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Laplace Approximations for Diffusion Processes on

Torus: Nondegenerate Case
By Shigeo Kusuoka and Song LIANG

Abstract. Let T? = R%/Z? and consider the family of proba-
bility measures {P,} e« on C([0,00); T?) given by the infinitesimal
generator Lo = %A +0b-V, where b : T — R% is a continuous
function. Let ® be a mapping M(T9) — R. Under a nuclearity as-
sumption on the second Fréchet differential of ®, an asymptotic evalu-

ation of Z7¥ = Et= [exp (Tq)(% fOT 6Xtdt)) ‘XT = y}, up to a factor
(1+0(1)), has been gotten in Bolthausen-Deuschel-Tamura [2]. In this

paper, we show that the same asymptotic evaluation holds without the
nuclearity assumption.

1. Introduction

We consider the torus T¢ = R%/Z¢, which is a compact manifold. The
tangent space T(T?) can be identified with RY. Let B(T?) be the set of all
Borel sets in T,

Let M(T?) be the dual space of C(T?). M(T¥9) is the set of all signed
measures on T¢ with finite total variation, and denote the norm derived
by it, the total variation, by || - ||. We also think of the weak*-topology in
M(T?). Let p(T?) and Mo(T?) be the set of all probability measures on T¢
and the set of all signed measures on T? with total measure 0, respectively.
Let dist(+,-) denote the Prohorov metric on o(T). Note that the topology
induced by the Prohorov metric and the Weak*—tbpology coincide.

The path space Q = C([0,00), T¢) is the set of continuous functions
w:[0,00) — T Let Xi(w) = w(t),t >0, let F; = o{w(s);s < t}, and let
f = tht‘

Let Ly = %A + by - V, where by : T? — R% is a C™ function. Let
{Py},cra be the family of probability measures on 2 of the martingale
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problem Ly, i.e., for any f € C*(T%R),

(1) flw) = f(wo) — /Ot Lof(ws)ds is a (2, {F:}, P;) martingale,
(2) Pylwp=x)=1.

Denote the corresponding semigroup of linear operators in C(T?) by
{P;}+>0. {Ps} has a unique invariant probability measure p, which is ab-
solutely continuous with respect to the Riemann volume on T¢, and ‘;—Z is
a strictly positive smooth function. For any 1" > 0, the distribution law of
{X7_t(w)}o<t<r under P,(dw) is also a diffusion process. The infinitesimal
generator of it is the adjoint operator of Lg in L?(du), and can be written as
Lt = JA 405V for some b € C°(T% R?). Actually, b = V(log %) — by,

Also, for each t > 0, there exist transition probability densities
(Pe(7,Y)) g yera of Pr with respect to u, which satisfy p; € C>=(T¢ x T?)
and p; is strictly positive.

Let ® : M(T%) — R be a bounded and three times continuously Fréchet

differentiable function satisfying the following:

A 1. There exist functions (V) € C(p(T?)x T4 R), 2 € C(p(T?) x
T x T R), and ®3) € C(p(T?) x (T3, R), such that for any v € p(T?)
and any Ry, Ry, R3 € M(TY),

DOW)(Rr) = [ 0D(w,2)Ry(de),
T
DRo(v)(Re, Re) = [ [ @@ (w29 Ra(do) Ra(dy),
Td J1d

D*®(v)(Ry, Ry, Rs) 2/ / P (v, z,y, 2) R1 (dz) Ra(dy) Rs(dz).
Td JTd JTd
Then by Donsker-Varadhan [4], we have (c.f. Lemma 4.4)
1 1 T
—log E°* |exp TCI)(—/ Ox,dt) ‘XT:y — A, T — o0
T T Jo )
for every x,y € T9, where A = sup{®(v) — I(v);v € p(T?)} and I is given

by
L
[(y):sup{—/ Oudl/;ueCoo,uzl}7 v e p(T?).
Td U
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The aim of this paper is to give a more precise evaluation of

1 T
Z%;JJ = E'PT [exp (T(P(T/ 5Xtdt)> ‘XT = y‘|
0

up to order 1+ o(1) under some assumptions given below.
Define
K ={vepT):d)—I{v)=A}.

We can easily see that K is not empty and is compact in p(T?). In this
paper, we assume that

A 2. There exists only one element in K, say vy, that is, K = {vp}.

Now, let us construct a diffusion which has 1 as its invariant measure fol-
lowing Bolthausen-Deuschel-Tamura [2] and Bolthausen-Deuschel-Schmock
[1]. For any ¢ € C(T?), let

¢

P# (2, A) = EPexp( / o(X,)ds), X, € 4], A B(TY,

0
and
A(p) = sup{/rd odv — 1(v),v € p(Th]}.
Then P7 has strictly positive right- and left-hand principal eigenfunctions
h¢ and 19 € C(T?), i.e.,
PPh¢ = exp(A(p)t)h?, t>0,
Jrpa 1(dy)12(y) P (y, dz) = exp(A(p)t)1#(2)p(dz).

They are unique if they are appropriately normalized by

/I‘d(h@)2d,u =1, dr¥ =1¥h¥du € p(TY).

PROPOSITION 1.1. #¥ is the stationary measure of the diffusion process
whose transition probability QF (x,dy) is given by
1

Qf (z,dy) = e_A(“”)thQP—@)Pf(a:, dy)h?(y).
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Let

¢ (x) = D®()(6; — o) + ()
= ®W(y,z) — DB () (n) + ®(0), R

Then we have A = A(¢"°). Denote h®”° by h, and 19" by .
Let {Qgz},ea be the probability measures given by

dQq i h(Xi(w))

dP, W)z =¢ “h(x) eXp(/Ot ¢ (Xg(w))ds).

{Q:} is a diffusion process. Denote the corresponding semigroup of linear
operators in C(T%) by {Q;}, and the infinitesimal generator of {Q;} by
L. Actually, h € CY(T%), and L = Lo + % - V. (c.f. Proposition 2.3).
As has been shown in Bolthausen-Deushel-Tamura [2], 7 = 1. So by
proposition 1.1, we have

LEMMA 1.2. {Q},ce has vy as its invariant measure.

