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Left Distributive Quasigroups and Gyrogroups

By A. Nourou Issa

Abstract. The connection between gyrogroups and some types
of left distributive quasigroups is established by means of isotopy con-
siderations. Any quasigroup of reflection is isotopic to some gyro-
commutative gyrogroup and any left distributive quasigroup satisfy-
ing some specific condition is isotopic to some nongyrocommutative
gyrogroup. The geometry of reductive homogeneous spaces and the
semidirect product for homogeneous loops are used to produce local ex-
act decompositions of groups and local gyrocommutative gyrogroups.

1. Introduction

A gyrogroup is roughly the set of relativistically admissible velocities

together with their binary Einstein composition law in Special Theory of

Relativity. Such an algebraic structure turns out to be noncommutative and

nonassociative and this noncommutativity-nonassociativity is generated by

the Thomas precession (or Thomas gyration) that occurs in some physical

phenomena. The identification of the Thomas precession with the left inner

mapping of the loop theory is of prime significance for both of the gyrogroup

and the loop theories. Since their discovery by A.A. Ungar [20, 21, 23]

gyrogroups became a subject of intensive investigations in their physical

and geometrical meaning [20, 23, 24, 25] as well as in their loop-theoretical

interpretation [21, 22, 23, 11, 18, 9, 6]. Indeed, in 1988 A.A. Ungar found a

famous physical example of a formerly well known algebraic structure called

left Bruck loop. In [25] gyrogroups were split up into gyrocommutative

and nongyrocommutative ones. It is now clear that not only left Bruck

loops algebraically describe gyrogroups but, more generally, homogeneous

loops do so (in fact most of the characteristic properties of gyrogroups are

properties of homogeneous loops with the automorphic inverse property).
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The basic role of homogeneous loops in the gyrogroup theory is stressed in

[11, 6].

Concerned in the further loop-theoretical interpretation of gyrogroups

we link, by isotopy considerations, gyrogroups with left distributive quasi-

groups satisfying some additional conditions. Thus in Section 3 quasigroups

of reflection (i.e. left distributive quasigroups with the left law of keyes) were

found to be isotopic equivalents of gyrocommutative gyrogroups (inciden-

tally, for the global algebraic theory of such gyrogroups, the mapping x �→ x2

happens to be a permutation) while left distributive quasigroups (with a left

identity) satisfying the conditon (∗) isotopically describe nongyrocommuta-

tive gyrogroups. Thus the search of gyrocommutative or nongyrocommu-

tative gyrogroups could be reduced, under some conditions, to the one of

corresponding left distributive quasigroups. In Section 4 we consider the

geometry of reductive symmetric spaces and its connection with gyrogroups

(this is attuned to the present subject since by the O. Loos definition [12], a

symmetric space can be seen as the smooth (or differentiable) counterpart

of a left distributive quasigroup satisfying the left law of keyes). Here the

emphasis is more on the geometry of local smooth gyrogroups whereas the

geometry of global smooth gyrocommutative gyrogroups was already inves-

tigated by W. Krammer and H.K. Urbantke in [9]. In this section we also

point out that the concept of the semidirect product for quasigroups and

loops could be used to produce, at least for the case of homogeneous loops,

examples of exact decompositions of groups and local gyrocommutative gy-

rogroups. In contrast of gyrocommutative gyrogroups, nongyrocommuta-

tive gyrogroups likely do not allow any geometry of symmetric spaces. In

Section 2 we recall some useful notions of loop theory and some results from

gyrogroup theory.
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2. Preliminaries

A groupoid (G, .) is a set G with a binary operation (.). If a ∈ G, the left

translation La and right translation Ra by a are defined by Lab = a.b and

Rab = b.a, for any b ∈ G. If, for any a ∈ G, La and Ra are permutations of

G (i.e. bijections of G onto itself), then G is called a quasigroup. In which

case L−1
a and R−1

a have sense and one defines L−1
a b = a\b and R−1

a b = b/a.

A groupoid (G, 
) is said to be isotopic to a quasigroup (G, .) whenever they

are some permutations α, β, γ of G such that a
 b = γ−1(αa.βb) for any a, b

in G (the triple α, β, γ is then called an isotopy). It turns out that (G, 
) is

also a quasigroup.

For fundamentals on quasigroup and loop theory we refer to [1, 3, 13].

