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Laplace Approximations for Diffusion Processes on

Torus: Nondegenerate Case

By Shigeo Kusuoka and Song Liang

Abstract. Let Td = Rd/Zd, and consider the family of proba-
bility measures {Px}x∈Td on C([0,∞);Td) given by the infinitesimal
generator L0 ≡ 1

2∆ + b · ∇, where b : Td → Rd is a continuous
function. Let Φ be a mapping M(Td) → R. Under a nuclearity as-
sumption on the second Fréchet differential of Φ, an asymptotic evalu-

ation of Zx,y
T ≡ EPx

[
exp

(
TΦ( 1

T

∫ T

0
δXtdt)

) ∣∣∣XT = y
]
, up to a factor

(1+o(1)), has been gotten in Bolthausen-Deuschel-Tamura [2]. In this
paper, we show that the same asymptotic evaluation holds without the
nuclearity assumption.

1. Introduction

We consider the torus Td = Rd/Zd, which is a compact manifold. The

tangent space T (Td) can be identified with Rd. Let B(Td) be the set of all

Borel sets in Td.

Let M(Td) be the dual space of C(Td). M(Td) is the set of all signed

measures on Td with finite total variation, and denote the norm derived

by it, the total variation, by || · ||. We also think of the weak*-topology in

M(Td). Let ℘(Td) and M0(T
d) be the set of all probability measures on Td

and the set of all signed measures on Td with total measure 0, respectively.

Let dist(·, ·) denote the Prohorov metric on ℘(T).. Note that the topology

induced by the Prohorov metric and the weak*-topology coincide.

The path space Ω = C([0,∞),Td) is the set of continuous functions

ω : [0,∞) → Td. Let Xt(ω) = ω(t), t ≥ 0, let Ft = σ{ω(s); s ≤ t}, and let

F = ∨tFt.
Let L0 = 1

2∆ + b0 · ∇, where b0 : Td → Rd is a C∞ function. Let

{Px}x∈Td be the family of probability measures on Ω of the martingale
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problem L0, i.e., for any f ∈ C∞(Td;R),

(1) f(ωt) − f(ω0) −
∫ t
0
L0f(ωs)ds is a (Ω, {Ft}, Px) martingale,

(2) Px(ω0 = x) = 1.

Denote the corresponding semigroup of linear operators in C(Td) by

{Pt}t≥0. {Px} has a unique invariant probability measure µ, which is ab-

solutely continuous with respect to the Riemann volume on Td, and dµ
dx is

a strictly positive smooth function. For any T > 0, the distribution law of

{XT−t(ω)}0≤t≤T under Pµ(dω) is also a diffusion process. The infinitesimal

generator of it is the adjoint operator of L0 in L2(dµ), and can be written as

L∗µ
0 = 1

2∆+b∗0 ·∇ for some b∗0 ∈ C∞(Td;Rd). Actually, b∗0 = ∇(log dµdx )−b0.

Also, for each t > 0, there exist transition probability densities

(pt(x, y))x,y∈Td of Pt with respect to µ, which satisfy pt ∈ C∞(Td × Td)

and pt is strictly positive.

Let Φ : M(Td) → R be a bounded and three times continuously Fréchet

differentiable function satisfying the following:

A 1. There exist functions Φ(1) ∈ C(℘(Td)×Td,R), Φ(2) ∈ C(℘(Td)×
Td×Td,R), and Φ(3) ∈ C(℘(Td)× (Td)3,R), such that for any ν ∈ ℘(Td)

and any R1, R2, R3 ∈ M(Td),

DΦ(ν)(R1) =

∫
Td

Φ(1)(ν, x)R1(dx),

D2Φ(ν)(R1, R2) =

∫
Td

∫
Td

Φ(2)(ν, x, y)R1(dx)R2(dy),

D3Φ(ν)(R1, R2, R3) =

∫
Td

∫
Td

∫
Td

Φ(3)(ν, x, y, z)R1(dx)R2(dy)R3(dz).

Then by Donsker-Varadhan [4], we have (c.f. Lemma 4.4)

1

T
logEPx

[
exp

(
TΦ(

1

T

∫ T
0

δXtdt)

) ∣∣∣XT = y

]
→ λ, T → ∞

for every x, y ∈ Td, where λ = sup{Φ(ν) − I(ν); ν ∈ ℘(Td)} and I is given

by

I(ν) = sup

{
−
∫
Td

L0u

u
dν;u ∈ C∞, u ≥ 1

}
, ν ∈ ℘(Td).
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The aim of this paper is to give a more precise evaluation of

Zx,yT ≡ EPx

[
exp

(
TΦ(

1

T

∫ T
0

δXtdt)

) ∣∣∣XT = y

]

up to order 1 + o(1) under some assumptions given below.

Define

K = {ν ∈ ℘(Td) : Φ(ν) − I(ν) = λ}.
We can easily see that K is not empty and is compact in ℘(Td). In this

paper, we assume that

A 2. There exists only one element in K, say ν0, that is, K = {ν0}.

Now, let us construct a diffusion which has ν0 as its invariant measure fol-

lowing Bolthausen-Deuschel-Tamura [2] and Bolthausen-Deuschel-Schmock

[1]. For any ϕ ∈ C(Td), let

Pϕt (x,A) = EPx [exp(

∫ t
0
ϕ(Xs)ds), Xt ∈ A], A ∈ B(Td),

and

Λ(ϕ) = sup{
∫
Td

ϕdν − I(ν), ν ∈ ℘(Td)}.

Then Pϕt has strictly positive right- and left-hand principal eigenfunctions

hϕ and lϕ ∈ C(Td), i.e.,

Pϕt h
ϕ = exp(Λ(ϕ)t)hϕ, t ≥ 0,∫

Td µ(dy)lϕ(y)Pϕt (y, dz) = exp(Λ(ϕ)t)lϕ(z)µ(dz).

They are unique if they are appropriately normalized by∫
Td

(hϕ)2dµ = 1, dπϕ ≡ lϕhϕdµ ∈ ℘(Td).

Proposition 1.1. πϕ is the stationary measure of the diffusion process

whose transition probability Qϕt (x, dy) is given by

Qϕt (x, dy) ≡ e−Λ(ϕ)t 1

hϕ(x)
Pϕt (x, dy)hϕ(y).
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Let

φν0(x) = DΦ(ν0)(δx − ν0) + Φ(ν0)

= Φ(1)(ν0, x) −DΦ(ν0)(ν0) + Φ(ν0), x ∈ Td.

Then we have λ = Λ(φν0). Denote hφ
ν0 by h, and lφ

ν0 by l.

Let {Qx}x∈Td be the probability measures given by

dQx
dPx

(ω)
∣∣∣
Ft

= e−λt
h(Xt(ω))

h(x)
exp(

∫ t
0
φν0(Xs(ω))ds).

{Qx} is a diffusion process. Denote the corresponding semigroup of linear

operators in C(Td) by {Qt}, and the infinitesimal generator of {Qt} by

L. Actually, h ∈ C1(Td), and L = L0 + ∇h
h · ∇. (c.f. Proposition 2.3).

As has been shown in Bolthausen-Deushel-Tamura [2], πφ
ν0 = ν0. So by

proposition 1.1, we have

Lemma 1.2. {Qx}x∈Td has ν0 as its invariant measure.

As a result, ν0 is absoluately continuous with respect to µ, and dν0
dµ > 0

is continuous, also, suppν0 = Td.

