Laplace Approximations for Diffusion Processes on Torus: Nondegenerate Case

By Shigeo Kusuoka and Song Liang

Abstract

Let $\mathbf{T}^{d}=\mathbf{R}^{d} / \mathbf{Z}^{d}$, and consider the family of probability measures $\left\{P_{x}\right\}_{x \in \mathbf{T}^{d}}$ on $C\left([0, \infty) ; \mathbf{T}^{d}\right)$ given by the infinitesimal generator $L_{0} \equiv \frac{1}{2} \Delta+b \cdot \nabla$, where $b: \mathbf{T}^{d} \rightarrow \mathbf{R}^{d}$ is a continuous function. Let Φ be a mapping $\mathcal{M}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$. Under a nuclearity assumption on the second Fréchet differential of Φ, an asymptotic evaluation of $Z_{T}^{x, y} \equiv E^{P_{x}}\left[\left.\exp \left(T \Phi\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right) \right\rvert\, X_{T}=y\right]$, up to a factor $(1+o(1))$, has been gotten in Bolthausen-Deuschel-Tamura [2]. In this paper, we show that the same asymptotic evaluation holds without the nuclearity assumption.

1. Introduction

We consider the torus $\mathbf{T}^{d}=\mathbf{R}^{d} / \mathbf{Z}^{d}$, which is a compact manifold. The tangent space $T\left(\mathbf{T}^{d}\right)$ can be identified with \mathbf{R}^{d}. Let $\mathcal{B}\left(\mathbf{T}^{d}\right)$ be the set of all Borel sets in \mathbf{T}^{d}.

Let $\mathcal{M}\left(\mathbf{T}^{d}\right)$ be the dual space of $C\left(\mathbf{T}^{d}\right) . \mathcal{M}\left(\mathbf{T}^{d}\right)$ is the set of all signed measures on \mathbf{T}^{d} with finite total variation, and denote the norm derived by it, the total variation, by $\|\cdot\|$. We also think of the weak*-topology in $\mathcal{M}\left(\mathbf{T}^{d}\right)$. Let $\wp\left(\mathbf{T}^{d}\right)$ and $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$ be the set of all probability measures on \mathbf{T}^{d} and the set of all signed measures on \mathbf{T}^{d} with total measure 0 , respectively. Let $\operatorname{dist}(\cdot, \cdot)$ denote the Prohorov metric on $\wp(\mathbf{T})$. Note that the topology induced by the Prohorov metric and the weak*-topology coincide.

The path space $\Omega=C\left([0, \infty), \mathbf{T}^{d}\right)$ is the set of continuous functions $\omega:[0, \infty) \rightarrow \mathbf{T}^{d}$. Let $X_{t}(\omega)=\omega(t), t \geq 0$, let $\mathcal{F}_{t}=\sigma\{\omega(s) ; s \leq t\}$, and let $\mathcal{F}=\vee_{t} \mathcal{F}_{t}$.

Let $L_{0}=\frac{1}{2} \Delta+b_{0} \cdot \nabla$, where $b_{0}: \mathbf{T}^{d} \rightarrow \mathbf{R}^{d}$ is a C^{∞} function. Let $\left\{P_{x}\right\}_{x \in \mathbf{T}^{d}}$ be the family of probability measures on Ω of the martingale

[^0]problem L_{0}, i.e., for any $f \in C^{\infty}\left(\mathbf{T}^{d} ; \mathbf{R}\right)$,
(1) $f\left(\omega_{t}\right)-f\left(\omega_{0}\right)-\int_{0}^{t} L_{0} f\left(\omega_{s}\right) d s$ is a $\left(\Omega,\left\{\mathcal{F}_{t}\right\}, P_{x}\right)$ martingale,
(2) $\quad P_{x}\left(\omega_{0}=x\right)=1$.

Denote the corresponding semigroup of linear operators in $C\left(\mathbf{T}^{d}\right)$ by $\left\{P_{t}\right\}_{t \geq 0} .\left\{P_{x}\right\}$ has a unique invariant probability measure μ, which is absolutely continuous with respect to the Riemann volume on \mathbf{T}^{d}, and $\frac{d \mu}{d x}$ is a strictly positive smooth function. For any $T>0$, the distribution law of $\left\{X_{T-t}(\omega)\right\}_{0 \leq t \leq T}$ under $P_{\mu}(d \omega)$ is also a diffusion process. The infinitesimal generator of it is the adjoint operator of L_{0} in $L^{2}(d \mu)$, and can be written as $L_{0}^{* \mu}=\frac{1}{2} \Delta+b_{0}^{*} \cdot \nabla$ for some $b_{0}^{*} \in C^{\infty}\left(\mathbf{T}^{d} ; \mathbf{R}^{d}\right)$. Actually, $b_{0}^{*}=\nabla\left(\log \frac{d \mu}{d x}\right)-b_{0}$.

Also, for each $t>0$, there exist transition probability densities $\left(p_{t}(x, y)\right)_{x, y \in \mathbf{T}^{d}}$ of P_{t} with respect to μ, which satisfy $p_{t} \in C^{\infty}\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$ and p_{t} is strictly positive.

Let $\Phi: \mathcal{M}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ be a bounded and three times continuously Fréchet differentiable function satisfying the following:

A 1. There exist functions $\Phi^{(1)} \in C\left(\wp\left(\mathbf{T}^{d}\right) \times \mathbf{T}^{d}, \mathbf{R}\right), \Phi^{(2)} \in C\left(\wp\left(\mathbf{T}^{d}\right) \times\right.$ $\left.\mathbf{T}^{d} \times \mathbf{T}^{d}, \mathbf{R}\right)$, and $\Phi^{(3)} \in C\left(\wp\left(\mathbf{T}^{d}\right) \times\left(\mathbf{T}^{d}\right)^{3}, \mathbf{R}\right)$, such that for any $\nu \in \wp\left(\mathbf{T}^{d}\right)$ and any $R_{1}, R_{2}, R_{3} \in \mathcal{M}\left(\mathbf{T}^{d}\right)$,

$$
\begin{aligned}
& D \Phi(\nu)\left(R_{1}\right)=\int_{\mathbf{T}^{d}} \Phi^{(1)}(\nu, x) R_{1}(d x) \\
& D^{2} \Phi(\nu)\left(R_{1}, R_{2}\right)=\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} \Phi^{(2)}(\nu, x, y) R_{1}(d x) R_{2}(d y) \\
& D^{3} \Phi(\nu)\left(R_{1}, R_{2}, R_{3}\right)=\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} \Phi^{(3)}(\nu, x, y, z) R_{1}(d x) R_{2}(d y) R_{3}(d z)
\end{aligned}
$$

Then by Donsker-Varadhan [4], we have (c.f. Lemma 4.4)

$$
\frac{1}{T} \log E^{P_{x}}\left[\left.\exp \left(T \Phi\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right) \right\rvert\, X_{T}=y\right] \rightarrow \lambda, \quad T \rightarrow \infty
$$

for every $x, y \in \mathbf{T}^{d}$, where $\lambda=\sup \left\{\Phi(\nu)-I(\nu) ; \nu \in \wp\left(\mathbf{T}^{d}\right)\right\}$ and I is given by

$$
I(\nu)=\sup \left\{-\int_{\mathbf{T}^{d}} \frac{L_{0} u}{u} d \nu ; u \in C^{\infty}, u \geq 1\right\}, \quad \nu \in \wp\left(\mathbf{T}^{d}\right)
$$

The aim of this paper is to give a more precise evaluation of

$$
Z_{T}^{x, y} \equiv E^{P_{x}}\left[\left.\exp \left(T \Phi\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right) \right\rvert\, X_{T}=y\right]
$$

up to order $1+o(1)$ under some assumptions given below.
Define

$$
K=\left\{\nu \in \wp\left(\mathbf{T}^{d}\right): \Phi(\nu)-I(\nu)=\lambda\right\} .
$$

We can easily see that K is not empty and is compact in $\wp\left(\mathbf{T}^{d}\right)$. In this paper, we assume that

A 2. There exists only one element in K, say ν_{0}, that is, $K=\left\{\nu_{0}\right\}$.
Now, let us construct a diffusion which has ν_{0} as its invariant measure following Bolthausen-Deuschel-Tamura [2] and Bolthausen-Deuschel-Schmock [1]. For any $\varphi \in C\left(\mathbf{T}^{d}\right)$, let

$$
P_{t}^{\varphi}(x, A)=E^{P_{x}}\left[\exp \left(\int_{0}^{t} \varphi\left(X_{s}\right) d s\right), X_{t} \in A\right], \quad A \in \mathcal{B}\left(\mathbf{T}^{d}\right)
$$

and

$$
\Lambda(\varphi)=\sup \left\{\int_{\mathbf{T}^{d}} \varphi d \nu-I(\nu), \nu \in \wp\left(\mathbf{T}^{d}\right)\right\}
$$

Then P_{t}^{φ} has strictly positive right- and left-hand principal eigenfunctions h^{φ} and $l^{\varphi} \in C\left(\mathbf{T}^{d}\right)$, i.e.,

$$
\begin{array}{cc}
P_{t}^{\varphi} h^{\varphi}=\exp (\Lambda(\varphi) t) h^{\varphi} & t \geq 0 \\
\int_{\mathbf{T}^{d}} \mu(d y) l^{\varphi}(y) P_{t}^{\varphi}(y, d z)=\exp (\Lambda(\varphi) t) l^{\varphi}(z) \mu(d z) &
\end{array}
$$

They are unique if they are appropriately normalized by

$$
\int_{\mathbf{T}^{d}}\left(h^{\varphi}\right)^{2} d \mu=1, \quad d \pi^{\varphi} \equiv l^{\varphi} h^{\varphi} d \mu \in \wp\left(\mathbf{T}^{d}\right)
$$

Proposition 1.1. π^{φ} is the stationary measure of the diffusion process whose transition probability $Q_{t}^{\varphi}(x, d y)$ is given by

$$
Q_{t}^{\varphi}(x, d y) \equiv e^{-\Lambda(\varphi) t} \frac{1}{h^{\varphi}(x)} P_{t}^{\varphi}(x, d y) h^{\varphi}(y)
$$

Let

$$
\begin{aligned}
\phi^{\nu_{0}}(x) & =D \Phi\left(\nu_{0}\right)\left(\delta_{x}-\nu_{0}\right)+\Phi\left(\nu_{0}\right) \\
& =\Phi^{(1)}\left(\nu_{0}, x\right)-D \Phi\left(\nu_{0}\right)\left(\nu_{0}\right)+\Phi\left(\nu_{0}\right), \quad x \in \mathbf{T}^{d}
\end{aligned}
$$

Then we have $\lambda=\Lambda\left(\phi^{\nu_{0}}\right)$. Denote $h^{\phi^{\nu_{0}}}$ by h, and $l^{\phi^{\nu_{0}}}$ by l.
Let $\left\{Q_{x}\right\}_{x \in \mathbf{T}^{d}}$ be the probability measures given by

$$
\left.\frac{d Q_{x}}{d P_{x}}(\omega)\right|_{\mathcal{F}_{t}}=e^{-\lambda t} \frac{h\left(X_{t}(\omega)\right)}{h(x)} \exp \left(\int_{0}^{t} \phi^{\nu_{0}}\left(X_{s}(\omega)\right) d s\right)
$$

$\left\{Q_{x}\right\}$ is a diffusion process. Denote the corresponding semigroup of linear operators in $C\left(\mathbf{T}^{d}\right)$ by $\left\{Q_{t}\right\}$, and the infinitesimal generator of $\left\{Q_{t}\right\}$ by L. Actually, $h \in C^{1}\left(\mathbf{T}^{d}\right)$, and $L=L_{0}+\frac{\nabla h}{h} \cdot \nabla$. (c.f. Proposition 2.3). As has been shown in Bolthausen-Deushel-Tamura [2], $\pi^{\phi^{\nu_{0}}}=\nu_{0}$. So by proposition 1.1, we have

Lemma 1.2. $\left\{Q_{x}\right\}_{x \in \mathbf{T}^{d}}$ has ν_{0} as its invariant measure.
As a result, ν_{0} is absoluately continuous with respect to μ, and $\frac{d \nu_{0}}{d \mu}>0$ is continuous, also, $\operatorname{supp} \nu_{0}=\mathbf{T}^{d}$.