Throughout this paper we shall deal with a special class of quasigroups,

namely the class of left distributive quasigroups. A quasigroup (G, .) is said

to be left distributive if its left translations La, a ∈ G, are its automorphisms,

that is

a.bc = ab.ac

for all a, b, c in G (in order to reduce the number of brackets we use juxtapo-

sition in place of dot whenever applicable). If there exists in G an element

e such that e.a = a, ∀a ∈ G, then e is called the left identity of (G, .).

Likewise is defined the right identity of (G, .). If the left and right identity

of (G, .) coincide, then e is called the (two-sided) identity element of (G, .).

A loop is a quasigroup with an identity element.

A loop (G, .) is called a left A-loop (or a left special loop) if its left inner

mappings la,b = L−1
a.bLaLb are its automorphisms. If, moreover, (G, .) has

the left inverse property (LIP) L−1
a = La−1 (here a−1 denotes the inverse

of a), then (G, .) is called a homogeneous loop. Homogeneous loops were

investigated by M. Kikkawa in [7], where among others their relation with

the geometry of reductive homogeneous spaces is established . One of the

most studied classes of loops is the one of Bol loops. A loop (G, .)is called

a left Bol loop, if

LaLbLa = La.ba (left Bol identity)

for every a, b in G. Bol loops are studied by D.A. Robinson in [14] (see

also [1, 4, 15]). Left Bol loops are known to possess, for instance, the

left inverse property (LIP). A left Bol loop with the automorphic inverse
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property (a.b)−1 = a−1.b−1 is called a left Bruck loop. A featuring property

of left Bruck loops is the left Bruck identity

ab.ab = a.(bb.a).(1)

Left Bruck loops are closely related to grouplike structures called gyro-

groups. The term of gyrogroup is introduced by A.A. Ungar in [23] to

designate the noncommutative- nonassociative algebraic structure formed

by relativistically admissible velocities and their Einstein composition law

(see [20, 21]). Such a noncommutativity-nonassociativity is generated by

the Thomas precession well known in Physics. The grouplike foundations

of these algebraic structures are layed in [20, 21, 23, 25]. In [25] gyrogroups

were split up into gyrocommutative gyrogroups and nongyrocommutative

ones just as groups are classified into abelian and nonabelian. It turns

out that the algebraic structure of gyrocommutative gyrogroups coincides

with a known type of loops (Ungar [21] introduced the term of ”K-loop” to

designate this type of loop). We recall this interesting fact that the Thomas

precession coincides with the left inner mapping of the loop theory. Later

A. Kreuzer [10] proved that K-loops and left Bruck loops are actually the

same. In [6] was observed that a nongyrocommutative gyrogroup could be

identified with a homogeneous loop satisfying the left loop property (LLP)

la,b = la.b,b (the loop property is one of the characteristic properties of

gyrogroups).

For the sake of conciseness we will not give the axiomatic definitions

of gyrogroups (one may refer to [20, 23, 24, 25]). Instead we shall think

of them as of their loop-theoretical equivalents. Thus a gyrocommutative

gyrogroup is a left Bruck loop (or a K-loop) while a nongyrocommutative

gyrogroup is a homogeneous loop with the left loop property. As an abelian

group is a group with the commutative law, a gyrocommutative gyrogroup

could be seen as a (nongyrocommutative) gyrogroup satisfying additionally

the gyrocommutative law

a.b = la,b(b.a).(2)

L.V. Sabinin [18] showed that the gyrocommutative law is actually the ”gy-

roversion” of the left Bruck identity (1). Using properties of homogeneous

loops we observed [6] that the gyrocommutative law (2) can be generalized

up to an identity (that we called the Kikkawa identity) characterizing ho-

mogeneous loops with the automorphic inverse property ([7], Proposition
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1.13 (3)). However A.A. Ungar already obtained ([24], Theorem 3.1 (v)),

by another way, such a generalization. This proves again the homogeneous

loop foundations of gyrogroups.

In this paper we extend the loop-theoretical interpretation of gyrogroups

up to left distributive quasigroups with additional properties.

3. Isotopy of Left Distributive Quasigroups and Gyrogroups

A quasigroup (Q, .) is called a quasigroup of reflection if it is left dis-

tributive and satisfies the left law of keyes

x.xy = y.(3)

One notes that, as a left distributive quasigroup, Q is idempotent i.e. x.x =

x for any x in Q. The term of ”quasigroup of reflection”, used in [7] to

designate this type of quasigroups, is motivated by its close relation with

the geometry of symmetric spaces (see also Section 4 below). In [15] D.A.

