

→ lim
−→

[S(V0 ⊕W0), S(V1 ⊕W1)]
S1

= {S(C2n), S(R4n−2)}S1
,

where J is the J-homomorphism, and c∗ is the map induced from the col-

lapsing map

c : CP2n−1 → CP2n−1/CP2n−2 ∼= S4n−2.

Since the second Stiefel-Whitney class is responsible for π1(SO) ∼= Z2, the

definition of δ implies that the composition

π1(SO) → {S(C2n), S(R4n−2)}S1 → Z2

is an isomorphism, and so is δ. �

2.3. Examples

We calculate the invariant δ for two examples, which we shall use in the

next subsection.

Let H be the quaternion field, and ImH the imaginary part of H. We

regard H as a complex vector space by the right multiplication of S1 =

{cos θ + i sin θ}0≤θ<2π.

We take

V0 = Hn, V1 = 0, W0 = 0, W1 = (ImH)n ⊕ Rn−2.

Let S(V0 ⊕W0) = S(Hn) and S(V1 ⊕W1) = S((ImH)n ⊕ Rn−2) be the

4n − 1-sphere in Hn and the 4n − 3-sphere in (ImH)n ⊕ Rn−2 defined by

the equations

S(Hn) = {(q0, · · · , qn−1) | |q0|4 + · · · + |qn−1|4 = 2}
S((ImH)n ⊕ Rn−2) = {(r0, · · · , rn−1, s0, · · · , sn−3) | |r0|2 + · · · + |rn−1|2

+s20 + · · · + s2n−3 = 2}.
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Lemma 13. Let f0 and f1 be the elements of Map(S(H2),

S((ImH)2))S
1

defined by

f0(q0, q1) = (i, i), f1(q0, q1) = (q0iq0, q1iq1).

Then we have δ([f0], [f1]) = 1. In particular, since f0 is a constant map, we

have δ([f1]) = 1.

Proof. We can take an element f̃ of F (f0, f1) to be

f̃(q0, q1, t) := (1 − t)f0(q0, q1) + tf1(q0, q1).

If (q0, q1, t) is an element of M = f̃−1(0), then we have q0iq0 = q1iq1 = −ci
for c = (1 − t)/t > 0. This equation implies

M = {(q0, q1,
1

2
) | q0 = j cosφ0 + k sinφ0, q1 = j cosφ1 + k sinφ1,

(0 ≤ φ0, φ1 < 2π)}.

Let U be the open neighborhood of M given by

U := {(q0, q1, t) ∈ S(H2)× (0, 1) | q0 = c0 + ici + jcj +kck, (cj , ck) �= (0, 0)}.

Note that the S1 action is free on U . A slice S of U for the S1-action is

given by

S := {(q0, q1, t) ∈ S(H2) × (0, 1) | q0 = c0 + ici + jcj , cj > 0}.

The quotient space M̄ = M/S1 is diffeomorphic to the intersection

M ∩ S = {(j, q1,
1

2
) | q1 = j cosφ1 + k sinφ1 (0 ≤ φ1 < 2π)}.

We writeMS for this intersection. Instead of considering the quotient space,

we shall consider the slice.

To find a disk DS which is bounded by the circle MS , we notice that

MS is on the 2-sphere

S(jR ⊕ (jR + kR)) × {1

2
} =

{(q0, q1,
1

2
) | q0 ∈ jR, q1 ∈ jR + kR, |q0|4 + |q1|4 = 2}.
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Then we may choose DS as the closure of either one of the connected com-

ponents of S(jR⊕ (jR + kR))× {1
2} \MS . Although we do not need this,

an explicit choice of DS may be given as follows:

DS := {(2 1
4 j

√
cosψ, 2

1
4 q1

√
sinψ,

1

2
) | 0 ≤ ψ ≤ π

4
,

q1 = j cosφ1 + k sinφ1 (0 ≤ φ1 < 2π, )}.

Let ES be the restriction to S of the trivial bundle E = (S(H2)×(0, 1))×
(ImH)2. The restriction of f̃ to S is a section of ES . The derivative of f̃

gives the isomorphism

αMS
: ν(MS) → ES |MS .

We would like to calculate αMS
in terms of the trivializations of ν(MS) and

ES |MS that extend to those of ν(DS) ⊕R and ES |DS , where ν(DS) is the

normal bundle of DS in S.

From our construction, ES is identified with the trivial bundle S ×
(ImH)2. We give a trivialization of ν(DS) as follows.

Note that S is the product of an open subset of a 7-sphere in (R +

iR + jR) ⊕ H and the interval (0, 1). On the other hand DS is a closed

domain of a 2-sphere in (jR⊕jR+kR)×{1/2}. Hence we have the natural

trivialization

ν(DS) ∼= DS × (C2 ⊕ R∂t).

