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A Filtering Model on Default Risk

By Hidetoshi Nakagawa

Abstract. In this paper, we present a filtering model on a default
risk related to mathematical finance. We regard as the time when a
default occurs the first hitting time at zero of a one dimensional process
which starts at some positive number and is not directly observed.
We discuss the conditional law of the hitting time under imperfect
information. We use the reference measure change technique and a
new formula on a kind of conditional expectation to obtain a so-called
hazard rate process. It is also discussed what the relation between the
hazard rate process and the conditional law of the hitting time is like.

1. Introduction

First of all, we present a filtering model on a default risk related to

mathematical finance. The model is an extension of the filtering model

introduced by [7].

Fix a finite time horizon T > 0. Let (Ω,B, P ) be a complete probability

space and (B̃t)t∈[0,T ] be a weakly Brownian filtration. Let n and m be some

positive integers.

B,B′ and W , which are processes with values in R,Rn and Rm respec-

tively, are defined as Brownian base of (Ω, (B̃t), P ). We have this Brownian

base fixed.

We introduce three sorts of processes — they are one, n and m dimen-

sional process, which are denoted by (Xt)t∈[0,T ], (Zt)t∈[0,T ] and (Yt)t∈[0,T ]

respectively.

Let X and Z satisfy the following stochastic differential equations.

dXt = dBt + b0(t,Xt, Zt)dt, X0 = x0 > 0,(1)

dZt = σ1(t,Xt, Zt)dB
′
t + b1(t,Xt, Zt)dt, Z0 = z0 ∈ Rn,(2)

where b0 : [0, T ] × R × Rn −→ R, σ1 : [0, T ] × R × Rn −→ Rn×n and

b1 : [0, T ] × R × Rn −→ Rn are bounded and continuously differentiable
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functions. We assume that b0 ∈ C1,1,2((0, T ) × R × Rn;R) and
∂b0
∂zi

(i =

1, · · · , n) are bounded.

We define a random time τ by

τ = inf{t ∈ [0, T ]|Xt = 0}.(3)

We set τ(ω) = +∞ if inf
t∈[0,T ]

Xt(ω) > 0. We may consider that τ is the time

when the underlying systems halt. We often call τ the default time from a

financial viewpoint.

Let (Yt)t∈[0,T ] satisfy

dYt = σ2(t, Yt)dWt + b2(t,Xt∧τ , Zt∧τ , Yt)dt, Y0 = y0 ∈ Rm,(4)

where σ2 : [0, T ] × Rm −→ Rm×m and b2 : [0, T ] × R × Rn × Rm −→ Rm

are bounded and continuously differentiable functions.

We sometimes call X,Z and Y “main system”, “sub system” and ”ob-

servation” respectively, following the terminology of filtering problem.

Here we assume that the diffusion part of the main system (1) is given

only by a standard Brownian motion, which is independent of the other

Brownian motions. We show in the appendix that under some hypothe-

ses some general cases can be reduced to the above one by a coordinate

transformation.

Let ai(t, x) = σi(t, x)σi(t, x)T, i = 1, 2. We suppose that a2 satisfies

the uniform ellipticity condition, that is, for some ε > 0, a2(t, y) ≥ εIm for

any t ∈ [0, T ], y ∈ Rm, where Im is an m-dimensional unit matrix. Then

σ2(t, y)
−1 exists and satisfies

|σ2(t, y)
−1ζ| ≤ 1√

ε
|ζ|, ζ ∈ Rm, t ∈ [0, T ], y ∈ Rm a.s.

Denote by (G•
t ) the right-continuous filtration generated by the process

put in •. For example,

GX
t =

⋂
t<u

σ{Xs, s ≤ u}.

We also define the filtration (Ft) as

Ft =
⋂
t<u

(GY
u ∨ σ{τ ∧ u}).
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Then each filtration satisfies the usual conditions. Apparently τ is an (Ft)-

stopping time.

Let Nt = 1{τ≤t}, that is, Nt is a default-counting process.

The subject of this paper is to discuss the existence and the explicit

representation of a nonnegative (GY
t )-progressively measurable process h(t)

such that

Nt −
∫ t

0
(1 −Ns)h(s)ds, t ∈ [0, T ],

is a (P, (Ft))-martingale.

We call such a process h(t) the (GY
t )-hazard rate process (under P ) since

h(t) has a connection with the distribution of the default time τ as will be

discussed in section 5..

Let

q(t) =

∫ ∞

t

x0√
2πs3

exp
(
−x2

0

2s

)
ds, t ∈ [0, T ]

and let λ(t) = −q(t)−1 d

dt
q(t).

As for the hazard rate process, we obtain the following theorem. (See

Theorem 5.1 for the exact statement.)

Theorem. The (GY
t )-hazard rate process h(t) under P is given by

h(t) =
Ĥ(t;Y )

K̂(t;Y )
q(t)λ(t),

where Ĥ(t;Y ) and K̂(t;Y ) are (GY
t )-progressively measurable processes

given in (30) and (31) respectively.

We also show some formula on a conditional expectation. The formula

is utilized to prove proposition 4.1, which is the key to achieve the above

theorem.

Let Ba
t = a+Bt for a given a > 0. Let τa = inf{t ∈ [0, T ]|Ba

t = 0} and

FW
t =

⋂
t<u

(GW
u ∨ σ{τa ∧ u}).

We have GW
t ⊂ FW

t ⊂ GB,W
t for t ∈ [0, T ].
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Letting Na
t = 1{τa≤t}, we immediately see that the process Ma defined

by

Ma
t = Na

t −
∫ t

0
(1 −Na

s−)λ(s)ds(5)

is a (P, (FW
t )t∈[0,T ])-martingale.

Then we have the following result.

Theorem 1.1. Let α(t) and α̂(t) be (B̃t)-predictable processes taking

values in R and Rm respectively such that

E[

∫ T

0
α(t)2dt] < ∞ and E[

∫ T

0
|α̂(t)|2dt] < ∞.

Then P -a.s.

E[

∫ t

0
α(s)dBs +

∫ t

0
α̂(s)TdWs|FW

t ](6)

=

∫ t

0
E[α̂(s)T|FW

s ]dWs

+

∫ t

0
(1 −Na

s−){k0(s;W ) − q(s)−1k(s;W )}dMa
s ,

where E[ · |FW
s ] stands for its predictable version, k0(s;W ) and k(s;W ) are

given in (8) and (9) respectively.

Intuitively and formally, we think of k0(s;W ) and k(s;W ) as below;

k0(s;W ) = E[

∫ s

0
α(u)dBu +

∫ s

0
α̂(u)TdWu|GW

s , τa = s],

k(s;W ) = E[(1 −Na
s )
(∫ s

0
α(u)dBu +

∫ s

0
α̂(u)TdWu

)
|GW

s ].

Theorem 1.1 is an extension of the following proposition for the case

of Brownian filtrations to (FW
t ). The general version of this proposition is

seen in [8].

Proposition 1.2. (1)If α̂(s) is a Rm-valued, (B̃s)-progressively mea-

surable process satisfying

E[

∫ T

0
|α̂(s)|2ds] < ∞,
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then P -a.s., for all t ∈ [0, T ],

E[

∫ t

0
α̂(s)TdWs|GW

t ] =

∫ t

0
E[α̂(s)T|GW

s ]dWs.

(2)If α(s) is a R-valued, (B̃s)-progressively measurable process satisfying

E[

∫ T

0
α(s)2ds] < ∞,

then P -a.s., for all t ∈ [0, T ],

E[

∫ t

0
α(s)dBs|GW

t ] = 0.

The author would like to thank Prof. S. Kusuoka for his helpful advice.

2. Preparation

Let

g(t, x, y) =
1√
2πt

(
exp(−(x− y)2

2t
) − exp(−(x+ y)2

2t
)
)
, t > 0, x, y > 0.

As is well known, g is the fundamental solution of the following heat equation

with a Dirichlet boundary condition:

∂u

∂t
(t, x) =

1

2

∂2u

∂x2
(t, x), t > 0, x ∈ (0,∞)

u(t, 0) = 0, t > 0.