Now, for any $t>0$ and any $x \in \mathbf{T}^{d}$, let $q_{t}(x, \cdot)$ be the density function of $Q_{t}(x, \cdot)$ with respect to ν_{0} with $q_{t} \in C^{+}\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$. We will write it as $q(t, x, y)$ sometimes, too. By Boltuausen-Deuschel-Tamura [2] and Bolthausen-Deuschel-Schmock [1], $\sup _{x, y \in \mathbf{T}^{d}}\left|q_{t}(x, y)-1\right| \rightarrow 0$ exponentially fast as $t \rightarrow \infty$. So we can define

$$
\begin{equation*}
g(x, y)=\int_{0}^{\infty}\left(q_{t}(x, y)-1\right) d t \tag{1.1}
\end{equation*}
$$

Define $G: L^{2}\left(d \nu_{0}\right) \rightarrow L^{2}\left(d \nu_{0}\right)$ by

$$
G f(x)=\int_{\mathbf{T}^{d}} g(x, y) f(y) \nu_{0}(d y)=\int_{0}^{\infty}\left(Q_{t} f(x)-\int_{\mathbf{T}^{d}} f d \nu_{0}\right) d t
$$

Let G^{*} be the adjoint operator of it in $L^{2}\left(d \nu_{0}\right)$, i.e., $G^{*} f(x)=$ $\int_{\mathbf{T}^{d}} g(y, x) f(y) \nu_{0}(d y)$, and let $\bar{G}=G+G^{*}$.

In this paper, we will need the following operators: For $f_{1}, f_{2} \in L^{2}\left(d \nu_{0}\right)$, let $(\bar{G} \otimes \bar{G})\left(f_{1} \otimes f_{2}\right)(x, y)=\left(\bar{G} f_{1}\right)(x)\left(\bar{G} f_{2}\right)(y)$, and denote the continuous
linear expansion of it on $L^{2}\left(d \nu_{0}\right) \otimes L^{2}\left(d \nu_{0}\right)$ as $\bar{G} \otimes \bar{G}$, too. Define $\bar{G}_{x} \equiv \bar{G} \otimes I$ and $\bar{G}_{y} \equiv I \otimes \bar{G}$ in the same way, where I means the identify operator on $L^{2}\left(d \nu_{0}\right)$. (So $\bar{G}_{x} \bar{G}_{y}=\bar{G} \otimes \bar{G}$.) $G_{x}, G_{x}^{*}, G_{y}, G_{y}^{*}$ are defined similarly.

Let $\Gamma\left(f_{1}, f_{2}\right) \equiv \int_{\mathbf{T}^{d}} f_{1} \bar{G} f_{2} d \nu_{0}, f_{1}, f_{2} \in C\left(\mathbf{T}^{d}\right)$. Then it is easy to see (c.f. Proposition 2.5 below) that $\Gamma(f, f)=\int_{\mathbf{T}^{d}}\|\nabla(G f)(x)\|^{2} \nu_{0}(d x) \geq 0$, so $\Gamma(f, f)=0$ if and only if $f \equiv$ constant. Let us define a equivalent relation \sim by $f \sim g \Leftrightarrow f-g \equiv$ constant, and let $\widetilde{C}\left(\mathbf{T}^{d}\right) \equiv C\left(\mathbf{T}^{d}\right) / \sim$. Then Γ is a inner product on $\widetilde{C}\left(\mathbf{T}^{d}\right)$. Let $H \equiv\left({\widetilde{C}\left(\mathbf{T}^{d}\right)}^{\Gamma}\right)^{*}$, where ${\widetilde{C}\left(\mathbf{T}^{d}\right)}^{\Gamma}$ means the completion of $\widetilde{C}\left(\mathbf{T}^{d}\right)$ with respect to Γ. Since $\widetilde{C}\left(\mathbf{T}^{d}\right)^{*}$ is identified with $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right), H$ can be regarded as a dense subset of $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$, (see Proposition 2.6). H is a Hilbert space with norm $\left\|\bar{G} f d \nu_{0}\right\|_{H}^{2} \equiv \int_{\mathbf{T}^{d}} f \bar{G} f d \nu_{0}$.

Also, as has been shown in Bolthausen-Deuschel-Tamura [2], for any $f \in C\left(\mathbf{T}^{d}\right)$,

$$
(f, \bar{G} f)_{L^{2}\left(d \nu_{0}\right)} \geq D^{2} \Phi\left(\nu_{0}\right)\left(\bar{G} f d \nu_{0}, \bar{G} f d \nu_{0}\right)
$$

which means that all of the eigenvalues of $\left.D^{2} \Phi\left(\nu_{0}\right)\right|_{H \times H}$ are less than or equal to 1 . In addition, we assume the following

A 3. All of the eigenvalues of $\left.D^{2} \Phi\left(\nu_{0}\right)\right|_{H \times H}$ are smaller than 1 .
A 4. For any $\delta>0$, there exist a constant $\varepsilon>0$ and a symmetric continuous function $K_{\delta}: \mathbf{T}^{d} \times \mathbf{T}^{d} \rightarrow \mathbf{R}$, such that the function \widetilde{K}_{δ} given by $\widetilde{K}_{\delta}\left(R_{1}, R_{2}\right) \equiv \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} K_{\delta}(x, y) R_{1}(d x) R_{2}(d y), R_{1}, R_{2} \in \mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$, satisfies

$$
\left.\left|\left|\widetilde{K}_{\delta}\right|_{H \times H}\right|\right|_{H . S .} \leq \delta,
$$

and
$D^{3} \Phi(R)\left(\nu-\nu_{0}, \nu-\nu_{0}, \nu-\nu_{0}\right) \leq \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} K_{\delta}(x, y)\left(\nu-\nu_{0}\right)(d x)\left(\nu-\nu_{0}\right)(d y)$
for any $R \in \wp\left(\mathbf{T}^{d}\right)$ with $\operatorname{dist}\left(R, \nu_{0}\right)<\varepsilon$ and any $\nu \in \wp\left(\mathbf{T}^{d}\right)$ with $\operatorname{dist}\left(\nu, \nu_{0}\right)<\varepsilon$.

Our main result is the following
Theorem 1.3. Under the assumptions above, for any $x, y \in \mathbf{T}^{d}$,

$$
\begin{aligned}
\lim _{T \rightarrow \infty} e^{-T \lambda} Z_{T}^{x, y}=\frac{h(x)}{h(y)} \cdot \exp \left\{\frac{1}{2} \int_{\mathbf{T}^{d}}\right. & \left.\left.\bar{G}_{x} \Phi^{(2)}\left(\nu_{0}, \cdot, \cdot\right)\right|_{(u, u)} \nu_{0}(d u)\right\} \\
& \times \operatorname{det}_{2}\left(I_{H}-D^{2} \Phi\left(\nu_{0}\right)\right)^{-1 / 2}
\end{aligned}
$$

REmark 1. The fact that $\left.D^{2} \Phi\left(\nu_{0}\right)\right|_{H \times H}$ is a Hilbert-Schmidt type function, which enssures that the factor $\operatorname{det}_{2}\left(I_{H}-D^{2} \Phi\left(\nu_{0}\right)\right)$ above is welldefined, can be seen from the Proposition 2.8.

2. Preparations

In this section, we will show in the first half an extended Ito's formula for $G f$, where f is a continuous function. Also, we will give the proofs of the several facts claimed in section 1.

In general, consider a operator L given by $L \equiv \frac{1}{2} \Delta+b \cdot \nabla$, where $b \in$ $C\left(\mathbf{T}^{d} ; \mathbf{R}^{d}\right)$. For each $x \in \mathbf{T}^{d}$, let P_{x}^{L} denote the probability law of the diffusion process generated by L starting at x. Write the invariant measure of $\left\{P_{x}^{L}\right\}$ as μ_{L}. Let $\left\{P_{t}^{L}\right\}_{t \geq 0}$ denote the corresponding semigroup of linear operators in $C\left(\mathbf{T}^{d}\right)$. Also, let G_{L} be the corresponding Green operator, i.e., $G_{L} f \equiv \int_{0}^{\infty}\left(P_{t}^{L} f-\int_{\mathbf{T}^{d}} f d \mu_{L}\right) d t, f \in C\left(\mathbf{T}^{d}\right)$. Let $\|\cdot\|_{o p}$ denote the operator norm in $C\left(\mathbf{T}^{d}\right) \rightarrow C\left(\mathbf{T}^{d}\right)$. Then we have the following

Proposition 2.1. $\quad P_{t}^{L}$ is a compact operator on $C\left(\mathbf{T}^{d}\right)$ for any $t>0$.

Proof. Let $L_{B} \equiv \frac{1}{2} \Delta$ and let P_{t}^{0} be the semigroup of linear operators on $C\left(\mathbf{T}^{d}\right)$ corresponding to it. Then P_{t}^{0} maps $C\left(\mathbf{T}^{d}\right)$ to $C^{2}\left(\mathbf{T}^{d}\right)$, and $\left\|\nabla P_{t}^{0}\right\|_{o p} \leq \frac{2 \sqrt{d}}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{t}}$ for any $t>0$. So P_{t}^{0} is a compact operator for any $t>0$. Also,

$$
P_{t}^{L}=P_{t}^{0}+\int_{0}^{t} P_{s}^{L} b \cdot \nabla P_{t-s}^{0} d s
$$

where $b \cdot \nabla P_{s}^{0}$ is compact for any $s>0$, Thus, P_{t}^{L} is compact for any $t>0$.

By Proposition 2.1, every number in the spectrum of P_{t}^{L} except 0 is a eigenvalue of it. Let $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ denote the Sobolev space, i.e., $W_{p}^{2}\left(\mathbf{T}^{d}\right)=$ $\left\{(1-\Delta)^{-1} f ; f \in L^{p}\right\}$. Then we have the following

Lemma 2.2. G_{L} maps $C\left(\mathbf{T}^{d}\right)$ into $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ for any $p \in[1, \infty)$, and it is a bounded linear map. Also, for any $f \in C\left(\mathbf{T}^{d}\right)$ with $\int f d \mu_{L}=0$, $u \equiv-G_{L} f$ is a solution of the equation $L u=f$ in the sense of generalized functions. Also, if $v \in W_{p}^{2}\left(\mathbf{T}^{d}\right), \int_{\mathbf{T}^{d}} v d \mu_{L}=0$, and $L v=f$ in L^{p} for some
$p>1$, then $u=v$ in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$. Moreover, let $\left\{X_{t}\right\}$ be the diffusion process generated by L, and let $B_{t}=X_{t}-X_{0}-\int_{0}^{T} b\left(X_{s}\right) d s$. Then $\left\{B_{t}\right\}_{t \geq 0}$ is a Brownian motion, and

$$
\begin{equation*}
u\left(X_{t}\right)=u\left(X_{0}\right)+\int_{0}^{t} \nabla u\left(X_{s}\right) d B_{s}+\int_{0}^{t} f\left(X_{s}\right) d s \tag{2.1}
\end{equation*}
$$

Proof. The fact that $\left\{B_{t}\right\}_{t \geq 0}$ is a Brownian motion is trival since by the definition of $\left\{X_{t}\right\}, g\left(X_{t}\right)-g\left(X_{0}\right)-\int_{0}^{t}(L g)\left(X_{s}\right) d s$ is a \mathcal{F}_{t}-martingale for any $g \in C^{2}\left(\mathbf{T}^{d}\right)$.

