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Some Remarks on A
(1)
1 Soliton Cellular Automata

By Susumu Ariki

Abstract. We describe the A
(1)
1 soliton cellular automata as an

evolution of a poset. This allows us to explain the conservation laws

for the A
(1)
1 soliton cellular automata, one given by Torii, Takahashi

and Satsuma, and the other given by Fukuda, Okado and Yamada, in
terms of the stack permutations of states in a very natural manner. As
a biproduct, we can prove a conjectured formula relating these laws.

1. Introduction

Several years ago, Torii, Takahashi and Satsuma [TTS] proved a con-

servation law for their box-ball system (soliton cellular automaton) using

the Robinson-Schensted-Knuth correspondence: we associate a permutation

to each state p, which we call the stack permutation of the state, then the

shape of the P -symbols of these stack permutations is conserved. We denote

this partition by λ(p).

Recently, it was observed that there exists a crystal structure behind this

system, and the identification of this box-ball system with a box-ball system

arising from A
(1)
1 -crystal was made in [HHIKTT]. In this crystal picture, the

time evolution is described by combinatorial row-to-row transfer matrices,

and the energy functions El(p) (l ∈ N) of this system naturally gives us

another conservation law [FOY]. Further, it was conjectured how these laws

were related. It is given by a simple formula:

El(p)− El−1(p) = λl(p)

where λl(p) is the length of the l th row of the partition λ(p).

In terms of the lengths of solitons N1, N2, . . ., λ(p) is the partition which

has Nk columns of length k (k ∈ N), and El(p) =
∑

k∈Nmin(l, k)Nk.

For example, if the state is an asymptotic soliton state,

· · · 01k10l11k20l2 · · · (l1, l2, · · · >> 0)
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it is straightforward to verify it.

A purpose of this short note is to prove the formula. It is done by sup-

plying conceptual explanation about the appearence of stack permutations

and their P -symbols.

Main idea is to interpret the box-ball system as a discrete dynamical

system of a path on Z × N, from which we naturally read off the evolu-

tion of the permutation poset of the stack permutation of the state of the

original box-ball system. This gives us a natural explanation why the Torii-

Takahashi-Satsuma law holds.

We then turn to the crystal picture, and describe the sites which con-

tribute to the energy function by using stack permutations. This explains

why these energy functions are related to stack permutations.

Our conclusion is that the depth of stacks explains both conservation

laws, which proves the relation of these laws.

The author hopes that this explanation would be valid after modifica-

tions in the case of A
(1)
r soliton cellular automata. In this case, Nagai’s

conserved quantities remain mysterious from a combinatorial point of view.

2. Fomin-Greene Theory on Posets

We start with the Fomin-Greene theory of posets. Good references are

[BF] and [F]. Let (P,≤) be a poset. A chain is a totally ordered subset of

P. An antichain is a subset of P on which no two elements are comparable.

Definition 1. Let (P,≤) be a poset. We define Ik(P), Dk(P) for

k ∈ N as follows.

Ik(P) := max{ |C1 	 · · · 	 Ck| | Ci:(possibly empty) chain }
Dk(P) := max{ |A1 	 · · · 	Ak| | Ai:(possibly empty) antichain }

We also define λk(P), λ′
k(P) for k ∈ N by their differences:

λk(P) := Ik(P)− Ik−1(P), λ′
k(P) := Dk(P)−Dk−1(P)

We thus obtain two compositions

λ(P) := (λ1(P), λ2(P), . . .)

λ′(P) := (λ′
1(P), λ′

2(P), . . .)
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The following theorem is due to Greene and Fomin, which justifies the

use of the notation λ′(P).

Theorem 2. Let P be a poset. Then λ(P) and λ′(P) are partitions.

Further, λ′(P) is the transpose of λ(P).

Let x = x1 · · ·xn be a word in [1, r]n, where [1, r] := {1, 2, . . . , r} is the

set of alphabets. For a pair (T, k) of a semistandard tableau and k ∈ [1, r],

we have the (row) insertion algorithm which produces another semistandard

tableau. We denote this semistandard tableau by T ← k.

Definition 3. Let x = x1 · · ·xn ∈ [1, r]n be a word. The semistan-

dard tableau P (x) is defined by

P (x) = ∅ ← x1 ← x2 ← · · · ← xn

and is called the P -symbol of x.