Denote by Wk the space C([0, T ];Rk) and by µk a k-dimensional Wiener

measure. We will write W for W1.
Let νu,x2

0,x1
(·), u > 0, x1 > 0, x2 > 0 be a probability measure on

C([0, u];R), which is the law of (Bs)s∈[0,u] conditioned to start from x1, to
stay in (0,∞) for s ≤ u and to reach x2 at time u under P , that is, for any
bounded and continuous function f : Rn −→ R and 0 < t1 < · · · < tn < u,∫
W

νu,x2

0,x1
(dθ)f(θ(t1), · · · , θ(tn))

=

∫
(0,∞)n

g(t1, x1, y1)g(t2 − t1, y1, y2) · · · g(tn − tn−1, yn−1, yn)g(u− tn, yn, x2)

g(u, x1, x2)

× f(y1, · · · , yn)dy1 · · · dyn.
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Hereafter we think of νu,x2
0,x1

(dθ), u ∈ [0, T ] as the probability measure on W

by setting θ(s) = x2 for u < s ≤ T , νu,x2
0,x1

(dθ)-a.s.

Then we see that for any bounded and continuous function f : Rn −→
R,

Ex1 [f(Bt1 , · · · , Btn), τ > u]

=

∫ ∞

0
dx2g(u, x1, x2)

∫
W
νu,x2
0,x1

(dθ)f(θ(t1), · · · , θ(tn)).

We also define νu,00,x1
(·) as the limit of νu,x2

0,x1
(·) as x2 ↓ 0 with respect to

the weak topology on probability measures.

Next, we make a few remarks about the measure νu,x2
0,x1

. First, it is re-

markable that the density of the finite dimensional law of three dimensional

Bessel Bridge leaving x1 at time 0 and reaching x2 at u is given by

p(t1, x1, y1)p(t2 − t1, y1, y2) · · · p(tn − tn−1, yn−1, yn)p(u− tn, yn, x2)

p(u, x1, x2)
,

where p(s, x, y), s > 0, x > 0, y > 0 stands for the transition density of

three dimensional Bessel process. The well-known fact that p(s, x, y) =

xg(s, x, y)y−1 implies the following result. (Refer to Knight [6].)

Lemma 2.1. The law of one dimensional Brownian motion conditioned

to stay in (0,∞) between x1 > 0 and x2 > 0 over period [0, t] coincides with

the one of three dimensional Bessel Bridge leaving x1 at time 0 and reaching

x2 at t.

Consequently we can regard νu,x2
0,x1

(·), u > 0, x1 > 0, x2 > 0 as the law of

three-dimensional Bessel Bridge between x1 and x2 over [0, u].

Similarly, it is not hard to see

lim
x2↓0

g(u− tn, yn, x2)

g(u, x1, x2)
=

l(u− tn, yn)

l(u, x1)
,

for 0 < t1 < · · · < tn < u, where l(s, x) = (2πs3)−
1
2x exp(−x2

2s )1{x>0} so the

density of the law of (Bt1 , · · · , Btn) under νu,00,x1
with respect to dy1 · · · dyn,

is equal to

g(t1, x1, y1)g(t2 − t1, y1, y2) · · · g(tn − tn−1, yn−1, yn)l(u− tn, yn)

l(u, x1)
.
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Proposition 2.2. For any bounded continuous functional F : W −→
R,

E[Na
TF (Ba

·∧τa)]

=

∫ T

0
P (τa ∈ ds)

∫
W
νs,00,a(dθ)F (θ).

Proof. Let 0 = t0 < t1 < · · · < tN = T and let fN : RN −→ R be a

bounded continuous function.

We have

E[Na
T fN (Ba

t1∧τa , · · · , B
a
tN∧τ )]

=

∫ T

0
P (τa ∈ ds)E[fN (Ba

t1∧s, · · · , B
a
tN∧s)|τa = s]

=
N−1∑
n=0

∫ tn+1

tn
P (τa ∈ ds)

×
∫
(0,∞)n

fN (x1, · · · , xn, 0, · · · , 0)

× P (Ba
t1 ∈ dx1, · · · , Ba

tn ∈ dxn, τ
a > tn|τa = s).

The joint distribution of (Ba
t1 , · · · , Ba

tn , τ
a) under P restricted to

{tn < τa} is calculated in the following way.

P (Ba
t1 ≤ x1, · · · , Ba

tn ≤ xn, τ
a > s)

=

∫ x1

0
dz1g(t1, a, z1)

∫ x2

0
dz2g(t2 − t1, z1, z2) · · ·

×
∫ xn

0
dzng(tn − tn−1, zn−1, zn)

∫ ∞

s
l(u− tn, zn)du.

Hence, the joint density with respect to dx1 · · · dxnds is equal to

g(t1, a, x1) · · · g(tn − tn−1, xn−1, xn)l(s− tn, xn).

We also see that for s > tn,∫
(0,∞)n

dx1 · · · dxng(t1, a, x1) · · · g(tn − tn−1, xn−1, xn)l(s− tn, xn)

= P (τa ∈ ds)/ds

= l(s, a).
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Therefore it follows that

P (Ba
t1 ∈ dx1, · · · , Ba

tn ∈ dxn, τ
a > tn|τa = s)

=
g(t1, a, x1)g(t2 − t1, x1, x2) · · · g(tn − tn−1, xn−1, xn)l(s− tn, xn)

l(s, a)

× dx1 · · · dxn.

This means that the finite dimensional distribution of (Ba
u)u≤s under P

restricted to {τa > tn} and conditioned to {τa = s} coincides with the f.d.d.

of (Ba
u)u≤s under νs,00,a. That is,

E[Na
T fN (Ba

t1∧τa , · · · , B
a
tN∧τa)]

=
N−1∑
n=0

∫ tn+1

tn
P (τa ∈ ds)

∫
W
νs,00,a(dθ)fN (θ(t1), · · · , θ(tn), 0, · · · , 0).

=

∫ T

0
P (τa ∈ ds)

∫
W
νs,00,a(dθ)fN (θ(t1), · · · , θ(tN )).

From this equality and the monotone class argument, we can conclude

that for any bounded continuous functional F : W −→ R,

E[Na
TF (Ba

·∧τa)]

=

∫ T

0
P (τ ∈ ds)

∫
W1

νs,00,a(dθ)F (θ). �

3. Proof of Theorem 1.1

Before we begin to prove Theorem 1.1, we present some lemmas.

Lemma 3.1. Fix t ∈ [0, T ]. Let F : [0, T ] × W × Wm −→ R be a

measurable functional such that for all t ∈ [0, T ],

F (t, ·, ·) : W × Wm −→ R

is a continuous functional, E[|F (t, Ba,W )|] < ∞, and F (t, Ba,W ) is

(GB,W
t )-measurable.
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Then

(1) E[(1 −Na
t )F (t, Ba,W )|GW

t ]

=

∫ ∞

0
dxg(t, a, x)

∫
W
νt,x0,a(dθ)F (t, θ,W ).

(2) E[Na
t F (τa, Ba,W )|GW

t ]

=

∫ t

0
dsq(s)λ(s)

∫
W
νs,00,a(dθ)F (s, θ,W ).

(3) E[Na
t F (τa, Ba,W )|FW

t ]

=

∫ t

0

(∫
W
νs,00,a(dθ)F (s, θ,W )

)
dNa

s .

Proof. (1) By noting that P (Ba
t ∈ dx|τa > t) = q(t)−1g(t, a, x)dx,

we have

E[(1 −Na
t )F (t, Ba, w)]

= E[F (t, Ba, w), τa > t]

=

∫ ∞

0
dxg(t, a, x)

∫
W
νt,x0,a(dθ)F (t, θ, w).

Let ϕ(·) : Wm −→ R be a nonnegative (GW
t )-measurable functional.

Then we have

E[(1 −Na
t )F (t, Ba,W )ϕ(W )]

=

∫
Wm

µm(dw)ϕ(w)E[(1 −Na
t )F (t, Ba, w)],

= E[ϕ(W )

∫ ∞

0
dxg(t, a, x)

∫
W
νt,x0,a(dθ)F (t, θ,W )].

Since ϕ is taken arbitrarily, the first statement is proved.