Since $b \in C\left(\mathbf{T}^{d} ; \mathbf{R}^{d}\right)$ and $f \in C\left(\mathbf{T}^{d}\right)$, we can find $b_{n} \in C^{\infty}\left(\mathbf{T}^{d} ; \mathbf{R}^{d}\right)$ and $f_{n} \in C^{\infty}\left(\mathbf{T}^{d}\right)$, such that $b_{n} \rightarrow b \in C\left(\mathbf{T}^{d} ; \mathbf{R}^{d}\right)$ and $f_{n} \rightarrow f$ in $C\left(\mathbf{T}^{d}\right)$ as $n \rightarrow \infty$, and $\int f_{n} d \mu_{L}=0$. Let $L_{n} \equiv \frac{1}{2} \Delta+b_{n} \cdot \nabla$, and write the invariant probability measure, the semigroup of linear operators on $C\left(\mathbf{T}^{d}\right)$ and the Green operator corresponding to it as μ_{n}, P_{t}^{n} and G_{n}, respectively. Also, let $u_{n} \equiv-G_{n} f_{n}$. Then $u_{n} \in C^{\infty}\left(\mathbf{T}^{d}\right)$, and $L_{n} u_{n}=f_{n}-\int_{\mathbf{T}^{d}} f_{n} d \mu_{n}$. Therefore, by Ito's formula,

$$
\begin{equation*}
u_{n}\left(X_{t}\right)=u_{n}\left(X_{0}\right)+\int_{0}^{t} \nabla u_{n}\left(X_{s}\right) d B_{s}+\int_{0}^{t} L u_{n}\left(X_{s}\right) d s \tag{2.2}
\end{equation*}
$$

By using Cameron-Martin-Maruyama-Girsanov formula, we get from the definition of P_{t}^{n} and P_{t}^{L} that $P_{t}^{n} \rightarrow P_{t}^{L}$ in the operator norm as $n \rightarrow \infty$ for any $t>0$. Therefore, by Perron-Frobenious argument, it is not diffcult that $u_{n} \rightarrow u$ in $C\left(\mathbf{T}^{d}\right)$, and $\langle\cdot\rangle_{\mu_{L_{n}}} \rightarrow\langle\cdot\rangle_{\mu_{L}}$ as linear operators on $C\left(\mathbf{T}^{d}\right)$, as $n \rightarrow \infty$.

We show that $u_{n} \rightarrow u$ in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$, too. We first show that $u_{n}, n \in \mathbf{N}$, is bounded in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$. From the definition of $u_{n}, \Delta u_{n}=2\left(f_{n}-b_{n} \cdot \nabla u_{n}\right)$. So, from the boundedness of b_{n} in $C\left(\mathbf{T}^{d}\right)$ for $n \in \mathbf{N}$, there exists a constant $C_{3}>0$, such that

$$
\left\|u_{n}\right\|_{W_{p}^{2}} \leq C_{3}\left(\left\|f_{n}\right\|_{L_{p}}+\left\|u_{n}\right\|_{L_{p}}+\left\|\nabla u_{n}\right\|_{L_{p}}\right) .
$$

By Friedman [5, Theorem 1.8.1], for any $\varepsilon>0$, there exists a $C_{(\varepsilon)}>0$, such that

$$
\|g\|_{W_{p}^{1}} \leq \varepsilon\|g\|_{W_{p}^{2}}+C_{(\varepsilon)}\|g\|_{L_{p}}, \quad \text { for all } g \in W_{p}^{2}
$$

So we get

$$
\begin{equation*}
\left(1-\varepsilon C_{3}\right)\left\|u_{n}\right\|_{W_{p}^{2}} \leq C_{3}\left(1+C_{(\varepsilon)}\right)\left(\left\|f_{n}\right\|_{L_{p}}+\left\|u_{n}\right\|_{L_{p}}\right), \quad n \geq 1 \tag{2.3}
\end{equation*}
$$

for any $\varepsilon>0$. Take $\varepsilon>0$ small enough such that $1-\varepsilon C_{3}>0$, and we see that $\sup _{n \in \mathbf{N}}\left\|u_{n}\right\|_{W_{p}^{2}}<\infty$. Now, using the boundedness of u_{n} in W_{p}^{2}, in the same way, we can show that $u_{n}, n \in \mathbf{N}$, is a Cauchy sequence in W_{p}^{2}. Therefore, from the convergence on u_{n} to u in $C\left(\mathbf{T}^{d}\right)$ and the completeness of $W_{p}^{2}\left(\mathbf{T}^{d}\right)$, we see that $u \in W_{p}^{2}\left(\mathbf{T}^{d}\right)$ for any $p>1$, and $u_{n} \rightarrow u$ in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ as $n \rightarrow \infty$.

Now, take $n \rightarrow \infty$ in (2.2), since $L u_{n}=f_{n}-\int f_{n} d \mu_{n}+\left(b-b_{n}\right) \cdot \nabla u_{n} \rightarrow f$ in $C\left(\mathbf{T}^{d}\right)$ as $n \rightarrow \infty$, we get (2.1).

The linearity of $G_{L}: C\left(\mathbf{T}^{d}\right) \rightarrow W_{p}^{2}\left(\mathbf{T}^{d}\right)$ is trival. Also, from (2.3), there exists a constant $C>0$ independent to f, such that

$$
\begin{equation*}
\|u\|_{W_{p}^{2}} \leq C_{5}\left(\|f\|_{L_{p}}+\|u\|_{L_{p}}\right) \tag{2.4}
\end{equation*}
$$

So the boundedness of $G_{L}: C\left(\mathbf{T}^{d}\right) \rightarrow W_{p}^{2}\left(\mathbf{T}^{d}\right)$ follows from that of G_{L} : $C\left(\mathbf{T}^{d}\right) \rightarrow C\left(\mathbf{T}^{d}\right)$.

For the uniqueness of the solution of the equation $L u=f$ in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ s.t. $\int_{\mathbf{T}^{d}} u d \mu_{L}=0$, let $v \in W_{p}^{2}\left(\mathbf{T}^{d}\right)$ satisfies $L v=f$ and $\int_{\mathbf{T}^{d}} v d \mu_{L}=0$, we show that $v=u\left(=-G_{L} f\right)$ in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$. Since $v \in W_{p}^{2}\left(\mathbf{T}^{d}\right)$, there exist $v_{n} \in C^{\infty}\left(\mathbf{T}^{d}\right)$ with $\int_{\mathbf{T}^{d}} v_{n} d \mu_{L}=0$, such that $v_{n} \rightarrow v$ in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$. Let $g_{n}=L v_{n}$, then $v_{n}=\int_{\mathbf{T}^{d}} v_{n} d \mu_{L}-G_{L} g_{n}=-G_{L} g_{n}$. Therefore, from the completeness of W_{p}^{2}, we only need to show that $G_{L} g_{n} \rightarrow G_{L} f$ in L^{p}. But $g_{n} \rightarrow f$ in L^{p} from the definition, so this is easy to see from the definition of G and the fact that $\sup _{x, y \in \mathbf{T}^{d}}\left|\frac{P_{t}^{L}(x, d y)}{\mu_{L}(d y)}\right| \rightarrow 0$ exponentially as $t \rightarrow \infty$.

Now, let us come back to our situation described in section 1, i.e., let L be the infinitesimal generator corresponding to $\left\{Q_{x}\right\}$. Let $L^{* \nu_{0}}$ denote the adjoint operator of L in $L^{2}\left(d \nu_{0}\right) . L^{* \nu_{0}}$ is the infinitesimal generator of the diffusion process $\left\{X_{T-t}(\omega)\right\}_{0 \leq t \leq T}$ under $Q_{\nu_{0}}(d \omega)$ for any $T>0$. Note that the G^{*} defined in section 1 is nothing but the Green operator with respect to $L^{* \nu_{0}}$. We have the following

Proposition 2.3. $h \in C^{1}\left(\mathbf{T}^{d}\right)$, and $L=L_{0}+\frac{\nabla h}{h} \cdot \nabla$. Also, $\ell \in$ $C^{1}\left(\mathbf{T}^{d}\right)$, and $L^{* \nu_{0}}=L_{0}^{* \mu}+\frac{\nabla \ell}{\ell} \cdot \nabla$.

Proof. As the proof is the same, we only give the proof of the first assertion. By the definition of $h, h=h^{\phi^{\nu_{0}}}$, (and $\Lambda\left(\phi^{\nu_{0}}\right)=\lambda$), for any $x \in \mathbf{T}^{d}$,

$$
E^{P_{x}}\left[\exp \left(\int_{0}^{t} \phi^{\nu_{0}}\left(X_{s}\right) d s\right) h\left(X_{t}\right)\right]=e^{\lambda t} h(x)
$$

So we have $\lim _{t \rightarrow 0} \frac{1}{t}\left(P_{t} h-h\right)=\lambda h-\phi^{\nu_{0}}(x) h$ in $C\left(\mathbf{T}^{d}\right)$. Acting G_{0} on the both side, since $G_{0}\left(P_{t} h-h\right)=t \int h d \mu-\int_{0}^{t} P_{s} h d s$, from the continuity of G_{0} we get that

$$
h-\int_{\mathbf{T}^{d}} h d \mu=G_{0}\left(\phi^{\nu_{0}} h-\lambda h\right) .
$$

Therefore, by Lemma 2.2 applied to $L_{0}, h \in W_{p}^{2}$ for any $p>1$, which implies $h \in C^{1}\left(\mathbf{T}^{d}\right)$, and

$$
h\left(X_{t}\right)=h\left(X_{0}\right)+\int_{0}^{t} \nabla h\left(X_{s}\right) d B_{s}+\int_{0}^{t}\left(\lambda h-\phi^{\nu_{0}} h\right)\left(X_{s}\right) d s
$$

Therefore, by Ito's formula, we have

$$
\begin{aligned}
\log h\left(X_{t}\right)=\log h\left(X_{0}\right) & +\int_{0}^{t} \frac{\nabla h}{h}\left(X_{s}\right) d B_{s} \\
& +\lambda t-\int_{0}^{t} \phi^{\nu_{0}}\left(X_{s}\right) d s-\frac{1}{2} \int_{0}^{t}\left|\frac{\nabla h}{h}\left(X_{s}\right)\right|^{2} d s
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& e^{-\lambda t} \frac{h\left(X_{t}\right)}{h\left(X_{0}\right)} \exp \left(\int_{0}^{t} \phi^{\nu_{0}}\left(X_{s}\right) d s\right) \\
& \quad=\exp \left(\int_{0}^{t} \frac{\nabla h}{h}\left(X_{s}\right) d B_{s}-\frac{1}{2} \int_{0}^{t}\left|\frac{\nabla h}{h}\left(X_{s}\right)\right|^{2} d s\right)
\end{aligned}
$$

The left hand side above is nothing but $\left.\frac{d Q_{X_{0}}}{d P_{X_{0}}}(\omega)\right|_{\mathcal{F}_{t}}$. This gives our assertion.

From Lemma 2.2 and Proposition 2.3, we have the following
Corollary 2.4. G maps $C\left(\mathbf{T}^{d}\right)$ into $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ for any $p>1$, and it is a bounded linear map. Also, for any $f \in C\left(\mathbf{T}^{d}\right), u \equiv-G f$ is the unique solution of the equation $L u=f$ in the sense of generalized functions. Moreover, let $\left\{X_{t}\right\}$ be the diffusion process generated by L, and let $B_{t} \equiv$ $X_{t}-X_{0}-\int_{0}^{t}\left(b_{0}+\frac{\nabla h}{h}\right)\left(X_{s}\right) d s, t \geq 0$, then $\left\{B_{t}\right\}_{t \geq 0}$ is a Brownian motion, and

$$
\begin{equation*}
u\left(X_{t}\right)=u\left(X_{0}\right)+\int_{0}^{t} \nabla u\left(X_{s}\right) d B_{s}+\int_{0}^{t} f\left(X_{s}\right) d s, \quad \text { a.s. } \tag{2.5}
\end{equation*}
$$

Proposition 2.5. For any $f \in C\left(\mathbf{T}^{d}\right)$,

$$
\Gamma(f, f)=\int_{\mathbf{T}^{d}}\|\nabla(G f)\|^{2} d \nu_{0}=\int_{\mathbf{T}^{d}}\left\|\nabla\left(G^{*} f\right)\right\|^{2} d \nu_{0}
$$

Proof. We only give the proof of the first equality. The second is the same.

First, since ν_{0} is $\left\{Q_{t}\right\}$ invariant, and L is the infinitesimal generator of it, we have that $\int_{\mathbf{T}^{d}} L g d \nu_{0}=0$ for any $g \in C^{2}\left(\mathbf{T}^{d}\right)$. Also, by Proposition 2.3 , for any $g \in C^{2}\left(\mathbf{T}^{d}\right)$,

$$
g L g=\frac{1}{2} L\left(g^{2}\right)-\frac{1}{2}\|\nabla g\|^{2}
$$

so

$$
-2 \int_{\mathbf{T}^{d}} L g \cdot g d \nu_{0}=\int_{\mathbf{T}^{d}}\|\nabla g\|^{2} d \nu_{0}
$$

for any $g \in C^{2}\left(\mathbf{T}^{d}\right)$. So the same is true for any $g \in \cap_{p>1} W_{p}^{2}\left(\mathbf{T}^{d}\right)$ (actually, with some $p>1$ large enough, for any $g \in W_{p}^{2}\left(\mathbf{T}^{d}\right)$).