As a result, 1y is absoluately continuous with respect to u, and (fj—’:f >0
is continuous, also, suppry = T.

Now, for any ¢t > 0 and any z € T, let g;(x,-) be the density func-
tion of Q;(x,-) with respect to vy with ¢, € O (T x T4). We will write
it as q(t,x,y) sometimes, too. By Boltuausen-Deuschel-Tamura [2] and
Bolthausen-Deuschel-Schmock [1], sup, ,erd [q:(2,y) — 1| — 0 exponentially

fast as t — o0o0. So we can define

(1.1) o) = [ (alzy) - Dt

Define G : L?(dvg) — L*(dvo) by

G(a) = [ s fwmidn = [~ @uf@) - [ )t

Let G* be the adjoint operator of it in L*(dv), i.e., G*f(z) =
Jpa 9(y, ) f(y)vo(dy), and let G = G + G*.

In this paper, we will need the following operators: For fi, fo € L?(dwvp),
let (G® G)(f1 ® fo)(x,y) = (Gf1)(z)(Gf2)(y), and denote the continuous
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linear expansion of it on L?(dvy) ® L?(dvy) as G®G, too. Define G, = G®I
and Gy, = I ® G in the same way, where I means the identify operator on
L*(dvp). (So G.Gy =G ®G.) Gy, G, Gy, G are defined similarly.

Let T'(f1, f2) = [pa iGfodvy, fi,f2 € C(T?). Then it is easy to see
(c.f. Proposition 2.5 below) that T'(f, f) = [pa ||V(Gf)(2)||*vo(dz) > 0, so
I'(f, f) = 0 if and only if f = constant. Let us define a equivalent relation
~by f~ge f—g = constant, and let C(T%) = C(T%)/ ~. Then I

is a inner product on C(T%). Let H = <6’(Td) > , where Cv'(Td)F means
the completion of C(T?) with respect to I'. Since C(T%)* is identified with
Mo(T?), H can be regarded as a dense subset of Mq(T?), (see Proposition
2.6). H is a Hilbert space with norm ||Gfdvy||3; = [pa fGfdvo.
Also, as has been shown in Bolthausen-Deuschel-Tamura [2], for any
fec(r?),
(£, GF)12(au) = D*®(v0)(G fdvo, G fdo),

which means that all of the eigenvalues of DQCD(V())‘H 5 are less than or
X

equal to 1. In addition, we assume the following

A 3. All of the eigenvalues of DQ‘P(VO)’H o e smaller than 1.
X

A 4. For any 6 > 0, there exist a constant ¢ > 0 and a_symmetric
continuous function Ks : T x T¢ — R, such that the function Ks given by
Ks(R1, Ry) = fya Jpa Ks(2,y)Ri(dx) Ra(dy), Ri, Ry € Mo(T?), satisfies

1Ks| s, <6,
and
DU@(R) (v = o =0 =) < [ | Ki(a,y)(v =)o) = w0)(dy)

for any R € (T with dist(R,vg) < € and any v € @(T?) with
dist(v,vp) < €.

Our main result is the following

THEOREM 1.3.  Under the assumptions above, for any x,y € TY,

. h(z) 1 —
T 7%,y . - (2) ..
lim e 237 = h) exp{2 [rd Gz®' (v, -, )‘(uvu)yo(du)}

T—o00

xdety (I — D?*® (1))~ V2.
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REMARK 1. The fact that DQCID(VO)‘H . is a Hilbert-Schmidt type
X

function, which enssures that the factor dets(Ig — D?®(vg)) above is well-
defined, can be seen from the Proposition 2.8.

2. Preparations

In this section, we will show in the first half an extended Ito’s formula
for Gf, where f is a continuous function. Also, we will give the proofs of
the several facts claimed in section 1.

In general, consider a operator L given by L = %A +b -V, where b €
C(T%RY). For each z € TY, let PL denote the probability law of the
diffusion process generated by L starting at . Write the invariant measure
of {PF} as uyr. Let {PF};>0 denote the corresponding semigroup of linear
operators in C(T4). Also, let G, be the corresponding Green operator, i.e.,
Grf = [5°(PEF — [pa fdur)dt, f € C(T?). Let || - ||op denote the operator
norm in C(T%) — C(T%). Then we have the following

PROPOSITION 2.1. Pl is a compact operator on C(T?) for any t > 0.

PROOF. Let Lp = %A and let PP be the semigroup of linear opera-
tors on C(T?) corresponding to it. Then PP maps C(T?) to C?(T?), and
[[VP)|op < f/% : % for any t > 0. So P is a compact operator for any
t > 0. Also,

t
PE=pPP + / PLy.vP ds,
0

where b-V P? is compact for any s > 0, Thus, P is compact for any ¢ > 0. [J

By Proposition 2.1, every number in the spectrum of PtL except 0 is
a eigenvalue of it. Let W2(T%) denote the Sobolev space, i.e., W2(T?) =
{(1 = A)~Lf; f € LP}. Then we have the following

LEMMA 2.2. G maps C(T?) into sz(Td) for any p € [1,00), and
it is a bounded linear map. Also, for any f € C(T?) with [ fdur = 0,
u=—GLf is a solution of the equation Lu = f in the sense of generalized
functions. Also, if v € Wg(Td), Jravdpr =0, and Lv = f in LP for some
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p > 1, then u = v in W2(T?). Moreover, let {X,} be the diffusion process
generated by L, and let By = X3 — Xo — fOT b(Xs)ds. Then {Bt}i>0 is a
Brownian motion, and

(2.1) u(Xy) = u(Xo) + /Ot Vu(Xs)dBs + /Ot f(Xs)ds.