Robinson studied right distributive quasigroups satisfying the right law of

keyes and called them right-sided quasigroups. As such, quasigroups of

reflection could also be called left-sided quasigroups. We observe that the

link between left distributive quasigroups satisfying the left law of keyes

and left Bol loops was established in earlier literature (see [2]). The results

below regarding quasigroups of reflection are dual to those of D.A. Robinson

in [15] about the isotopic study of right-sided quasigroups.

Theorem 1. Every quasigroup of reflection is isotopic to a gyrocom-

mutative gyrogroup.

Proof. Let (Q, .) be a quasigroup of reflection and e a fixed element

in Q. Consider the isotopy of (Q, .) given by x + y = (x/e).ey. Then

(Q,+) is a quasigroup and e is its identity since e + e = e (recall that

(Q,.) is idempotent) so that (Q,+, e) is a loop. Next, from (3) we have

(Lx)
2 = id, ∀x ∈ Q, where id denotes the identity mapping, and therefore

by [1], Theorem 9.11 (see also [2], Theorem 3) we get that (Q,+, e) is

a left Bol loop. If x ∈ (Q,+, e) then the inverse x−1 of x is given by

x−1 = e.x since x + (e.x) = (x/e).e(e.x) = (x/e).x = (x/e).((x/e).e) = e

(by (3)). Therefore, for any x, y ∈ (Q,+, e), x−1 + y−1 = ((e.x)/e).(e.ey) =

(e.(x/e)).(e.ey) = e.((x/e).ey) = e.(x + y) = (x + y)−1 (here we used the
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equality (e.x)/e = e.(x/e) which follows from the left distributivity and

(3); indeed ex.ee = e.xe implies ex.e = e.xe that is, replacing x by x/e,

(e.(x/e)).e = e.((x/e).e) and this leads to e.(x/e) = (e.x)/e). Thus (Q,+, e)

has the automorphic inverse property. Then we conclude that (Q,+, e) is a

left Bruck loop, i.e. a gyrocommutative gyrogroup. �

Remark 1. Since any quasigroup of reflection is idempotent, the iso-

topy x + y = (x/e).ey is actually the e-isotope of (Q, .). Indeed from the

left law of keyes we have (Lx)
2 = id and (L−1

x )2 = id (since by the left

distributive law Lx and L−1
x are automorphisms of (Q, .)) so that x + y =

(x/e).ey = R−1
e x.Ley = R−1

e x.L−1
e y = (x/e).(e\y).

Corollary 1. The mapping x �→ x+x is a permutation of (Q,+,e).

Proof. Since y + y = (y/e).ey = (y/e).(e\y), then for any z in Q

we have (z.e) + (z.e) = ((z.e)/e).(e\(z.e)) = z.(e\(z.e)) = z.(e.ze) =

ze.(z.ze) = ze.e. so we get (z.e) + (z.e) = (z.e).e for all z in Q. Set-

ting x = z.e we have x + x = Rex. Therefore, Re being a permutation of

Q, we conclude that the mapping x �→ x+ x is also a permutation of Q. �

By [15], Theorem 4, one also deduces the following result: If two gyro-

commutative gyrogroups are isotopic to the same quasigroup of reflection

(the isotopy being the one described above) then they are isomorphic.

Theorem 2. If (Q,+, e) is a gyrocommutative gyrogroup such that the

mapping x �→ x+x is a permutation of Q, then (Q,+, e) is isotopic to some

quasigroup of reflection.

Proof. Define on Q a binary operation

x.y = x2 + y−1(4)

for any x, y in Q, where x2 = x+ x and y−1 is the inverse of y in (Q,+, e).

Then (Q, .) is a quasigroup since the mappings x �→ x2 = x + x and x �→
x−1 are permutations of Q. Next, (Q,+, e) being a left Bol loop with

the automorphic inverse property, we have z.(x.y) = z2 + (x2 + y−1)−1 =

z2 +((x2)−1 + y) = z2 +((x−1)2 + y) = z2 + [(x−1)2 +(z2 +((z2)−1 + y))] =

[z2 + ((x−1)2 + z2)] + ((z2)−1 + y) = [z2 + ((x−1)2 + z2)] + (z2 + y−1)−1 =
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[(z2+x−1)+(z2+x−1)]+(z2+y−1)−1 (by (1)) = (z2+x−1)2+(z2+y−1)−1 =