Now, for any $f \in C\left(\mathbf{T}^{d}\right)$, let $g \equiv G f$. Then by Corollary $2.4, g \in$ $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ for any $p>1$. Also, $f=-L g+a$ as generalized functions, where $a=\int_{\mathbf{T}^{d}} f d \nu_{0}$, and $\int_{\mathbf{T}^{d}} g d \nu_{0}=0$. Therefore,

$$
\begin{aligned}
\int_{\mathbf{T}^{d}} f \bar{G} f d \nu_{0} & =2 \int_{\mathbf{T}^{d}} f G f d \nu_{0} \\
& =-2 \int_{\mathbf{T}^{d}} L g \cdot g d \nu_{0}+2 a \int_{\mathbf{T}^{d}} g d \nu_{0} \\
& =\int_{\mathbf{T}^{d}}\|\nabla g\|^{2} d \nu_{0}=\int_{\mathbf{T}^{d}}\|\nabla G f\|^{2} d \nu_{0}
\end{aligned}
$$

Proposition 2.6. H can be regarded as a subset of $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$, which is dense in $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$ with respect to the weak ${ }^{*}$-topology.

Proof. The fact that $H \subset \mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$ is trival since $H=\left({\widetilde{C}\left(\mathbf{T}^{d}\right)}^{\Gamma}\right)^{*}$ and $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right)=\widetilde{C}\left(\mathbf{T}^{d}\right)^{*}$. So to finish the proof, we only need to show that $\mathcal{M}_{0}\left(\mathbf{T}^{d}\right) \subset \bar{H}^{\text {weak* }}$. If not, there will exist a $\nu \in \mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$ satisfying $\nu \notin \bar{H}^{\text {weak* }}$. For the sake of simplicity, we denote the equivalent class which contains f by f, too. So there exists a function $f \in C\left(\mathbf{T}^{d}\right)$, such that
$(f, \nu)=1$, and $(f, h)=0$ for any $h \in H$. So $f=0 \in H^{*}$, which means $\int_{\mathbf{T}^{d}} f \bar{G} f d \nu_{0}=0$. Therefore $f \equiv$ constant, and so $\int_{\mathbf{T}^{d}} f d \nu=0$, which makes a contradiction.

Proposition 2.7. For any symmetric continuous function $V: \mathbf{T}^{d} \times$ $\mathbf{T}^{d} \rightarrow \mathbf{R}$, let $U_{1}(x, y) \equiv-G_{x} V(x, y)$, and let $U \equiv-G_{y}^{*} U_{1}$, then $U \in$ $C^{1}\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right), \nabla_{x} U(x, y)$ is continuously differentiable with respect to y, and $\nabla_{y} \nabla_{x} U(x, y) \in C\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$. Also,

$$
\begin{align*}
& \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} V(x, y) \bar{G}_{x} \bar{G}_{y} V(x, y) \nu_{0}(d x) \nu_{0}(d y) \tag{2.6}\\
& \quad=\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}}\left\|\nabla_{x} \nabla_{y} U(x, y)\right\|^{2} \nu_{0}(d x) \nu_{0}(d y) .
\end{align*}
$$

Proof. From the compactness of \mathbf{T}^{d} and the continuity of V, V is uniformly continuous, and the map $\mathbf{T}^{d} \rightarrow C\left(\mathbf{T}^{d}\right), y \mapsto V(\cdot, y)$, is continuous.
$U_{1}(x, y)=-G_{x} V(x, y)$, so by Corollary $2.4, U_{1}(\cdot, y) \in C^{1}\left(\mathbf{T}^{d}\right)$ for any $y \in \mathbf{T}^{d}$, and $y \mapsto \nabla_{x} U_{1}(\cdot, y) \in C\left(\mathbf{T}^{d}\right)$ is continuous.

Now, from the definition of G^{*}, we see that G^{*} is continuous in $C\left(\mathbf{T}^{d}\right)$. So $\nabla_{x} U(x, y)=-\nabla_{x}\left(G_{y}^{*} U_{1}(x, y)\right)=-G_{y}^{*}\left(\nabla_{x} U_{1}(x, y)\right)$. Therefore, $\nabla_{x} U(x, \cdot) \in C^{1}\left(\mathbf{T}^{d}\right)$ for any $x \in \mathbf{T}^{d}$, and the function $x \mapsto \nabla_{y} \nabla_{x} U(x, \cdot) \in$ $C\left(\mathbf{T}^{d}\right)$ is continuous. i.e., $\nabla_{y} \nabla_{x} U(x, y) \in C\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$.

We show (2.6) now. First, if V can be expressed as $V(x, y)=$ $\sum_{k=1}^{n} \varphi_{k}(x) \psi_{k}(y)$ for some $n \in \mathbf{N}$ and some $\varphi_{k}, \psi_{k} \in C\left(\mathbf{T}^{d}\right), k=1, \cdots, n$, then (2.6) is obvious by Proposition 2.5. For general V, by WeierstrassStone Theorem, there exist V_{n}, such that V_{n} has the expression above, and $V_{n} \rightarrow V$ in $C\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$. From the boundedness of $\bar{G}_{x} \bar{G}_{y}$ in $C\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$, the left hand side of (2.6) for V_{n} converges to that for V. For the right hand side, we have from Sobolev's inequality and (2.4) that for any $f \in C\left(\mathbf{T}^{d}\right)$, $u=-G f$ is in $C^{1}\left(\mathbf{T}^{d}\right)$, and for $p>1$ large enough, we have

$$
\|\nabla u\|_{\infty} \leq C_{6}\|\nabla u\|_{W_{p}^{1}} \leq C_{7}\|u\|_{W_{p}^{2}} \leq C_{8}\left(\|f\|_{L^{p}}+\|u\|_{L^{p}}\right) \leq C_{9}\|f\|_{\infty}
$$

for some proper constants $C_{6}, C_{7}, C_{8}, C_{9}$. So the right hand converges, too. Therefore, (2.6) is true for general V.

Proposition 2.8. Given any continuous symmetric function V : $\mathbf{T}^{d} \times$ $\mathbf{T}^{d} \rightarrow \mathbf{R}$, define a bilinear and continuous function $A_{V}: \mathcal{M}_{0}\left(\mathbf{T}^{d}\right) \times$
$\mathcal{M}_{0}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ by $A_{V}\left(R_{1}, R_{2}\right) \equiv \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} V(x, y) R_{1}(d x) R_{2}(d y) . \quad$ Then $\left.A_{V}\right|_{H \times H}$ is a Hilbert-Schmidt type function.

Proof. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a complete orthonormal base of H^{*} with $\left\{f_{n}\right\}_{n=1}^{\infty} \in \widetilde{C}\left(\mathbf{T}^{d}\right)$. Then by Proposition 2.5 and Proposition 2.7,

$$
\begin{aligned}
\left\|A_{V}\right\|_{H . S .}^{2} & =\sum_{n, m=1}^{\infty} A_{V}\left(\bar{G} f_{n} d \nu_{0}, \bar{G} f_{m} d \nu_{0}\right)^{2} \\
& =\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} V(x, y) \bar{G} f_{n}(x) \bar{G} f_{m}(y) \nu_{0}(d x) \nu_{0}(d y)\right)^{2} \\
& =\sum_{k=1}^{d} \int_{\mathbf{T}^{d}} \sum_{m=1}^{\infty}\left(\frac{\partial}{\partial x_{k}} G_{x} V(x, \cdot), f_{m}\right)_{H^{*}}^{2} \nu_{0}(d x) \\
& =\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}}\left\|\nabla_{x} \nabla_{y} G_{x} G_{y} V(x, y)\right\|^{2} \nu_{0}(d x) \nu_{0}(d y) \\
& =\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} V(x, y) \bar{G}_{x} \bar{G}_{y} V(x, y) \nu_{0}(d x) \nu_{0}(d y) \\
& <\infty
\end{aligned}
$$

since V and $\bar{G}_{x} \bar{G}_{y} V$ are bounded.

3. Lemmas

The following lemma is easy to see, from the definition of multiple integral.

Lemma 3.1. Let $\left\{W_{t}\right\}_{t \geq 0}$ be a Brownian motion. Then for any $T>0$, and any symmetric function $h(\cdot, \cdot):[0, T] \times[0, T] \rightarrow \mathbf{R}$ that satisfies

$$
\int_{0}^{T} \int_{0}^{T} h\left(t_{1}, t_{2}\right)^{2} d t_{1} d t_{2}<\frac{1}{4}
$$

we have

$$
E^{W}\left[\exp \left(\int_{0}^{T} \int_{0}^{T} h\left(t_{1}, t_{2}\right) d W_{t_{1}} d W_{t_{2}}\right)\right] \leq \exp \left(\int_{0}^{T} \int_{0}^{T} h\left(t_{1}, t_{2}\right)^{2} d t_{1} d t_{2}\right)
$$

Proof. Let A be the symmetric operator on $L^{2}[0, T]$ given by A : $L^{2}[0, T] \rightarrow L^{2}[0, T]$,

$$
A f(t)=\int_{0}^{T} h(t, s) f(s) d s
$$

A is a Hilbert-Schmidt operator. Therefore, it has discrete spectrum (except $0)$. So all of its spectrums except 0 are its eigenvalues. Write them as $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$. By the assumption,

$$
\sum_{k=1}^{\infty} \lambda_{k}^{2}=\|A\|_{\text {H.S. }}^{2}=\int_{0}^{T} \int_{0}^{T} h(s, t)^{2} d s d t<\frac{1}{4}
$$

so $\left|\lambda_{k}\right|<1 / 2$ for any $k \in \mathbf{N}$. Write the corresponding orthonormal eigenvectors as $e_{k}, k=1,2, \cdots$, so $h(s, t)=\sum_{k=1}^{\infty} \lambda_{k} e_{k}(s) e_{k}(t)$ in $L^{2}([0, T] \times[0, T])$. $\int_{0}^{T} e_{k}(s) d W_{s}, k=1,2, \cdots$, are i. i. d. normal distributed random variables. Note that $\frac{1}{\sqrt{1-2 x}} e^{-x} \leq e^{x^{2}}$ for any $x<1 / 2$, so we get

$$
\begin{aligned}
& E^{W}\left[\exp \left(\int_{0}^{T} \int_{0}^{T} h\left(t_{1}, t_{2}\right) d W_{t_{1}} d W_{t_{2}}\right)\right] \\
= & E^{W}\left[\exp \left(\sum_{k=1}^{\infty} \lambda_{k}\left[\left(\int_{0}^{T} e_{k}(s) d W_{s}\right)^{2}-1\right]\right)\right] \\
= & \prod_{i=1}^{\infty} \frac{1}{\sqrt{1-2 \lambda_{i}}} e^{-\lambda_{i}} \leq \exp \left(\sum_{i=1}^{\infty} \lambda_{i}^{2}\right) \\
= & \exp \left(\int_{0}^{T} \int_{0}^{T} h\left(t_{1}, t_{2}\right)^{2} d t_{1} d t_{2}\right) .
\end{aligned}
$$

Lemma 3.2. For any probability measure ν on $\left(\Omega,\left\{\mathcal{F}_{t}\right\}_{t \geq 0}\right)$, any continuous ν-local-martingale $\left(M_{t}\right)$ with $M_{0}=0$, any pair of dual numbers $p_{1}, q_{1}>1$, i.e., $\frac{1}{p_{1}}+\frac{1}{q_{1}}=1$, any $T>0$, and any $A \in \mathcal{F}_{T}$,

$$
E^{\nu}\left[e^{M_{T}}, A\right] \leq E^{\nu}\left[\exp \left(\frac{p_{1} q_{1}}{2}\langle M\rangle_{T}\right), A\right]^{1 / q_{1}}
$$

Proof. Since $\left(M_{t}\right)$ is a continuous ν-local-martingale, $\left(p_{1} M_{t}\right)$ is a continuous ν-local-martingale, too, so $\exp \left(p_{1} M_{t}-\frac{p_{1}^{2}}{2}\langle M\rangle_{t}\right)$ is also a continuous
ν-local-martingale, and so a ν-super-martingale. Therefore,

$$
\begin{aligned}
E^{\nu}\left[e^{M_{T}}, A\right] \leq & E^{\nu}\left[\exp \left(p_{1} \cdot\left(M_{T}-\frac{p_{1}}{2}\langle M\rangle_{T}\right)\right)\right]^{1 / p_{1}} \\
& \times E^{\nu}\left[\exp \left(q_{1} \cdot\left(\frac{p_{1}}{2}\langle M\rangle_{T}\right)\right), A\right]^{1 / q_{1}} \\
\leq & E^{\nu}\left[\exp \left(\frac{p_{1} q_{1}}{2}\langle M\rangle_{T}\right), A\right]^{1 / q_{1}} \cdot \square
\end{aligned}
$$

Now, we are ready to proof the following:
Lemma 3.3. Let $V: \mathbf{T}^{d} \times \mathbf{T}^{d} \rightarrow \mathbf{R}$ be a symmetric, continuous function that satisfies the following:

1. $\int_{\mathbf{T}^{d}} V(x, y) \nu_{0}(d y)=0 \quad$ for any $x \in \mathbf{T}^{d}$,
2. $\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} V(x, y) \bar{G}_{x} \bar{G}_{y} V(x, y) \nu_{0}(d x) \nu_{0}(d y)<\frac{1}{128}$.