(2) By Proposition 2.2 we have

E[Na
t F (τa, Ba, w)]

=

∫ ∞

0
P (τa ∈ ds)E[Na

t F (τa, Ba, w)|τa = s]

=

∫ t

0
dsq(s)λ(s)

∫
W
νs,00,a(dθ)F (s, θ, w).
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Therefore, for any nonnegative (GW
t )-measurable functional ϕ(·) : Wm −→

R, we have

E[Na
t F (τa, Ba,W )ϕ(W )]

=

∫
Wm

µm(dw)ϕ(w)E[Na
t F (τa, Ba, w)].

= E[ϕ(W )

∫ t

0
dsq(s)λ(s)

∫
W
νs,00,a(dθ)F (s, θ,W )].

Similar to the proof of (1), this implies the conclusion.

(3) Let ϕ̂(·) : [0, T ] −→ R be a bounded continuous function. First, we

remark that

E[Na
t F (τa, Ba, w)ϕ̂(τa ∧ t)]

=

∫ t

0
dsq(s)λ(s)E[F (s,Ba, w)ϕ̂(s ∧ t)|τa = s]

=

∫ t

0
dsq(s)λ(s)ϕ̂(s ∧ t)

∫
W
νs,00,a(dθ)F (s, θ, w).

Let C : Wm −→ R be a bounded (GW
t )-measurable functional. Then

we have

E[Na
t F (τa, Ba,W )ϕ̂(τa ∧ t)C(W )]

=

∫
Wm

µm(dw)C(w)E[Na
t F (τa, Ba, w)ϕ̂(τa ∧ t)]

= E[ϕ̂(τa ∧ t)C(W )Na
t

∫
W
ντ

a,0
0,a (dθ)F (τa, θ,W )].

= E[ϕ̂(τa ∧ t)C(W )

∫ t

0

(∫
W
νs,00,a(dθ)F (s, θ,W )

)
dNa

s ].

By the usual monotone class argument, for any bounded, (FW
t )-measurable

random variable Θ : Ω −→ R,

E[Na
t F (τa, Ba,W )Θ]

= E[Θ

∫ t

0

(∫
W
νs,00,a(dθ)F (s, θ,W )

)
dNa

s ].

So the proof is complete. �
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Lemma 3.2. Let a functional F satisfy the same condition as in the

last lemma.

For every bounded, (FW
t )-predictable process f : [0, T ] × Ω −→ R, we

have

(1) E[

∫ t

0
F (s;Ba,W )f(s)dNa

s ]

=

∫ t

0
E[(1 −Na

s−)f(s)

∫
W
νs,00,a(dθ)F (s; θ,W )]λ(s)ds

(2) E[

∫ t

0
F (s;Ba,W )f(s)(1 −Na

s−)λ(s)ds]

=

∫ t

0
E[f(s)(1 −Na

s−)q(s)−1
∫ ∞

0
dxg(s, a, x)

×
∫
W
νs,x0,a(dθ)F (s; θ,W )]λ(s)ds.

Proof. (1) We note that q(s) = P (τa ≥ s) = P (τa ≥ s|GW
s ) for

s ∈ [0, T ].

Similar to the proof of Lemma 3.1(3), monotone class argument implies

that it is enough to show the result for the case such as f(t) = ϕ̂(τa∧t)C(t),

where ϕ̂(·) : [0, T ] −→ R is a bounded continuous function and C(t) is a

bounded (GW
t )-predictable process.

Thanks to Lemma 3.1(2), we have

E[

∫ t

0
F (s;Ba,W )ϕ̂(τa ∧ s)C(s)dNa

s ]

= E[E[Na
t ϕ̂(τa)C(τa)F (τa;Ba,W )|GW

t ]]

= E[

∫ t

0
dsq(s)λ(s)

∫
W
νs,00,a(dθ)ϕ̂(s)C(s)F (s; θ,W )]

=

∫ t

0
E[q(s)ϕ̂(s)C(s)

∫
W
νs,00,a(dθ)F (s; θ,W )]λ(s)ds

=

∫ t

0
E[E[1 −Na

s−|GW
s ]ϕ̂(s)C(s)

∫
W
νs,00,a(dθ)F (s; θ,W )]λ(s)ds

=

∫ t

0
E[(1 −Na

s−)ϕ̂(τa ∧ s)C(s)

∫
W
νs,00,a(dθ)F (s; θ,W )]λ(s)ds.
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(2) Since {τ > t} is an atom of σ{τ ∧ t} and independent of (GW
t ), the

equality

E[(1 −Na
t−)Θ|FW

t ] = (1 −Na
t−)q(t)−1E[(1 −Na

t−)Θ|GW
t ]

holds for every random variable Θ. Using Lemma 3.1(1) and the above fact,

we have

E[

∫ t

0
F (s;Ba,W )f(s)(1 −Na

s−)λ(s)ds]

=

∫ t

0
E[f(s)(1 −Na

s−)E[F (s;Ba,W )|FW
s ]]λ(s)ds

=

∫ t

0
E[f(s)(1 −Na

s−)q(s)−1E[(1 −Na
s−)F (s;Ba,W )|GW

s ]]λ(s)ds

=

∫ t

0
E[f(s)(1 −Na

s−)q(s)−1

×
∫ ∞

0
dxg(s, a, x)

∫
W
νs,x0,a(dθ)F (s; θ,W )]λ(s)ds. �

Now we will show Theorem 1.1.

Let Lt = E[

∫ t

0
α(s)dBs +

∫ t

0
α̂(s)TdWs|FW

t ]. Since

Lt = E[E[

∫ T

0
α(s)dBs +

∫ T

0
α̂(s)TdWs|B̃t]|FW

t ]

= E[

∫ T

0
α(s)dBs +

∫ T

0
α̂(s)TdWs|FW

t ],

so Lt is a (P, (FW
t )t∈[0,T ])-square integrable martingale with L0 = 0. So

it follows from the (FW
t ))-martingale representation theorem (see Kusuoka

[7]) that there exist (FW
s )-predictable processes a(s) and â(s) taking values

in Rm and R respectively such that

E[

∫ T

0
|a(s)|2ds] < ∞, E[

∫ T

0
â(s)2λ(s)ds] < ∞,

and

Lt =

∫ t

0
a(s)TdWs +

∫ t

0
â(s)dMa

s .
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Given Kt an (FW
t )-martingale given by

Kt =

∫ t

0
b(s)TdWs +

∫ t

0
b̂(s)dMa

s

for some (FW
t )-predictable, bounded processes b(t) and b̂(t), taking values

in Rm and R respectively.

The property of quadratic variation implies that

E[LtKt] = E[[L,K]t]

= E[

∫ t

0
a(s)Tb(s)ds+

∫ t

0
â(s)b̂(s)dNa

s ]

= E[

∫ t

0
a(s)Tb(s)ds+

∫ t

0
â(s)b̂(s)(1 −Na

s−)λ(s)ds]

=

∫ t

0
E[a(s)Tb(s) + â(s)b̂(s)(1 −Na

s−)λ(s)]ds.

On the other hand, we note that

E[LtKt] = E[E[

∫ t

0
α(s)dBs +

∫ t

0
α̂(s)TdWs|FW

t ]Kt](7)

= E[

∫ t

0
α(s)dBs

∫ t

0
b(s)TdWs]

+ E[

∫ t

0
α̂(s)TdWs

∫ t

0
b(s)TdWs]

+ E[
(∫ t

0
α(s)dBs +

∫ t

0
α̂(s)TdWs

) ∫ t

0
b̂(s)dMa

s ].

The first term of (7) vanishes because B and W is independent and the

second term of (7) leads to

E[

∫ t

0
α̂(s)Tb(s)ds]

=

∫ t

0
E[α̂(s)Tb(s)]ds

=

∫ t

0
E[E[α̂(s)T|FW

s ]b(s)]ds.

We can choose a predictable version from equivalent processes of

E[α̂(s)|FW
s ] and will also write E[α̂(s)|FW

s ] for the predictable one. (See

Revuz-Yor [9].)
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Since Ma
t is a (B̃t)-semimartingale, the last term of (7) coincides with

E[

∫ t

0

(∫ s

0
b̂(u)dMa

u

)
{α(s)dBs + α̂(s)TdWs}

+

∫ t

0

(∫ s

0
α(u)dBu +

∫ s

0
α̂(u)TdWu

)
b̂(s)dMa

s

+

∫ t

0
α(s)b̂(s)d[B,Ma]s +

m∑
i=1

∫ t

0
α̂i(s)b̂(s)d[W i,Ma]s].

