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A Note on the Uncertainty Principle

for the Dunkl Transform

By Nobukazu Shimeno

Abstract. Analogues of Heisenberg’s inequality and Hardy’s the-
orem are studied for the Dunkl transform.

1. Introduction

The uncertainty principle in harmonic analysis says “A nonzero function

and its Fourier transform cannot both be sharply localized”. There are two

typical formulations of the uncertainty principle for the Fourier transform

on the real line R, Heisenberg’s inequality and Hardy’s theorem.

In order to be clear about the normalization we state our definition of

the Fourier transform:

f̂(λ) =
1√
2π

∫ ∞

−∞
f(x)e−

√
−1λxdx.

Heisenberg’s inequality states that for f ∈ L2(R),

∫ ∞

−∞
x2|f(x)|2dx

∫ ∞

−∞
λ2|f̂(λ)|2dλ ≥ 1

4

[∫ ∞

−∞
|f(x)|2dx

]2

with equality only if f(x) is almost everywhere equal to a constant multiple

of e−px2
for some p > 0. A proof is given in Weyl [13, Appendix 1].

Hardy [6] proved a theorem concerning the decay of f and f̂ at infinity;

let p and q be positive constants and assume that f is a function on the

real line satisfying |f(x)| ≤ Ce−px2
and |f̂(λ)| ≤ Ce−qλ2

for some positive

constant C. Then (i) f = 0 if pq > 1/4; (ii) f = Ae−px2
for some constant

A if pq = 1/4; (iii) there are infinitely many f if pq < 1/4.

1991 Mathematics Subject Classification. 33C80, 43A32.

This research was supported by the Ministry of Education, Science, Sports and Culture,

Grant-in-Aid for Encouragement of Young Scientists, No. 10740091 and No. 12740097.

33



34 Nobukazu Shimeno

Root systems provide a rich framework for the study of harmonic analy-

sis, which give generalizations of the classical Fourier analysis. In [4], Dunkl

introduce an integral transform associated with the eigenfunctions of the

Dunkl operators for a root system and proved the Plancherel theorem. In

[3], de Jeu studied the Dunkl transform by completely different method and

proved the inversion formula and the Plancherel theorem. The Dunkl trans-

form has practically important properties of the classical Fourier transform;

it is self-dual, it has period 4, and the Gaussian is invariant under the Dunkl

transform.

In this paper we study analogues of Heisenberg’s inequality and Hardy’s

theorem for the Dunkl transform. We give an alternative proof of Heisen-

berg’s inequality for the Dunkl transform (Theorem 3.1), which was first

proved by Rösler [10]. We prove an analogue of Hardy’s theorem (Theo-

rem 4.1) for the Dunkl transform.

Acknowledgement . The author is indebted to Professor Margit Rösler

for a kind comment on this work and for a fruitful discussion.

2. The Dunkl Transform

In this section, we review on results of Dunkl [4] and de Jeu [3].

Let a = R
N be a N -dimensional real vector space with inner product

(·, ·). The norm is denoted by |x| = (x, x)1/2. For α ∈ a \ {0} let rα denote

the orthogonal reflection with respect to the hyperplane orthogonal to α.

Let G ⊂ O(a) be a finite reflection group. Let R be the corresponding root

system. We will assume that R is a normalized root system, i.e. (α, α) = 2

for all α ∈ R. Choose and fix a positive system R+ ⊂ R.

A complex valued function k : α �→ kα on R which is G-invariant

is called a multiplicity function. In this article we always assume that

Re kα ≥ 0 for all α ∈ R.

Let h = a⊗R C be the complexification. We denote the symmetric inner

product on h by (·, ·) and the norm by |x| = (x, x̄)1/2. For ξ ∈ h let ∂ξ
denote the corresponding directional derivative. Define the Dunkl operator

Tξ by

(Tξf)(x) = (∂ξf)(x) +
∑
α∈R+

kα(α, ξ)
f(x) − f(rαx)

(α, x)
.
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We have [Tξ, Tη] = 0 for any ξ, η ∈ h. Given λ ∈ h consider the following

system of differential-difference equations on a:

(2.1) Tξf = (λ, ξ)f, ξ ∈ a.