(z.x).(z.y) (by (4)), so that we get the left distributive law. On the other

hand x2 + (x2 + y−1)−1 = x2 + ((x2)−1 + y) = y which is the left law of

keyes. Thus (Q, .) is a quasigroup of reflection. �

Remark 2. The requirement for the mapping x �→ x + x to be a

permutation of a given gyrocommutative gyrogroup (Q,+) is essential for

the global algebraic theory of such gyrogroups (but as it could be seen from

the proof of Proposition 2 below, this requirement can be deleted in the

local smooth theory). This naturally arises from the role of the mapping

x �→ x2 in the algebraic theory of Bol loops. Indeed, from the results of R.H.

Bruck ([3], Chapt. VII, Theorem 5.2) and V.D. Belousov ([1], Theorems

11.9 and 11.10) a way of constructing gyrocommutative gyrogroups is as

follows. Consider a left Bol loop (B, .) such that the mapping x �→ x2 is a

permutation of B. Then the core (B,⊕) of (B, .) defined by x⊕y = x.y−1x is

a quasigroup that turns out to be a quasigroup of reflection. Now construct

a loop-isotope (B,+, e) of (B,⊕), e ∈ B, as in the proof of Theorem 1 and

then (B,+, e) is a gyrocommutative gyrogroup. This construction can be

extended up to groups, making use of the Glauberman construction of a

Bruck loop from a group with an involutory automorphism (see [4, 15]). At

this point it is relevant to observe that the links between gyrocommutative

gyrogroups and groups of odd order are also considered by T. Foguel and

A.A. Ungar in [26], where they use involutory decompositions of groups to

produce gyrogroups.

Below (Section 4) is pointed out the existence of gyrocommutative gy-

rogroups for which the mapping x �→ x2 is a permutation.

We now turn our attention to nongyrocommutative gyrogroups and

their relations with left distributive quasigroups satisfying some conditions.

Specifically we shall consider a left distributive quasigroup (Q, .) with a left

identity e satisfying

(∗) [α(x.y)].(x\z) = α([α(x.y)].y).[(α(x.y))\z]

for any x, y, z in Q, where α is a permutation of Q. We consider the following

isotope of (Q, .):

x ◦ y = R−1(x.Ry)(5)

for any x, y in Q, where R is a permutation of Q defined by Rx = x.e.

We denote by λx and Lx the left translations by x in (Q, .) and (Q, ◦) re-
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spectively. The statements below concern left distributive quasigroups with

a left identity; but similar statements hold for any left distributive quasi-

group since, being a F -quasigroup (see [1]), any left distributive quasigroup

is isotopic to a left distributive quasigroup with a left identity.

Lemma 1. The operation (5) satisfies the relation

(∗)′ λx◦yλ
−1
x λx◦y = λ(x◦y)◦y.

Proof. In (∗) replace y by α−1y and take α = R−1. Then, by (5), we

have λx◦yλ−1
x z = λ(x◦y)◦yλ

−1
x◦yz, for any x, y, z in Q so that we get (∗)′. �

Lemma 2. The groupoid (Q, ◦), with (◦) defined as in (5), is a loop

with e as its identity element. The corresponding quasigroup (Q, .) is a LIP

quasigroup and therefore (Q, ◦, e) has also the LIP.

Proof. The first statement directly follows from (5). Now let xr

be the unique element in Q such that x.xr = e and set y = R−1xr in

(∗)′. Then, by (5), we have λ−1
x = λR−1xr . This means that (Q, .) is a

LIP quasigroup. Next, again from (5), we have Lx = R−1λxR and then

L−1
x = R−1λ−1

x R. On the other hand we have x−1 = L−1
x e = R−1λ−1

x Re =

R−1λ−1
x e = R−1xr. Since λ−1

x = λR−1xr , then for any y ∈ Q, λ−1
x Ry =

λR−1xrRy ⇔ R−1λ−1
x Ry = R−1λR−1xrRy that is L−1

x y = R−1λR−1xrRy =

R−1(R−1xr.Ry) = R−1xr ◦ y = LR−1xry = Lx−1y and thus (Q, ◦, e) has the

left inverse property. �

Theorem 3. Any left distributive quasigroup (Q, .) with a left identity

satisfying (∗) is isotopic to some nongyrocommutative gyrogroup (Q, ◦), the

isotopy being given by (5).