To identify αMS
, we use the simple calculation:

df̃ = (∂tf̃) + t((dq0)iq0 + q0idq0, (dq1)iq1 + q1idq1).

The partial derivative ∂t at a point of M is given by

∂t((1 − t)f0 + tf1) = −f0 + f1 = −2f0 = (−2i,−2i).

Here we used the relation f1 = −f0 satisfied on M .

It is also straightforward to calculate the derivative along the other part

of ν(DS)|MS . The directional derivative along (u0, u1) ∈ C2 is equal to

αMS
(u0, u1) = (u0ij + jiu0, u1iq1 + q1iu1)(2)

= (−2ku0k, 2q1u1i).(3)
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Here we used the property that q1 is contained in jR + kR.

The remaining 1-dimensional direction is the normal of MS in DS . It is

not hard to calculate the derivative along this direction. We do not, however,

need this calculation. If we use the trivialization ES = S × (ImH)2, the

subspace of (ImH)2 spanned by the image of ν(DS)|MS is identified with

〈(jR + kR)2,R(i, i)〉. Note that this image does not depend on the point

where we take the derivation. Since αMS
is an isomorphism, the image of

the normal of MS in DS should lie in a complement of this constant image.

The only topological twist of the map αMS
, with respect to the above

trivializations, comes from the second term of (2), where the map depends

on q1. This twist corresponds to the image of 1 ∈ π1(SO(2)) = Z by the

surjective map onto π1(SO(6)) = Z2. Since the second Stiefel-Whitney

class is responsible for π1(SO) (cf. the proof of Lemma 12), this implies

that δ([f0], [f1]) = 1 ∈ Z2. �

Lemma 14. Suppose that n ≥ 3. Let f0 and f1 be the elements of

Map(S(Hn), S((ImH)n ⊕ Rn−2))S
1

defined by

f0(q0, · · · , qn−1) =

(
2

n− 2

) 1
4

(0, · · · , 0, i, · · · , i),

f1(q0, · · · , qn−1) = (q0iq0, · · · , qn−1iqn−1, 0, · · · , 0).

Then δ([f0], [f1]) = 0, and so δ([f1]) = 0.

Proof. We can take an element f̃ of F (f0, f1) to be

f̃(q0, · · · , qn−1, t) := (1 − t)f0(q0, · · · , qn−1) + tf1(q0, · · · , qn−1).

Then the zero set M = f̃−1(0) is empty, which implies δ([f0], [f1]) = 0. �

2.4. {S(Hn), S(R̃4n−2)}Pin2

We use the following notations.

1. Sp1 = {q ∈ H | |q| = 1}.

2. Pin2 = {cos θ + i sin θ}0≤θ<2π ∪ {j cosφ+ k sinφ}0≤φ<2π ⊂ Sp1.

3. We regard H as a right Pin2 module by the right multiplication.

4. We regard ImH as a Pin2 module by the conjugation.
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5. Let R̃ be the non-trivial 1-dimensional real representation of

Pin(2)/S1 = {±1}.

Note that ImH is isomorphic to R̃3 as Pin(2)-module.

In this subsection let V0, V1,W0,W1 be four finite dimensional right Pin2

modules which satisfy the following conditions.

1. Any irreducible submodule of V0 or V1 is isomorphic to H. In other

words they are quaternionic vector spaces.

2. dimH V0 − dimH V1 = n.

3. Any irreducible submodule of W0 or W1 is isomorphic to R̃.

4. dimRW0 − dimRW1 = 2 − 4n.

5. An orientation o on W0 ⊕W1 is given.

We write Map(S(V0 ⊕W0), S(V1 ⊕W1))
Pin2 and [S(V0 ⊕W0), S(V1 ⊕

W1)]
Pin2 for the obviously defined sets. Similarly we define the category

C(S(Hn), S(R̃4n−2))Pin2 and the inductive limit

{S(Hn), S(R̃4n−2)}Pin2 := lim
−→

[S(V0 ⊕W0), S(V1 ⊕W1)]
Pin2 .

Remark 15.

1. By a similar construction we can define {S(Hk), S(R̃l)}Pin2 for any

non-negative integers k and l.

2. There is no natural group structure on the set {S(Hk), S(R̃l)}Pin2 .

The main proposition in this section is:

Proposition 16. The image of the following composition:

{S(Hn), S(R̃4n−2)}Pin2 → {S(C2n), S(R4n−2)}S1 δ→ Z2

is 1 if n = 2, and 0 if n ≥ 3.