Theorem 2.1 (de Jeu [3, Theorem 2.6]). Assume Re kα ≥ 0 for all

α ∈ R. Then there is a unique solution ExpG(λ, k, ·) of (2.1) such that

(i) ExpG(λ, k, 0) = 1,

(ii) ExpG(λ, k, x) is holomorphic in λ ∈ h and analytic in x ∈ a.

Indeed, de Jeu [3] proved stronger results and Opdam [8] studied ExpG

in detail.

Let

h(x) =
∏

α∈R+

|(α, x)|kα

and

γ =
∑
α∈R+

kα.

Then h is a homogeneous G-invariant function of degree γ. Define the

normalization constant

ch =

(
(2π)−N/2

∫
RN

h(x)2e−|x|2/2dx

)−1

.

de Jeu [3, Corollary 4.17] proved that the constant ch is strictly positive

(see also [3, Remark 4.12]).

For f ∈ L1(RN , h2dx), let

f̂(λ) = (2π)−N/2ch

∫
RN

f(x)ExpG(−
√
−1λ, k, x)h(x)2dx,

the Dunkl transform of f . If kα = 0 for all α ∈ R, then it is nothing but

the Fourier transform on R
N .

We recall main results of de Jeu [3], the inversion formula and the

Plancherel theorem for the Dunkl transform.

Theorem 2.2 (de Jeu [3], Theorem 4.20, 4.26).
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(1) Assume Re kα ≥ 0 for all α ∈ R. Let f ∈ L1(RN , h2dx) and suppose

that f̂ ∈ L1(RN , h2dx). Then

f(x) = (2π)−N/2ch

∫
RN

f̂(λ)ExpG(
√
−1λ, k, x)h(λ)2dλ.

(2) Assume kα ≥ 0 for all α ∈ R. If f ∈ L1(RN , h2dx) ∩ L2(RN , h2dx),

then f̂ ∈ L2(RN , h2dx) and

∫
RN

|f(x)|2h(x)2dx =

∫
RN

|f̂(λ)|2h(λ)2dλ.

Remark 2.3. Let k be a complex number with Re k ≥ 0. Define

Jk(x) =
2k−

1
2 Γ(k + 1

2)

xk−
1
2

Jk− 1
2
(x),

where Jα is the Bessel function in the standard notation. If N = 1 and

G = Z2, then

EZ2(
√
−1λ, k, x) = Jk(λx) +

√
−1λx

2k + 1
Jk+1(λx).

The Z2-invariant part of EZ2(
√
−1λ, k, x) is Jk(x), so the Dunkl transoform

specialize to even functions is given by

f̂(x) =

∫ ∞

0
f(x)Jk(x)x

2kdx,

which coincides with the classical Hankel transform. We refer the reader to

Dunkl [4, Section 4] and Koornwinder [7, Section 2] for details.

Remark 2.4. The Dunkl transform sometimes appears “in nature” as

the spherical Fourier transform on Riemannian symmetric spaces X of the

Euclidean type. Let G be the Weyl group for X and k = m/4, where mα

is the root multiplicity for the symmetric space. Then the restriction of

the Dunkl transform to G-invariant functions coincides with the spherical

Fourier transform on X. We refer the reader to de Jeu [3, Remark 4.27]

and Opdam [8, Remark 6.12] for details.
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3. Heisenberg’s Inequality

In this section we give a proof of Heisenberg’s inequality for the Dunkl

transform, which was first proved by Rösler [10].

Theorem 3.1. Assume that kα ≥ 0 for all α ∈ R. For f ∈ L2(RN ,

h2dx),

∫
RN

|x|2|f(x)|2h(x)2dx
∫

RN

|λ|2|f̂(λ)|2h(λ)2dλ

≥
(
γ +

N

2

)2 [∫
RN

|f(x)|2h(x)2dx
]2

with equality only if f(x) is almost everywhere equal to a constant multiple

of e−p|x|2 for some p > 0.