Proof. If e is the left identity of (Q, .) then from Lemma 2 we know

that (Q, ◦) is a loop with the LIP. Next, from [1] (Theorem 9.10 and Corol-

lary, p.165-167), we get that the permutations l−1
x,y are automorphisms of

(Q, ◦) so that (Q, ◦) is a homogeneous loop. Further, from (∗) with α = R−1,

we have [R−1(x.y)].(x\z) = R−1([R−1(x.y)].y).[(R−1(x.y))\z] that is, re-

placing y by Ry and using (5), λx◦yλ−1
x z = λ(x◦y)◦yλ

−1
x◦yz, or λ−1

x z =

λ−1
x◦yλ(x◦y)◦yλ

−1
x◦yz, i.e., replacing z by λx◦yz, λ−1

x λx◦yz = λ−1
x◦yλ(x◦y)◦yz.
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Thus we obtain λ−1
x λx◦y = λ−1

x◦yλ(x◦y)◦y. Multiplying each member of

this last equality by R−1λ−1
y from the left and by R from the right and

using the relation Lx = R−1λxR, we get L−1
y L−1

x Lx◦y = L−1
y L−1

x◦yL(x◦y)◦y
i.e. l−1

x,y = l−1
x◦y,y and one recognizes the left loop property (LLP). Therefore

(Q, ◦, e) is a homogeneous loop with the LLP, i.e. a nongyrocommutative

gyrogroup. �

Theorem 4. Let (Q, ◦, e) be a nongyrocommutative gyrogroup, R a

permutation of Q and (.) a binary operation on Q defined by (5). If R is

such that Rφ = φR for any automorphism φ of (Q, ◦, e), then (Q, .) is a left

distributive quasigroup with e as its left identity and (Q, .) satisfies (∗).

Proof. One knows that the defined groupoid (Q, .) is a quasigroup.

From Theorem 9.10 in [1] (p.165) we have x.y = x ◦ (y ◦ x−1) wherefrom it

follows that e is a left identity for (Q, .). The permutations lx,y = L−1
x◦yLxLy

are automorphisms of (Q, ◦, e) and therefore so are l−1
x,y. Now from (5),

l−1
x,y = R−1λ−1

y λ−1
x λx◦yR that is Rl−1

x,yR
−1 = λ−1

y λ−1
x λx◦y. Let us denote

θy,x = λ−1
y λ−1

x λx◦y. Then since Rl−1
x,yR

−1 = l−1
x,y, we have θy,x = l−1

x,y. Since

l−1
x,y are automorphisms of (Q, ◦, e), from [1] (Lemma 9.1, p.164) we know

that θy,x are also automorphisms of the quasigroup (Q, .) that is, for any

u, v in Q, λ−1
y λ−1

x λx◦y(u.v) = (λ−1
y λ−1

x λx◦yu).(λ−1
y λ−1

x λx◦yv). In particu-

lar for x = R−1y′ (where y′ is uniquely defined by y.y′ = Re), we have

λ−1
y λ−1

R−1y′λ(R−1y′)◦y(u.v) = (λ−1
y λ−1

R−1y′λ(R−1y′)◦yu).(λ−1
y λ−1

R−1y′λ(R−1y′)◦yv)
or, by the second statement of Lemma 2, λ(R−1y′)◦y(u.v) =

λ(R−1y′)◦yu.λ(R−1y′)◦yv, which is the left distributivity in (Q, .), since w =

(R−1y′) ◦ y ranges through all Q.

Next, from the LLP in (Q, ◦, e) and by (5), we have R−1λ−1
x◦yλxλyR =

R−1λ−1
(x◦y)◦yλx◦yλyR, that is λ−1

x◦yλxλ
−1
x◦y = λ−1

(x◦y)◦y. Thus (∗)′ is fulfilled and

so is (∗). This completes our proof. �

4. Homogeneous Spaces, Exact Decompositions and Gyrogroups

In this section we make some observations about the connection between

gyrogroups and some aspects of differential geometry. For this purpose we

use the links between homogeneous spaces, loops and exact decompositions

of groups.
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Exact decompositions of groups are considered by A.A. Ungar in [22].

Let A = SB be a group with a subgroup B and a subset S such that

(i) x ∈ S ⇒ x−1 ∈ S

(ii) bxb−1 ∈ S, ∀ x ∈ S, ∀ b ∈ B

(iii) the decomposition a = xb is unique for any a ∈ A, where x ∈ S and

b ∈ B

(iv) if b ∈ B then bx = xb for any x ∈ S only if b = e, where e is the identity

element of A.