PRrROOF. The fact that {B;};>0 is a Brownian motion is trival since by
the definition of {X,}, g(X¢) — g(Xo) — [3(Lg)(Xs)ds is a Fy-martingale for
any g € C%(T9).

Since b € C(T% R%) and f € C(T?), we can find b, € C°(T% R?) and
fn € C®(T%), such that b, — b € C(T%R?) and f, — f in O(TY) as
n — oo, and [ fpdur = 0. Let L, = %A + b, - V, and write the invariant
probability measure, the semigroup of linear operators on C(T%) and the
Green operator corresponding to it as u,, P;* and Gy, respectively. Also, let
Up = —Gpfn. Then u, € C®(T?), and Lyu, = fn — Jpa frndptn. Therefore,
by Ito’s formula,

(2.2)  un(X)) = un(Xo) + /D un(X)dB, + /0 " Lun(X.)ds.

By using Cameron-Martin-Maruyama-Girsanov formula, we get from
the definition of P/* and P} that P/* — P} in the operator norm as n — 0o
for any ¢ > 0. Therefore, by Perron-Frobenious argument, it is not diffcult
that u,, — u in C(T?), and (-),, — (-),, as linear operators on C(T?), as
n — oo.

We show that u,, — u in WI?(Td), too. We first show that u,, n € N,
is bounded in Wg(Td). From the definition of u,, Au, = 2(f, — by - Vuy).
So, from the boundedness of b,, in C(T?) for n € N, there exists a constant
Cs3 > 0, such that

122 7%

[lunllwz < Cs (I[fallL, + [lunll, + IVunllz,) -

By Friedman [5, Theorem 1.8.1], for any € > 0, there exists a C(.) > 0, such
that
gllwy < ellgllwz + Co)llgllz,, for all g € W)

So we get

(2.3) (1 =eC)llunllwz < C3(1+ Co)) (Il fullL, + llunllz,),  n=1,
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for any € > 0. Take ¢ > 0 small enough such that 1 —eC5 > 0, and we see
that sup,cn [|unllwz < co. Now, using the boundedness of u, in W2, in
the same way, we can show that u,, n € N, is a Cauchy sequence in Wp2.
Therefore, from the convergence on u, to u in C(T¢) and the completeness
of Wg(Td), we see that u € WpQ(Td) for any p > 1, and u, — u in sz(Td)
as n — 00.

Now, take n — oo in (2.2), since Lu,, = fr,— [ fudin+(b—by)-Vu, — f
in C(T?) as n — oo, we get (2.1).

The linearity of G, : C(T?) — W]?(Td) is trival. Also, from (2.3), there
exists a constant C' > 0 independent to f, such that

(2.4) ullwz < Cs(I[f1]z, + [lullz,)-

So the boundedness of G, : C(T?) — WpQ(Td) follows from that of Gy, :
C(T%) — C(TY).

For the uniqueness of the solution of the equation Lu = f in Wg(Td)
s.t. fpaudpr = 0, let v € WI?(Td) satisfies Lv = f and [pqvdpr = 0,
we show that v = u(= —GLf) in Wp2(Td). Since v € Wg(Td), there exist
v, € C°(TY) with [pqvndpr = 0, such that v, — v in Wg(Td). Let
gn = Ly, then v, = [pavpdpr — Grgn = —Grgn. Therefore, from the
completeness of W2, we only need to show that Grg, — Grf in LP. But

P Y
gn — f in LP from the definition, so this is easy to see from the definition
L
of G and the fact that sup, ,ca ’PLL(ZZZ?)J)‘ — 0 exponentially as t — oco. [J

Now, let us come back to our situation described in section 1, i.e., let L
be the infinitesimal generator corresponding to {Q,}. Let L*° denote the
adjoint operator of L in L?(dvy). L* is the infinitesimal generator of the
diffusion process {X7_¢(w) }o<i<r under @, (dw) for any T' > 0. Note that
the G* defined in section 1 is nothing but the Green operator with respect
to L*°. We have the following

PROPOSITION 2.3. h € CYTY), and L = Lo+ Y2 - V. Also, { €
CHT9), and L™ = Ll + Y£ - V.

PROOF. As the proof is the same, we only give the proof of the first
assertion. By the definition of h, h = h?°, (and A(¢*°) = )), for any
T e Td,

EP {exp < /0 t P (Xs)ds> h(Xt)} = eMh(z).
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So we have limy_q $(P;h — h) = Ah — ¢*°(z)h in C(T?). Acting Gy on the
both side, since Go(Pih — h) = t [ hdu — [; Pshds, from the continuity of
Gy we get that

h— / hdp = Go(¢"0h — AR).
Td
Therefore, by Lemma 2.2 applied to Lg, h € WZ? for any p > 1, which
implies h € C*(T?), and

h(X) = h(Xo) + /O "h(X.)dB, + /O "ML — 6" (X, )ds.

Therefore, by Ito’s formula, we have

t
logh(X:) = logh(Xo) +/ Vh (X5)dBs

+)\t—/¢”0( ds—— Vh
0

which implies that

rocy el " (X,)ds)
B "Ry Vh
=owp | | -~ (X)dBy

The left hand side above is nothing but QXO (w)’f. This gives our asser-
t
tion. U

From Lemma 2.2 and Proposition 2.3, we have the following

COROLLARY 2.4. G maps C(T?) into W2(T?) for any p > 1, and
it is a bounded linear map. Also, for any f € C(T%), u = —Gf is the
unique solution of the equation Lu = f in the sense of generalized functions.
Moreover, let {X;} be the diffusion process generated by L, and let By =
X — X — fg(bo + %)(Xs)ds, t > 0, then {B:}+>0 is a Brownian motion,
and

(2.5) w(Xt) = u(Xo) + /Ot Vu(Xs)dBs + /Ot f(Xs)ds, a.s.
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PROPOSITION 2.5. For any f € C(T%),

LU= [ IVGHI P = [ V(G )|Pdw.