Then there exists a constant $\varepsilon_{0}>0$, such that for any $x, y \in \mathbf{T}^{d}$, and any $\varepsilon \leq \varepsilon_{0}$,

$$
\begin{aligned}
& \sup _{T>0} E^{Q_{x}}\left[\exp \left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{t}, X_{s}\right) d s d t\right)\right. \\
& \left.\left.\quad \operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \nu_{0}\right)<\varepsilon \right\rvert\, X_{T}=y\right]<\infty
\end{aligned}
$$

Proof. First, we have that for any $T>1$,

$$
\begin{aligned}
& \left|\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{s}, X_{t}\right) d s d t-\frac{1}{T} \int_{1}^{T-1} \int_{1}^{T-1} V\left(X_{s}, X_{t}\right) d s d t\right| \\
\leq & \frac{4 T-4}{T}\|V\|_{\infty} \leq 4\|V\|_{\infty}
\end{aligned}
$$

Let $C_{10}=\sup _{x, y \in \mathbf{T}^{d}}\left\{q(1, x, y), q^{*}(1, x, y)\right\}<\infty$, where $q^{*}(1, x, y) \equiv$ $\frac{Q_{1}^{*}(x, d y)}{\nu_{0}(d y)} \in C\left(\mathbf{T}^{d} \times \mathbf{T}^{d}\right)$ and $q^{*}(1, x, y)>0$. Then for any $A \in \mathcal{F}_{T}$,

$$
E^{Q_{x}}\left[\exp \left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{t}, X_{s}\right) d s d t\right), A \mid X_{T}=y\right]
$$

$$
\begin{aligned}
& \leq E^{Q_{\nu_{0}}}\left[q\left(1, x, X_{1}\right) q^{*}\left(1, y, X_{T-1}\right)\right. \\
& \left.\quad \cdot \exp \left(\frac{1}{T} \int_{1}^{T-1} \int_{1}^{T-1} V\left(X_{t}, X_{s}\right) d s d t+4\|V\|_{\infty}\right), A\right] \\
& \leq C_{10}^{2} e^{8\|V\|_{\infty}} E^{Q_{\nu_{0}}}\left[\exp \left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{t}, X_{s}\right) d s d t\right), A\right]
\end{aligned}
$$

Therefore, it is sufficient to prove that

$$
\sup _{T>0} E^{Q_{\nu_{0}}}\left[\exp \left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{t}, X_{s}\right) d s d t\right), \operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \nu_{0}\right)<\varepsilon\right]<\infty
$$

Since ν_{0} is the invariant measure of $\left(Q_{x}\right)$ as mentioned before, $\left(X_{T-t}\right)_{t=0}^{T}$ under $\left(Q_{\nu_{0}}\right)$ is still a diffusion process for any $T>0$, with the infinitesimal generator $L^{* \nu_{0}}=L_{0}^{* \mu}+\frac{\nabla \ell}{\ell} \cdot \nabla$. Let $U_{1}(x, y) \equiv-\left(G_{x} V\right)(x, y)$ and $U(x, y) \equiv$ $-\left(G_{y}^{*} U_{1}\right)(x, y)$ as in Proposition 2.7. By condition, $\int_{\mathbf{T}^{d}} V(x, y) \nu_{0}(d y)=$ 0 for any $x \in \mathbf{T}^{d}$, so

$$
L_{x} L_{y}^{* \nu_{0}} U(x, y)=L_{y}^{* \nu_{0}} L_{x} U(x, y)=V(x, y), \quad \text { for any } x, y \in \mathbf{T}^{d}
$$

in the sense of generalized functions. From the condition (2) and Proposition 2.7, we have that $\nabla_{x} \nabla_{y} U$ exists, is continuous, and

$$
\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}}\left\|\nabla_{x} \nabla_{y} U(x, y)\right\|^{2} \nu_{0}(d x) \nu_{0}(d y)<\frac{1}{128}
$$

Let $\rho_{T} \equiv \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t$ and $A_{\varepsilon} \equiv\left\{\operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \nu_{0}\right)<\varepsilon\right\}$. Then from the boundedness of $\left\|\nabla_{x} \nabla_{y} U(x, y)\right\|^{2}$, there exists a constant $\varepsilon_{0}>0$, such that for any $\varepsilon \leq \varepsilon_{0}$,

$$
\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}}\left\|\nabla_{x} \nabla_{y} U(x, y)\right\|^{2} \rho_{T}(d x) \rho_{T}(d y)<\frac{1}{128} \quad \text { on } A_{\varepsilon}
$$

From the definition of U_{1} and Corollary 2.4,

$$
U_{1}\left(X_{T}, X_{t}\right)=U_{1}\left(X_{t}, X_{t}\right)+\int_{t}^{T} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d B_{s}+\int_{t}^{T} V\left(X_{s}, X_{t}\right) d s
$$

where $\left(B_{t}\right)_{t \geq 0}$ is the Brownian motion defined in Corollary 2.4. Therefore,

$$
\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{s}, X_{t}\right) d s d t=\frac{2}{T} \int_{0}^{T} \int_{t}^{T} V\left(X_{s}, X_{t}\right) d s d t
$$

$$
\begin{aligned}
=\frac{2}{T}(& \left.\int_{0}^{T}\left(U_{1}\left(X_{T}, X_{t}\right)-U_{1}\left(X_{t}, X_{t}\right)\right) d t\right) \\
& -\frac{2}{T} \int_{0}^{T} d t\left(\int_{t}^{T} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d B_{s}\right)
\end{aligned}
$$

Here, $\left\|U_{1}\right\|_{\infty}<\infty$ from the continuity of U_{1} and the compactness of \mathbf{T}^{d}, and the second term is equal to $-\frac{2}{T} \int_{0}^{T}\left(\int_{0}^{s} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d t\right) d B_{s}$ by stochastic Fubini's theorem (c.f. Ikeda-Watanabe [6, Lemma 3.4.1]), hence a continuous $Q_{\nu_{0}}$-martingale. So by Lemma 3.2 (with $p_{1}=2$ and $\nu=Q_{\nu_{0}}$),

$$
\begin{aligned}
& E^{Q_{\nu_{0}}}\left[\exp \left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} V\left(X_{t}, X_{s}\right) d s d t\right), A_{\varepsilon}\right] \\
\leq & \exp \left(4\left\|U_{1}\right\|_{\infty}\right) \cdot E^{Q_{\nu_{0}}}\left[\exp \left(-\frac{2}{T} \int_{0}^{T} d B_{s}\left(\int_{0}^{s} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d t\right)\right), A_{\varepsilon}\right] \\
\leq & \exp \left(4\left\|\mid U_{1}\right\|_{\infty}\right) \cdot E^{Q_{\nu_{0}}}\left[\exp \left(2 \int_{0}^{T}\left|\frac{2}{T} \int_{0}^{s} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d t\right|^{2} d s\right), A_{\varepsilon}\right]^{1 / 2} .
\end{aligned}
$$

So, the problem now turns to show that

$$
\sup _{T>0} E^{Q_{\nu_{0}}}\left[\exp \left(\left(\frac{8}{T^{2}} \int_{0}^{T} d s\left|\int_{0}^{s} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d t\right|^{2}\right), A_{\varepsilon}\right]<\infty\right.
$$

for some $\varepsilon>0$. Since $\left(X_{T-t}\right)_{t=0}^{T}$ under $Q_{\nu_{0}}$ is a diffusion process for any $T>0$, we have by Lemma 2.2 and the definition of U that $\hat{B}_{t}^{T} \equiv X_{T-t}-$ $X_{T}-\int_{0}^{t}\left(b_{0}^{*}+\frac{\nabla \ell}{\ell}\left(X_{T-s}\right) d s, t \in[0, T]\right.$, is a Brownian motion, and for any $s^{\prime} \in(0, T)$,

$$
\begin{gathered}
\nabla_{x} U\left(X_{T-s^{\prime}}, X_{0}\right)=\nabla_{x} U\left(X_{T-s^{\prime}}, X_{T-s^{\prime}}\right)+\int_{s^{\prime}}^{T} \nabla_{y} \nabla_{x} U\left(X_{T-s^{\prime}}, X_{T-t^{\prime}}\right) d \hat{B}_{t^{\prime}}^{T} \\
+\int_{s^{\prime}}^{T} \nabla_{x} U_{1}\left(X_{T-s^{\prime}}, X_{T-t^{\prime}}\right) d t^{\prime} .
\end{gathered}
$$

So we have

$$
\begin{aligned}
& \frac{1}{T^{2}} \int_{0}^{T} d s\left|\int_{0}^{s} \nabla_{x} U_{1}\left(X_{s}, X_{t}\right) d t\right|^{2} \\
= & \frac{1}{T^{2}} \int_{0}^{T} d s^{\prime}\left|\int_{s^{\prime}}^{T} \nabla_{x} U_{1}\left(X_{T-s^{\prime}}, X_{T-t^{\prime}}\right) d t^{\prime}\right|^{2}
\end{aligned}
$$

$$
\begin{gathered}
\leq \frac{2}{T^{2}} \int_{0}^{T}\left|\nabla_{x} U\left(X_{T-s^{\prime}}, X_{0}\right)-\nabla_{x} U\left(X_{T-s^{\prime}}, X_{T-s^{\prime}}\right)\right|^{2} d s^{\prime} \\
\quad+\frac{2}{T^{2}} \int_{0}^{T}\left|\int_{s^{\prime}}^{T} \nabla_{y} \nabla_{x} U\left(X_{T-s^{\prime}}, X_{T-t^{\prime}}\right) d \hat{B}_{t^{\prime}}^{T}\right|^{2} d s^{\prime}
\end{gathered}
$$

Here the first term is bounded by the compactness of \mathbf{T}^{d} and the continuity of $\nabla_{x} U$. So it is sufficient to show that for some $\varepsilon>0$ small enough,

$$
\sup _{T>0} E^{Q_{\nu_{0}}}\left[\exp \left(\frac{16}{T^{2}} \int_{0}^{T}\left|\int_{s^{\prime}}^{T} \nabla_{y} \nabla_{x} U\left(T_{T-s^{\prime}}, X_{T-t^{\prime}}\right) d \hat{B}_{t^{\prime}}^{T}\right|^{2} d s^{\prime}\right), A_{\varepsilon}\right]<\infty
$$