Definition 4. Let Sn be the symmetric group of n letters acting on

[1, n]. For w ∈ Sn, its permutation poset (P(w),≤) is defined by

P(w) = { (i, w(i)) | i ∈ [1, n] }

(i, w(i)) ≤ (j, w(j))⇔ i ≤ j, w(i) ≤ w(j)

We identify w ∈ Sn with the word w(1)w(2) · · ·w(n) ∈ [1, n]n.

Let x ∈ [1, r]n be a word, and assume that k appears nk times in x.

Then we see x as a distinguished coset representative of Sn/Sn1 ×· · ·×Snr .

Thus we can consider permutation posets for arbitrary x ∈ [1, r]n, which we

denote by P(x).

Example 5. Let x = 312143 ∈ [1, 4]6. Then to see it as a distinguished

coset representative (an element of S6) is the same as seeing it as 3111212432.

Here, we use 11 < 12 < 2< 31 < 32< 4 instead of 1< 2< 3< 4< 5< 6. The

permutation poset P(x) is as follows.



146 Susumu Ariki
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✟✟✯




We have I1 = 3, I2 = 5, I3 = 6, I4 = 6, . . . , and λ(P(x)) = (3, 2, 1).

For permutation posets, the following is well known.

Theorem 6. Let x ∈ [1, r]n be a word, and P(x) be its permutation

poset. Then λ(P(x)) equals the shape of the P -symbol P (x).

3. Box-Ball System

We now recall the box-ball system. Each state is given by an infinite

sequence of {0, 1} which has finitely many 1’s. We denote by 11, . . . , 1N
these 1 read from left to right. The description of one step time evolution

is very simple: for k = 1, . . . , N , we move 1k to the leftmost 0 among those

which sit on the right hand side of 1k. We give an example.

Example 7.

t : · · · 0 0 1 0 0 1 1 0 1 1 0 0 0 0 · · ·

t+1 : · · · 0 0 0 1 0 0 0 1 0 0 1 1 1 0 · · ·

It is visualized as follows, and in fact this is the original description of the

rule.
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For a state, we shall define a finite sequence consisting of “0”, “(” and

“)”. We first choose subsequences of the form “1 0”. These are called pairs

of stack depth 1. We change these pairs “1 0” to “( )”. We then delete

these pairs from the original state, and choose subsequences “1 0” again.

These pairs are called pairs of stack depth 2. We change these pairs

“1 0” to “( )”, and delete these pairs again. We continue this procedure

repeatedly until all 1 are deleted. In the end, all 1 are made into pairs with

“)” and their stack depths are defined. We say that an opening parenthesis

and a closing parenthesis are matched if they belong to a same pair. We

now define the stack permutation of the state.

Definition 8. For a state, we associate a finite sequence of “0”, “(”

and “)” as above. We read the opening parentheses from left to right, and

number them 1, 2, . . . accordingly.

We number a closing parenthesis k if it makes a pair with the k th

opening parenthesis. The permutation obtained by reading the numbering

of closing parentheses from left to right is called the stack permutation of

the state.

Example 9. For a state given by

· · · 0 0 1 0 0 1 1 0 1 1 0 0 0 0 · · · ,

we make pairs as follows.

· · · 0 0 ( ) 0 1 ( ) 1 ( ) 0 0 0 · · ·
· · · 0 0 ( ) 0 1 ( ) ( ( ) ) 0 0 · · ·
· · · 0 0 ( ) 0 ( ( ) ( ( ) ) ) 0 · · ·

Thus the numbering of the closing parentheses is given by

· · · 0 0 ( ) 0 ( ( ) ( ( ) ) ) 0 · · ·
· · · 1 3 5 4 2 · · ·
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That is, the stack permutation is 1 3 5 4 2.

Note that an opening parenthesis does not move to the corresponding

closing parenthesis, but the total set of the opening parentheses moves to the

total set of the closing parentheses as a whole in each step of time evolution.

We now describe the box-ball system as a discrete dynamical system of a

path on Z×N. Recall that we have defined a finite sequence of “0”, “(” and

“)” for each state. We read the sequence from the first “(”, and associate

a walk on Z × N starting from (0, 0) by the rule that “(” corresponds to

“↑”, and “0”, “)” correspond to “→”. We see it as a walk from (−∞, 0) to

(∞, N), where N is the number of balls in the box-ball system, by adding

infinitely many “→” to both sides. We give an example.