Then the decomposition A = SB of the group A is said to be exact.

From (iii) it follows that if x1, x2 ∈ S, then x1x2 ∈ A and we have

the unique decomposition x1x2 = x12b12, where x12 ∈ S and b12 ∈ B.

Therefore x12 = prS(x1x2), where prS denotes the projection on S parallely

to the subgroup B. Such a projection defines a binary operation, say (+),

on S induced from the one of A, that is x1 + x2 = prS(x1x2). Then the

groupoid (S,+) is said to be induced by the exact decomposition A = SB.

The notion of an exact decomposition of groups led to the notion of a weakly

associative group (WAG) [22] i.e. a LIP left quasigroup (Q, ., \) with a two-

sided identity element, whose left inner mappings are its automorphisms.

By a local gyrocommutative gyrogroup i.e. a local left Bruck loop (U, ., e),

we mean a neighborhood U of the identity e such that the functions U×U →
U , (x, y) �→ x\y and (x, y) �→ x/y are smooth (or differentiable) and such

that (U, ., e) has a structure of left Bruck loop.

As it is already shown in [9] reductive homogeneous spaces and, in

particular, symmetric spaces constitute interesting examples of exact de-

compositions especially from the point of view of their connection with

gyrocommutative gyrogroups. In fact symmetric homogeneous spaces are

suitable differential geometric counterparts of such gyrogroups. A symmet-

ric homogeneous space is a triple (G,H, s), where G is a connected Lie

group, H a closed subgroup of G, s an involutory automorphism of G (i.e.

s ∈ Aut(G), s2 = id) such that H lies between G0 and the identity com-

ponent of G0, where G0 is the closed subgroup of elements of G left fixed

by s. Let g and h denote the Lie algebras corresponding to G and H re-

spectively. Then there exists a canonical decomposition g = m + h, where

m is an Ad(H)-invariant subspace of g and m is isomorphic to the tangent

algebra of the homogeneous space G/H at the origin H (see [8]). If define

Q = {expX, X ∈ m} then Q ⊂ G and it turns out that the decomposition
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G = QH is exact and the groupoid (Q,+) induced by this decomposition

is a gyrocommutative gyrogroup (global or local according to whether the

decomposition is global or local, i.e. Q is a neighborhood of the origin H

in G/H. This in turn depends on the type (noncompact or compact) of

the space (G,H, s); see [9], Theorems 3.1 and 3.2). Conversely, up to some

condition on (G,H, s), the space m has a structure of a gyrocommutative

gyrogroup. Specifically we have the following

Theorem 5 ([9], Theorem 3.4). Let (G,H, s) be a symmetric space of

noncompact type and (Q,+) the gyrocommutative gyrogroup induced by the

exact decomposition of (G,H, s). Let m be the Ad(H)-invariant subspace

of the Lie algebra g of G and (◦) the binary operation on m defined by

X◦Y = exp−1(expX+expY ). Then (m, ◦) is a gyrocommutative gyrogroup.

Remark 3. The uniqueness of the vector X ◦ Y in m follows from

that (G,H, s) is of noncompact type and, in this case, the mapping exp

is a diffeomorphism. Besides, (m, ◦) is an example of gyrocommutative

gyrogroups (i.e. left Bruck loops) for which the mapping X �→ X2 is a

permutation (see Section 3). Indeed, for (m, ◦) as defined above, one has

X2 = X ◦X = exp−1(expX + expX) = exp−1(expXexpX) (since expX +

expX ∈ exp m = Q ⊂ G = QH) = exp−1(exp2X) = 2X and the mapping

X �→ 2X is clearly a permutation of m. We also observe that, deleting

the condition of noncompact type for (G,H, s), we obtain by [5] (Chapt.II,

Lemma 2.4) that (m, ◦) must be a local gyrocommutative gyrogroup. Note

that (m, ◦) may be endowed with a structure of gyrovector space [25] as

follows. The groupoid (Q,+) being a smooth loop induced by a symmetric

space, an multiplication operation texpX by a real scalar t can be defined

[19] on (Q,+) for any X in m; then this operation may be shifted on (m, ◦)
by the help of the exp function by setting t �X = exp−1(texpX), for any

X in m and thus (m, ◦,�) is a gyrovector space. One notes that t �X is

uniquely defined by texpX since, (G,H, s) being of noncompact type, the

function exp is a diffeomorphism.