Let W_{t} be another d-dimension Brownian motion which is independent to $\left\{X_{t}\right\}_{t \in[0, \infty)}$. Write $g(t, s) \equiv \nabla_{y} \nabla_{x} U\left(X_{T-t}, X_{T-s}\right)$, then by Lemma 3.2,

$$
\begin{aligned}
& E^{Q_{\nu_{0}}}\left[\exp \left(\frac{16}{T^{2}} \int_{0}^{T}\left|\int_{t}^{T} \nabla_{y} \nabla_{x} U\left(X_{T-t}, X_{T-s}\right) d \hat{B}_{s}^{T}\right|^{2} d t\right), A_{\varepsilon}\right] \\
= & E^{Q_{\nu_{0}}}\left[E^{W}\left[\exp \left(\frac{4 \sqrt{2}}{T} \int_{0}^{T}\left(\int_{t}^{T} g(t, s) d \hat{B}_{s}^{T}\right) d W_{t}\right)\right], A_{\varepsilon}\right] \\
= & E^{W}\left[E^{Q_{\nu_{0}}}\left[\exp \left(\frac{4 \sqrt{2}}{T} \int_{0}^{T}\left(\int_{0}^{s} g(t, s) d W_{t}\right) d \hat{B}_{s}^{T}\right), A_{\varepsilon}\right]\right] \\
\leq & E^{W}\left[E^{Q_{\nu_{0}}}\left[\exp \left(\frac{64}{T^{2}} \int_{0}^{T}\left|\int_{0}^{s} g(t, s) d W_{t}\right|^{2} d s\right), A_{\varepsilon}\right]\right]^{1 / 2} \\
= & E^{Q_{\nu_{0}}}\left[E^{W}\left[\exp \left(\frac{64}{T^{2}} \int_{0}^{T}\left|\int_{0}^{s} g(t, s) d W_{t}\right|^{2} d s\right)\right], A_{\varepsilon}\right]^{1 / 2} .
\end{aligned}
$$

Here,

$$
\begin{aligned}
& \frac{1}{T^{2}} \int_{0}^{T}\left|\int_{0}^{s} g(t, s) d W_{t}\right|^{2} d s \\
& =\frac{1}{T^{2}} \int_{0}^{T} \int_{0}^{T}\left(\int_{t_{1} \vee t_{2}}^{T} g\left(t_{1}, s\right) \otimes g\left(t_{2}, s\right) d s\right) d W_{t_{1}} d W_{t_{2}} \\
& \quad+\frac{1}{T^{2}} \int_{0}^{T}\left(\int_{t}^{T}|g(t, s)|^{2} d s\right) d t
\end{aligned}
$$

The second term is bounded from the compactness of \mathbf{T}^{d} and Proposition 2.7. So we only need to show that

$$
\sup _{T>0} E^{Q_{\nu_{0}}}\left[E ^ { W } \left[\operatorname { e x p } \left(\frac{64}{T^{2}} \int_{0}^{T} \int_{0}^{T}\right.\right.\right.
$$

$$
\left.\left.\left.\left(\int_{t_{1} \vee t_{2}}^{T} g\left(t_{1}, s\right) \otimes g\left(t_{2}, s\right) d s\right) d W_{t_{1}} d W_{t_{2}}\right)\right], A_{\varepsilon}\right]<\infty
$$

On the other hand, as shown before, $\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}}\left\|\nabla_{x} \nabla_{y} U(x, y)\right\|^{2} \rho_{T}(d x) \rho_{T}(d y)<$ $\frac{1}{128}$ on A_{ε}, so

$$
\begin{align*}
& \frac{64^{2}}{T^{4}} \int_{0}^{T} \int_{0}^{T} d t_{1} d t_{2}\left\|\int_{t_{1} \vee t_{2}}^{T} g\left(t_{1}, s\right) \otimes g\left(t_{2}, s\right) d s\right\|^{2} \tag{3.1}\\
\leq & \frac{64^{2}}{T^{4}} \int_{0}^{T} d t_{1} \int_{0}^{T} d t_{2}\left(\int_{t_{1}}^{T}\left\|g\left(t_{1}, s\right)\right\|^{2} d s\right)\left(\int_{t_{2}}^{T}\left\|g\left(t_{2}, s\right)\right\|^{2} d s\right) \\
= & (64)^{2}\left\{\frac{1}{T^{2}} \int_{0}^{T} d t\left(\int_{t}^{T}\|g(t, s)\|^{2} d s\right)\right\}^{2} \\
\leq & \left\{\frac{64}{T^{2}} \int_{0}^{T} \int_{0}^{T}\|g(t, s)\|^{2} d t d s\right\}^{2} \\
= & \left\{64 \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}}\left\|\nabla_{x} \nabla_{y} U(x, y)\right\|^{2} \rho_{T}(d x) \rho_{T}(d y)\right\}^{2} \\
< & 64^{2} \cdot\left(\frac{1}{128}\right)^{2}=\frac{1}{4} \quad \text { on } A_{\varepsilon} .
\end{align*}
$$

So from Lemma 3.1, we have

$$
\begin{aligned}
& E^{Q_{\nu_{0}}}\left[E ^ { W } \left[\operatorname { e x p } \left(\frac{64}{T^{2}} \int_{0}^{T} \int_{0}^{T}\left(\int_{t_{1} \vee t_{2}}^{T} g\left(t_{1}, s\right) \otimes g\left(t_{2}, s\right) d s\right)\right.\right.\right. \\
& \left.\left.\left.\times W_{t_{1}} d W_{t_{2}}\right)\right], A_{\varepsilon}\right] \\
& \leq E^{Q_{\nu_{0}}}\left[\operatorname { e x p } \left(\frac{64^{2}}{T^{4}} \int_{0}^{T} \int_{0}^{T} d t_{1} d t_{2}\right.\right. \\
& \left.\left.\times\left|\int_{t_{1} \vee t_{2}}^{T} g\left(t_{1}, s\right) \otimes g\left(t_{2}, s\right) d s\right|^{2}\right), A_{\varepsilon}\right]<e^{\frac{1}{4}}
\end{aligned}
$$

This completes the proof of the lemma.
Lemma 3.4. For any $e \in C\left(\mathbf{T}^{d}\right)$ with $\int_{\mathbf{T}^{d}} e(y) \nu_{0}(d y)=0$ and $\|e\|_{H^{*}}=$ 1, and any $a<1$, there exists a constant $\varepsilon_{0}>0$, such that for any $\varepsilon \leq \varepsilon_{0}$,

$$
\sup _{T>0} E^{Q_{x}}\left[\exp \left(\frac{a}{2 T}\left(\int_{0}^{T} e\left(X_{t}\right) d t\right)^{2}\right), A_{\varepsilon} \mid X_{T}=y\right]<\infty
$$

where $A_{\varepsilon}=\left\{\operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \nu_{0}\right)<\varepsilon\right\}$ as in Lemma 3.3.
Proof. As in the proof of Lemma 3.3, we only need to show the assertion without the condition that $X_{0}=x$ and $X_{T}=y$, i.e., it is sufficient if we prove

$$
\sup _{T>0} E^{Q_{\nu_{0}}}\left[\exp \left(\frac{a}{2 T}\left(\int_{0}^{T} e\left(X_{t}\right) d t\right)^{2}\right), A_{\varepsilon}\right]<\infty
$$

Also, as there, since $\int_{\mathbf{T}^{d}} e(x) \nu_{0}(d x)=0$, by Corollary 2.4, the function u defined by $u \equiv-G e$ is in $W_{p}^{2}\left(\mathbf{T}^{d}\right)$ for any $p>1$, hence in $C^{1}\left(\mathbf{T}^{d}\right)$, and

$$
u\left(X_{T}\right)-u\left(X_{0}\right)=\int_{0}^{T} \nabla u\left(X_{t}\right) d B_{t}+\int_{0}^{T} e\left(X_{t}\right) d t
$$

So from the boundedness of u, it is sufficient if

$$
\sup _{T>0} E^{Q_{\nu_{0}}}\left[\exp \left(\frac{a}{2} \cdot \frac{1}{T}\left(\int_{0}^{T} \nabla u\left(X_{t}\right) d B_{t}\right)^{2}\right), A_{\varepsilon}\right]<\infty
$$

for $\varepsilon>0$ small enough. Choose and fix a constant $\delta \in\left(0, \frac{1}{a}-1\right)$ first. Since

$$
\int_{\mathbf{T}^{d}}\|\nabla u(x)\|^{2} \nu_{0}(d x)=\|e\|_{H^{*}}^{2}=1
$$

and $\|\nabla u(x)\|^{2}$ is bounded on \mathbf{T}^{d}, there exists an $\varepsilon_{0}>0$, such that for any $\varepsilon \leq \varepsilon_{0}, \int_{\mathbf{T}^{d}}\|\nabla u(x)\|^{2} \rho_{T}(d x) \leq 1+\delta$ on A_{ε}. So, by Ikeda-Watanabe [6, Theorem II.7.2], there exists a standard Brownian motion \widetilde{B}, such that

$$
\begin{aligned}
\left(\int_{0}^{T} \nabla u\left(X_{t}\right) d B_{t}\right)^{2} & =\left(\widetilde{B}\left(\left[\int_{0}^{\cdot} \nabla u\left(X_{t}\right) d B_{t}, \int_{0}^{\cdot} \nabla u\left(X_{t}\right) d B_{t}\right]_{T}\right)\right)^{2} \\
& =\widetilde{B}\left(\int_{0}^{T}\left\|\nabla u\left(X_{t}\right)\right\|^{2} d t\right)^{2} \\
& =\widetilde{B}\left(T \cdot \int_{\mathbf{T}^{d}}\|\nabla u(x)\|^{2} \rho_{T}(d x)\right)^{2} \\
& \leq \sup _{0 \leq t \leq(1+\delta) T}|\widetilde{B}(t)|^{2} \quad \text { on } A_{\varepsilon}
\end{aligned}
$$

By the reflection principle, for any $T_{0}>0$ and any x,

$$
P\left(\sup _{0 \leq t \leq T_{0}}|\widetilde{B}(t)| \geq x\right) \leq 2 P\left(\sup _{0 \leq t \leq T_{0}} \widetilde{B}(t) \geq x\right)=2 P\left(\left|\widetilde{B}\left(T_{0}\right)\right| \geq x\right)
$$

Therefore, since $\delta \in\left(0, \frac{1}{a}-1\right)$, we have

$$
\begin{aligned}
& \sup _{T>0} E^{Q_{\nu_{0}}}\left[\exp \left(\frac{a}{2} \cdot \frac{1}{T}\left(\int_{0}^{T} \nabla u\left(X_{t}\right) d B_{t}\right)^{2}\right), A_{\varepsilon}\right] \\
\leq & \sup _{T>0} E\left[\exp \left(\frac{a}{2} \cdot \frac{1}{T} \sup _{0 \leq t \leq(1+\delta) T}|\widetilde{B}(t)|^{2}\right)\right] \\
= & \sup _{T>0} \int_{0}^{\infty} P\left(\sup _{0 \leq t \leq(1+\delta) T}|\widetilde{B}(t)| \geq x\right) d\left(e^{\frac{a}{2 T} x^{2}}\right)+1 \\
\leq & 2 \sup _{T>0} E\left[\exp \left(\frac{a}{2} \cdot \frac{1}{T}|\widetilde{B}((1+\delta) T)|^{2}\right)\right]-1 \\
= & \frac{2}{\sqrt{1-a(1+\delta)}}-1<\infty .
\end{aligned}
$$

This completes the proof of the lemma.
Using the two lemmas above, we get the following:
LEMMA 3.5. For any continuous symmetric function $V: \mathbf{T}^{d} \times \mathbf{T}^{d} \rightarrow \mathbf{R}$, which satisfies $\int_{\mathbf{T}^{d}} V(x, y) \nu_{0}(d y)=0$ for any $x \in \mathbf{T}^{d}$, define a symmetric, bilinear, and continuous function $A_{V}: \mathcal{M}_{0}\left(\mathbf{T}^{d}\right) \times \mathcal{M}_{0}\left(\mathbf{T}^{d}\right) \rightarrow \mathbf{R}$ by $A_{V}\left(R_{1}, R_{2}\right)=\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} V(x, y) R_{1}(d x) R_{2}(d y)$. Suppose that all of the eigenvalues of $\left.A_{V}\right|_{H \times H}$ are smaller than 1 . Then there exists a constant $\varepsilon>0$ small enough, such that for any $x, y \in \mathbf{T}^{d}$,

$$
\begin{aligned}
& \sup _{T>0} E^{Q_{x}}\left[\exp \left(\frac{1}{2 T} \int_{0}^{T} \int_{0}^{T} V\left(X_{t}, X_{s}\right) d t d s\right)\right. \\
& \left.\left.\quad \operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \nu_{0}\right)<\varepsilon \right\rvert\, X_{T}=y\right]<\infty
\end{aligned}
$$

Proof. By Proposition 2.8, $\left.A_{V}\right|_{H \times H}$ is a Hilbert-Schmidt type function. Combining this with the condition, we see that the maximum of its eigenvalues, say a_{0}, is also smaller than 1 . Choose and fix a $p>1$ such that $a_{0} p<1$.