Proof. We denote the composition by the same notation δ. Notice

that the map f1, defined in Lemma 13 for n = 2 and in Lemma 14 for
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n ≥ 3, is Pin2-equivariant. These lemmas imply that the element [f1]

of {S(Hn), S(R̃4n−2)}Pin2 satisfies the assertion. Let [f0] be any element

of {S(Hn), S(R̃4n−2)}Pin2 . To prove the proposition it suffices to show

δ([f0], [f1]) = 0 by the cocycle condition (1) of δ. We can assume that the

Pin2 equivariant representatives f0 and f1 are two elements of Map(S(V0 ⊕
W0), S(V1 ⊕W1))

Pin2 for same V0, V1,W0 and W1.

By using a transversality argument, as in the proof of Lemma 2, we can

show that F (f0, f1) has a Pin2-equivariant element f̃ . The only points we

have to be careful are that the action of Pin2/S
1 is free on S(W0), and that

the action of Pin2 is free on S(V0⊕W0)\S(W0). We use this f̃ to calculate

δ(f0, f1).

Let M be the zero set f̃−1(0), and M̄ the quotient M/S1. We also use

other notations B, B̄ etc. in Section 1.1.

The involutive action of Pin2/S
1 = {±1} is free on B̄. Let g be the ac-

tion of the non-trivial element −1. The action of g exchanges the connected

components of M̄ mutually.

We shall show that g does not fix any connected component of M̄ . Then,

by considering the quotient by g, we can take D so that D is g-invariant

and that the contribution of the components of D to δ = δ(f0, f1, f̃ , D) is

divided into pairs, which implies that δ is 0 in Z2.

Let C be a connected component of M̄ and C/g its projection into M̄/g.

Since B̄ is simply connected, we have the isomorphism H1(B̄/g,Z2) ∼= Z2.

Let b be its non-trivial element. Note that C is g-invariant if and only if

〈b, [C/g]〉 = 1.

The isomorphism αC : ν(C) → E|C is g-equivariant and descends to an

isomorphism

α̂C : ν(C)/g → (E|C)/g.

It implies the relation 〈w1(ν(C)/g) − w1((E|C)/g), [C/g]〉 = 0. Since the

tangent bundle of the circle C/g is trivial, w1(ν(C)/g) = w1(ν(C)/g⊕TC/g)
is the restriction of w1(TB̄/g). Hence we have

〈w1(TB̄/g) − w1(E/g), [C/g]〉 = 0.(4)

We calculate w1(TB̄/g) and w1(E/g).

1. The action of j ∈ Pin2 preserves the orientation of S(V0) and reverses

the orbit of the S1 action. Hence the g-action on P (V0) reverses
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its orientation. On the other hand the g-action on W0 preserves its

orientation if and only if dimRW0 is even. Since B̄ ∼= P (V0) ×W0 ×
(0, 1), these two observations imply

w1(TB̄/g) = (1 + dimRW0)b.

2. The action of j ∈ Pin2 preserves the orientation of V1. On the

other hand the g-action on W1 preserves its orientation if and only

if dimRW1 is even. Since the fiber of E is V1 ⊕W0, these two obser-

vations imply

w1(E/g) = (dimRW1)b.

Recall that we are assuming dimRW0 − dimRW1 = 2− 4n. Hence we have

w1(TB̄/g) − w1(E/g) = (1 + dimRW0 − dimRW1)b = b

and the relation (4) implies the relation

〈b, [C/g]〉 = 0 ∈ Z2,

and that the component C is not g-invariant. �

3. Stable-homotopy Seiberg-Witten Invariants for Spin Struc-

tures

Let X be an oriented closed 4-manifold with the first Betti number

b1(X) = 0. Let c be a Spinc-structure of X. We write m and n for

m :=
c1(c)

2 − sign(X)

2
, and n := b+,

where sign(X) is the signature of the intersection form of X, and b+ is the

dimension of a maximal positive-definite subspace H+(X) of H2(X,R).

We assume that m is non-negative. Let oX be an orientation of H+(X).

We can define the stable-homotopy Seiberg-Witten invariant

SW (X, c, oX) of (X, c, oX) [2], [1]. This invariant is an element of some

stable homotopy set defined in Section 1.2:

SW (X, c, oX) ∈ {S(Cm), S(Rn)}S1
.
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Remark 17.

1. The invariant is defined as follows. Fix a Riemannian metric on X.

Let S = S0 ⊕ S1 be the spinor bundle for the Spinc structure c. We

put

Ṽ0 := Γ(S+),

Ṽ1 := Γ(S1),

W̃0 := Ker(Γ(∧1T ∗X)
d∗→ Γ(∧0T ∗X)),

W̃1 := Γ(∧+T ∗X),

where ∧+T ∗X is the self-dual component of ∧2T ∗X. The Seiberg-

Witten equation gives rise to an S1-equivariant map

SW : Ṽ0 ⊕ W̃0 → Ṽ1 ⊕ W̃1.

A finite dimensional approximation of this map gives the definition of

SW (X, c, oX).