PRrROOF. We only give the proof of the first equality. The second is the
same.

First, since v is {Q;} invariant, and L is the infinitesimal generator of
it, we have that [ps Lgdvy = 0 for any g € C?(T%). Also, by Proposition
2.3, for any g € C?(TY),

1 1
gLg = §L(92) — §|IV9H27

SO
~2 [ Lg-gdv = [ |VglPdvo
Td Td

for any g € C%(T?). So the same is true for any g € ﬂp>1Wp2(Td) (actually,
with some p > 1 large enough, for any g € Wg(Td)).

Now, for any f € C(T9), let ¢ = Gf. Then by Corollary 2.4, g €
WpQ(Td) for any p > 1. Also, f = —Lg + a as generalized functions, where
a = [pa fdvy, and [1a gdvg = 0. Therefore,

/ fGfdy = 2 / £G fdv
Td Td
= —2/ Lg-gdyo—f—Qa/ gdvy
Td Td

[ 19l = [ 119G |Pdv. O
Td Td

PROPOSITION 2.6. H can be regarded as a subset of Mo(T?), which is
dense in Mo(T%) with respect to the weak*-topology.

~7F

PrOOF. The fact that H C Mo(T?) is trival since H = (C(T4) )*
and Mo(T?) = C(T%*. So to finish the proof, we only need to show

—Fweak*

that Mo(T9) c H . If not, there will exist a v € M(T?) satisfying

vé¢ HY*  For the sake of simplicity, we denote the equivalent class which

contains f by f, too. So there exists a function f € C(T%), such that
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(f,v) =1, and (f,h) = 0 for any h € H. So f = 0 € H*, which means
Jpa fGfdvy = 0. Therefore f = constant, and so [p4 fdv = 0, which makes
a contradiction. [

PROPOSITION 2.7.  For any symmetric continuous function V : T% x
T¢ — R, let Ui(z,y) = —G.V(z,y), and let U = —GyUy, then U €
CHT? x T, V,U(z,y) is continuously differentiable with respect to 1y,
and V,V,U(z,y) € C(T¢ x T9). Also,

(2.6) /rd - V(z,y)GoGyV (z,y)vo(dz)vo(dy)

:/ / V.V, U (2, )| | Pvo(da) o (dy).
Td JTd

PROOF. From the compactness of T¢ and the continuity of V, V is
uniformly continuous, and the map T¢ — C(T%),y +— V(-,y), is continuous.

Ui(z,y) = =G,V (z,y), so by Corollary 2.4, Uy (-,y) € C*(T?) for any
y € T4 and y — V, Ui(-, y) € C(T?) is continuous.

Now, from the definition of G*, we see that G* is continuous in
C(T?). So V,U(z,y) = —Va(G;U1(z,y)) = —G;(VaUi(x,y)). Therefore,
V.U(z,-) € CY(T?) for any z € T¢, and the function = — V,V,U(z,") €
C(T9) is continuous. i.e., V,V,U(z,y) € C(T¢ x T9).

We show (2.6) now. First, if V' can be expressed as V(z,y) =
Sy or(2)r(y) for some n € N and some ¢, ¢y € C(T9),k =1,---,n,
then (2.6) is obvious by Proposition 2.5. For general V, by Weierstrass-
Stone Theorem, there exist V,,, such that V,, has the expression above, and
V,, — V in C(T¢ x T?). From the boundedness of GG, in C(T? x T9),
the left hand side of (2.6) for V;, converges to that for V. For the right hand
side, we have from Sobolev’s inequality and (2.4) that for any f € C(T%),
u=—Gf is in C1(T?), and for p > 1 large enough, we have

IVulleo < Col[Vullwy < Crllullwz < Cs([|Fllzr + l|ullzr) < Collflloo

for some proper constants Cg, C7, Cs, Cy. So the right hand converges, too.
Therefore, (2.6) is true for general V. [J

PROPOSITION 2.8.  Given any continuous symmetric function V : T%x
T¢ — R, define a bilinear and continuous function Ay : My(T%) x
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Mo(T9) — R by Av(Ri,Rs) = [pa Jpa V(x,y)Ri(dz)Ra(dy). Then
AV‘H . is a Hilbert-Schmidt type function.
X

PrOOF. Let {fn};2; be a complete orthonormal base of H* with
{fn}ee, € C(T?). Then by Proposition 2.5 and Proposition 2.7,

vlfs = 3 Av@hdnGenny’
2
- (/ V@G @G hn o))
=1n=1 VW T*/T

( GV () f) ol

= /T/ 929,62,V (2. ) | vo(de)o(dy)
| V@ )G.G,V (@ )vo(dr)vo(dy)

since V' and éxéyv are bounded. [

3. Lemmas

The following lemma is easy to see, from the definition of multiple inte-
gral.

LEMMA 3.1. Let {W;}>0 be a Brownian motion. Then for any T > 0,
and any symmetric function h(-,-) : [0,T] x [0,T] — R that satisfies

T T 1
/ / h(tl,t2)2dt1dt2 < -,
o Jo 4

we have

T T
EW [exp ( / / h(t1, tg)thlth2>
0 0

T rT
< exp / / h(ty, t2)%dt dts | .
0 0
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PROOF. Let A be the symmetric operator on L?[0,7T] given by A :

L%[0,T) — L*0,T],
T
_ /0 h(t, s)f(s)ds

A is a Hilbert-Schmidt operator. Therefore, it has discrete spectrum (except
0). So all of its spectrums except 0 are its eigenvalues. Write them as
{A:}32,. By the assumption,

— 2 2 T 2 1
Z e = 1All7s. :/ / h(s,t)“dsdt < 7
k=1 0 0

S0 |Ag| < 1/2 for any k € N. Write the corresponding orthonormal eigenvec-
tors as ey, k =1,2,---, 50 h(s,t) = 322, Arex(s)er(t) in L2([0,T] x [0, T)).
fOT er(s)dWg,k =1,2,---, are i. i. d. normal distributed random variables.
Note that \/11_72966_”” < e®” for any x < 1/2, so we get