Example 10. For a state in the previous example, we have obtained

the following sequence.

( ) 0 ( ( ) ( ( ) ) )

Thus we have a walk as follows. The permutation poset of the stack per-

mutation w = 13542 is given by circles.

✲ i

✻

w(i)

✲✻
✲✲

✻
✲
✻

✲ ✲

❡

❡

❡

❡

❡

Let us think of a vertical edge corresponding to “(” of a subsequence

“0 ( ”. Since the left neighbor of the vertical edge is “0”, we have that a

positive number of “(” remain waiting to be matched as long as the number

of “(” is greater than the number of “)”. It implies that if the vertical edge

starts at (x0, y0), and the walk is in the area y−y0 > x−x0, then all edges are

“(” or “)”, and no “0” appears. Using this, we can give a simple evolution

rule of the path: Let us start walking with (x0, y0) and continue walking on

the path until it hits the line y−y0 = x−x0 again. We say that these edges
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constitute a group. We partiton the edges of the walk into such groups. For

each group with (x0, y0) as above, we reflect the edges in this group with

respect to the line y−y0 = x−x0. We then move the zero of the (x, y)-plane

to the lower vertex of the first vertical edge. These complete one step time

evolution. This evolution rule is best understood by an example.
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Since the closing parentheses of the pairs of “(” and “)” define the stack

permutation, we have natural correspondence between the vertices of the

permutation poset of the stack permutation and the matching pairs: for

each vertical edge, we choose the horizontal edge in the matching pair. If

the vertical edge is on the j th row and the horizontal edge is on the i th

column, then (i, j) is an element of the permutation poset. In the above

example, the leftmost three vertices correspond to the pairs of stack depth

1, and the left vertex of the remaining two corresponds to the pair of stack

depth 2, and the rightmost vertex corresponds to the pair of stack depth 3.

To describe the poset structure, it is convenient to describe the matching

pairs by framed boxes. For the left example of the above, we have

( ) ( ( ) ( ( ) ) )

We say that two pairs are in outer relation if each of the corresponding

framed box does not contain the other. If one framed box contains the other,

we say that these are in inner relation. Note that two pairs are either in

outer relation or inner relation by the definition of the pairs.

Lemma 11. Assume that two pairs of “ (” and “ )” are in outer (resp.

inner) relation. Then the corresponding vertices in the permutation poset

are comparable (resp. not comparable).

Proof. If they are in outer relation, their positions in the sequence of
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“(” and “)” are given by

· · · ( · · · ) · · · ( · · · ) · · · .

If the left “(” is the i th opening parenthesis and the right “(” is the j th

opening parenthsis, we have i < j and w(i) < w(j) by the definition of the

stack permutation. Hence the corresponding vertices in the permutation

poset are comparable. The argument for the inner case is similar. �

Proposition 12. To each state, we associate the permutation poset of

the stack permutation of the state as above. Then its vertices corresponding

to pairs of stack depth k form a chain in the poset. We call it the depth

k chain and denote it by Ck. We then have that |C1 	 · · · 	 Ck| gives the

maximal number of vertices covered by k chains.

Proof. By Lemma 11, Ck is a chain. We show that this permutation

poset admits decomposition into disjoint union of antichains Ak such that

each Ak has the form {v1, . . . , vlk} where vi is a vertex corresponding to a

pair of stack depth i. Assume that we have already distributed vertices of

stack depth smaller than k into such antichains. In the definition of the

pairs, it corresponds to the stage that we have deleted “1 0”’s k−1 times.

By the definition of the pairs, each framed box of stack depth k contains a

framed box of stack depth k−1, and these framed boxes of stack depth k

are in outer relation. The latter implies that we can choose distinct framed

boxes of depth k−1 for framed boxes of depth k. Since the vertices of

stack depth k−1 are distributed to distinct antichains, we can distribute

the vertices of stack depth k to antichains without violating the required

property.