We observe that ∫ t

0

(∫ s

0
b̂(u)dMa

u

)
{α(s)dBs + α̂(s)dWs}

is a (B̃t)-martingale, so its mean is zero. Since the quadratic covariation

processes [B,Ma] and [W i,Ma] i = 1, · · · ,m are all zero, it follows that the

last term of (7) also vanishes.

Let Φ : [0, T ] × W × Wm −→ R be given by

Φ(s; a+B,W ) = E[

∫ s

0
α(u)dBu +

∫ s

0
α̂(u)TdWu|GB,W

s ] for s ∈ [0, T ] a.s.

For s ∈ [0, T ], w ∈ C([0, T ];Rm), let

k0(s;w) =

∫
W
νs,00,a(dθ)Φ(s; θ, w),(8)

k(s;w) =

∫ ∞

0
dxg(s, a, x)

∫
W
νs,x0,a(dθ)Φ(s; θ, w),(9)

If we regard α(u) as α(u,B,B′,W ) and so on, we have

Φ(s; θ, w) = E[

∫ s

0
α(u, θ,B′, w)dθ(u) +

∫ s

0
α̂(u, θ,B′, w)dw(u)].

Then we have

E[
(∫ t

0
α(s)dBs +

∫ t

0
α̂(s)TdWs

) ∫ t

0
b̂(s)dMa

s ]

= E[E[

∫ t

0
α(s)dBs +

∫ t

0
α̂(s)TdWs|GB,W

t ]

∫ t

0
b̂(s)dMa

s ]

= E[

∫ t

0
Φ(s; a+B,W )b̂(s)dMa

s ]
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= E[

∫ t

0
Φ(s; a+B,W )b̂(s)dNa

s ]

− E[

∫ t

0
Φ(s; a+B,W )b̂(s)(1 −Na

s−)λ(s)ds].

Here we use Lemma 3.2 by setting f(t) = b̂(t) and F = Φ to obtain

E[

∫ t

0
Φ(s; a+B,W )b̂(s)dNa

s ](10)

=

∫ t

0
E[(1 −Na

s−)b̂(s)k0(s;W )]λ(s)ds

and

E[

∫ t

0
Φ(s; a+B,W )b̂(s)(1 −Na

s−)λ(s)ds](11)

=

∫ t

0
E[b̂(s)(1 −Na

s−)q(s)−1k(s;W )]λ(s)ds.

Therefore it follows∫ t

0
E[b(s)T{a(s) − E[α̂(s)|FW

s ]}(12)

+ b̂(s)(1 −Na
s−)λ(s){â(s) − (k0(s;W ) − q(s)−1k(s;W ))}]ds

= 0

Since the equality (12) holds for every bounded, (FW
t )-predictable pro-

cesses b(s) and b̂(s),

a(s) = E[α̂(s)|FW
s ] a.e.s ∈ [0, T ], P − a.s

and

(1 −Na
s−){â(s) − (k0(s;W ) − q(s)−1k(s;W ))} = 0 a.e.s ∈ [0, T ], P − a.s.

Hence we obtain the desired result. �

4. Calculation of the Conditional Density

Now we get down to study our filtering model. First of all, we progress

by using the measure change technique, as is mostly used for nonlinear

filtering problem.
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Let

R = exp
(
−
∫ T

0
{b0(t,Xt, Zt)dBt + β1(t,Xt∧τ , Zt∧τ , Yt)

TdWt}

−1

2

∫ T

0
{b0(t,Xt, Zt)

2 + |β1(t,Xt∧τ , Zt∧τ , Yt)|2}dt
)
,

where β1(t, x, z, y) = σ−1
2 (t, y)b2(t, x, z, y). Denote by P̃ an equivalent prob-

ability measure on (Ω,B) defined by

dP̃

dP
= R(13)

Let

B̃t = Bt +

∫ t

0
b0(s,Xs, Zs)ds,

W̃t = Wt +

∫ t

0
β1(s,Xs∧τ , Zs∧τ , Ys)ds.

We see that (B̃t), (B
′
t) and (W̃t) are independent (P̃ , (B̃t)t∈[0,T ])-Brownian

motions due to Cameron-Martin-Maruyama-Girsanov theorem, so (B̃t), (B
′
t)

and (W̃t) are Brownian base of (Ω, (B̃t), P̃ ).

Then we have

dXt = dB̃t,

dZt = σ1(t,Xt, Zt)dB
′
t + b1(t,Xt, Zt)dt,

dYt = σ2(t, Yt)dW̃t.

It follows that (GX
t )t∈[0,T ] coincides with the natural filtration generated by

(B̃t)t∈[0,T ]. Similarly, we remark that the filtration (GY
t )t∈[0,T ] coincides with

the natural filtration generated by (W̃t)t∈[0,T ] since dW̃t = σ2(t, Yt)
−1dYt.

In other words, (GY
t )t∈[0,T ] can be regarded as a m-dimensional Brownian

filtration, which has (W̃ ) as its base of (Ω, (GY
t ), P̃ ).

Let Bt =
⋂
t<u

σ{B̃s, B
′
s, W̃s; s ≤ u}.

Hereafter we will denote by E[ · ] an expectation under the probability

measure P and by Ẽ[ · ] under P̃ .

The measure change from P to P̃ makes some computations easier since

X becomes standard Brownian motion and both X and Z come to be inde-

pendent of Y . However, we want to acquire the connection between default
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time and observed information under the original probability measure P .

Indeed it is very significant to clarify the conditional Radon-Nikodym den-

sity with respect to the filtration (Ft). For the purpose, we take
dP

dP̃
, that

is, R−1 instead of R and make it easier to deal with.

Let

ρ ≡ R−1 = exp
(∫ T

0
{b0(t,Xt, Zt)dB̃t + β1(t,Xt∧τ , Zt∧τ , Yt)

TdW̃t}(14)

−1

2

∫ T

0
{b0(t,Xt, Zt)

2 + |β1(t,Xt∧τ , Zt∧τ , Yt)|2}dt
)
,

and let

ψ(t, x, z) =

∫ x

0
b0(t, ξ, z)dξ.

Then we have

dψ(t,Xt, Zt) =
∂ψ

∂t
(t,Xt, Zt)dt+ b0(t,Xt, Zt)dXt + ∇zψ(t,Xt, Zt)

TdZt

+
1

2

∂b0
∂x

(t,Xt, Zt)dt

+
1

2

n∑
i,j=1

∂2ψ

∂zi∂zj
(t,Xt, Zt)a

ij
1 (t,Xt, Zt)dt,

where ∇z =

(
∂

∂z1
, · · · , ∂

∂zn

)T

.

Therefore

∫ T

0
b0(t,Xt, Zt)dXt

= ψ(T,XT , ZT ) − ψ(0, x0, z0)

−
∫ T

0
∇zψ(t,Xt, Zt)

T[σ1(t,Xt, Zt)dB
′
t + b1(t,Xt, Zt)dt]

−
∫ T

0
{∂ψ
∂t

(t,Xt, Zt) +
1

2

∂b0
∂x

(t,Xt, Zt)dt

+
1

2

n∑
i,j=1

∂2ψ

∂zi∂zj
(t,Xt, Zt)a

ij
1 (t,Xt, Zt)}dt
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Substituting it into (14), we have

ρ = exp
(
ψ(T,XT , ZT ) − ψ(0, x0, z0) −

∫ T

0
β0(t,Xt, Zt)

TdB′
t(15)

+

∫ T

0
β̂1(t,Xt∧τ , Zt∧τ , Yt)

TdYt

−
∫ T

0
{A(t,Xt, Zt) +

1

2
|β1(t,Xt∧τ , Zt∧τ , Yt)|2}dt

)
,

where

β0(t, x, z) = σ1(t, x, z)
T∇zψ(t, x, z),

β̂1(t, x, z, y) = (σ2(t, y)
−1)Tβ1(t, x, z, y)

A(t, x, z) =
1

2
{b0(t, x, z)2 +

∂b0
∂x

(t, x, z)

+
n∑

i,j=1

∂2ψ

∂zi∂zj
(t, x, z)aij1 (t, x, z)}

+ ∇zψ(t, x, z)Tb1(t, x, z) +
∂ψ

∂t
(t, x, z).