EW [exp </OT /OT h(t17t2)th1th2>]
- EW leXp (i Ak <AT ek(S)dWS)Q _ 1])1

k=1
[e.e]
Hm s en )

= exXp (/ / htl,tg dtldt2> O

LEMMA 3.2.  For any probability measure v on (2, {Fi}+>0), any con-
tinuous v-local- martingale (M) with My = 0, any pair of dual numbers

p1,q1 > 1, i.e., p—l—i———l, any T >0, and any A € Fr,

1/q1
B [eMr, 4] < B |exp(P2 (M)1), 4

PROOF. Since (M;) is a continuous v-local-martingale, (p; M) is a con-

2
tinuous v-local-martingale, too, so exp(py M; — %(M )t) is also a continuous
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v-local-martingale, and so a v-super-martingale. Therefore,

EY |:6MT7A:| < FEY {exp( - (Mp — %<M>T)) o

/¢
< E [exp<q1 ~ <”1<M>T>>,A]

Now, we are ready to proof the following:

LEMMA 3.3. LetV : T?xT? — R be a symmetric, continuous function
that satisfies the following:

1. [pa V(z,y)vo(dy) =0 for any x € T?,
2. fpd Jpa V(w,y)@mayV(x,y)uo(dx)uo(dy) < ﬁls.

Then there exists a constant g > 0, such that for any x,y € T?, and any
€< €0,

supEQ“ exp / / V (X, Xs)dsdt),
T>0

dz’st(—/ Ox,dt,vp) < €’XT = y} < 0.
T Jo

PRroOOF. First, we have that for any 7" > 1,

1 T pT 1 T-1 pT-1
- / / V(Xo, Xi)dsdt — / / V(X,, X )dsdt
1 1

4T 4
< [Vloo < 4[[V]]oo-

Let Cip = supx7yer{q(1,ac,y),q*(l,w,y)} < oo, where ¢*(1,z,y) =

uo(gjdg) € O(T¢ x T9) and ¢*(1,z,y) > 0. Then for any A € Fr,

1 T rT
EQw[exp(_/ / V(X0 X,)dsdt), A| X7 = ]
T Jo Jo
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< E%lq(1,, X1)q"(1,y, Xr 1)
1 T-1 pT-1
.exp(_/ / V(X0 Xo)dsdt + 4]V ||so), 4]
T ) 1
1 T pT
< 012068”‘/||°°EQ”0[exp(—/ / V(Xt,Xs)dsdt),A].
T Jo Jo
Therefore, it is sufficient to prove that

sup EQVO eXp / / V (X, Xs)dsdt), dist(= / Ox,dt, 1p) < 5} < 0.
T>0

Since vy is the invariant measure of (Q,) as mentioned before, (X7_)7_,
under (Q,,) is still a diffusion process for any T > 0, with the infinitesimal
generator L*° = L + VTZ -V. Let Uy(z,y) = —(G;V)(x,y) and U(z,y) =
—(G,U1)(,y) as in Proposition 2.7. By condition, [p.V(x,y)vo(dy) =
0 for any = € T, so

*1/ T kU _ d
LxLy OU(.’L’,y) - Ly OLJ}U(xhy) - V(x7y)7 for any x,y eT

in the sense of generalized functions. From the condition (2) and Proposition
2.7, we have that V,V,U exists, is continuous, and

1
Lo [ 19:9,0 )l Pro(da)v(dy) < 155
Let pr = %fOT 6x,dt and A, = {dist(% fOT 0x,dt,1p) < €}. Then from the

boundedness of ||V, V,U(z,y)||?, there exists a constant gy > 0, such that
for any € < &y,

L, L9290l Por@npr(n) < 15 on Ae.

From the definition of U; and Corollary 2.4,
T T

U (X7, X)) = Uy (X0, Xo) + / V,Us (X, X0)dB, + / V(X,, Xy)ds,
t t

where (Bt)>0 is the Brownian motion defined in Corollary 2.4. Therefore,

T/ / V(Xs, Xy)dsdt = / / V(Xs, Xy)dsdt
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= % </OT(U1(XT,Xt) - Ul(Xt,Xt))dt>

2 T T
——/ dt / VmUl(XS,Xt)dBS .
T Jo t

Here, ||U1]|s < oo from the continuity of U; and the compactness of T¢, and
the second term is equal to —2 fOT(fos V.Ui (X5, Xy)dt)dBs by stochastic Fu-
bini’s theorem (c.f. Ikeda-Watanabe [6, Lemma 3.4.1]), hence a continuous
Q,-martingale. So by Lemma 3.2 (with p; = 2 and v = Q,,),

1 T pT
E9 |exp(= / / V(Xy, X,)dsdt), A
T Jo Jo
2 T s
< exp(llUilla) - B [exp(— [ dB(| VaUr(Xe, Xo)dD), A,
0 0

1/2
T 9 s

< exp(4]|U1]o0) - E90 [exp(2/ |f/ VzUl(XaXt)dt’zds)aAe] :
0 0

So, the problem now turns to show that

T s
sup E%vo lexp((%/ ds|/ VxUl(XS,Xt)th) VAL < o0
T>0 = Jo 0

for some € > 0. Since (X7_¢)]_, under Q,, is a diffusion process for any
T > 0, we have by Lemma 2.2 and the definition of U that Bl = Xp_, —
Xp — [5 (05 + vT£(XT,s)ds, t € [0,7], is a Brownian motion, and for any
s e (0,7),

T A
VoU(Xr—g, Xo) = VoU(Xrogn Xr-0) + [ V,VoU(Xrog, Xp_o)dB]
T
+// VxUl(XT,S/,XT,t/)dt,.