2. When the first Betti number of X is positive, we have a generalization

of the above construction [2], [1].

Example 18. Let Y be a connected sum of some copies of CP2. We

denote c the unique Spinc-structure on Y which satisfies c1(c)
2 = sign(Y ),

for which we have m = 0. Since m = n = 0, we can take oY as the

standard orientation which comes from the positive orientation of a point.

Note that Y has a Riemannian metric of positive scalar curvature. For this

Riemannian metric the only solution of the Seiberg-Witten equation is the

unique reducible solution [5] [6]. Moreover the linearlization of the Seiberg-

Witten equation at the reducible solution is an isomorphism. It implies that

SW (Y, c, oY ) is equal to the identity id in

{S(C0), S(R0)}S1
= lim[S(V0 ⊕W0), S(V0 ⊕W0)]

S1
.

Suppose that X is an oriented closed spin 4-manifold with non-positive

signature and with b1(X) = 0. Then the intersection form ofX is isomorphic

to

2kE8 ⊕ lH
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over R for some non-negative integer k and l, where E8 is the Cartan matrix

of E8, and H is the hyperbolic unimodular matrix with rank 2 (we use the

convention that E8 is negative definite).

Let s be a spin structure of X. We can define the stable-homotopy

Seiberg-Witten invariants SW (X, s)spin [2]. This invariant is an element of

some stable homotopy sets defined in Section 2.3:

SW (X, s)spin ∈ {S(Hk), S(R̃l)}Pin2 .

From now on we assume that k = n and l = 4n − 2. If n = 2, then

the rational cohomology ring of X is isomorphic to that of K3#K3, and if

n ≥ 3, then it is isomorphic to that of E1#E2, where E1 and E2 are spin

simply-connected elliptic surfaces but, at least one of which is not a K3

surface.

The following is the main theorem of this paper.

Theorem 19. If X has the same rational cohomology ring as K3#K3,

then we have

δ(SW (X, s)) = 1 ∈ Z2.

for any spin structure s.

Proof. Since δ(SW (X, s)) = δ(SW spin(X, s)), Proposition 16 imme-

diately implies the theorem. �

From Proposition 16 we also obtain the other cases n ≥ 3.

Theorem 20. Let X be a spin 4-manifold with b1(X) = 0, b+2 (X) =

4n− 2, b−2 (X) = 20n− 2 and n ≥ 3. Then we have

δ(SW (X, s)) = 0 ∈ Z2

for any spin structure s.

Corollary 21. Suppose that X is an oriented closed spin 4-manfold

which has the same rational cohomology ring as K3#K3. Let s be a spin

structure on X. Suppose that Y is a connected sum of some copies of CP2.

Let c be the Spinc structure on Y which satisfies c1(c)
2 = sign(Y ). We

write s#c for the Spinc structure on the connected sum X#Y which is
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induced from s and c. Then the Seiberg-Witten equation on (X#Y, s#c)

has a solution for any Riemannian metric.

Proof. We use the connected sum formula proved by Bauer [1]: the

Seiberg-Witten invariant of connected sum is given by the operation of join

∗. From Theorem 19 and Example 18, we have

SW (X#Y, s#c, oX ⊕ oY ) = SW (X, s, oX) ∗ SW (Y, c, oY )

= SW (X, s, oX) ∗ id = SW (X, s, oX),

From Lemma 10, if there is no solution, then SW (X, s, oX) must be 0. This

contradicts Theorem 19. �

As an application of the above corollary, we obtain the following gener-

alized adjunction inequality.

Theorem 22. Suppose X is an oriented closed spin 4-manifold which

has the same rational cohomology ring as K3#K3. Let Σ be an embedded

oriented closed surface with genus g(Σ). Then we have the inequality

max{2g(Σ) − 2, 0} ≥ [Σ] · [Σ].

Proof. We follow the arguments of [5].

We denote by n the self-intersection number [Σ]·[Σ]. When n is negative,

we have nothing to prove.

We assume that n is non-negative. Let Y be the connected sum of n

copies of CP2. Let c be the Spinc structure on Y which satisfies c1(c) = −n.

The Poincaré dual of c1(c) is represented by an embedded oriented 2-sphere

Σ′.
We can make a connected sum of Σ and Σ′ inside X#Y . The normal

bundle of this connected sum Σ#Σ′ is trivial.

Corollary 21 and a standard argument of “stretching neck” [5] [6] imply

that there exist a translation invariant solution of the Seiberg-Witten equa-

tion on (Σ#Σ′)×R, for the restricted Spinc structure, and any Riemannian

metric on Σ#Σ′. From the argument of Kronheimer and Mrowka in [5], this

implies the inequality max{2g(Σ) − 2, 0} ≥ 〈e(ν), [Σ]〉 = n. �
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