Write the eigenvalues of $\left.A_{V}\right|_{H \times H}$ as $\left\{a_{n}\right\}_{n \in \mathbf{N}}$ with $\left|a_{1}\right| \geq\left|a_{2}\right| \geq$ $\left|a_{3}\right| \geq \cdots$, and the corresponding eigenvectors as $\left\{\bar{G} e_{m} d \nu_{0}\right\}_{m=1}^{\infty}$ with $\int_{\mathbf{T}^{d}} e_{m}(x) \bar{G} e_{n}(x) \nu_{0}(d x)=\delta_{m n}$. Then $A_{V}\left(\bar{G} e_{m} d \nu_{0}, R\right)=a_{m} \int_{\mathbf{T}^{d}} e_{m}(x) R(d x)$
for any $R \in \mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$. So for any $m \in \mathbf{N}$ with $a_{m} \neq 0$, from the continuity of $V(x, y)$, we can assume that $e_{m} \in \widetilde{C}\left(\mathbf{T}^{d}\right)$.

Let q be the dual number of $p>1$, that is, $\frac{1}{p}+\frac{1}{q}=1$. Since $\left.A_{V}\right|_{H \times H}$ is a Hilbert-Schmidt function as claimed, there exists a $N \in \mathbf{N}$ large enough such that $\sum_{i=N+1}^{\infty} q^{2} a_{i}^{2}<\frac{1}{128}$. Apply lemma 3.3 to

$$
V_{1}(x, y):=q\left(V(x, y)-\sum_{i=1}^{N} a_{i} e_{i}(x) \cdot e_{i}(y)\right), \quad x, y \in \mathbf{T}^{d}
$$

and use Hölder's inequality, so it is sufficient if

$$
\sup _{T>0} E^{Q_{x}}\left[\exp \left(\sum_{i=1}^{N} \frac{p}{2 T} \int_{0}^{T} \int_{0}^{T} a_{i} e_{i}\left(X_{t}\right) e_{i}\left(X_{s}\right) d s d t\right), A_{\varepsilon} \mid X_{T}=y\right]<\infty
$$

for $\varepsilon>0$ small enough, where A_{ε} is as before.
Obviously, we can assume that $a_{1}, \cdots, a_{N} \geq 0$, as if not, we can just omit the term corresponding to it. As in Kusuoka-Tamura [9], in general, we have that for any $\varepsilon_{1}>0$, there exists an integer $m>0$ and $\xi_{i}=\left(\xi_{i}^{1}, \cdots, \xi_{i}^{N}\right) \in$ $\mathbf{R}^{N}, i=1, \cdots, m$, such that $\left\|\xi_{i}\right\|_{\mathbf{R}^{N}}=1, i=1, \cdots, m$, and

$$
\bigcap_{i=1}^{m}\left\{x \in \mathbf{R}^{N}:\left(x, \xi_{i}\right) \leq \frac{1}{\left(1+\varepsilon_{1}\right)^{1 / 2}}\right\} \subset\left\{x \in \mathbf{R}^{N}:\|x\|<1\right\}
$$

so

$$
\|x\|^{2} \leq\left(1+\varepsilon_{1}\right) \max _{i=1, \cdots, m}\left(x, \xi_{i}\right)^{2}, \quad x \in \mathbf{R}^{N}
$$

Replace ε_{1} by $1-p a_{0}$ in the above. Let $\widetilde{e}_{i}=\sum_{j=1}^{N} \xi_{i}^{j} e_{j}, i=1, \cdots, m$. Then $\left(\bar{G} \widetilde{e}_{i}, \widetilde{e}_{i}\right)_{L^{2}\left(d \nu_{0}\right)}=1, \int_{\mathbf{T}^{d}} \widetilde{e}_{i}(x) \nu_{0}(d x)=0, i=1, \cdots, m$, and

$$
\begin{aligned}
\sum_{j=1}^{N}\left(\int_{0}^{T} e_{j}\left(X_{t}\right) d t\right)^{2} & \leq\left(1+\varepsilon_{1}\right) \max _{i=1, \cdots, m} \sum_{j=1}^{N}\left(\int_{0}^{T} e_{j}\left(X_{t}\right) d t \cdot \xi_{i}^{j}\right)^{2} \\
& =\left(1+\varepsilon_{1}\right) \max _{i=1, \cdots, m}\left(\int_{0}^{T} \widetilde{e}_{i}\left(X_{t}\right) d t\right)^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sup _{T>0} E^{Q_{x}}\left[\exp \left(\sum_{i=1}^{N} \frac{p}{2 T} \int_{0}^{T} \int_{0}^{T} a_{i} e_{i}\left(X_{t}\right) e_{i}\left(X_{s}\right) d s d t\right), A_{\varepsilon} \mid X_{T}=y\right] \\
\leq & \sup _{T>0} \sum_{i=1}^{m} E^{Q_{x}}\left[\exp \left(\frac{1-\varepsilon_{1}^{2}}{2} \cdot \frac{1}{T}\left(\int_{0}^{T} \widetilde{e_{i}}\left(X_{t}\right) d t\right)^{2}\right), A_{\varepsilon} \mid X_{T}=y\right]
\end{aligned}
$$

which is finite for $\varepsilon>0$ small enough by Lemma 3.4.
This completes the proof of the lemma.

4. Proof of the Theorem

In this section, we will give the proof of the main theorem. Let

$$
\begin{aligned}
\widetilde{\Phi}(\nu) & \equiv \Phi(\nu)-\int_{\mathbf{T}^{d}} \phi^{\nu_{0}}(y) \nu(d y) \\
& =\Phi(\nu)-\Phi\left(\nu_{0}\right)-D \Phi\left(\nu_{0}\right)\left(\nu-\nu_{0}\right), \quad \nu \in \mathcal{M}\left(\mathbf{T}^{d}\right)
\end{aligned}
$$

Also, let $A_{\varepsilon}=\left\{\operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \nu_{0}\right)<\varepsilon\right\}$ as before. Since for any $A \in \mathcal{F}_{T}$,

$$
\begin{aligned}
& e^{-\lambda T} E^{P_{x}}\left[\exp \left(T \Phi\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right), A \mid X_{T}=y\right] \\
= & \frac{h(x)}{h(y)} E^{Q_{x}}\left[\exp \left(T \widetilde{\Phi}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right), A \mid X_{T}=y\right]
\end{aligned}
$$

the theorem will be shown if we can show the following two lemmas.
Lemma 4.1.

$$
\limsup _{T \rightarrow \infty} \frac{1}{T} \log E^{Q_{x}}\left[\exp \left(T \widetilde{\Phi}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right), A_{\varepsilon}^{C} \mid X_{T}=y\right]<0
$$

for any $\varepsilon>0$.
Lemma 4.2.

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \lim _{T \rightarrow \infty} E^{Q_{x}}\left[\exp \left(T \widetilde{\Phi}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)\right), A_{\varepsilon} \mid X_{T}=y\right] \\
= & \exp \left\{\left.\frac{1}{2} \int_{\mathbf{T}^{d}} \bar{G}_{x} \Phi^{(2)}\left(\nu_{0}, \cdot, \cdot\right)\right|_{(u, u)} \nu_{0}(d u)\right\} \times \operatorname{det}_{2}\left(I_{H}-D^{2} \Phi\left(\nu_{0}\right)\right)^{-1 / 2} .
\end{aligned}
$$

We prove Lemma 4.1 in the first. By Donsker-Varahdan [4], we have the following

Proposition 4.3.

(1) For any $x \in \mathbf{T}^{d}$ and any closed set $C \subset \wp\left(\mathbf{T}^{d}\right)$,

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \log P_{x}\left[\frac{1}{t} \int_{0}^{t} \delta_{X_{s}} d s \in C\right] \leq-\inf \{I(\nu) ; \nu \in C\}
$$

(2) for any $x \in \mathbf{T}^{d}$ and any open set $G \subset \wp\left(\mathbf{T}^{d}\right)$,

$$
\liminf _{t \rightarrow \infty} \frac{1}{t} \log P_{x}\left[\frac{1}{t} \int_{0}^{t} \delta_{X_{s}} d s \in G\right] \geq-\inf \{I(\nu) ; \nu \in G\}
$$

From this, we get the following

Lemma 4.4.

1. For any $x, y \in \mathbf{T}^{d}$ and any closed set $C \subset \wp\left(\mathbf{T}^{d}\right)$,

$$
\limsup _{T \rightarrow \infty} \frac{1}{T} \log P_{x}\left[\left.\frac{1}{T} \int_{0}^{T} \delta_{X_{s}} d s \in C \right\rvert\, X_{T}=y\right] \leq-\inf \{I(\nu) ; \nu \in C\}
$$

2. For any $x, y \in \mathbf{T}^{d}$ and any open set $G \subset \wp\left(\mathbf{T}^{d}\right)$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \log P_{x}\left[\left.\frac{1}{T} \int_{0}^{T} \delta_{X_{s}} d s \in G \right\rvert\, X_{T}=y\right] \geq-\inf \{I(\nu) ; \nu \in G\}
$$

Proof. We only give the proof of the first assertion, the second one can be proved in the same way.

First, for any path $\left\{X_{t}\right\}_{t \geq 0},\left\|\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\frac{1}{T-1} \int_{0}^{T-1} \delta_{X_{t}} d t\right\| \leq \frac{2}{T}$, therefore, for any $\varepsilon>0$, there exists a $t_{\varepsilon}>0$, such that for any $T>t_{\varepsilon}$ and any path $\left\{X_{t}\right\}_{t}, \operatorname{dist}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t, \frac{1}{T-1} \int_{0}^{T-1} \delta_{X_{t}} d t\right) \leq \varepsilon$. Now, let C_{ε} be the ε-neighborhood of C in $\wp\left(\mathbf{T}^{d}\right)$, and let C_{10} be the constant defined in the proof of Lemma 3.3, i.e., $q^{*}\left(1, x_{1}, x_{2}\right) \leq C_{10}$ for any $x_{1}, x_{2} \in \mathbf{T}^{d}$, then for any $T>t_{\varepsilon}$,

$$
P_{x}\left[\left.\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t \in C \right\rvert\, X_{T}=y\right]
$$

$$
\begin{aligned}
& \leq P_{x}\left[\left.\frac{1}{T-1} \int_{0}^{T-1} \delta_{X_{t}} d t \in C_{\varepsilon} \right\rvert\, X_{T}=y\right] \\
& =E^{P_{x}}\left[1_{\left\{\frac{1}{T-1} \int_{0}^{T-1} \delta_{X_{t}} d t \in C_{\varepsilon}\right\}} q^{*}\left(1, y, X_{T-1}\right)\right] \\
& \leq C_{10} P_{x}\left[\frac{1}{T-1} \int_{0}^{T-1} \delta_{X_{t}} d t \in C_{\varepsilon}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \limsup _{T \rightarrow \infty} \frac{1}{T} \log P_{x}\left[\left.\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t \in C \right\rvert\, X_{T}=y\right] \\
\leq & \limsup _{T \rightarrow \infty} \frac{1}{T} \log P_{x}\left[\frac{1}{T-1} \int_{0}^{T-1} \delta_{X_{t}} d t \in C_{\varepsilon}\right] \\
\leq & -\inf \left\{I(\nu) ; \nu \in C_{\varepsilon}\right\}
\end{aligned}
$$

for any $\varepsilon>0$. The right hand side above converges to $-\inf \{I(\nu) ; \nu \in C\}$ as ε goes to 0 .

Lemma 4.1 can now be seen by the same method as used for the not pinned one.

For Lemma 4.2, we follow the way as used in Kusuoka-Tamura [9] and Kusuoka-Liang [8].