So we have

1 T s 9
ﬁ/o ds|/0 VUL (X, X3)dt]

1T T, T o
= ﬁ/0 ds ]/l VUi (Xp_g, Xp_y)dt!|
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2

T
< ﬁ/ﬂ IV U(Xp_y, Xo) — ViU (Xp_g, Xp_yo)|?ds’

—2 ! ! T2 7./
+T2/ I/ VyVoU(X1_g, X7_y)dB} |?ds'.
0 s’

Here the first term is bounded by the compactness of T¢ and the continuity
of V,U. So it is sufficient to show that for some ¢ > 0 small enough,

sup E®v

16 (T (T AT 12 7
exp ﬁ/ \/l VyVoU(Tr—y, Xp—p)dBy [7ds’ | , Ac| < oc.
T>0 0 s

Let W; be another d-dimension Brownian motion which is independent to
{Xt}eep,00)- Write g(t,s) =V, V. .U(X7_¢, X7_5), then by Lemma 3.2,

0. 16 (T T AT (2 A
E |exp ﬁ/0 |/t V, VU (Xr—y, Xp_y)dBT|2dt | , AL
I T T R
— E lEW exp <4\T/§/ (/ g(t,s)stT)th>],A5]
0 t
[ 4 T s A
= EV [EQ”O exp (ﬁ (/ g(t,S)th)stT>7AaH
0 0
6 T s 1/2
< BV B fexp (g5 [ 1 [ attsamifas | a.
0 0

. 1/2
g(t, s)th]2d3>] ,AE] .

= E% [EW

I('D 1
e
go]

7N
|cn
|

S—

~

S—

Here,

1 T s 9
72 |1 [ attsawias

1 T T T
= w [ [ ([ st @ gltas)ds)aii, s,
T 0 0 t1Vig

+%/OT(/;F lg(t, s)|ds)at.

The second term is bounded from the compactness of T¢ and Proposition
2.7. So we only need to show that

64 [T (T
sup E®v {EW [exp <—2 / /
T>0 = Jo Jo
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([ ott1,5) @ gltz, sy, aw, )| ] < e,

1Vita

On the other hand, as shown before, [ma [pa||VaVyU (2, y)||?pr(dz) pr(dy) <
1—%8 on Ag, so

(3.1) 642/ / dtldt2||/tlvt2 (t1,5) ® glta, s)ds|?
o an [ s ([ later, ) Pas) [ gt )]s
= (647 {;/ [ ot s>||ds>}2
{%/OT/OTng,s)H?dtds}

= Lot [ [ Iv.w ) Poraneran)

1 1
< 642 ( = — on A..

7)2
128 4

So from Lemma 3.1, we have

0 W 64 T pT T
E%vw |FE exp ﬁ/ / (/ g(tlas) ®g(t275)d8)
0 0 t1Vta

X thl th2> ] s Aa]

< Ev lexp( / / dt1dty

X’ (tla )®g(t27 )d8|2>aAE:

t1Vig

IN

IN

A
9]
N[

This completes the proof of the lemma. [

LEMMA 3.4. For any e € C(T?) with [rae(y)vo(dy) =0 and ||e||p+ =
1, and any a < 1, there exists a constant €9 > 0, such that for any ¢ < g,

sup E9 {exp (;}(/; e(Xt)dt)2> , Ae

} < 00,
T>0
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where A = {dist( fOT Ox,dt,vp) < e} as in Lemma 3.3.

PROOF. As in the proof of Lemma 3.3, we only need to show the as-
sertion without the condition that Xy = z and X7 = y, i.e., it is sufficient
if we prove

T
EQv a / X,)d)? ), A .
;1;1()) 0 [exp <2T( ) 6( t)dt) , 5] < 0

Also, as there, since [r4e(x)vy(dz) = 0, by Corollary 2.4, the function
u defined by u = —Ge is in W2(T?) for any p > 1, hence in C*(T%), and

w(Xr) — u(Xo) = /0 ! Gu(X,)dB, + /O R

So from the boundedness of u, it is sufficient if

T
sup E9v0 [exP(g - i(/ Vu(Xt)dBt)Q),Aa} < 00
T>0 2 TJo

for € > 0 small enough. Choose and fix a constant § € (0, é — 1) first. Since

L IV u@)Proda) = [Jelf- = 1

and ||Vu(z)||? is bounded on T, there exists an g9 > 0, such that for any
e < eo, Jpa||Vu(z)|?pr(dr) < 1+ 6 on A.. So, by Ikeda-Watanabe [6,
Theorem I1.7.2], there exists a standard Brownian motion B, such that

(/OTVu(Xt)dBt)Q - (E([/O.Vu(Xt)dBt,/O'Vu(Xt)dBt]T))Q

T 2
_ /) 2
_ B(/O \Vu(Xt)Hdt)

- B (T-/Td ||Vu(ﬂc)||2pT(dU[f))2

< sup | B(t)? on A..
0<t<(146)T

By the reflection principle, for any Ty > 0 and any =,

P( sup |B(t)| > z) <2P( sup B(t) > ) =2P(|B(Ty)| > z).
0<t<Tp 0<t<Tp
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1

Therefore, since ¢ € (0,7 — 1), we have

sup EQVO {exp / V’U, Xt)dBt) ),Ag]
T>0
1 _
< supE |exp [ = sup  |B(t)[?
>0 2 T0<t<(1+5)
~ sup / P( sup  |B()| > 2)d(e) +1
>0 0<t< 1+6
< 2supFE {exp( |B((1 +6)T )|2>] -1
T>0
2 1<
= - 00.
1—a(l+9)

This completes the proof of the lemma. ]
Using the two lemmas above, we get the following:

LEMMA 3.5. For any continuous symmetric function V : T¢xT¢ — R,
which satisfies [pa V(z,y)vo(dy) = 0 for any x € T9, define a symmet-
ric, bilinear, and continuous function Ay : Mo(T9) x Mo(T?) — R by
Ay (R1,R2) = [pa Jpa V(z,y)Ri(dz)Ro(dy). Suppose that all of the eigen-
values of Ay ey € smaller than 1. Then there exists a constant € > 0

small enough, such that for any x,y € T?,

SupEQ” exp / / V(Xy, Xs)dtds),
T>0

dist(—/ Ox,dt, vy) < €‘XT = y] < 00.
T Jo

ProoOF. By Proposition 2.8, AV‘H o is a Hilbert-Schmidt type func-
X

tion. Combining this with the condition, we see that the maximum of its
eigenvalues, say ag, is also smaller than 1. Choose and fix a p > 1 such that
agp < 1.