Besides, for given θ ∈ W, we think of the following stochastic differential

equation:

dZs = σ1(s, θ(s), Zs)dB
′
s + b1(s, θ(s), Zs)ds, s ∈ [0, T ],(16)

Z0 = z0.

We write for Ξ(θ, z0;B
′
·)(t), t ∈ [0, T ] the strong solution of (16). (We omit

z0 hereafter.)

Now we can represent the density as

ρ = eψ(T,XT ,Ξ(X;B′)(T ))−ψ(0,x0,z0)G̃(T,X,B′; τ, Y ).

Here for each t ∈ [0, T ] fixed, let

G̃(t, θ, η;u, y)

= exp
(
−
∫ t

0
β0(s, θ(s),Ξ(θ; η)(s))Tdη(s)

+

∫ t

0
β̂1(s, θ(s ∧ u),Ξ(θ; η)(s ∧ u), y(s))Tdy(s)
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−
∫ t

0
{A(s, θ(s),Ξ(θ; η)(s))

+
1

2
|β1(s, θ(s ∧ u),Ξ(θ; η)(s ∧ u), y(s))|2}ds

)
,

for θ ∈ W, η ∈ Wn, u ∈ [0,∞) and y ∈ Wm.

In the rest of this section, we find out the stochastic differential equation

satisfied by the density process ρt = Ẽ[ρ|Ft]. In particular, We will make

use of Theorem 1.1 to show the stochastic integral equation which the (Ft)-

conditional density satisfies.

Let ft = Ẽ[ρ|Bt], which is a (P̃ , (Bt)t∈[0,T ])-martingale. Because of the

fact Ft ⊂ Bt, we have

ρt = Ẽ[Ẽ[ρ|Bt]|Ft] = Ẽ[ft|Ft].

We note that ft has the following two representations.

ft = 1 +

∫ t

0
fs−b0(s,Xs, Zs)dB̃s(17)

+

∫ t

0
fs−β1(s,Xs∧τ , Zs∧τ , Ys)

TdW̃s

and

ft = eψ(t,Xt,Ξ(X;B′)(t))−ψ(0,x0,z0)G̃(t,X,B′; τ, Y ).(18)

We prepare for some further notation. Notation such as g(s, x0, z),

νs,x0,x0
(·) and so on are given in the last section.

Hβ(s; y) = e−ψ(0,x0,z0)
∫ ∞

0
dxg(s, x0, x)

∫
W×Wn

νs,x0,x0
(dθ) ⊗ µn(dη)(19)

× β1(s, x,Ξ(θ; η)(s), y(s))eψ(s,x,Ξ(θ;η)(s))G(s, θ, η; y),

H(s; y) = e−ψ(0,x0,z0)
∫
W×Wn

νs,00,x0
(dθ) ⊗ µn(dη)G(s, θ, η; y),(20)

and

G(s, θ, η; y)

= exp
(
−
∫ s

0
β0(u, θ(u),Ξ(θ; η)(u))Tdη(u) −

∫ s

0
A(u, θ(u),Ξ(θ; η)(u))du

+

∫ s

0
β̂1(u, θ(u),Ξ(θ; η)(u), y(u))Tdy(u)

− 1

2

∫ s

0
|β1(u, θ(u),Ξ(θ; η)(u), y(u))|2du

)
,
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for θ ∈ W1, η ∈ Wn and y ∈ Wm. Moreover

H̃β(s;u, y)(21)

= e−ψ(0,x0,z0)
∫
W×Wn

νu,00,x0
(dθ) ⊗ µn(dη)Ĝ(s, θ, η;u, y)

× β1(s, 0,Ξ(θ; η)(u), y(s)),

Ĝ(s, θ, η;u, y)

= G(u, θ, η; y) exp
(∫ s

u∧s
β̂1(v, 0,Ξ(θ; η)(u), y(v))Tdy(v)

− 1

2

∫ s

u∧s
|β1(v, 0,Ξ(θ; η)(u), y(v))|2dv

)
.

The following result is our goal in this section.

Proposition 4.1. ρt satisfies the following a stochastic integral equa-

tion

ρt = 1 +

∫ t

0
ρs−(γ(s)TdW̃s + κ(s)dM̃s),(22)

where

γ(s) = ρ−1
s−{(1 −Ns−)q(s)−1Hβ(s;Y ) +Ns−

∫ s

0
H̃β(s;u, Y )dNu}

κ(s) = (1 −Ns−){ρ−1
s−H(s;Y ) − 1}.

In particular, both γ(t) and κ(t) are (Ft)-predictable processes.

Proof. First of all, we notice that we can identify B̃ and W̃ under P̃

at present with B and W under P in the last two sections. Since Y and W̃

are equivalent under P̃ , we will treat them equally. Let Φ̂ be a functional

that satisfies, P̃ -a.s., for t ∈ [0, T ],

Φ̂(t;X,Y ) = Ẽ[

∫ t

0
fs−b0(s,Xs, Zs)dB̃s

+

∫ t

0
fs−β1(s,Xs∧τ , Zs∧τ , Ys)

TdW̃s|GX,Y
t ].

It follows from (17) and (18) that

Φ̂(t;X,Y ) = Ẽ[ft|GX,Y
t ] − 1(23)

=

∫
Wn

µn(dη)eψ(t,Xt,Ξ(X;η)(t))−ψ(0,x0,z0)G̃(t,X, η; τ, Y )
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By applying Theorem 1.1 to (17), we have

ρt = Ẽ[1 +

∫ t

0
fs−b0(s,Xs, Zs)dB̃s

+

∫ t

0
fs−β1(s,Xs∧τ , Zs∧τ , Ys)

TdW̃s|Ft]

= 1 +

∫ t

0
Ẽ[fs−β1(s,Xs∧τ , Zs∧τ , Ys)

T|Fs]dW̃s

+

∫ t

0
(1 −Ns−)

{∫
W
νs,00,x0

(dθ)Φ̂(s; θ, w)

− q(s)−1
∫ ∞

0
dxg(s, x0, x)

∫
W
νs,x0,x0

(dθ)Φ̂(s; θ, w)
}
dM̃s.

We have∫
W
νs,00,x0

(dθ)Φ̂(s; θ, w)

=

∫
W
νs,00,x0

(dθ)(1 + Φ̂(s; θ, w)) − 1

=

∫
W×Wn

νs,00,x0
(dθ) ⊗ µn(dη)e−ψ(0,x0,z0)G(s, θ, η;Y ) − 1

= H(s;Y ) − 1.

On the other hand, Lemma 3.1(1) implies

∫
W
νs,x0,x0

(dθ)Φ̂(s; θ, w)(24)

=

∫
W
νs,x0,x0

(dθ)(1 + Φ̂(s; θ, w)) − q(s)

= Ẽ[(1 −Ns)(1 + Φ̂(s;X,Y ))|GY
s ] − q(s)

= Ẽ[(1 −Ns)Ẽ[fs|GX,Y
s ]|GY

s ] − q(s)

= Ẽ[(1 −Ns)fs|GY
s ] − q(s).

Hence we have

ρt = Ẽ[1 +

∫ t

0
fs−b0(s,Xs, Zs)dB̃s(25)

+

∫ t

0
fs−β1(s,Xs∧τ , Zs∧τ , Ys)

TdW̃s|Ft]
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= 1 +

∫ t

0
Ẽ[fs−β1(s,Xs∧τ , Zs∧τ , Ys)

T|Fs]dW̃s

+

∫ t

0
(1 −Ns−){H(s;Y ) − q(s)−1Ẽ[(1 −Ns)fs|GY

s ]}dM̃s.

We remark that fs− is replaced by fs owing to its continuity, so we have

Ẽ[fs−β1(s,Xs∧τ , Zs∧τ , Ys)|Fs]

= (1 −Ns)Ẽ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)|Fs]

+NsẼ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)|Fs]

= (1 −Ns)q(s)
−1Ẽ[(1 −Ns)fsβ1(s,Xs∧τ , Zs∧τ , Ys)|GY

s ]

+NsẼ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)|Fs].

Since we observe that on the set {τ > s},

fsβ1(s,Xs∧τ , Zs∧τ , Ys) = β1(s,Xs,Ξ(X;B′)(s), Ys)G(s,X,B′, Y ).