Now, for any t > 0 and any x ∈ Td, let qt(x, ·) be the density func-

tion of Qt(x, ·) with respect to ν0 with qt ∈ C+(Td × Td). We will write

it as q(t, x, y) sometimes, too. By Boltuausen-Deuschel-Tamura [2] and

Bolthausen-Deuschel-Schmock [1], supx,y∈Td |qt(x, y)−1| → 0 exponentially

fast as t → ∞. So we can define

g(x, y) =

∫ ∞

0
(qt(x, y) − 1)dt.(1.1)

Define G : L2(dν0) → L2(dν0) by

Gf(x) =

∫
Td

g(x, y)f(y)ν0(dy) =

∫ ∞

0
(Qtf(x) −

∫
Td

fdν0)dt.

Let G∗ be the adjoint operator of it in L2(dν0), i.e., G∗f(x) =∫
Td g(y, x)f(y)ν0(dy), and let G = G+G∗.

In this paper, we will need the following operators: For f1, f2 ∈ L2(dν0),

let (G ⊗ G)(f1 ⊗ f2)(x, y) = (Gf1)(x)(Gf2)(y), and denote the continuous
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linear expansion of it on L2(dν0)⊗L2(dν0) as G⊗G, too. Define Gx ≡ G⊗I

and Gy ≡ I ⊗ G in the same way, where I means the identify operator on

L2(dν0). (So GxGy = G⊗G.) Gx, G
∗
x, Gy, G

∗
y are defined similarly.

Let Γ(f1, f2) ≡
∫
Td f1Gf2dν0, f1, f2 ∈ C(Td). Then it is easy to see

(c.f. Proposition 2.5 below) that Γ(f, f) =
∫
Td ||∇(Gf)(x)||2ν0(dx) ≥ 0, so

Γ(f, f) = 0 if and only if f ≡ constant. Let us define a equivalent relation

∼ by f ∼ g ⇔ f − g ≡ constant, and let C̃(Td) ≡ C(Td)/ ∼. Then Γ

is a inner product on C̃(Td). Let H ≡
(
C̃(Td)

Γ
)∗

, where C̃(Td)
Γ

means

the completion of C̃(Td) with respect to Γ. Since C̃(Td)∗ is identified with

M0(T
d), H can be regarded as a dense subset of M0(T

d), (see Proposition

2.6). H is a Hilbert space with norm ||Gfdν0||2H ≡
∫
Td fGfdν0.

Also, as has been shown in Bolthausen-Deuschel-Tamura [2], for any

f ∈ C(Td),

(f,Gf)L2(dν0) ≥ D2Φ(ν0)(Gfdν0, Gfdν0),

which means that all of the eigenvalues of D2Φ(ν0)
∣∣∣
H×H

are less than or

equal to 1. In addition, we assume the following

A 3. All of the eigenvalues of D2Φ(ν0)
∣∣∣
H×H

are smaller than 1.

A 4. For any δ > 0, there exist a constant ε > 0 and a symmetric

continuous function Kδ : Td×Td → R, such that the function K̃δ given by

K̃δ(R1, R2) ≡
∫
Td

∫
Td Kδ(x, y)R1(dx)R2(dy), R1, R2 ∈ M0(T

d), satisfies

||K̃δ
∣∣∣
H×H

||H.S. ≤ δ,

and

D3Φ(R)(ν − ν0, ν − ν0, ν − ν0) ≤
∫
Td

∫
Td

Kδ(x, y)(ν − ν0)(dx)(ν − ν0)(dy)

for any R ∈ ℘(Td) with dist(R, ν0) < ε and any ν ∈ ℘(Td) with

dist(ν, ν0) < ε.

Our main result is the following

Theorem 1.3. Under the assumptions above, for any x, y ∈ Td,

lim
T→∞

e−TλZx,yT =
h(x)

h(y)
· exp

{
1

2

∫
Td

GxΦ
(2)(ν0, ·, ·)

∣∣∣
(u,u)

ν0(du)

}
×det2(IH −D2Φ(ν0))

−1/2.
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Remark 1. The fact that D2Φ(ν0)
∣∣∣
H×H

is a Hilbert-Schmidt type

function, which enssures that the factor det2(IH −D2Φ(ν0)) above is well-

defined, can be seen from the Proposition 2.8.

2. Preparations

In this section, we will show in the first half an extended Ito’s formula

for Gf , where f is a continuous function. Also, we will give the proofs of

the several facts claimed in section 1.

In general, consider a operator L given by L ≡ 1
2∆ + b · ∇, where b ∈

C(Td;Rd). For each x ∈ Td, let PLx denote the probability law of the

diffusion process generated by L starting at x. Write the invariant measure

of {PLx } as µL. Let {PLt }t≥0 denote the corresponding semigroup of linear

operators in C(Td). Also, let GL be the corresponding Green operator, i.e.,

GLf ≡
∫∞
0 (PLt f −

∫
Td fdµL)dt, f ∈ C(Td). Let || · ||op denote the operator

norm in C(Td) → C(Td). Then we have the following

Proposition 2.1. PLt is a compact operator on C(Td) for any t > 0.

Proof. Let LB ≡ 1
2∆ and let P 0

t be the semigroup of linear opera-

tors on C(Td) corresponding to it. Then P 0
t maps C(Td) to C2(Td), and

||∇P 0
t ||op ≤ 2

√
d√

2π
· 1√

t
for any t > 0. So P 0

t is a compact operator for any

t > 0. Also,

PLt = P 0
t +

∫ t
0
PLs b · ∇P 0

t−sds,

where b·∇P 0
s is compact for any s > 0, Thus, PLt is compact for any t > 0. �

By Proposition 2.1, every number in the spectrum of PLt except 0 is

a eigenvalue of it. Let W 2
p (Td) denote the Sobolev space, i.e., W 2

p (Td) =

{(1 − ∆)−1f ; f ∈ Lp}. Then we have the following

Lemma 2.2. GL maps C(Td) into W 2
p (Td) for any p ∈ [1,∞), and

it is a bounded linear map. Also, for any f ∈ C(Td) with
∫
fdµL = 0,

u ≡ −GLf is a solution of the equation Lu = f in the sense of generalized

functions. Also, if v ∈ W 2
p (Td),

∫
Td vdµL = 0, and Lv = f in Lp for some
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p > 1, then u = v in W 2
p (Td). Moreover, let {Xt} be the diffusion process

generated by L, and let Bt = Xt − X0 −
∫ T
0 b(Xs)ds. Then {Bt}t≥0 is a

Brownian motion, and

u(Xt) = u(X0) +

∫ t
0
∇u(Xs)dBs +

∫ t
0
f(Xs)ds.(2.1)

Proof. The fact that {Bt}t≥0 is a Brownian motion is trival since by

the definition of {Xt}, g(Xt)− g(X0)−
∫ t
0(Lg)(Xs)ds is a Ft-martingale for

any g ∈ C2(Td).