We find relevant here to point out the possibility of producing local

gyrocommutative gyrogroups from symmetric homogeneous spaces without

appealing to their corresponding symmetric Lie algebras. By such a way

one can also obtain local WAGs. Local gyrocommutative gyrogroups are
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precisely of interest from the point of view of their links with the geometry

of locally symmetric affine connection spaces (see [19]. At this point we

recall that the geodesic loop at a fixed point of a given locally symmetric

affine connection space is always a local left Bruck loop, i.e. a local gy-

rocommutative gyrogroup). Beforehand, in order to match up our present

subject, we recall the definition of a symmetric space in the sense of O. Loos

[12]. A symmetric space is a manifold M with a differentiable multiplication

µ : M ×M → M with the following properties:

(S1) µ(x, x) = x,

(S2) µ(x, µ(x, y)) = y,

(S3) µ(x, µ(y, z)) = µ(µ(x, y), µ(x, z)),

(S4) every x has a neighborhood U such that µ(x, y) = y implies y = x for

all y in U .

From (S1)-(S3) it follows that the underlying algebraic structure of a

symmetric space M is a quasigroup of reflection (M, .) with the binary

operation given by x.y = µ(x, y) for all x, y in M .

Now let (G, e) be a connected Lie group, e being its identity element.

Denote by s an involutory automorphism of G and let Gs be the set of points

left fixed by s. We take Gs as a closed subgroup of G which does not contain

a nontrivial normal subgroup of G (this amounts to an effective action of

G on the coset space G/Gs). Thus (G,Gs, s) is a symmetric space, G/Gs

is an effective symmetric homogeneous space and therefore is reductive (see

[8]). Define Gs = {xs(x−1), x ∈ G}.

Proposition 1. There exists an isomorphism Gs
∼= G/Gs. The de-

composition G = GsG
s is locally exact and Gs is a local weakly associative

group.

Proof. The isomorphism Gs
∼= G/Gs is established in [12] (Theorem

1.3, p.73). Now suppose a ∈ Gs. Then a = xs(x−1) for some x ∈ G.

Therefore a−1 = s(x)x−1 = s(x)s2(x−1) = s(x)s(s(x)−1) ∈ Gs and thus

we get (i). Take again a ∈ Gs i.e. a = xs(x−1), x ∈ G. Then for any

h ∈ Gs we have hah−1 = hxs(x−1)h−1 = hx(hs(x))−1 = hx(s(h)s(x))−1 =

(hx)s((hx)−1) ∈ Gs since hx ∈ G and this proves (ii). Next, from [5]

(Chapt.II, Lemma 2.4), we get the local uniqueness of the decomposition

x = ah for any x ∈ G, where a ∈ Gs and h ∈ Gs (we recall that Gs
∼= G/Gs

and that the tangent space to G/Gs at its identity element is isomorphic to
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a vector subspace of the Lie algebra of G, complementary to the Lie algebra

of Gs). The last condition (iv) follows from the hypothesis that the largest

normal subgroup of G contained in Gs is { e }. Finally, from [22] (Theorems

9.1 and 9.3), we deduce that Gs has a (local) structure of WAG. �

Proposition 2. The groupoid (Gs, .) with the operation product a.b =

ab−1a for any a, b in Gs, is locally a quasigroup of reflection, isotopic to

some local gyrocommutative gyrogroup.