Write the eigenvalues of AV‘ as {antnen with |a1] > Jag]

lag| > ---, and the correspondlng elgenvectors as {Gendy}o_, with
Jpa em(2)Gen(x)vo(dr) = 6yp. Then Ay (Gepdrg, R) = ap [pa em(x)R(dz)
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for any R € Mo(T9). So for any m € N with a,, # 0, from the continuity

of V(z,y), we can assume that e,, € C(T%).
Let g be the dual number of p > 1, that is, % + % = 1. Since Ay - is
X
a Hilbert-Schmidt function as claimed, there exists a N € N large enough

such that » 7%y 4 q?a? < ﬁ. Apply lemma 3.3 to

V1($ay) = ( Zazez e’L ) y T,y <€ Tda

and use Holder’s 1nequahty, so it is sufficient if

sup EQz exp / / aie;(Xy)e;(Xs)dsdt), Ae ] < o0

T>0 2T
for € > 0 small enough, where A, is as before.

Obviously, we can assume that a1, ---,any > 0, as if not, we can just omit
the term corresponding to it. As in Kusuoka-Tamura [9], in general, we have
that for any 1 > 0, there exists an integer m > 0 and & = (&},---,&N) €
RY,i=1,---,m, such that ||§]|[gy =1,i=1,---,m, and

= 1
zeRN: x, & <}C zeRY ||z <1 ,
m{ @.6) < e} © el <1}
SO
z||? < (1+¢1) ,max (z,&)?, z e RN,
) ’m

Replace €1 by 1 — pag in the above. Let ¢; = Z;V 1£fej, 1=1,---,m.
Then (Gé;, €:) r2(avy) = 1, Jpa €i(2)vo(dz) = 0,i=1,---,m, and

2 T \ 2
Z(/ e ( Xy dt) < (1+e1)  max Z(/o ej(Xt)dt.§g>

P

= (1+¢1) max (/QTeZ(Xt)dt) .

i=1,--m

Therefore,

SupEQT exp / / aje;(Xy)ei(Xs)dsdt), Ae
T>0 2T
1-¢2 1

T
EQ= _7/ J(X)dt)?), A
;g; [exp( g7l GXde)?), A

IN
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which is finite for ¢ > 0 small enough by Lemma 3.4.
This completes the proof of the lemma. [

4. Proof of the Theorem
In this section, we will give the proof of the main theorem. Let

o)~ [ o™ wwidy)
= ®(v) — P(vy) — DP() (v — 1p), v e M(T?).

o(v)

Also, let A, = {dist(7 fOT 8x,dt,1g) < e} as before. Since for any A € Fr,

1 [T
e MEpt: [exp (T@(T/ (5Xtdt)> ,A‘XT = y]
0

hz) o, ~ 1 (7 _
= @EQ lexp <T@(T/O 5Xtdt)>,A‘XT—?/]v

the theorem will be shown if we can show the following two lemmas.

LEMMA 4.1.

1 ~ 1 (7
lim sup T log EQ= lexp (T(I)(T/ 5Xtdt)> 7Aac =y| <0
0

T—o00

for any € > 0.

LEMMA 4.2.

lim lim EQ‘ exp (T‘ID / (5Xtdt>
e—0T—o0

= exp{§ /Tdémcbm)(uo,-,-)‘

}

yo(du)} « deta (I — D2®(vg)) V2.

U,

We prove Lemma 4.1 in the first. By Donsker-Varahdan [4], we have the
following
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PROPOSITION 4.3.

(1) For any x € T and any closed set C C p(T?),

1 1t
limsupg log P, {;/0 Ox,ds € C] < —inf{I(v);v € C},

t—oo

(2) for any x € T and any open set G C p(T),

1 1/t
litminfglong [;/ Ox.ds € G} > —inf{I(v);v € G}.
—00 0

From this, we get the following

LEMMA 4.4.

1. For any z,y € T and any closed set C' C p(T?),

1 1 (T
limsupflong lf/o ox,ds € C‘XT =y| < —inf{I(v);v € C}.

T—o0

2. For any x,y € T and any open set G C p(T?),

1 1 (T
liminf — log P, —/ 6X5ds€G‘XT:y > —inf{I(v);v € G}.
T—oo T T Jo

Proor. We only give the proof of the first assertion, the second one
can be proved in the same way.

First, for any path {X;}iso, ||5 Jif 6x,dt — 727 o' 6x,dt|| < 2, there-
fore, for any € > 0, there exists a t. > 0, such that for any T" > t. and
any path {X;}, dist(% fOT Sx,dt, 7 fOT*l 6x,dt) < e. Now, let C; be the
e-neighborhood of C in p(T9), and let Cyy be the constant defined in the
proof of Lemma 3.3, i.e., ¢*(1,z1,22) < Cyg for any x1,z2 € TY, then for
any T > t.,

1 T
P, [/ 6XtdteC’XT:y1
T Jo
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1 T—1
< P |— dt
< P T-1 /0 5Xt S CE

J— P?: *
-t P{ﬁff‘léxtdtecs}q (L9, Xr-1)

1 T-1
Cro Py T—l/ Ox,dt € C| .

IN

Therefore,

1
limsupTlong[ /5Xtdt€C‘XT:]

T—o00

IN

T—o0 T-1
< —inf{I(v);v € C.}

Y
. 1 1
hmsupflong [/ Ox,dt € C]

for any € > 0. The right hand side above converges to —inf{I(v);v € C'}
as € goes to 0.