Since b ∈ C(Td;Rd) and f ∈ C(Td), we can find bn ∈ C∞(Td;Rd) and

fn ∈ C∞(Td), such that bn → b ∈ C(Td;Rd) and fn → f in C(Td) as

n → ∞, and
∫
fndµL = 0. Let Ln ≡ 1

2∆ + bn · ∇, and write the invariant

probability measure, the semigroup of linear operators on C(Td) and the

Green operator corresponding to it as µn, P
n
t and Gn, respectively. Also, let

un ≡ −Gnfn. Then un ∈ C∞(Td), and Lnun = fn −
∫
Td fndµn. Therefore,

by Ito’s formula,

un(Xt) = un(X0) +

∫ t
0
∇un(Xs)dBs +

∫ t
0
Lun(Xs)ds.(2.2)

By using Cameron-Martin-Maruyama-Girsanov formula, we get from

the definition of Pnt and PLt that Pnt → PLt in the operator norm as n → ∞
for any t > 0. Therefore, by Perron-Frobenious argument, it is not diffcult

that un → u in C(Td), and 〈·〉µLn
→ 〈·〉µL as linear operators on C(Td), as

n → ∞.

We show that un → u in W 2
p (Td), too. We first show that un, n ∈ N,

is bounded in W 2
p (Td). From the definition of un, ∆un = 2(fn − bn · ∇un).

So, from the boundedness of bn in C(Td) for n ∈ N, there exists a constant

C3 > 0, such that

||un||W 2
p
≤ C3

(
||fn||Lp + ||un||Lp + ||∇un||Lp

)
.

By Friedman [5, Theorem 1.8.1], for any ε > 0, there exists a C(ε) > 0, such

that

||g||W 1
p
≤ ε||g||W 2

p
+ C(ε)||g||Lp , for all g ∈ W 2

p .

So we get

(1 − εC3)||un||W 2
p
≤ C3(1 + C(ε))(||fn||Lp + ||un||Lp), n ≥ 1,(2.3)
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for any ε > 0. Take ε > 0 small enough such that 1 − εC3 > 0, and we see

that supn∈N ||un||W 2
p
< ∞. Now, using the boundedness of un in W 2

p , in

the same way, we can show that un, n ∈ N, is a Cauchy sequence in W 2
p .

Therefore, from the convergence on un to u in C(Td) and the completeness

of W 2
p (Td), we see that u ∈ W 2

p (Td) for any p > 1, and un → u in W 2
p (Td)

as n → ∞.

Now, take n → ∞ in (2.2), since Lun = fn−
∫
fndµn+(b−bn) ·∇un → f

in C(Td) as n → ∞, we get (2.1).

The linearity of GL : C(Td) → W 2
p (Td) is trival. Also, from (2.3), there

exists a constant C > 0 independent to f , such that

||u||W 2
p
≤ C5(||f ||Lp + ||u||Lp).(2.4)

So the boundedness of GL : C(Td) → W 2
p (Td) follows from that of GL :

C(Td) → C(Td).

For the uniqueness of the solution of the equation Lu = f in W 2
p (Td)

s.t.
∫
Td udµL = 0, let v ∈ W 2

p (Td) satisfies Lv = f and
∫
Td vdµL = 0,

we show that v = u(= −GLf) in W 2
p (Td). Since v ∈ W 2

p (Td), there exist

vn ∈ C∞(Td) with
∫
Td vndµL = 0, such that vn → v in W 2

p (Td). Let

gn = Lvn, then vn =
∫
Td vndµL − GLgn = −GLgn. Therefore, from the

completeness of W 2
p , we only need to show that GLgn → GLf in Lp. But

gn → f in Lp from the definition, so this is easy to see from the definition

of G and the fact that supx,y∈Td |P
L
t (x,dy)
µL(dy) | → 0 exponentially as t → ∞. �

Now, let us come back to our situation described in section 1, i.e., let L

be the infinitesimal generator corresponding to {Qx}. Let L∗ν0 denote the

adjoint operator of L in L2(dν0). L
∗ν0 is the infinitesimal generator of the

diffusion process {XT−t(ω)}0≤t≤T under Qν0(dω) for any T > 0. Note that

the G∗ defined in section 1 is nothing but the Green operator with respect

to L∗ν0 . We have the following

Proposition 2.3. h ∈ C1(Td), and L = L0 + ∇h
h · ∇. Also, 7 ∈

C1(Td), and L∗ν0 = L∗µ
0 + ∇�

� · ∇.

Proof. As the proof is the same, we only give the proof of the first

assertion. By the definition of h, h = hφ
ν0 , (and Λ(φν0) = λ), for any

x ∈ Td,

EPx
[
exp

(∫ t
0
φν0(Xs)ds

)
h(Xt)

]
= eλth(x).
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So we have limt→0
1
t (Pth− h) = λh− φν0(x)h in C(Td). Acting G0 on the

both side, since G0(Pth − h) = t
∫
hdµ −

∫ t
0 Pshds, from the continuity of

G0 we get that

h−
∫
Td

hdµ = G0(φ
ν0h− λh).

Therefore, by Lemma 2.2 applied to L0, h ∈ W 2
p for any p > 1, which

implies h ∈ C1(Td), and

h(Xt) = h(X0) +

∫ t
0
∇h(Xs)dBs +

∫ t
0

(λh− φν0h)(Xs)ds.

Therefore, by Ito’s formula, we have

log h(Xt) = log h(X0) +

∫ t
0

∇h
h

(Xs)dBs

+λt−
∫ t
0
φν0(Xs)ds−

1

2

∫ t
0

∣∣∣∣∇hh (Xs)

∣∣∣∣2 ds,
which implies that

e−λt
h(Xt)

h(X0)
exp(

∫ t
0
φν0(Xs)ds)

= exp

(∫ t
0

∇h
h

(Xs)dBs −
1

2

∫ t
0

∣∣∣∣∇hh (Xs)

∣∣∣∣2 ds
)
.

The left hand side above is nothing but
dQX0
dPX0

(ω)
∣∣∣
Ft

. This gives our asser-

tion. �

From Lemma 2.2 and Proposition 2.3, we have the following

Corollary 2.4. G maps C(Td) into W 2
p (Td) for any p > 1, and

it is a bounded linear map. Also, for any f ∈ C(Td), u ≡ −Gf is the

unique solution of the equation Lu = f in the sense of generalized functions.

Moreover, let {Xt} be the diffusion process generated by L, and let Bt ≡
Xt −X0 −

∫ t
0(b0 + ∇h

h )(Xs)ds, t ≥ 0, then {Bt}t≥0 is a Brownian motion,

and

u(Xt) = u(X0) +

∫ t
0
∇u(Xs)dBs +

∫ t
0
f(Xs)ds, a.s.(2.5)
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Proposition 2.5. For any f ∈ C(Td),

Γ(f, f) =

∫
Td

||∇(Gf)||2dν0 =

∫
Td

||∇(G∗f)||2dν0.

Proof. We only give the proof of the first equality. The second is the

same.

First, since ν0 is {Qt} invariant, and L is the infinitesimal generator of

it, we have that
∫
Td Lgdν0 = 0 for any g ∈ C2(Td). Also, by Proposition

2.3, for any g ∈ C2(Td),

gLg =
1

2
L(g2) − 1

2
||∇g||2,

so

−2

∫
Td

Lg · gdν0 =

∫
Td

||∇g||2dν0

for any g ∈ C2(Td). So the same is true for any g ∈ ∩p>1W
2
p (Td) (actually,

with some p > 1 large enough, for any g ∈ W 2
p (Td)).

Now, for any f ∈ C(Td), let g ≡ Gf . Then by Corollary 2.4, g ∈
W 2
p (Td) for any p > 1. Also, f = −Lg + a as generalized functions, where

a =
∫
Td fdν0, and

∫
Td gdν0 = 0. Therefore,∫

Td
fGfdν0 = 2

∫
Td

fGfdν0

= −2

∫
Td

Lg · gdν0 + 2a

∫
Td

gdν0

=

∫
Td

||∇g||2dν0 =

∫
Td

||∇Gf ||2dν0. �

Proposition 2.6. H can be regarded as a subset of M0(T
d), which is

dense in M0(T
d) with respect to the weak*-topology.