We now assume that C ′
1∪ · · · ∪C ′

k gives the maximal number of vertices

covered by k chains. Since each antichain intersects C ′
1 ∪ · · · ∪C ′

k at most k

times, we can move these vertices into C1 ∪ · · · ∪Ck keeping them mutually

distict. This is possible by the existence of the antichain decomposition we

have just proved. Hence, |C ′
1 ∪ · · · ∪ C ′

k| can not exceed |C1 ∪ · · · ∪ Ck|. �

If we denote by Pt the permutation poset at time t, and by Ct
k the depth

k chain of Pt, we have λk(Pt) = |Ct
k| by Proposition 12. By Theorem 6,

we have that λ(Pt) is nothing but the shape of the P -symbol of the stack

permutation of the state at time t. Hence, the following theorem is almost
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obvious. It simply says that the length of depth k chain is conserved, which

is easily seen from the evolution rule of the path as follows.

Theorem 13 ([TTS]). For each state, we compute its stack permuta-

tion. Then the shape of its P -symbol is conserved under time evolution.

Proof. We show that |Ct
k| is conserved. For k = 1, the elements of

the chain correspond to convex corners of the path. Hence it is obviously

conserved by the evolution rule of the path. We then delete the depth 1

chain from the posets. This is the same as deleting convex corners from the

original path and the reflected path.

To know that the deletion of convex corners from the original path and

the reflected path gives a same walk, it is enough to see that deleting convex

corners gives the same walk as deleting concave corners. To compare the

location of 1’s in the walks, We divide the cases by looking at vertical lines

(the middle lines of the figures below). For the location of 0’s, we divide

the cases by looking at horizontal lines and the argument is entirely similar,

which we omit.

The leftmost figure represents the case that we have vertical lines on

both sides. One may subdivide the case into four by separating the case

that there is exactly one 0 in the middle of 1’s from the case that there are

more than one 0’s in the middle of 1’s, if one wishs. The remaining two

cases are the left end and the right end of the walk.

✻
✲

✻
✲
✻

✲
✻
✲
✻

✻
✲

✻
✲

By comparing the results of the deletion of the concave corners and the

convex corners, we know that the new walks are the same. In particular,

deleting convex corners from the original path and the reflected path give a

same walk. Since the depth 2 chain becomes the depth 1 chain of the new

poset, we can apply the same argument to conclude that |Ct
2| is conserved.

By repeated use of the argument, we also have the conservation laws for all

k. �
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4. Energy Functions and Stack Permutations

We now turn to the crystal description of the box-ball system. Let B :=

{ 0 , 1 } be the A1 crystal associated with the vector representation whose

highest weight vector is 0 . Its affinization is denoted by Aff(B) := Z×B.

This is an A
(1)
1 crystal. Note that the numbering of 0 and 1 is different

from the usual one. B is identified with the subset {0}×B. For each state,

we cut sufficiently remote 0’s and consider it as an element in B⊗n.

To describe the time evolution rule, we take the crystal of the l th

symmetric tensor Bl and its affinization Aff(Bl) with l sufficiently large.

The elements of Bl are nondecreasing sequences of length l whose entries

are 0 and 1. We write 0m11m2 (m1+m2 = l) for these elements. We use

combinatorial R matrices to get isomorphism of affine crystals as follows.

✲Aff(Bl) Aff(Bl)

⊗

⊗

Aff(B)

❄
Aff(B)

⊗

⊗

Aff(B)

❄
Aff(B)

⊗

⊗

· · ·

· · ·

⊗

⊗

Aff(B)

❄
Aff(B)

After we embed B⊗n to Aff(B)⊗n, we apply this combinatorial row-to-

row transfer to the tensor product of 0l with the upper Aff(B)⊗n to get

the lower Aff(B)⊗n tensored by 0l . Then we forget the symmetric tensor

part and the Z part of the affine crystal. The result is an element of B⊗n.

This procedure gives one step time evolution of the box-ball system.

We consider the isomorphism for arbitrary l. Then for a state p, we have

(
0× 0l

)
⊗ p �→ p′ ⊗

(
El(p)× 0m11m2

)

for some p′ ∈ Aff(B)⊗n and m1,m2 ∈ N. These El(p) are called energy

functions. It is known [NY] that if we set El = 0 and increase it by one

at the sites of the following form, then the final value of El coincides with

El(p).
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✲0m11m2 0m1+11m2−1

0

❄
1

(m2 ≥ 1, m1+m2 = l)

By using the fact that time evolution is obtained from a crystal iso-

morphism of affine crystals, Fukuda, Okado and Yamada [FOY, Theorem

3.2] have proved that these El(p) are conserved quantities of this box-ball

system.