Lemma 4.1 can now be seen by the same method as used for the not
pinned one.

For Lemma 4.2, we follow the way as used in Kusuoka-Tamura [9] and
Kusuoka-Liang [8].

LEMMA 4.5. There exist constants p > 1 and € > 0, such that

g T
sup EQZ epTQ(% fo 5Xtdt),A5|XT =y| < oo.
T>0

PROOF. The proof is similar with the one in Kusuoka-Liang [8]. Let
R(vp,-) be the 3rd remainder of the Taylor expansion around vy, i.e.,
R(vo, v —1g) = ®(v) — D2®(1) (v — vy, v — 119). Then for any p > 1 and any
r,s > 1 with % + % = 1, by Holder’s inequality,

EQw

g T

= EQ"[ { 1D2<I>( )(1/T5 dt 1/T6 dt — vg)
= T JR—— 1Y — — . — —
exXpyp 5 0 T Jo Xy O’T 0 Xt 0
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1 [T
- TR, 7 [ oxidt =)}, A-|Xp =y
0

T
(4.1) < E% [exp {p‘ 5 - rD?*®(1p)
1 (T 1 (T 1/r
X<T/O 6Xtdt—V0,fA 6Xtdt—V())},A8’XT:y]
1 T 1/s
(4.2) xEQx[exp{p-T-sR(yo,—/ (5Xtdt—yo)},A5]XT:y} .
T Jo

Now, for any function U(,-), define

Oley) = Uly) = [ Uleypda) — [ Uy)wo(dy)

- /I‘d /I‘d Uz, y)ro(dz)ro(dy),

and
OB Ro) = [ ] Ul y)Ri(do)Roldy),

then [U(z,y)vo(dr) = 0 for any = € T¢, and ﬁ(Rl,Rg) = U(Ry, Ry) for
any Ri, Ry € Mo(Td).

Since the maximum ag of the eigenvalues of DQ(I)(VO)‘HXH is smaller
than 1 by the assumption 4, we can find a p > 1 such that ap - p < 1. For
this p, there exists a r > 1 such that ag - p-r < 1. So since

T-D (I)(I/(])(f/ 5Xtdy—uo,—/ 6Xtdy—1/0)
T Jo T Jo

N 6)
_ T/O /O o (VO,.,.)’(Xt’XS)dtds,

we get by Lemma 3.5 that (4.1) is bounded for 7" > 0 if ¢ > 0 is small
enough.

For (4.2), let s be the dual number of » > 1, choose a § € (0, ﬁ) and
fix it. By the assumption 4, for this 6 > 0, there exist a constant g’ > 0and

a Kg, such that HE‘HXHHHS < 6, and

1 T
|TR(1/0,T/O Sx,dt — vp)|
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1 T
< 1 [ Ko [ ey — ) oy
Td Jd T Jo
1 T rT
_ f./ / Ks(Xi, Xs)dsdt  on Au.
T Jo Jo

So by using Lemma 3.5 again, we get that (4.2) is bounded for T" > 0 if
¢’ > 0 is small enough.
This completes the proof of the lemma. [

PROOF OF LEMMA 4.2. As in Kusuoka-Tamura [9], @, has the strong
mixing property, so X7 and v7T'(# fOT dx,dt — 1p) are asymptotically inde-
pendent as T — oo under @, for any x € T¢, also,

E@: V-IVT L
exp [ V=T Tdu(m)(T/O .t — v)(dx)

—  exp <—% /rd u(y)Gu(y)uo(dy)> , as T — o0

for any u € L?(T, duvy).

Take a seperable Hilbert space H; such that the set
{@udv()’ JpauGudyy < oo} is a dense linear subspace of Hy, and the in-
clusion map is a Hilbert-Schmidt operator. Let W be an Hi-valued random
variable with distribution v such that

B [exp(v/ =T, )] = exp (=5 [ up)Gutumlay))

for any u € HY.

So from the central limit theorem for Hilbert space valued random vari-
ables, the distribution of (X7, VT (% f(;[ dx,dt — 1p)) under ()5 converges
weakly to vy ® v as T — oo on T¢ x Hj.

As before, D?®(1p)(-, )’HxH is a Hilbert-Schmidt function. Write the

eigenvalues and the corresponding eigenvectors as a,, and Ge,,dvg, m =
1,2,---. Then SN _ am ((em, W)? —1) converges in L%*(dy).  Let
: D2® (1) (W, W) : be the L2(dy)-limit of =5 1 ay, (e, W)? — 1).

It is easy that

NP> (x)
— Amem(Xs)em (Xt )dsdt
T 0 0 m=1



Laplace Approzimations for Diffusion Processes on Torus 69

T N .
Z amem(Xs)Gem (Xs)ds

— ia (em, —1)

m=1

under Q, in distribution as T'— oo for any N € N and any z € T¢. Also,
1 T rT
sup E%= H —/ / ®@ (vp; Xy, X, )dsdt
>0 T Jo Jo
_l/TG ®@ (1; )‘ d
T T no; (X4,Xs) S

( // Zamem s)em(Xy)dsdt

> amem<xs>@€m<xs>ds> }]

m=1
— 0

as N — oo. Therefore,
1 T T 1 T
il D (v X, X __/ 2 (..
5[ @00 X Xodsat = [ Ge@ )| s
— : D*®(v) (W, W) :

in distribution as T' — oo. Also,

1 T —
il @ (pg: .. @ (g
T/O G,P (v; -, )‘(Xs,Xs)dSH - G2 (v; -, )(u’u)yo(du)
@, -almost surely as T" — oo, and
1 T
TR(vp, —/ ox,dt) — 0
T Jo
under @, in distribution as T — oco. Therefore, we have that
T (= / 5x,dt) —: DD (vo) (W, W) - / ot (i), ()
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in distribution as T' — oo. This together with Lemma 4.5 gives our asser-
tion. [
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