Proof. The fact that H ⊂ M0(T
d) is trival since H = (C̃(Td)

Γ
)∗

and M0(T
d) = C̃(Td)∗. So to finish the proof, we only need to show

that M0(T
d) ⊂ H

weak∗
. If not, there will exist a ν ∈ M0(T

d) satisfying

ν /∈ H
weak∗

. For the sake of simplicity, we denote the equivalent class which

contains f by f , too. So there exists a function f ∈ C(Td), such that
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(f, ν) = 1, and (f, h) = 0 for any h ∈ H. So f = 0 ∈ H∗, which means∫
Td fGfdν0 = 0. Therefore f ≡ constant, and so

∫
Td fdν = 0, which makes

a contradiction. �

Proposition 2.7. For any symmetric continuous function V : Td ×
Td → R, let U1(x, y) ≡ −GxV (x, y), and let U ≡ −G∗

yU1, then U ∈
C1(Td × Td), ∇xU(x, y) is continuously differentiable with respect to y,

and ∇y∇xU(x, y) ∈ C(Td × Td). Also,∫
Td

∫
Td

V (x, y)GxGyV (x, y)ν0(dx)ν0(dy)(2.6)

=

∫
Td

∫
Td

||∇x∇yU(x, y)||2ν0(dx)ν0(dy).

Proof. From the compactness of Td and the continuity of V , V is

uniformly continuous, and the map Td → C(Td), y �→ V (·, y), is continuous.

U1(x, y) = −GxV (x, y), so by Corollary 2.4, U1(·, y) ∈ C1(Td) for any

y ∈ Td, and y �→ ∇xU1(·, y) ∈ C(Td) is continuous.

Now, from the definition of G∗, we see that G∗ is continuous in

C(Td). So ∇xU(x, y) = −∇x(G∗
yU1(x, y)) = −G∗

y(∇xU1(x, y)). Therefore,

∇xU(x, ·) ∈ C1(Td) for any x ∈ Td, and the function x �→ ∇y∇xU(x, ·) ∈
C(Td) is continuous. i.e., ∇y∇xU(x, y) ∈ C(Td × Td).

We show (2.6) now. First, if V can be expressed as V (x, y) =∑n
k=1 ϕk(x)ψk(y) for some n ∈ N and some ϕk, ψk ∈ C(Td), k = 1, · · · , n,

then (2.6) is obvious by Proposition 2.5. For general V , by Weierstrass-

Stone Theorem, there exist Vn, such that Vn has the expression above, and

Vn → V in C(Td × Td). From the boundedness of GxGy in C(Td × Td),

the left hand side of (2.6) for Vn converges to that for V . For the right hand

side, we have from Sobolev’s inequality and (2.4) that for any f ∈ C(Td),

u = −Gf is in C1(Td), and for p > 1 large enough, we have

||∇u||∞ ≤ C6||∇u||W 1
p
≤ C7||u||W 2

p
≤ C8(||f ||Lp + ||u||Lp) ≤ C9||f ||∞

for some proper constants C6, C7, C8, C9. So the right hand converges, too.

Therefore, (2.6) is true for general V . �

Proposition 2.8. Given any continuous symmetric function V : Td×
Td → R, define a bilinear and continuous function AV : M0(T

d) ×
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M0(T
d) → R by AV (R1, R2) ≡

∫
Td

∫
Td V (x, y)R1(dx)R2(dy). Then

AV
∣∣∣
H×H

is a Hilbert-Schmidt type function.

Proof. Let {fn}∞n=1 be a complete orthonormal base of H∗ with

{fn}∞n=1 ∈ C̃(Td). Then by Proposition 2.5 and Proposition 2.7,

||AV ||2H.S. =
∞∑

n,m=1

AV (Gfndν0, Gfmdν0)
2

=
∞∑
m=1

∞∑
n=1

(∫
Td

∫
Td

V (x, y)Gfn(x)Gfm(y)ν0(dx)ν0(dy)

)2

=
d∑
k=1

∫
Td

∞∑
m=1

(
∂

∂xk
GxV (x, ·), fm

)2

H∗
ν0(dx)

=

∫
Td

∫
Td

||∇x∇yGxGyV (x, y)||2ν0(dx)ν0(dy)

=

∫
Td

∫
Td

V (x, y)GxGyV (x, y)ν0(dx)ν0(dy)

< ∞,

since V and GxGyV are bounded. �

3. Lemmas

The following lemma is easy to see, from the definition of multiple inte-

gral.

Lemma 3.1. Let {Wt}t≥0 be a Brownian motion. Then for any T > 0,

and any symmetric function h(·, ·) : [0, T ] × [0, T ] → R that satisfies∫ T
0

∫ T
0

h(t1, t2)
2dt1dt2 <

1

4
,

we have

EW
[
exp

(∫ T
0

∫ T
0

h(t1, t2)dWt1dWt2

)]
≤ exp

(∫ T
0

∫ T
0

h(t1, t2)
2dt1dt2

)
.
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Proof. Let A be the symmetric operator on L2[0, T ] given by A :

L2[0, T ] → L2[0, T ],

Af(t) =

∫ T
0

h(t, s)f(s)ds.

A is a Hilbert-Schmidt operator. Therefore, it has discrete spectrum (except

0). So all of its spectrums except 0 are its eigenvalues. Write them as

{λk}∞k=1. By the assumption,

∞∑
k=1

λ2
k = ||A||2H.S. =

∫ T
0

∫ T
0

h(s, t)2dsdt <
1

4
,

so |λk| < 1/2 for any k ∈ N. Write the corresponding orthonormal eigenvec-

tors as ek, k = 1, 2, · · ·, so h(s, t) =
∑∞
k=1 λkek(s)ek(t) in L2([0, T ] × [0, T ]).∫ T

0 ek(s)dWs, k = 1, 2, · · · , are i. i. d. normal distributed random variables.

Note that 1√
1−2x

e−x ≤ ex
2

for any x < 1/2, so we get

EW
[
exp

(∫ T
0

∫ T
0

h(t1, t2)dWt1dWt2

)]

= EW
[
exp

( ∞∑
k=1

λk

[
(

∫ T
0

ek(s)dWs)
2 − 1

])]

=
∞∏
i=1

1√
1 − 2λi

e−λi ≤ exp(
∞∑
i=1

λ2
i )

= exp

(∫ T
0

∫ T
0

h(t1, t2)
2dt1dt2

)
. �

Lemma 3.2. For any probability measure ν on (Ω, {Ft}t≥0), any con-

tinuous ν-local-martingale (Mt) with M0 = 0, any pair of dual numbers

p1, q1 > 1, i.e., 1
p1

+ 1
q1

= 1, any T > 0, and any A ∈ FT ,

Eν
[
eMT , A

]
≤ Eν

[
exp(

p1q1
2

〈M〉T ), A

]1/q1
.