Proof. First we review on an orthogonal basis for L2(Rn, h2dx) after

Dunkl [4]. Let {ξ1, . . . , ξN} be an orthonormal basis of R
N . Define the h-

Laplacian ∆h =
∑N

i=1 T
2
ξi

. Let Pn denote the space of polynomial functions

on R
N that are homogeneous of degree n. Let Hh

n = Pn∩(ker∆h), the space

of h-harmonic polynomials. Let dω be the normalized rotation-invariant

measure on the unit sphere SN−1 ⊂ R
N . Then we have an orthogonal de-

composition L2(S, h2dω) =
∑∞

n=0 ⊕Hh
n. Let {p(n)

j }j∈Jn be an orthonormal

basis of Hh
n.

Let m, n be non-negative integers and j ∈ Jn. Define

cm,n =

(
Γ(N/2)m!

πN/2Γ((N/2) + γ +m+ n)

) 1
2

and

(3.1) ψm,n,j(x) = cm,np
(n)
j (x)L(n+γ+N/2−1)

m (|x|2)e−|x|2/2,

where L
(A)
m denote the Laguerre polynomial in the standard notation. It

follows from Proposition 2.4 and Theorem 2.5 of Dunkl [4] that

{ψm,n,j : m, n = 0, 1, 2, . . . , j ∈ Jn}
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forms an orthonormal basis of L2(RN , h2dx). Moreover by [4, Theorem 2.6]

we have

(3.2) ψ̂m,n,j = (−
√
−1)n+2mψm,n,j .

By the recurrence relation for the Laguerre polynomial

tLα
n(t) = −(n+ 1)Lα

n+1(t) + (α+ 2n+ 1)Lα
n(t) − (n+ α)Lα

n−1(t),

we have

|x|2ψm,n,j(x) = − (m+ 1)ψm+1,n,j(x)(3.3)

+ (n+ γ + (N/2) + 2m)ψm,n,j(x)

− (n+ γ + (N/2) − 1 +m)ψm−1,n,j(x).

Here we put ψ−1,n,j = 0.

Let 〈· , · 〉 and ‖ · ‖ denote the inner product and the norm of L2(RN ,

h2dx) respectively. For f ∈ L2(RN , h2dx) define am,n,j = 〈f, ψm,n,j〉. We

have

f =
∑
m,n,j

am,n,jψm,n,j ,(3.4)

f̂ =
∑
m,n,j

am,n,j(−
√
−1)n+2mψm,n,j .(3.5)

By (3.3), (3.4) and (3.5) we have

‖| · |f‖2 + ‖| · |f̂‖2

=
∑
m,n,j

am,n,j(〈| · |2ψm,n,j , f〉 + 〈| · |2(−
√
−1)n+2m)ψm,n,j , f̂〉

= 2
∑
m,n,j

|am,n,j |2(n+ γ + (N/2) + 2m)

≥ 2(γ +N/2)||f ||2,

with the equality only if am,n,j = 0 except for m = n = 0.
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For f ∈ L2(RN , h2dx) and c > 0 define fc(x) = f(cx). Since h(cx) =

cγh(x), it is easy to see that

‖| · |fc‖2 = cN−2γ−2‖| · |f‖2.

By de Jeu [3, Theorem 2.8],

ExpG(−
√
−1c−1λ, k, cx) = Exp(−

√
−1λ, k, x).

Thus it is easy to see that

(3.6) f̂c(λ) = cN−2γ f̂(c−1λ),

and hence

‖| · |f̂c‖2 = cN−2γ+2‖| · |f̂‖2.

Therefore we have

c−2‖| · |f‖2 + c2‖| · |f̂‖2 ≥ 2(γ +N/2)‖f‖2.

The minimum value of the left hand side as a function of c is ‖|·|f‖‖|·|f̂‖. �

Remark 3.2. After we wrote a draft of this article, we noticed that

Theorem 3.1 was already proved by Rösler [10]. We decided to include our

proof of the theorem because it is slightly simpler than that in [10].