The purpose of this section is to relate these quantities to the stack

permutation of the state p.

Theorem 14. For each state p, we define the sequence of “ 0”, “ (”

and “ )” as in the previous section. Then El increases precisely at the sites

corresponding to “ )” whose stack depth are equal or less than l.

Proof. Assume that “)” corresponds to a pair of depth k. We shall

show that if l ≥ k, El does increase at this site.

Let “(” be the corresponding opening parenthesis, and 1k10l1 · · · 1kN 0lN

be the walk starting from the vertical edge corresponding to the “(” and

ending at the horizontal edge corresponding to the “)”. We write the evo-

lution of the symmetric tensor along the path as follows.

0m11m2

✻
✲
✻
✲✻

✲ 0m
′
11m

′
2

Assume that El does not increase at this site (the last end of the walk).

Then the status of the symmetric tensor on the both ends of the last edge

is 0l . We denote by e1, . . . , eN the last edges of 1k1 , . . . , 1kN respectively.

Then we can prove the following by downward induction on i.

• The symmetric tensor on the upper end of ei has the form 0l−s1s
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with s < l.

• Since the upper end of ei is not saturated, we have steady increase of

the number of 1 in the symmetric tensor during ki vertical edges, and

no saturation occurs during these edges.

• Since li−1−ki+· · ·−kN+lN ≤ k by the assumption on the stack depth,

the symmetric tensor on the upper end of ei−1 has the form 0l−s1s

with s < l.

We then have the following.

• Since k1−l1+· · ·−li ≥ 0, we have steady decrease of the number of 1

in the symmetric tensor during li horizontal edges, and no saturation

occurs.

Therefore, we conclude that the left end of the last edge of the walk has

the symmetric tensor of the form 0l−s1s with s >
∑

ki−
∑

li ≥ 0, which

contradicts the assumption at the beginning. (In particular, we have that

Il(P) ≤ El(p) where P is the permutation poset of the stack permutation

of the state p.)

Next we show that if l < k, then El does not increase at this site. To

prove this, we show for arbitrary k, l that the right end of the last edge

of the walk has the symmetric tensor 0l if the stack depth k is equal or

greater than l, and 0m11m2 (m1 ≥ k) if k is equal or smaller than l. We

prove it by induction on k. If k = 1, the proof is obvious.

If k ≤ l, we choose the last closing parethesis of stack depth k−1. Then

by the induction hypothesis, the symmetric tensor has the form 0m11m2

(m1 ≥ k−1) at this site. Note that we have already proved that no saturation

occurs during the walk if k ≤ l. Hence, if we start the walk with 0m11m2 , we

end the walk with 0m11m2 . From this, we know that the symmetric tensor

at the left end of the last edge of the walk is also 0m11m2 (m1 ≥ k−1).

Hence, the right end of the last edge has the form 0m
′
11m

′
2 (m′

1 ≥ k) if

m2 > 0 and 0l if m2 = 0. But we also have l ≥ k in the latter case.

We now assume that k ≥ l. We choose the last closing parenthesis

among those parentheses of stack depth equal or greater than l in the walk

which are different from the last end of the walk. Since its stack depth is
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smaller than k, we can apply the induction hypothesis to know that the

symmetric tensor has the form 0l at this site. Further, since we have pairs

of stack depth less than l during this site and the last edge of the walk,

we have that the symmetric tensor at the left end of the last edge has 0l .

Thus the same is true for the right end of the last edge. Hence we have

proved the claim.

The claim implies that if l < k, El does not increase at the site in

question (the last end of the walk). Therefore, we have proved that El

increases precisely at the sites corresponding to “)”. (In particular, we have

also proved that Il(P) = El(p).) �

5. Conclusion

For a state pt at time t, we denote by Pt the permutation poset of

the stack permutation of the state pt. Then the energy function El(p
t)

counts the vertices of Pt whose stack depth are equal or less than l. On the

other hand, the l th row of the shape λ(pt) of the P -symbol of the stack

permutation is equal to the number of vertices of Pt whose stack depth are

l. Hence these quantities are naturally explained by the notion of stack

depth, and we have Il(Pt) = El(p
t).

Further, the evolution rule of a path naturally explains why these quan-

tities are conserved.
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