Hence it follows from Lemma 3.1(1) that

Ẽ[β1(s,Xs,Ξ(X;B′)(s), Ys)G(s,X,B′, Y )|GY
t ](26)

=

∫ ∞

0
dxg(s, x0, x)eψ(s,x,Ξ(w;η)(s))−ψ(0,x0,z0)

×
∫
W×Wn

νs,x0,x0
(dθ) ⊗ µn(dη)

× β1(s, x,Ξ(θ; η)(s), Y (s))G(s, θ, η;Y ).

On the other hand, we notice that Ft ⊂ GY
t ∨GX,Z

τ∧t since σ{τ∧t} ⊂ GX,Z
τ∧t ,

where GX,Z
t = GX

t ∨ GZ
t . Hence we have

NsẼ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)|Fs]

= Ẽ[NsẼ[fs|GY
s ∨ GX,Z

τ∧s ]β1(s,Xs∧τ , Zs∧τ , Ys)|Fs]

= Ẽ[Nse
−ψ(0,x0,z0)β1(s,Xs∧τ , Zs∧τ , Ys)Ĝ(s,X,B′; τ, Y )

× Ẽ[exp
(
ψ(t,Xt, Zt) −

∫ t

τ∧t
β0(s,Xs, Zs)

TdB′
s

−
∫ t

τ∧t
A(s,Xs, Zs)ds

)
|GY

t ∨ GX,Z
τ∧t ]|Ft].
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We can observe

Ẽ[exp
(
ψ(t,Xt, Zt) −

∫ t

τ∧t
β0(s,Xs, Zs)

TdB′
s

−
∫ t

τ∧t
A(s,Xs, Zs)ds

)
|GY

t ∨ GX,Z
τ∧t ]

= Ẽ[exp
(∫ t

τ∧t
b0(s,Xs, Zs)dB̃s −

1

2

∫ t

τ∧t
b0(s,Xs, Zs)

2ds
)
|GY

t ∨ GX,Z
τ∧t ]

= Ẽ[exp
(∫ t

τ∧t
b0(s,Xs, Zs)dB̃s −

1

2

∫ t

τ∧t
b0(s,Xs, Zs)

2ds
)
|GX,Z

τ∧t ]

= 1

since exp

(∫ t

0
b0(s,Xs, Zs)dB̃s − 1

2

∫ t

0
b0(s,Xs, Zs)

2ds

)
is a (P̃ , (GX,Z

t ))-mar-

tingale.

Therefore, by using Lemma 3.1(3), we have

NsẼ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)|Fs](27)

= Ẽ[Nse
−ψ(0,x0,z0)β1(s,Xs∧τ , Zs∧τ , Ys)Ĝ(s,X,B′; τ, Y )|Fs]

= Ẽ[Nse
−ψ(0,x0,z0)β1(s, 0,Ξ(X,B′)(τ), Ys)Ĝ(s,X,B′; τ, Y )|Fs]

=

∫ s

0
H̃β(s;u, Y )dNu.

Since ρs−γ(s) = E[fs−β1(s,Xs∧τ , Zs∧τ , Ys)|Fs] and γ(s) is (Ft)-predictable,

we can achieve from (26) and (27),

γ(s) = ρ−1
s−{(1 −Ns−)q(s)−1Hβ(s;Y ) +Ns−

∫ s

0
H̃β(s;u, Y )dNu}.(28)

As for κ(s), since we observe that

(1 −Ns−)q(s)−1Ẽ[(1 −Ns)fs|GY
s ] = (1 −Ns−)ρs−,

we have

κ(s) = (1 −Ns−)(H(s;Y ) − q(s)−1Ẽ[(1 −Ns)fs|GY
s ])(29)

= (1 −Ns−)(H(s;Y ) − ρs−).

Hence we obtain the consequence. �
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5. Hazard Rate Process and Survival Probability under the Orig-

inal Measure

Now we can state our main result about the hazard rate process under

the original probability measure P .

Theorem 5.1. The (GY
t )-hazard rate process under P is given by

h(t) =
Ĥ(t;Y )

K̂(t;Y )
q(t)λ(t),

where

Ĥ(t; y) = eψ(0,x0,z0)H(t; y),(30)

H(t; y) is given by (20) and

K̂(t; y) =

∫ ∞

0
dxg(t, x0, x)(31)

×
∫
W
νt,x0,x0

(dθ) ⊗ µn(dη)eψ(t,x,Ξ(θ;η)(t))G(t, θ, η; y)

for y ∈ Wm.

Proof. First, remember that λ(t) is (GY
t )-hazard rate process under

P̃ . It follows from Proposition 3.1 in Kusuoka [7] and Proposition 4.1 that

the (GY
t )-hazard rate process under P , h(t), is given by

h(t) = (1 + κ(t))λ(t) = ρ−1
t−H(t;Y )λ(t)

We have

(1 −Nt)ρt = (1 −Nt)q(t)
−1Ẽ[(1 −Nt)ft|GY

t ]

= (1 −Nt)q(t)
−1

× Ẽ[(1 −Nt)e
ψ(t,Xt,Zt)−ψ(0,x0,z0)G̃(t,X,B′; τ, Y )|GY

t ]

= (1 −Nt)q(t)
−1

× Ẽ[(1 −Nt)e
ψ(t,Xt,Zt)−ψ(0,x0,z0)G(t,X,B′;Y )|GY

t ]

= (1 −Nt)q(t)
−1e−ψ(0,x0,z0)K̂(t;Y ).

The last equality follows from Lemma 3.1(1). Hence we have

h(t) =
Ĥ(t;Y )

K̂(t;Y )
q(t)λ(t). �
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Remark 5.2. We remark that on the set {τ > t}, we observe

h(t) = lim
x↓0

1

2x

P (Xt ∈ dx|Ft)

dx
,(32)

that is, it is an illustration of Duffie and Lando’s result ([1]). In order to

check it we have only to notice

d

dt
q(t) = − lim

x↓0
g(t, x0, x)

2x
.

It is claimed in [2] that under some assumptions, the equality

P (τ > T |Ft) = (1 −Nt)E[exp
(
−
∫ T

t
h(u)du

)
|GY

t ](33)

holds. However, in general, the equality (33) does not necessarily hold even

though h(u) is the (GY
t )-hazard rate process under P . Refer to [3], [4]

and [7].)

Here we will say that the model is standard under a probability measure

P ∗ if (GY
t )-hazard rate process under P ∗, h∗(u), exists and satisfies, for

every t ∈ [0, T ],

P ∗(τ > T |Ft) = (1 −Nt)E
∗[exp

(
−
∫ T

t
h∗(u)du

)
|GY

t ].

Although our model is proved to be standard under P̃ , it may not be stan-

dard under the original measure P .

From now on, we investigate the relation between the survival probabil-

ity with respect to P and P -hazard rate process h(t).

If we let γ̄(t;Y ) = K̂(t;Y )−1Ĥβ(t;Y ), γ̄(t;Y )is a (GY
t )-progressively

measurable process such that

(1 −Nt−)γ(t) = (1 −Nt−)γ̄(t;Y ).

Denote by ρ̂t a (P̃ , (GY
t ))-martingale defined by

dρ̂t = ρ̂tγ̄(t;Y )TdW̃t, ρ̂0 = 1,
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that is

ρ̂t = exp
(∫ t

0
γ̄(u;Y )TdW̃u −

1

2

∫ t

0
|γ̄(u;Y )|2du

)
.

Now we define another probability measure Q on (Ω,B) by dQ = ρ̂TdP̃ .

Let Λ be a GY
T -measurable, bounded random variable.

It follows from Proposition 7 in [7] that for t ∈ [0, T ],

E[Λ(1 −NT )|Ft]

= (1 −Nt)E
Q[Λ exp

(
−
∫ T

t
h(u)du

)
|GY

t ].

Let Lt = E[
dQ

dP
|GY

t ]. Then by using the Bayes’ rule,

EQ[Λ exp
(
−
∫ T

t
h(u)du

)
|GY

t ]

= L−1
t E[LTΛ exp

(
−
∫ T

t
h(u)du

)
|GY

t ].