Our proof of Theorem 3.1 is indeed similar to that of Rösler [10]. Rösler

used expansions in terms of generalized Hermite polynomials and recurrence

relations among them, which were given in [9]. We used expansions in terms

of the basis given by Dunkl [4] and recurrence relations for the classical

Laguerre polynomial. Our proof of Theorem 3.1 is inspired by de Bruijin

[2] who proved Heisenberg’s inequality for the Fourier transform using the

Hermite polynomials (see also [5, Section 3]). Since there is a basis (3.1) of

L2(RN , h2dx) that satisfy (3.2) and we consider variances for | · | that is a

radial function, we could prove the theorem by using the recurrence relation

for the Laguerre polynomial instead of that of the Hermite polynomial in

[2].

Remark 3.3. In view of Remark 2.3 and 2.4, we obtain Heisenberg’s

inequality for the classical Hankel transform and the spherical Fourier trans-

form on a Riemannian symmetric space of the Euclidean type as a corollary

of Theorem 3.1. The Heisenberg’s inequality for the classical Hankel trans-

form was proved by Bowie [1].
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4. Hardy’s Theorem

We now state and prove an analogue of Hardy’s theorem for the Dunkl

transform.

Theorem 4.1. Assume Re kα ≥ 0 for all α ∈ R. Let p and q be

positive constants. Suppose f is a measurable function on R
N satisfying

(4.1) |f(x)| ≤ C exp(−p|x|2) x ∈ R
N

and

(4.2) |f̂(λ)| ≤ C exp(−q|λ|2) λ ∈ R
N ,

where C is a positive constant. Then we have following results:

(1) If pq > 1/4, then f = 0 almost everywhere.

(2) If pq = 1/4, then f(x) = A exp(−p|x|2), where A is an arbitrary

constant.

(3) If pq < 1/4, then there are infinitely many such functions f .

Proof. The proof follows closely that of Sitaram and Sundari [12],

where analogues of Hardy’s theorem were proved for certain function spaces

on semisimple Lie groups.

We may assume p = q without loss of generality by scaling (3.6). The

main part is to prove (2), which states that f is a constant multiple of

exp(−|x|2/2) if p = q = 1/2. Once this is proved, the proof of (1) become

self-evident. Also, the functions ψm,n,j defined by (3.1) give an infinite

number of examples for (3).

Assume p = q = 1/2. We claim that

(4.3) |f̂(λ)| ≤ C exp(|λ|2/2) for all λ ∈ h.

Let

a+ = {x ∈ a : (x, α) > 0 for all α ∈ R+}.
We have

(4.4) f̂(λ) =
∑
g∈G

∫
a+

f(gx)ExpG(−
√
−1λ, k; gx)h(x)2dx.
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Recall from de Jeu [3, Corollary 3.2] that

(4.5) |ExpG(−
√
−1λ, k;x)| ≤ |G|1/2emaxg∈G Im (gλ,x), x ∈ R

N .

By (4.1), (4.4) and (4.5), we have

|f̂(λ)| ≤ C

∫
a+

exp(−|x|2/2 + (x, µ))h(x)2dx

for some positive constant C, where µ ∈ GImλ ∩ a+. Moreover we have

|f̂(λ)| ≤ C

∫
a+

exp(−|x|2/2 + (x, µ))h(x)2dx

= C exp(|µ|2/2)

∫
−µ+a+

exp(−|x|2/2)h(x+ µ)2dx

≤ C ′ exp(|λ|2/2)

for some positive constants C and C ′, which proves (4.3).

Under condition (4.1), f̂(λ) gives an entire function on λ ∈ h because of

(4.5). Since f̂ satisfy estimates (4.3) and (4.2) for q = 1/2, it follows from

[12, Lemma 2.1] that

(4.6) f̂(λ) = A exp(−|λ|2/2)

for some constant A. Thus f(x) = A exp(−|x|2/2) by (3.2). �

Remark 4.2. In view of Remark 2.3 and 2.4, we obtain Hardy’s theo-

rem for the classical Hankel transform and the spherical Fourier transform

on a Riemannian symmetric space of the Euclidean type as a corollary of

Theorem 4.1.

Remark 4.3. In [11] the author gives an analogue of Theorem 4.1 for

the Heckman-Opdam transform, which is the trigonometric counterpart of

the Dunkl transform.
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