Proof. First we note that the operation product is well defined since,

if a = xs(x)−1 and b = ys(y)−1 for some x, y ∈ G then using the fact that

s2 = id, we get ab−1a = [xs(x−1y)]s([xs(x−1y)]−1) ∈ Gs. The groupoid

(Gs, .) is locally a quasigroup since the mappings x �→ x−1 and x �→ x2 are

permutations of G (the first one by the group structure of G and the second

by the fact that the equation y2 = a, for a sufficiently close to e ∈ G, has a

unique solution in G because of the smoothness of the group operation on G

and that the function exp is locally a diffeomorphism (see [5, 19])). A direct

computation shows that (Gs, .) is left distributive and satisfies the left law

of keyes i.e. (Gs, .) is a quasigroup of reflection. Now consider the isotopy

of (Gs, .) defined by x + y = (x/e).ey. Then by Theorem 1, (Gs,+, e) is a

(local) gyrocommutative gyrogroup. �

Remark 4. One observes that (Gs,+, e) is actually the loop given

by x + y = x1/2yx1/2, where x1/2 is the solution of the equation z2 =

x in Gs and also verifies that (Gs,+) satisfies the left Bol identity and

the automorphic inverse property (see [3], Chapt.VII, Theorem 5.2, where

the verifications were done for Moufang loops. But it is easy to see that

the same approach also accounts in our situation, where the emphasis is

more on the process of producing local gyrocommutative gyrogroups). From

[5] (Chapt.II, Theorem 3.2), it follows that the process described above is

applicable for any homogeneous space, provided it is symmetric. Therefore,

by Proposition 2, from any symmetric homogeneous space we always can get

a local gyrocommutative gyrogroup (this is another way of producing such

gyrogroups without referring to the geometry of locally symmetric affine

connection spaces, as mentioned above).

Example. From a loop-theoretic standpoint semidirect products for

some types of loops may be used to construct examples of exact decomposi-
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tions and thereby obtain induced loops. As a consequence the geometry of

gyrocommutative gyrogroups may be expressed in terms of reductive sym-

metric homogeneous spaces induced by some special semidirect products.

The general construction of a semidirect product of a quasigroup (loop)

by its left transassociant is given by L.V. Sabinin [16, 17]. By definition a

left transassociant of a loop Q always contains the group L0(Q) of all its left

inner mappings. However we will be interested here by a narrower construc-

tion, specifically the one of a homogeneous loop (G, ., e) by a subgroup K

of Aut(G) such that L0(G) ⊂ K ⊂ Aut(G). From [16, 17, 7] the semidirect

product G 12 K is defined to be the cartesian product G×K together with

the binary operation given by

(x, α)(y, β) = (x.αy, lx,αyαβ)(6)

for (x, α), (y, β) ∈ G×K. Since (G, ., e) is a loop, G 12 K is a group with

identity (e, id) and the inverse of an element (x, α) ∈ G 12 K is given by

(x, α)−1 = (α−1x−1, α−1),(7)

where x−1 is the inverse of x in (G, ., e). If G is a gyrogroup, then G 12 K

is the gyrosemidirect product defined in [25].

Consider now in G 12 K the subgroup K̃ = {e} 12 K and the subset

G̃ = G 12 {id}. Then K̃ ∼= K and, as loops, G̃ ∼= G ([16], Theorems

3, 4). Moreover, from [7] (Lemma 2.3), it follows that the decomposition

G 12 K = G̃K̃ is exact.

Assume now that G is a connected homogeneous Lie loop (i.e. G admits

a natural differentiable structure) with the automorphic inverse property

(in [7] such a loop is called a symmetric Lie loop) and let K̃ (∼= K) be the

closure of L0(G). Then L = G 12 K is a connected Lie group with K̃ as its

closed subgroup so that L/K̃ is a reductive homogeneous space. Since G is

a symmetric Lie loop, the mapping s of L defined by s(x, α) = (x, α)−1 is

an involutory automorphism of L ([7], Theorem 6.1). With the notations as

in Propositions 1, 2, we have Ls = K̃ and Ls = {(x, α)2, x ∈ G, α ∈ K}.
Therefore if define on Ls a binary operation (�) by

(x, α)2 � (y, β)2 = (x, α)2[(y, β)2]−1(x, α)2,

(Ls,�) turns out to be a local quasigroup of reflection, according to Propo-

sition 2 and, since ẽ = (e, id) ∈ Ls, the isotopy of (Ls,�) given by

(x, α)2 + (y, β)2 = ((x, α)2/ẽ) � ẽ(y, β)2
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transforms Ls into a local gyrocommutative gyrogroup (Ls,+).

It is now clear that gyrocommutative gyrogroups have strong relations

with the geometry of homogeneous spaces ([25, 9]). Unfortunately it seems

that it is not the case for nongyrocommutative gyrogroups, one of the major

difficulties turning around the left loop property. Imposing some additional

condition on groups possessing an exact decomposition, one can get homo-

geneous loops. For instance, if (A, .) is a group, B a subgroup and S a

subset of A such that

(a) the decomposition A = S.B is exact (in the sense of (i)-(iv))

(b) (S.S) ∩A = {a0} (a0 ∈ A),

then one can show that the induced groupoid (S,+) has a homogeneous

loop structure but, in general, (S,+) has not the left loop property.
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