Proof. Since (Mt) is a continuous ν-local-martingale, (p1Mt) is a con-

tinuous ν-local-martingale, too, so exp(p1Mt− p21
2 〈M〉t) is also a continuous
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ν-local-martingale, and so a ν-super-martingale. Therefore,

Eν
[
eMT , A

]
≤ Eν

[
exp(p1 · (MT − p1

2
〈M〉T ))

]1/p1
×Eν

[
exp(q1 · (

p1

2
〈M〉T )), A

]1/q1
≤ Eν

[
exp(

p1q1
2

〈M〉T ), A

]1/q1
. �

Now, we are ready to proof the following:

Lemma 3.3. Let V : Td×Td → R be a symmetric, continuous function

that satisfies the following:

1.
∫
Td V (x, y)ν0(dy) = 0 for any x ∈ Td,

2.
∫
Td

∫
Td V (x, y)GxGyV (x, y)ν0(dx)ν0(dy) <

1
128 .

Then there exists a constant ε0 > 0, such that for any x, y ∈ Td, and any

ε ≤ ε0,

sup
T>0

EQx

[
exp(

1

T

∫ T
0

∫ T
0

V (Xt, Xs)dsdt),

dist(
1

T

∫ T
0

δXtdt, ν0) < ε
∣∣∣XT = y

]
< ∞.

Proof. First, we have that for any T > 1,∣∣∣∣∣ 1T
∫ T
0

∫ T
0

V (Xs, Xt)dsdt−
1

T

∫ T−1

1

∫ T−1

1
V (Xs, Xt)dsdt

∣∣∣∣∣
≤ 4T − 4

T
||V ||∞ ≤ 4||V ||∞.

Let C10 = supx,y∈Td{q(1, x, y), q∗(1, x, y)} < ∞, where q∗(1, x, y) ≡
Q∗

1(x,dy)
ν0(dy) ∈ C(Td × Td) and q∗(1, x, y) > 0. Then for any A ∈ FT ,

EQx

[
exp(

1

T

∫ T
0

∫ T
0

V (Xt, Xs)dsdt), A
∣∣∣XT = y

]
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≤ EQν0

[
q(1, x,X1)q

∗(1, y,XT−1)

· exp(
1

T

∫ T−1

1

∫ T−1

1
V (Xt, Xs)dsdt+ 4||V ||∞), A

]
≤ C2

10e
8||V ||∞EQν0

[
exp(

1

T

∫ T
0

∫ T
0

V (Xt, Xs)dsdt), A
]
.

Therefore, it is sufficient to prove that

sup
T>0

EQν0

[
exp(

1

T

∫ T
0

∫ T
0

V (Xt, Xs)dsdt),dist(
1

T

∫ T
0

δXtdt, ν0) < ε
]
< ∞.

Since ν0 is the invariant measure of (Qx) as mentioned before, (XT−t)Tt=0

under (Qν0) is still a diffusion process for any T > 0, with the infinitesimal

generator L∗ν0 = L∗µ
0 + ∇�

� · ∇. Let U1(x, y) ≡ −(GxV )(x, y) and U(x, y) ≡
−(G∗

yU1)(x, y) as in Proposition 2.7. By condition,
∫
Td V (x, y)ν0(dy) =

0 for any x ∈ Td, so

LxL
∗ν0
y U(x, y) = L∗ν0

y LxU(x, y) = V (x, y), for any x, y ∈ Td

in the sense of generalized functions. From the condition (2) and Proposition

2.7, we have that ∇x∇yU exists, is continuous, and∫
Td

∫
Td

||∇x∇yU(x, y)||2ν0(dx)ν0(dy) <
1

128
.

Let ρT ≡ 1
T

∫ T
0 δXtdt and Aε ≡ {dist( 1

T

∫ T
0 δXtdt, ν0) < ε}. Then from the

boundedness of ||∇x∇yU(x, y)||2, there exists a constant ε0 > 0, such that

for any ε ≤ ε0,∫
Td

∫
Td

||∇x∇yU(x, y)||2ρT (dx)ρT (dy) <
1

128
on Aε.

From the definition of U1 and Corollary 2.4,

U1(XT , Xt) = U1(Xt, Xt) +

∫ T
t

∇xU1(Xs, Xt)dBs +

∫ T
t

V (Xs, Xt)ds,

where (Bt)t≥0 is the Brownian motion defined in Corollary 2.4. Therefore,

1

T

∫ T
0

∫ T
0

V (Xs, Xt)dsdt =
2

T

∫ T
0

∫ T
t

V (Xs, Xt)dsdt
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=
2

T

(∫ T
0

(U1(XT , Xt) − U1(Xt, Xt))dt

)

− 2

T

∫ T
0

dt

(∫ T
t

∇xU1(Xs, Xt)dBs

)
.

Here, ||U1||∞ < ∞ from the continuity of U1 and the compactness of Td, and

the second term is equal to − 2
T

∫ T
0 (
∫ s
0 ∇xU1(Xs, Xt)dt)dBs by stochastic Fu-

bini’s theorem (c.f. Ikeda-Watanabe [6, Lemma 3.4.1]), hence a continuous

Qν0-martingale. So by Lemma 3.2 (with p1 = 2 and ν = Qν0),

EQν0

[
exp(

1

T

∫ T
0

∫ T
0

V (Xt, Xs)dsdt), Aε

]

≤ exp(4||U1||∞) · EQν0

[
exp(− 2

T

∫ T
0

dBs(

∫ s
0
∇xU1(Xs, Xt)dt)), Aε

]

≤ exp(4||U1||∞) · EQν0

[
exp(2

∫ T
0

| 2
T

∫ s
0
∇xU1(Xs, Xt)dt|2ds), Aε

]1/2

.

So, the problem now turns to show that

sup
T>0

EQν0

[
exp(

(
8

T 2

∫ T
0

ds|
∫ s
0
∇xU1(Xs, Xt)dt|2

)
, Aε

]
< ∞

for some ε > 0. Since (XT−t)Tt=0 under Qν0 is a diffusion process for any

T > 0, we have by Lemma 2.2 and the definition of U that B̂Tt ≡ XT−t −
XT −

∫ t
0(b∗0 + ∇�

� (XT−s)ds, t ∈ [0, T ], is a Brownian motion, and for any

s′ ∈ (0, T ),

∇xU(XT−s′ , X0) = ∇xU(XT−s′ , XT−s′) +

∫ T
s′

∇y∇xU(XT−s′ , XT−t′)dB̂
T
t′

+

∫ T
s′

∇xU1(XT−s′ , XT−t′)dt
′.

So we have

1

T 2

∫ T
0

ds|
∫ s
0
∇xU1(Xs, Xt)dt|2

=
1

T 2

∫ T
0

ds′|
∫ T
s′

∇xU1(XT−s′ , XT−t′)dt
′|2
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≤ 2

T 2

∫ T
0

|∇xU(XT−s′ , X0) −∇xU(XT−s′ , XT−s′)|2ds′

+
2

T 2

∫ T
0

|
∫ T
s′

∇y∇xU(XT−s′ , XT−t′)dB̂
T
t′ |2ds′.

Here the first term is bounded by the compactness of Td and the continuity

of ∇xU . So it is sufficient to show that for some ε > 0 small enough,

sup
T>0

EQν0

[
exp

(
16

T 2

∫ T
0

|
∫ T
s′

∇y∇xU(TT−s′ , XT−t′)dB̂
T
t′ |2ds′

)
, Aε

]
< ∞.