Note that

Lt = E[
dQ

dP̃

dP̃

dP
|GY

t ] = E[ρ̂TR|GY
t ]

= E[ρ̂TE[R|GY
T ]|GY

t ]E[R|GY
t ]−1E[R|GY

t ]

= Ẽ[ρ̂T |GY
t ]E[R|GY

t ] = ρ̂tE[R|GY
t ].

The last equality follows from the fact that ρ̂t is a (P̃ , (GY
t ))-martingale.

Let ρ̃t = Ẽ[ρ|GY
t ]. Recalling Proposition 1.2, it is easy to see

ρ̃t = 1 +

∫ t

0
Ẽ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)

T|GY
s ]dW̃s.

The calculation after this can be done as we did in the last section.

Let

c(t; y) =
Ĥβ(t; y) +

∫ t
0 dvq(v)λ(v)Ĵβ(t; v, y)

K̂(t; y) +
∫ t
0 dvq(v)λ(v)Ĵ(t; v, y)

,

Ĵβ(t; v, y) =

∫
W
νv,00,x0

(dw) ⊗ µn(dη)Ĝ(t, w, η; v, y)β1(t, 0,Ξ(w; η)(v), y(t))

Ĵ(t; v, y) =

∫
W
νv,00,x0

(dw) ⊗ µn(dη)Ĝ(t, w, η; v, y).
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for y ∈ Wm.

Direct computation of ρ̃s implies

ρ̃s = K̂(t; y) +

∫ t

0
dvq(v)λ(v)Ĵ(t; v, y).

Notice that c(s;Y ) satisfies

c(s;Y ) = ρ̃−1
s Ẽ[fsβ1(s,Xs∧τ , Zs∧τ , Ys)|GY

s ],

and we have

ρ̃t = 1 +

∫ t

0
ρ̃sc(s;Y )TdW̃s,

which has the following explicit solution:

ρ̃t = exp
(∫ t

0
c(u;Y )TdW̃u −

1

2

∫ t

0
|c(u;Y )|2du

)
.

Cameron-Martin-Maruyama-Girsanov theorem implies

WP
t = W̃t −

∫ t
0 c(s;Y )ds is a (P,GY

t )-Brownian motion and

E[R|GY
t ] = exp

(
−
∫ t

0
c(u;Y )TdWP

u − 1

2

∫ t

0
|c(u;Y )|2du

)
.

Therefore

Lt = exp
(∫ t

0
{γ̄(u;Y ) − c(u;Y )}dWP

u − 1

2

∫ t

0
|γ̄(u;Y ) − c(u;Y )|2du

)
.

Now we can present the following.

Proposition 5.3. Let t, s ∈ [0, T ] with t < s. For any (GY
s )-measur-

able, bounded random variable Λ,

E[Λ(1 −Ns)|Ft]

= (1 −Nt)E[Λ exp
(
−
∫ s

t
h(u)du

)

× exp
(∫ s

t
{γ̄(u;Y ) − c(u;Y )}TdWP

u

− 1

2

∫ s

t
|γ̄(u;Y ) − c(u;Y )|2du

)
|GY

t ],
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where (WP
t ) is a (P, (GY

t ))-Brownian motion.

Remark 5.4. We attempt to give a simple illustration of the above

result from a financial view. Let rt be a (GY
t )-adapted, non-negative process

that means the risk-free instantaneous interest rate. We suppose that P is

a so-called equivalent martingale measure. If we consider a defaultable

security whose payoff at the terminal time T is given by 1{τ>T} and that

pays no coupon before T , its price at time t, P (t, T ), is defined by the last

proposition:

P (t, T )

= (1 −Nt)E[exp
(
−
∫ T

t
{ru + h(u)}du

)

× exp
(∫ T

t
{γ̄(u;Y ) − c(u;Y )}TdWP

u

− 1

2

∫ T

t
|γ̄(u;Y ) − c(u;Y )|2du

)
|GY

t ].

Roughly speaking, the credit spread can be explained by the hazard rate

plus some fluctuation caused by the difference between the filtrations (Ft)

and (GY
t ).

Appendix

Here we use a differential geometric approach to present a way of trans-

formation from a more general case to our simple case which is defined in

section 1.

Let Z̃t = (Z̃0
t , Z̃

′
t)

T = (Z̃0
t , Z̃

1
t , · · · , Z̃d

t )T satisfy the following stochastic

differential equations:

dZ̃i
t =

d∑
k=0

σ̃ik(Z̃t)dB̃t + b̃i(t, Z̃t)dt, i = 0, 1, · · · , d,

where σ̃ij and b̃i are bounded and smooth functions. We have

d〈Z̃i, Z̃j〉t = ãij(Z̃t)dt,
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where

ãij(z) =
d∑

k=0

σ̃ik(z)σ̃kj(z), i, j = 0, 1, · · · , d.

We assume that the matrix (ãij)i,j=0,···,d is non-singular. We often take

z ∈ R1+d as (z0, z′) ∈ R × Rd and so forth.

Proposition A.1. Assume that ã00 is twice continuously differen-

tiable and let g(z′) =
1√

ã00(0, z′)
.

Besides, let Y 0
t = g(Z̃ ′

t)Z̃
0
t and Y i

t = Z̃i
t , i = 1, · · · , d.

Then there exists a function â00(y0, y′) such that â00(0, y′) = 1 for all

y′ ∈ Rd and

d〈Y 0, Y 0〉t = â00(Y 0
t , Y

′
t )dt.

Proof. Ito’s formula implies

dY 0
t = g(Z̃ ′

t)dZ̃
0
t + Z̃0

t dg(Z̃
′
t) + d〈Z̃0, g(Z̃ ′)〉t

= g(Z̃ ′
t)dZ̃

0
t + Z̃0

t

{ d∑
i=1

∂g

∂zi
(Z̃ ′

t)dZ̃
i
t +

1

2

d∑
i,j=1

∂2g

∂zizj
(Z̃ ′

t)d〈Z̃i, Z̃j〉t
}

+
d∑

i=1

∂g

∂zi
(Z̃ ′

t)d〈Z̃0, Z̃i〉t

= g(Y ′
t )
{ d∑
k=0

σ̃0k((g(Y ′
t )

−1Y 0
t , Y

′
t ))dB̃t + b̃0(t, (g(Y ′

t )
−1Y 0

t , Y
′
t ))dt

}

+ g(Y ′
t )

−1Y 0
t

{ d∑
i=1

∂g

∂yi
(Y ′

t )
( d∑
k=0

σ̃ik(g(Y ′
t )

−1Y 0
t , Y

′
t )dB̃t

+ b̃i(t, (g(Y ′
t )

−1Y 0
t , Y

′
t ))dt

)

+
1

2

d∑
i,j=1

∂2g

∂yi∂yj
(Y ′

t )ã
ij(g(Y ′

t )
−1Y 0

t , Y
′
t )dt

}

+
d∑

i=1

∂g

∂yi
(Y ′

t )ã
0i(g(Y ′

t )
−1Y 0

t , Y
′
t )dt.
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This means that Y is a diffusion process. Besides, we have

d〈Y 0, Y 0〉t
= {g(Y ′

t )
2ã00(g(Y ′

t )
−1Y 0

t , Y
′
t )

+ 2g(Y ′
t )g(Y

′
t )

−1Y 0
t

d∑
i=1

∂g

∂yi
(Y ′

t )ã
0i(g(Y ′

t )
−1Y 0

t , Y
′
t )

+ (g(Y ′
t )

−1Y 0
t )2

d∑
i,j=1

∂g

∂yi
(Y ′

t )
∂g

∂yj
(Y ′

t )ã
ij(g(Y ′

t )
−1Y 0

t , Y
′
t )}dt.

Let

â(y0, y′)(34)

= g(y′)2ã00(g(y′)−1y0, y′)

+ 2g(y′)g(y′)−1y0
d∑

i=1

∂g

∂yi
(y′)ã0i(g(y′)−1y0, y′)

+ (g(y′)−1y0)2
d∑

i,j=1

∂g

∂yi
(y′)

∂g

∂yj
(y′)ãij(g(y′)−1y0, y′).