Lemma 4.5. There exist constants $p>1$ and $\varepsilon>0$, such that

$$
\sup _{T>0} E^{Q_{x}}\left[e^{p T \widetilde{\Phi}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)}, A_{\varepsilon} \mid X_{T}=y\right]<\infty
$$

Proof. The proof is similar with the one in Kusuoka-Liang [8]. Let $R\left(\nu_{0}, \cdot\right)$ be the 3rd remainder of the Taylor expansion around ν_{0}, i.e., $R\left(\nu_{0}, \nu-\nu_{0}\right)=\widetilde{\Phi}(\nu)-D^{2} \Phi\left(\nu_{0}\right)\left(\nu-\nu_{0}, \nu-\nu_{0}\right)$. Then for any $p>1$ and any $r, s>1$ with $\frac{1}{r}+\frac{1}{s}=1$, by Hölder's inequality,

$$
\begin{aligned}
& E^{Q_{x}}\left[e^{p \cdot T \widetilde{\Phi}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right)}, A_{\varepsilon} \mid X_{T}=y\right] \\
= & E^{Q_{x}}\left[\operatorname { e x p } \left\{p \cdot \frac{T}{2} D^{2} \Phi\left(\nu_{0}\right)\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+p \cdot T R\left(\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)\right\}, A_{\varepsilon} \mid X_{T}=y\right] \\
\leq E^{Q_{x}} & {\left[\operatorname { e x p } \left\{p \cdot \frac{T}{2} \cdot r D^{2} \Phi\left(\nu_{0}\right)\right.\right.} \tag{4.1}\\
& \left.\left.\times\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)\right\}, A_{\varepsilon} \mid X_{T}=y\right]^{1 / r} \\
\times & E^{Q_{x}}\left[\exp \left\{p \cdot T \cdot s R\left(\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)\right\}, A_{\varepsilon} \mid X_{T}=y\right]^{1 / s} \tag{4.2}
\end{align*}
$$

Now, for any function $U(\cdot, \cdot)$, define

$$
\begin{aligned}
\bar{U}(x, y) \equiv & U(x, y)-\int_{\mathbf{T}^{d}} U(x, y) \nu_{0}(d x)-\int_{\mathbf{T}^{d}} U(x, y) \nu_{0}(d y) \\
& +\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} U(x, y) \nu_{0}(d x) \nu_{0}(d y)
\end{aligned}
$$

and

$$
\widetilde{U}\left(R_{1}, R_{2}\right)=\int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} U(x, y) R_{1}(d x) R_{2}(d y)
$$

then $\int \bar{U}(x, y) \nu_{0}(d x)=0$ for any $x \in \mathbf{T}^{d}$, and $\tilde{\bar{U}}\left(R_{1}, R_{2}\right)=\widetilde{U}\left(R_{1}, R_{2}\right)$ for any $R_{1}, R_{2} \in \mathcal{M}_{0}\left(\mathbf{T}^{d}\right)$.

Since the maximum a_{0} of the eigenvalues of $\left.D^{2} \Phi\left(\nu_{0}\right)\right|_{H \times H}$ is smaller than 1 by the assumption 4 , we can find a $p>1$ such that $a_{0} \cdot p<1$. For this p, there exists a $r>1$ such that $a_{0} \cdot p \cdot r<1$. So since

$$
\begin{aligned}
& T \cdot D^{2} \Phi\left(\nu_{0}\right)\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d y-\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d y-\nu_{0}\right) \\
= & \frac{1}{T} \int_{0}^{T} \int_{0}^{T} \frac{\left.\overline{\Phi^{(2)}\left(\nu_{0}, \cdot, \cdot\right)}\right|_{\left(X_{t}, X_{s}\right)}}{} d t d s,
\end{aligned}
$$

we get by Lemma 3.5 that (4.1) is bounded for $T>0$ if $\varepsilon>0$ is small enough.

For (4.2), let s be the dual number of $r>1$, choose a $\delta \in\left(0, \frac{1}{2 p s}\right)$ and fix it. By the assumption 4 , for this $\delta>0$, there exist a constant $\varepsilon^{\prime}>0$ and a K_{δ}, such that $\left|\left|\widetilde{\bar{K}_{\delta}}\right|_{H \times H} \|_{H . S .} \leq \delta\right.$, and

$$
\left|T R\left(\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)\right|
$$

$$
\begin{aligned}
& \leq T \cdot \int_{\mathbf{T}^{d}} \int_{\mathbf{T}^{d}} K_{\delta}(x, y)\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d y-\nu_{0}\right)^{\otimes 2}(d x \otimes d y) \\
& =\frac{1}{T} \cdot \int_{0}^{T} \int_{0}^{T} \overline{K_{\delta}}\left(X_{t}, X_{s}\right) d s d t \quad \text { on } A_{\varepsilon^{\prime}}
\end{aligned}
$$

So by using Lemma 3.5 again, we get that (4.2) is bounded for $T>0$ if $\varepsilon^{\prime}>0$ is small enough.

This completes the proof of the lemma.
Proof of Lemma 4.2. As in Kusuoka-Tamura [9], Q_{x} has the strong mixing property, so X_{T} and $\sqrt{T}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)$ are asymptotically independent as $T \rightarrow \infty$ under Q_{x} for any $x \in \mathbf{T}^{d}$, also,

$$
\begin{aligned}
& E^{Q_{x}}\left[\exp \left(\sqrt{-1} \sqrt{T} \int_{\mathbf{T}^{d}} u(x)\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)(d x)\right)\right] \\
\rightarrow & \exp \left(-\frac{1}{2} \int_{\mathbf{T}^{d}} u(y) \bar{G} u(y) \nu_{0}(d y)\right), \quad \text { as } T \rightarrow \infty
\end{aligned}
$$

for any $u \in L^{2}\left(\mathbf{T}^{d}, d \nu_{0}\right)$.
Take a seperable Hilbert space H_{1} such that the set $\left\{\bar{G} u d \nu_{0} \mid \int_{\mathbf{T}^{d}} u \bar{G} u d \nu_{0}<\infty\right\}$ is a dense linear subspace of H_{1}, and the inclusion map is a Hilbert-Schmidt operator. Let W be an H_{1}-valued random variable with distribution γ such that

$$
E[\exp (\sqrt{-1}(u, W))]=\exp \left(-\frac{1}{2} \int_{\mathbf{T}^{d}} u(y) \bar{G} u(y) \nu_{0}(d y)\right)
$$

for any $u \in H_{1}^{*}$.
So from the central limit theorem for Hilbert space valued random variables, the distribution of $\left(X_{T}, \sqrt{T}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t-\nu_{0}\right)\right)$ under Q_{x} converges weakly to $\nu_{0} \otimes \gamma$ as $T \rightarrow \infty$ on $\mathbf{T}^{d} \times H_{1}$.

As before, $\left.D^{2} \Phi\left(\nu_{0}\right)(\cdot, \cdot)\right|_{H \times H}$ is a Hilbert-Schmidt function. Write the eigenvalues and the corresponding eigenvectors as a_{m} and $\bar{G} e_{m} d \nu_{0}, m=$ $1,2, \cdots$. Then $\sum_{m=1}^{N} a_{m}\left(\left(e_{m}, W\right)^{2}-1\right)$ converges in $L^{2}(d \gamma)$. Let : $D^{2} \Phi\left(\nu_{0}\right)(W, W)$: be the $L^{2}(d \gamma)$-limit of $\sum_{m=1}^{N} a_{m}\left(\left(e_{m}, W\right)^{2}-1\right)$.

It is easy that

$$
\frac{1}{T} \int_{0}^{T} \int_{0}^{T} \sum_{m=1}^{N} a_{m} e_{m}\left(X_{s}\right) e_{m}\left(X_{t}\right) d s d t
$$

$$
\begin{aligned}
&-\frac{1}{T} \int_{0}^{T} \sum_{m=1}^{N} a_{m} e_{m}\left(X_{s}\right) \bar{G} e_{m}\left(X_{s}\right) d s \\
& \rightarrow \quad \sum_{m=1}^{N} a_{m}\left(\left(e_{m}, W\right)^{2}-1\right)
\end{aligned}
$$

under Q_{x} in distribution as $T \rightarrow \infty$ for any $N \in \mathbf{N}$ and any $x \in \mathbf{T}^{d}$. Also,

$$
\begin{aligned}
& \sup _{T>0} E^{Q_{x}}\left[\left\{\left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} \Phi^{(2)}\left(\nu_{0} ; X_{t}, X_{s}\right) d s d t\right.\right.\right. \\
& \left.\quad-\left.\frac{1}{T} \int_{0}^{T} \bar{G}_{x} \Phi^{(2)}\left(\nu_{0} ; \cdot, \cdot\right)\right|_{\left(X_{s}, X_{s}\right)} d s\right) \\
- & \left(\frac{1}{T} \int_{0}^{T} \int_{0}^{T} \sum_{m=1}^{N} a_{m} e_{m}\left(X_{s}\right) e_{m}\left(X_{t}\right) d s d t\right. \\
& \left.\left.\left.\quad-\frac{1}{T} \int_{0}^{T} \sum_{m=1}^{N} a_{m} e_{m}\left(X_{s}\right) \bar{G} e_{m}\left(X_{s}\right) d s\right)\right\}^{2}\right]
\end{aligned}
$$

as $N \rightarrow \infty$. Therefore,

$$
\begin{aligned}
& \frac{1}{T} \int_{0}^{T} \int_{0}^{T} \Phi^{(2)}\left(\nu_{0} ; X_{t}, X_{s}\right) d s d t-\left.\frac{1}{T} \int_{0}^{T} \bar{G}_{x} \Phi^{(2)}\left(\nu_{0} ; \cdot, \cdot\right)\right|_{\left(X_{s}, X_{s}\right)} d s \\
\rightarrow & : D^{2} \Phi\left(\nu_{0}\right)(W, W):
\end{aligned}
$$

in distribution as $T \rightarrow \infty$. Also,

$$
\left.\left.\frac{1}{T} \int_{0}^{T} \bar{G}_{x} \Phi^{(2)}\left(\nu_{0} ; \cdot \cdot \cdot\right)\right|_{\left(X_{s}, X_{s}\right)} d s \rightarrow \int_{\mathbf{T}^{d}} \bar{G}_{x} \Phi^{(2)}\left(\nu_{0} ; \cdot, \cdot\right)\right|_{(u, u)} \nu_{0}(d u)
$$

Q_{x}-almost surely as $T \rightarrow \infty$, and

$$
T R\left(\nu_{0}, \frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right) \rightarrow 0
$$

under Q_{x} in distribution as $T \rightarrow \infty$. Therefore, we have that

$$
T \widetilde{\Phi}\left(\frac{1}{T} \int_{0}^{T} \delta_{X_{t}} d t\right) \rightarrow: D^{2} \Phi\left(\nu_{0}\right)(W, W):+\left.\int_{\mathbf{T}^{d}} \bar{G}_{x} \Phi^{(2)}\left(\nu_{0} ; \cdot, \cdot\right)\right|_{(u, u)} \nu_{0}(d u)
$$

in distribution as $T \rightarrow \infty$. This together with Lemma 4.5 gives our assertion.

References

[1] Bolthausen, E., Deuschel, J.-D. and U. Schmock, Convergence of path measures arising from a mean field and polaron type interaction, Probab. theory Related Fields, No. 95 (1993), 283-310.
[2] Bolthausen, E., Deuschel, J.-D. and Y. Tamura, Laplace approximations for large deviations of nonreversible Markov processes. The nondegenerate case, Annal. Prob. 23 No. 1 (1995), 236-267.
[3] Dunford, N. and J. T. Schwartz, Linear Operators Part I: General Theory, Interscience Publishers, Inc., New York, 1964.
[4] Donsker, M. D. and S. R. S. Varadhan, Asymtotic evaluation of certain Markov process expectations for large time III, Comm. Pure Appl. Math. No. 29 (1976), 389-461.
[5] Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston Inc., 1969.
[6] Ikeda, N. and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, 1981.
[7] Ito, K., Multiple Wiener Integral, J. Math. Soci. Japan 3 No. 1 (1951), 157-169.
[8] Kusuoka, S. and S. Liang, Laplace Approximations for sums of random variables, to appear in Probab. theory Related Fields.
[9] Kusuoka, S. and Y. Tamura, Symmetric Markov processes with mean field potentials, J. Fac. Sci. Univ. Tokyo Sect IA 34 No. 2, 371-389.
(Received January 24, 2000)
Shigeo Kusuoka
Graduate School of Mathematical Science the University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914, Japan
Song Liang
Graduate School of Mathematics
Nagoya University
Nagoya 464-8602, Japan

[^0]: 2000 Mathematics Subject Classification. Primary 60F10; Secondary 60J60.