Let Wt be another d-dimension Brownian motion which is independent to

{Xt}t∈[0,∞). Write g(t, s) ≡ ∇y∇xU(XT−t, XT−s), then by Lemma 3.2,

EQν0

[
exp

(
16

T 2

∫ T
0

|
∫ T
t

∇y∇xU(XT−t, XT−s)dB̂
T
s |2dt

)
, Aε

]

= EQν0

[
EW

[
exp

(
4
√

2

T

∫ T
0

(

∫ T
t

g(t, s)dB̂Ts )dWt

)]
, Aε

]

= EW
[
EQν0

[
exp

(
4
√

2

T

∫ T
0

(

∫ s
0
g(t, s)dWt)dB̂

T
s

)
, Aε

]]

≤ EW
[
EQν0

[
exp

(
64

T 2

∫ T
0

|
∫ s
0
g(t, s)dWt|2ds

)
, Aε

]]1/2

= EQν0

[
EW

[
exp

(
64

T 2

∫ T
0

|
∫ s
0
g(t, s)dWt|2ds

)]
, Aε

]1/2

.

Here,

1

T 2

∫ T
0

|
∫ s
0
g(t, s)dWt|2ds

=
1

T 2

∫ T
0

∫ T
0

(

∫ T
t1∨t2

g(t1, s) ⊗ g(t2, s)ds)dWt1dWt2

+
1

T 2

∫ T
0

(

∫ T
t

|g(t, s)|2ds)dt.

The second term is bounded from the compactness of Td and Proposition

2.7. So we only need to show that

sup
T>0

EQν0

[
EW

[
exp

(
64

T 2

∫ T
0

∫ T
0
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(

∫ T
t1∨t2

g(t1, s) ⊗ g(t2, s)ds)dWt1dWt2

)]
, Aε

]
< ∞.

On the other hand, as shown before,
∫
Td

∫
Td ||∇x∇yU(x, y)||2ρT (dx)ρT (dy) <

1
128 on Aε, so

642

T 4

∫ T
0

∫ T
0

dt1dt2||
∫ T
t1∨t2

g(t1, s) ⊗ g(t2, s)ds||2(3.1)

≤ 642

T 4

∫ T
0

dt1

∫ T
0

dt2(

∫ T
t1

||g(t1, s)||2ds)(
∫ T
t2

||g(t2, s)||2ds)

= (64)2
{

1

T 2

∫ T
0

dt(

∫ T
t

||g(t, s)||2ds)
}2

≤
{

64

T 2

∫ T
0

∫ T
0

||g(t, s)||2dtds
}2

=

{
64

∫
Td

∫
Td

||∇x∇yU(x, y)||2ρT (dx)ρT (dy)

}2

< 642 · ( 1

128
)2 =

1

4
on Aε.

So from Lemma 3.1, we have

EQν0

[
EW

[
exp

(
64

T 2

∫ T
0

∫ T
0

(

∫ T
t1∨t2

g(t1, s) ⊗ g(t2, s)ds)

×dWt1dWt2

)]
, Aε

]

≤ EQν0

[
exp

(
642

T 4

∫ T
0

∫ T
0

dt1dt2

×|
∫ T
t1∨t2

g(t1, s) ⊗ g(t2, s)ds|2
)
, Aε

]
< e

1
4 .

This completes the proof of the lemma. �

Lemma 3.4. For any e ∈ C(Td) with
∫
Td e(y)ν0(dy) = 0 and ||e||H∗ =

1, and any a < 1, there exists a constant ε0 > 0, such that for any ε ≤ ε0,

sup
T>0

EQx

[
exp

(
a

2T
(

∫ T
0

e(Xt)dt)
2

)
, Aε

∣∣∣XT = y
]
< ∞,
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where Aε = {dist( 1
T

∫ T
0 δXtdt, ν0) < ε} as in Lemma 3.3.

Proof. As in the proof of Lemma 3.3, we only need to show the as-

sertion without the condition that X0 = x and XT = y, i.e., it is sufficient

if we prove

sup
T>0

EQν0

[
exp

(
a

2T
(

∫ T
0

e(Xt)dt)
2

)
, Aε

]
< ∞.

Also, as there, since
∫
Td e(x)ν0(dx) = 0, by Corollary 2.4, the function

u defined by u ≡ −Ge is in W 2
p (Td) for any p > 1, hence in C1(Td), and

u(XT ) − u(X0) =

∫ T
0

∇u(Xt)dBt +

∫ T
0

e(Xt)dt.

So from the boundedness of u, it is sufficient if

sup
T>0

EQν0

[
exp(

a

2
· 1

T
(

∫ T
0

∇u(Xt)dBt)
2), Aε

]
< ∞

for ε > 0 small enough. Choose and fix a constant δ ∈ (0, 1
a − 1) first. Since∫

Td
||∇u(x)||2ν0(dx) = ||e||2H∗ = 1,

and ||∇u(x)||2 is bounded on Td, there exists an ε0 > 0, such that for any

ε ≤ ε0,
∫
Td ||∇u(x)||2ρT (dx) ≤ 1 + δ on Aε. So, by Ikeda-Watanabe [6,

Theorem II.7.2], there exists a standard Brownian motion B̃, such that

(

∫ T
0

∇u(Xt)dBt)
2 =

(
B̃([

∫ ·

0
∇u(Xt)dBt,

∫ ·

0
∇u(Xt)dBt]T )

)2

= B̃

(∫ T
0

||∇u(Xt)||2dt
)2

= B̃

(
T ·
∫
Td

||∇u(x)||2ρT (dx)

)2

≤ sup
0≤t≤(1+δ)T

|B̃(t)|2 on Aε.

By the reflection principle, for any T0 > 0 and any x,

P ( sup
0≤t≤T0

|B̃(t)| ≥ x) ≤ 2P ( sup
0≤t≤T0

B̃(t) ≥ x) = 2P (|B̃(T0)| ≥ x).
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Therefore, since δ ∈ (0, 1
a − 1), we have

sup
T>0

EQν0

[
exp(

a

2
· 1

T
(

∫ T
0

∇u(Xt)dBt)
2), Aε]

≤ sup
T>0

E

[
exp

(
a

2
· 1

T
sup

0≤t≤(1+δ)T
|B̃(t)|2

)]

= sup
T>0

∫ ∞

0
P ( sup

0≤t≤(1+δ)T
|B̃(t)| ≥ x)d(e

a
2T
x2

) + 1

≤ 2 sup
T>0

E

[
exp

(
a

2
· 1

T
|B̃((1 + δ)T )|2

)]
− 1

=
2√

1 − a(1 + δ)
− 1 < ∞.

This completes the proof of the lemma. �

Using the two lemmas above, we get the following:

Lemma 3.5. For any continuous symmetric function V : Td×Td → R,

which satisfies
∫
Td V (x, y)ν0(dy) = 0 for any x ∈ Td, define a symmet-

ric, bilinear, and continuous function AV : M0(T
d) × M0(T

d) → R by

AV (R1, R2) =
∫
Td

∫
Td V (x, y)R1(dx)R2(dy). Suppose that all of the eigen-

values of AV
∣∣∣
H×H

are smaller than 1. Then there exists a constant ε > 0

small enough, such that for any x, y ∈ Td,

sup
T>0

EQx

[
exp(

1

2T

∫ T
0

∫ T
0

V (Xt, Xs)dtds),

dist(
1

T

∫ T
0

δXtdt, ν0) < ε
∣∣∣XT = y

]
< ∞.

Proof. By Proposition 2.8, AV
∣∣∣
H×H

is a Hilbert-Schmidt type func-

tion. Combining this with the condition, we see that the maximum of its

eigenvalues, say a0, is also smaller than 1. Choose and fix a p > 1 such that

a0p < 1.