Then it is easy to see d〈Y 0, Y 0〉t = â00(Yt)dt and â00(0, y′) = 1, so we obtain

the result. �

Adding to the last proposition, we observe that the property that Y 0
t = 0

if and only if Z̃0
t = 0 is also valid. Therefore it is not different in essence to

take up Y instead of Z̃. That is the reason we may assume without loss of

generality that

ã00(0, z′) = 1 for any z′ ∈ Rd.(35)

Define the function H : R1+d × R1+d −→ R by

H(x, y) =
d∑

i,j=0

ãij(x)yiyj .(36)

We consider the following Hamiltonian system:


d

dt
x(t) = ∇yH(x(t), y(t)), x(0) = u

d

dt
y(t) = −∇xH(x(t), y(t)), y(0) = v,

(37)
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and let x(t;u, v) and y(t;u, v) be solutions of the above equations.

Let

Φ(z0, z′) = x(z0; (0, z′), (1, 0))

Ψ(z0, z′) = y(z0; (0, z′), (1, 0)).

Proposition A.2. Assume that Φ : R1+d −→ R1+d is a diffeomor-

phism. Define (1 + d)-dimensional process Zt = (Z0
t , Z

′
t) = (Z0

t , Z
1
t , · · · , Zd

t )

as

Zt = Φ−1(Z̃t).

Then (0, Z̃ ′
t) = Φ−1((0, Z̃ ′

t)) and there exists a (1 + d)-dimensional (GB̃
t )-

Brownian motion B = (B0, B1, · · · , Bd) and a matrix-valued function Γ(z)

in the form of

Γ(z) =

(
1
2 0T

0 Γ̂(z)

)

such that the martingale part of Z vanishing at time 0 is given by

∫ t

0
Γ(Zs)dBs.

Proof. From the definition of Φ and the hypothesis of diffeomorphism,

it follows that (0, z′) = Φ(0, z′), so the first statement is apparent.

Let d〈Zi, Zj〉t = aij(Zt)dt. By the definition of Zt, we notice that

Z̃i
t = Φi(Z0

t , Z
′
t), i = 0, 1, · · · , d.

Since it follows from Ito’s formula that

dZ̃i
t =

d∑
k=0

∂Φi

∂zk
(Z0

t , Z
′
t)dZ

k
t +

1

2

d∑
k,l=0

∂2Φi

∂zk∂zl
(Z0

t , Z
′
t)a

kl(Zt)dt,

we have

d〈Z̃i, Z̃j〉t =
d∑

k,l=0

∂Φi

∂zk
(Z0

t , Z
′
t)a

kl(Zt)
∂Φj

∂zl
(Z0

t , Z
′
t)dt.
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Denoting by Ã, A and D the (1 + d)-dimensional square matrices (ãij),

(aij) and

(
∂Φi

∂zk

)
respectively, it follows that

Ã = DADT.

This equality implies A−1 = DTÃ−1D, thus

aij(Zt) =
d∑

k,l=0

∂Φk

∂zi
(Z0

t , Z
′
t)ãkl(Φ(Z0

t , Z
′
t))

∂Φl

∂zj
(Z0

t , Z
′
t),

where (aij) is the (i, j)-component of A−1 and so is ãij . In short, super-

indices are used for an original matrix, while sub-indices for the inverse.

Now we need the following lemma.

Lemma A.3.

d∑
i,j=0

∂Φi

∂z0
(Z0

t , Z
′
t)ãij(Φ(Z0

t , Z
′
t))

∂Φj

∂zk
(Z0

t , Z
′
t) = 4δ0k.

Proof. We define the function S : R × R1+d × R1+d −→ R by

S(t, u, v) =

∫ t

0

{ d

ds
x(s;u, v)Ty(s;u, v) −H(x(s;u, v), y(s;u, v))

}
ds.

We can check that S satisfies the following properties that

∇uS(t, u, v) = ∇ux(s;u, v)Ty(s;u, v) − v,(38)

∇vS(t, u, v) = ∇vx(s;u, v)Ty(s;u, v),(39)

where

∇uf(u) =
(∂f i
∂uj

)
i,j=0,1,···,d

,

for a differentiable function f = (f0, f1, · · · , fd)T.

From (36) and (37) it follows that

S(t, u, v) =

∫ t

0
{∇yH(x(s;u, v), y(s;u, v))Ty(s;u, v)(40)

−H(x(s;u, v), y(s;u, v))}ds
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=

∫ t

0
{2H(x(s;u, v), y(s;u, v))

−H(x(s;u, v), y(s;u, v))}ds

=

∫ t

0
H(x(s;u, v), y(s;u, v))ds

= tH(u, v).

The last equality holds because of the property of Hamilton type equation.

Next let

S̃(z0, z′) = S(z0, (0, z′), (1, 0)).

Due to (40) and the assumption (35), it is not hard to see

S̃(z0, z′) = z0H((0, z′), (1, 0)) = z0,

that is,

∂S̃

∂z0
(z0, z′) = 1,

∂S̃

∂zk
(z0, z′) = 0.

On the other hand, by noticing H(Φ(z0, z′),Ψ(z0, z′)) = H((0, z′), (1, 0)) =

1, we observe

∂S̃

∂z0
(z0, z′) =

∂S

∂z0
(z0, (0, z′), (1, 0))

=
∂Φ

∂z0
(z0, z′)TΨ(z0, z′) −H(Φ(z0, z′),Ψ(z0, z′))

=
∂Φ

∂z0
(z0, z′)TΨ(z0, z′) − 1,

and (38) implies that for each k = 1, · · · .d,

∂S̃

∂zk
(z0, z′) =

∂Φ

∂zk
(z0, z′)TΨ(z0, z′).

Therefore it follows from these results that

∂Φ

∂z0
(z0, z′)TΨ(z0, z′) = 2,(41)

∂Φ

∂zk
(z0, z′)TΨ(z0, z′) = 0, k = 1, · · · .d.(42)
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Moreover we have

∂Φi

∂z0
(z0, z′) =

∂

∂yi
H(Φ(z0, z′),Ψ(z0, z′))

= 2
d∑

j=0

ãij(Φ(z0, z′))Ψj(z0, z′)),

so

Ψj(z0, z′) =
1

2

d∑
i=0

ãij(Φ(z0, z′))
∂Φi

∂z0
(z0, z′).

Substituting this for (41) and (42), we get the desired conclusion. �

This lemma asserts that a00 = 1
4 and a0i = 0, i = 1, · · · , d, that is,

A(z) =

(
1
4 0T

0 Â(z)

)

since a00 = 4 and a0i = 0, i = 1, · · · , d.
If we let M i be a martingale part of Zi with M0 = 0, then

d〈M i,M j〉t = d〈Zi, Zj〉t.

Hence from Theorem V.3.9 in Revuz-Yor [9], it follows that there exists a

(1 + d)-dimensional Brownian motion B such that

Mt =

∫ t

0
ΓsdBs,

where Γ is the matrix such that A = ΓΓT. �

In particular, we notice

dM0
t =

1

2
dB0

t , dM i
t =

d∑
k=1

Γik(Zt)dB
k
t , i = 1, · · · , d.

Provided that Zt has a drift coefficient vector

b(t, Zt) = (b0(t, Zt), · · · , bd(t, Zt))
T,
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we observe by comparing both drift terms that

b̃i(t, z) =
d∑

k=0

∂Φi

∂zk
(z0, z′)bk(t, z) +

1

2

d∑
k,l=0

∂2Φi

∂zk∂zl
(z0, z′)akl(z),

so it follows that in terms of matrix,

b = D−1(b̃− c),

where

ci =
1

2

d∑
k,l=0

∂2Φi

∂zk∂zl
(D−1Ã(DT)−1)kl.

After letting Xt = 2Zt, from the last proposition we can achieve a stan-

dardized representation (Xt, Z
′
t):

dXt = 2dZt = dB0
t + b0(t,Xt, Z

′
t)dt

and

dZ ′
t = σ1(Xt, Z

′
t)dB

′
t + b1(t,Xt, Z

′
t)dt,

where

b0(t, x, z
′) = 2b0(t,

1

2
x, z′),

σ1(x, z
′) =

(
Γij(

1

2
x, z′)

)
i,j=1,···,d

,

b1(t, x, z
′) =

(
b1(t,

1

2
x, z′), · · · , bd(t, 1

2
x, z′)

)T

and B′ = (B1, · · · , Bd)T. Moreover we can observe that Z̃0
t = 0 is equivalent

to Xt = 0.
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