Write the eigenvalues of AV
∣∣∣
H×H

as {an}n∈N with |a1| ≥ |a2| ≥
|a3| ≥ · · ·, and the corresponding eigenvectors as {Gemdν0}∞m=1 with∫
Td em(x)Gen(x)ν0(dx) = δmn. ThenAV (Gemdν0, R) = am

∫
Td em(x)R(dx)
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for any R ∈ M0(T
d). So for any m ∈ N with am �= 0, from the continuity

of V (x, y), we can assume that em ∈ C̃(Td).

Let q be the dual number of p > 1, that is, 1
p + 1

q = 1. Since AV
∣∣∣
H×H

is

a Hilbert-Schmidt function as claimed, there exists a N ∈ N large enough

such that
∑∞
i=N+1 q

2a2
i <

1
128 . Apply lemma 3.3 to

V1(x, y) := q

(
V (x, y) −

N∑
i=1

aiei(x) · ei(y)
)
, x, y ∈ Td,

and use Hölder’s inequality, so it is sufficient if

sup
T>0

EQx

[
exp(

N∑
i=1

p

2T

∫ T
0

∫ T
0

aiei(Xt)ei(Xs)dsdt), Aε
∣∣∣XT = y

]
< ∞

for ε > 0 small enough, where Aε is as before.

Obviously, we can assume that a1, · · · , aN ≥ 0, as if not, we can just omit

the term corresponding to it. As in Kusuoka-Tamura [9], in general, we have

that for any ε1 > 0, there exists an integer m > 0 and ξi = (ξ1
i , · · · , ξNi ) ∈

RN , i = 1, · · · ,m, such that ||ξi||RN = 1, i = 1, · · · ,m, and

m⋂
i=1

{
x ∈ RN : (x, ξi) ≤

1

(1 + ε1)1/2

}
⊂
{
x ∈ RN : ||x|| < 1

}
,

so

||x||2 ≤ (1 + ε1) max
i=1,···,m

(x, ξi)
2, x ∈ RN .

Replace ε1 by 1 − pa0 in the above. Let ẽi =
∑N
j=1 ξ

j
i ej , i = 1, · · · ,m.

Then (Gẽi, ẽi)L2(dν0) = 1,
∫
Td ẽi(x)ν0(dx) = 0, i = 1, · · · ,m, and

N∑
j=1

(∫ T
0

ej(Xt)dt

)2

≤ (1 + ε1) max
i=1,···,m

N∑
j=1

(∫ T
0

ej(Xt)dt · ξji

)2

= (1 + ε1) max
i=1,···,m

(∫ T
0

ẽi(Xt)dt

)2

.

Therefore,

sup
T>0

EQx

[
exp(

N∑
i=1

p

2T

∫ T
0

∫ T
0

aiei(Xt)ei(Xs)dsdt), Aε
∣∣∣XT = y

]
≤ sup

T>0

m∑
i=1

EQx

[
exp(

1 − ε21
2

· 1

T
(

∫ T
0

ẽi(Xt)dt)
2), Aε

∣∣∣XT = y
]
,
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which is finite for ε > 0 small enough by Lemma 3.4.

This completes the proof of the lemma. �

4. Proof of the Theorem

In this section, we will give the proof of the main theorem. Let

Φ̃(ν) ≡ Φ(ν) −
∫
Td

φν0(y)ν(dy),

= Φ(ν) − Φ(ν0) −DΦ(ν0)(ν − ν0), ν ∈ M(Td).

Also, let Aε = {dist( 1
T

∫ T
0 δXtdt, ν0) < ε} as before. Since for any A ∈ FT ,

e−λTEPx
[
exp

(
TΦ(

1

T

∫ T
0

δXtdt)

)
, A
∣∣∣XT = y

]

=
h(x)

h(y)
EQx

[
exp

(
T Φ̃(

1

T

∫ T
0

δXtdt)

)
, A
∣∣∣XT = y

]
,

the theorem will be shown if we can show the following two lemmas.

Lemma 4.1.

lim sup
T→∞

1

T
logEQx

[
exp

(
T Φ̃(

1

T

∫ T
0

δXtdt)

)
, ACε

∣∣∣XT = y

]
< 0

for any ε > 0.

Lemma 4.2.

lim
ε→0

lim
T→∞

EQx

[
exp

(
T Φ̃(

1

T

∫ T
0

δXtdt)

)
, Aε

∣∣∣XT = y
]

= exp

{
1

2

∫
Td

GxΦ
(2)(ν0, ·, ·)

∣∣∣
(u,u)

ν0(du)

}
× det2(IH −D2Φ(ν0))

−1/2.

We prove Lemma 4.1 in the first. By Donsker-Varahdan [4], we have the

following
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Proposition 4.3.

(1) For any x ∈ Td and any closed set C ⊂ ℘(Td),

lim sup
t→∞

1

t
logPx

[
1

t

∫ t
0
δXsds ∈ C

]
≤ − inf{I(ν); ν ∈ C},

(2) for any x ∈ Td and any open set G ⊂ ℘(Td),

lim inf
t→∞

1

t
logPx

[
1

t

∫ t
0
δXsds ∈ G

]
≥ − inf{I(ν); ν ∈ G}.

From this, we get the following

Lemma 4.4.

1. For any x, y ∈ Td and any closed set C ⊂ ℘(Td),

lim sup
T→∞

1

T
logPx

[
1

T

∫ T
0

δXsds ∈ C
∣∣∣XT = y

]
≤ − inf{I(ν); ν ∈ C}.

2. For any x, y ∈ Td and any open set G ⊂ ℘(Td),

lim inf
T→∞

1

T
logPx

[
1

T

∫ T
0

δXsds ∈ G
∣∣∣XT = y

]
≥ − inf{I(ν); ν ∈ G}.

Proof. We only give the proof of the first assertion, the second one

can be proved in the same way.

First, for any path {Xt}t≥0, || 1
T

∫ T
0 δXtdt− 1

T−1

∫ T−1
0 δXtdt|| ≤ 2

T , there-

fore, for any ε > 0, there exists a tε > 0, such that for any T > tε and

any path {Xt}t, dist( 1
T

∫ T
0 δXtdt,

1
T−1

∫ T−1
0 δXtdt) ≤ ε. Now, let Cε be the

ε-neighborhood of C in ℘(Td), and let C10 be the constant defined in the

proof of Lemma 3.3, i.e., q∗(1, x1, x2) ≤ C10 for any x1, x2 ∈ Td, then for

any T > tε,

Px

[
1

T

∫ T
0

δXtdt ∈ C
∣∣∣XT = y

]
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≤ Px

[
1

T − 1

∫ T−1

0
δXtdt ∈ Cε

∣∣∣XT = y

]

= EPx
[
1{ 1

T−1

∫ T−1

0
δXtdt∈Cε}

q∗(1, y,XT−1)

]
≤ C10Px

[
1

T − 1

∫ T−1

0
δXtdt ∈ Cε

]
.

Therefore,

lim sup
T→∞

1

T
logPx

[
1

T

∫ T
0

δXtdt ∈ C
∣∣∣XT = y

]

≤ lim sup
T→∞

1

T
logPx

[
1

T − 1

∫ T−1

0
δXtdt ∈ Cε

]
≤ − inf{I(ν); ν ∈ Cε}

for any ε > 0. The right hand side above converges to − inf{I(ν); ν ∈ C}
as ε goes to 0. �

Lemma 4.1 can now be seen by the same method as used for the not

pinned one.

For Lemma 4.2, we follow the way as used in Kusuoka-Tamura [9] and

Kusuoka-Liang [8].

Lemma 4.5. There exist constants p > 1 and ε > 0, such that

sup
T>0

EQx

[
epT Φ̃( 1

T

∫ T

0
δXtdt), Aε|XT = y

]
< ∞.

Proof. The proof is similar with the one in Kusuoka-Liang [8]. Let

R(ν0, ·) be the 3rd remainder of the Taylor expansion around ν0, i.e.,

R(ν0, ν− ν0) = Φ̃(ν)−D2Φ(ν0)(ν− ν0, ν− ν0). Then for any p > 1 and any

r, s > 1 with 1
r + 1

s = 1, by Hölder’s inequality,

EQx

[
ep·T Φ̃( 1

T

∫ T

0
δXtdt), Aε|XT = y

]
= EQx

[
exp

{
p · T

2
D2Φ(ν0)(

1

T

∫ T
0

δXtdt− ν0,
1

T

∫ T
0

δXtdt− ν0)
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+p · TR(ν0,
1

T

∫ T
0

δXtdt− ν0)
}
, Aε|XT = y

]
≤ EQx

[
exp

{
p · T

2
· rD2Φ(ν0)(4.1)

×(
1

T

∫ T
0

δXtdt− ν0,
1

T

∫ T
0

δXtdt− ν0)
}
, Aε|XT = y

]1/r
×EQx

[
exp

{
p · T · sR(ν0,

1

T

∫ T
0

δXtdt− ν0)
}
, Aε|XT = y

]1/s
.(4.2)

Now, for any function U(·, ·), define

U(x, y) ≡ U(x, y) −
∫
Td

U(x, y)ν0(dx) −
∫
Td

U(x, y)ν0(dy)

+

∫
Td

∫
Td

U(x, y)ν0(dx)ν0(dy),

and

Ũ(R1, R2) =

∫
Td

∫
Td

U(x, y)R1(dx)R2(dy),

then
∫
U(x, y)ν0(dx) = 0 for any x ∈ Td, and Ũ(R1, R2) = Ũ(R1, R2) for

any R1, R2 ∈ M0(T
d).

Since the maximum a0 of the eigenvalues of D2Φ(ν0)
∣∣∣
H×H

is smaller

than 1 by the assumption 4, we can find a p > 1 such that a0 · p < 1. For

this p, there exists a r > 1 such that a0 · p · r < 1. So since

T ·D2Φ(ν0)(
1

T

∫ T
0

δXtdy − ν0,
1

T

∫ T
0

δXtdy − ν0)

=
1

T

∫ T
0

∫ T
0

Φ(2)(ν0, ·, ·)
∣∣∣
(Xt,Xs)

dtds,

we get by Lemma 3.5 that (4.1) is bounded for T > 0 if ε > 0 is small

enough.

For (4.2), let s be the dual number of r > 1, choose a δ ∈ (0, 1
2ps) and

fix it. By the assumption 4, for this δ > 0, there exist a constant ε′ > 0 and

a Kδ, such that ||K̃δ
∣∣∣
H×H

||H.S. ≤ δ, and

|TR(ν0,
1

T

∫ T
0

δXtdt− ν0)|
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≤ T ·
∫
Td

∫
Td

Kδ(x, y)(
1

T

∫ T
0

δXtdy − ν0)
⊗2(dx⊗ dy)

=
1

T
·
∫ T
0

∫ T
0

Kδ(Xt, Xs)dsdt on Aε′ .

So by using Lemma 3.5 again, we get that (4.2) is bounded for T > 0 if

ε′ > 0 is small enough.

This completes the proof of the lemma. �

Proof of Lemma 4.2. As in Kusuoka-Tamura [9], Qx has the strong

mixing property, so XT and
√
T ( 1

T

∫ T
0 δXtdt − ν0) are asymptotically inde-

pendent as T → ∞ under Qx for any x ∈ Td, also,

EQx

[
exp

(
√
−1

√
T

∫
Td

u(x)(
1

T

∫ T
0

δXtdt− ν0)(dx)

)]

→ exp

(
−1

2

∫
Td

u(y)Gu(y)ν0(dy)

)
, as T → ∞

for any u ∈ L2(Td, dν0).

Take a seperable Hilbert space H1 such that the set

{Gudν0

∣∣∣ ∫Td uGudν0 < ∞} is a dense linear subspace of H1, and the in-

clusion map is a Hilbert-Schmidt operator. Let W be an H1-valued random

variable with distribution γ such that

E
[
exp(

√
−1(u,W ))

]
= exp

(
−1

2

∫
Td

u(y)Gu(y)ν0(dy)

)
for any u ∈ H∗

1 .

So from the central limit theorem for Hilbert space valued random vari-

ables, the distribution of (XT ,
√
T ( 1

T

∫ T
0 δXtdt − ν0)) under Qx converges

weakly to ν0 ⊗ γ as T → ∞ on Td ×H1.

As before, D2Φ(ν0)(·, ·)
∣∣∣
H×H

is a Hilbert-Schmidt function. Write the

eigenvalues and the corresponding eigenvectors as am and Gemdν0, m =

1, 2, · · ·. Then
∑N
m=1 am

(
(em,W )2 − 1

)
converges in L2(dγ). Let

: D2Φ(ν0)(W,W ) : be the L2(dγ)-limit of
∑N
m=1 am

(
(em,W )2 − 1

)
.

It is easy that

1

T

∫ T
0

∫ T
0

N∑
m=1

amem(Xs)em(Xt)dsdt
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− 1

T

∫ T
0

N∑
m=1

amem(Xs)Gem(Xs)ds

→
N∑
m=1

am
(
(em,W )2 − 1

)

under Qx in distribution as T → ∞ for any N ∈ N and any x ∈ Td. Also,

sup
T>0

EQx

[{( 1

T

∫ T
0

∫ T
0

Φ(2)(ν0;Xt, Xs)dsdt

− 1

T

∫ T
0

GxΦ
(2)(ν0; ·, ·)

∣∣∣
(Xs,Xs)

ds

)

−
(

1

T

∫ T
0

∫ T
0

N∑
m=1

amem(Xs)em(Xt)dsdt

− 1

T

∫ T
0

N∑
m=1

amem(Xs)Gem(Xs)ds

)}2]
→ 0

as N → ∞. Therefore,

1

T

∫ T
0

∫ T
0

Φ(2)(ν0;Xt, Xs)dsdt−
1

T

∫ T
0

GxΦ
(2)(ν0; ·, ·)

∣∣∣
(Xs,Xs)

ds

→ : D2Φ(ν0)(W,W ) :

in distribution as T → ∞. Also,

1

T

∫ T
0

GxΦ
(2)(ν0; ·, ·)

∣∣∣
(Xs,Xs)

ds →
∫
Td

GxΦ
(2)(ν0; ·, ·)

∣∣∣
(u,u)

ν0(du)

Qx-almost surely as T → ∞, and

TR(ν0,
1

T

∫ T
0

δXtdt) → 0

under Qx in distribution as T → ∞. Therefore, we have that

T Φ̃(
1

T

∫ T
0

δXtdt) →: D2Φ(ν0)(W,W ) : +

∫
Td

GxΦ
(2)(ν0; ·, ·)

∣∣∣
(u,u)

ν0(du)
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in distribution as T → ∞. This together with Lemma 4.5 gives our asser-

tion. �
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